
33
00

25
15

.0
2

Unity Pro
Concept Application Converter
User's manual
December 2004

2

Table of Contents
About the Book . 7

Part I Requirements and conversion . 9
Introduction . 9

Chapter 1 General Description of the Unity Pro Concept Converter . . .11
General description . 11

Chapter 2 Requirements .13
Introduction . 13
Concept Version . 14
Supported Hardware Platforms. 14
Configuration . 15
System . 17
EFBs . 25
Programming Language SFC . 27
Programming Language LD . 28
Programming Language ST/IL . 28
Programming Language LL984. 29
Programming Language FBD . 30
3

Chapter 3 Language differences . 31
Introduction . 31
Functions Not Present in Unity . 32
EFB replaced by function. 32
INOUT parameters. 33
Parameter type changed . 33
ANY_ARRAY_WORD parameters. 34
Unique Naming required . 35
Incomplete LD Generation . 35
LD Execution Order Changed . 36
Constants. 40
Indices in ST . 40
Calculate with TIME and REAL . 40
WORD Assignments to BOOL Arrays . 40
Topological Address Overlapping . 41
Structure Alignment Changed . 41
Undefined Output on Disabled EFs . 42
SFC Section Retains its State When Performing an Online Modification 43
Weekday Numbering . 44
System Timer. 44
Initial Values. 45
Macros . 46

Chapter 4 Possible application behavior change. 47
Introduction . 47
General . 48
Concept behavior. 49
IEC demands . 50
Unity behavior . 52
Consequences . 54

Chapter 5 The Conversion Process. 61
Conversion Process. 61

Chapter 6 Conversion Procedure . 63
Introduction . 63
Exporting a Project from Concept . 64
Importing a Project into Unity Pro . 65
4

Part II Blocks form Concept to Unity Pro 67
Introduction . 67

Chapter 7 DIOSTAT: Module function status (DIO). 69
Description . 69

Chapter 8 RIOSTAT: Module function status (RIO). 71
Description . 71

Chapter 9 READREG: Read register. .75
Overview . 75
Description . 76
Mode of Functioning . 79
Parameter description . 79

Chapter 10 CREADREG: Continuous register reading. 81
Overview . 81
Description . 82
Mode of Functioning . 85
Parameter description . 85
Modbus Plus Error Codes . 87

Chapter 11 WRITEREG: Write register . 89
Overview . 89
Description . 90
Mode of Functioning . 93
Parameter description . 93

Chapter 12 CWRITREG: Continuous register writing95
Overview . 95
Description . 96
Mode of Functioning . 99
Parameter description . 100

Chapter 13 LOOKUP_TABLE1_DFB: Traverse progression
with 1st degree interpolation. 101
Overview . 101
Description . 102
Detailed description. 103
5

Chapter 14 PLCSTAT: PLC function status . 105
Overview . 105
Description . 106
Derived Data Types . 108
PLC status (PLC_STAT) . 110
RIO status (RIO_STAT) for Quantum . 112
DIO status (DIO_STAT) . 114

Chapter 15 SET_TOD: Setting the hardware clock (Time Of Day) 121
Description . 121

Chapter 16 GET_TOD: Reading the hardware clock (Time Of Day) 125
Description . 125

Chapter 17 BYTE_TO_BIT_DFB: Type conversion 129
Description . 129

Chapter 18 WORD_TO_BIT_DFB: Type conversion. 133
Description . 133

Chapter 19 WORD_AS_BYTE_DFB: Type conversion 137
Description . 137

Chapter 20 DINT_AS_WORD_DFB: Type conversion 139
Description . 139

Chapter 21 LIMIT_IND_DFB: Limit with indicator 141
Description . 141

Index .145
6

About the Book
At a Glance

Document Scope This document describes the functionality and performance scope of the Concept
Application Converter for Unity Pro.
This document is valid for Unity Pro starting from Version 2.0.2.

Validity Note The data and illustrations found in this document are not binding. We reserve the
right to modify our products in line with our policy of continuous product
development. The information in this document is subject to change without notice
and should not be construed as a commitment by Schneider Electric.
 7

About the Book
Product Related
Warnings

Schneider Electric assumes no responsibility for any errors that may appear in this
document. If you have any suggestions for improvements or amendments or have
found errors in this publication, please notify us.
No part of this document may be reproduced in any form or by any means, electronic
or mechanical, including photocopying, without express written permission of
Schneider Electric.
All pertinent state, regional, and local safety regulations must be observed when
installing and using this product. For reasons of safety and to ensure compliance
with documented system data, only the manufacturer should perform repairs to
components.
When controllers are used for applications with technical safety requirements,
please follow the relevant instructions.
Failure to use Schneider Electric software or approved software with our hardware
products may result in injury, harm, or improper operating results.
Failure to observe this product related warning can result in injury or equipment
damage.

User Comments We welcome your comments about this document. You can reach us by e-mail at
techpub@schneider-electric.com
8

I

Requirements and conversion
Introduction

Overview This section contains requirements and information about the conversion.

What's in this
Part?

This part contains the following chapters:

Chapter Chapter Name Page

1 General Description of the Unity Pro Concept Converter 11

2 Requirements 13

3 Language differences 31

4 Possible application behavior change 47

5 The Conversion Process 61

6 Conversion Procedure 63
9

Requirements and conversion
10

1

General Description of the
Unity Pro Concept Converter
General description

Brief description The Concept Converter is an integrated function in Unity Pro, which is used to
convert Concept applications into Unity Pro. This means that Concept programs can
also be used in Unity Pro.
Substitute objects are used in place of objects that cannot be converted, and
messages are displayed in the output window to find these objects.
Descriptions of the respective procedures are provided in chapter Conversion
Procedure, p. 63.

Conversion The conversion is carried out in 4 steps:
1. In Concept: Export the Concept application using the Concept converter which

creates an ASCII file.
2. In Unity Pro: Open the exported ASCII file (*.ASC) in Unity Pro.
3. In Unity Pro: Automatic conversion of the ASCII file into Unity Pro source file

format.
4. In Unity Pro: Automatic import of the Unity Pro source file.

Objects, which
cannot be
converted

The following objects cannot be converted into Unity Pro:
� Compact and Atrium configuration
� I/O initialization (except 0)

Note: Reconverting from Unity Pro back to Concept is not possible.
11

General Description
12

2

Requirements
Introduction

Overview This chapter contains the requirements for converting a Concept project into a Unity
Pro project.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Concept Version 14

Supported Hardware Platforms 14

Configuration 15

System 17

EFBs 25

Programming Language SFC 27

Programming Language LD 28

Programming Language ST/IL 28

Programming Language LL984 29

Programming Language FBD 30
13

Requirements
Concept Version

General Projects from Concept versions 2.11 and 2.5 and 2.6 can be converted to Unity Pro
projects.

Preconversion If an older version of a Concept project should be converted to Unity Pro, the project
must be first converted within Concept to bring it to version 2.6 status for security
reasons.

Supported Hardware Platforms

General Unity Pro supports the hardware platform Quantum.

Quantum PLC
Types

The following Quantum PLC types are supported by Unity Pro (after downloading
the respective EXEC file):
� 140 CPU 311 10
� 140 CPU 431 20
� 140 CPU 434 12A
� 140 CPU 531 40
� 140 CPU 534 14A
� 140 CPU 651 50
� 140 CPU 651 60
� 140 CPU 671 70
Types which no longer exist are replaced by the A type (e.g. 140 CPU 434 12
replaced by 140 CPU 434 12A). Lower PLC types are automatically adjusted to the
140 CPU 311 10.
14

Requirements
Configuration

General Unity Pro only supports IEC conformant programming.
Concept sections created using the LL984 programming language are converted to
the LD programming language in Unity Pro in a later version.

Restrictions for
old LL984
Configurations

The following points from LL984 configurations are no longer supported by Unity
Pro:

Not supported by Unity Pro Supported by Unity Pro

LL984 loadables Concept system and IEC loadables are completely
integrated.

ASCII messages Unity Pro provides string variable instead.

User loadables Unity Pro provides the equivalent EFBs or DFBs
instead.

6x range (register in expanded
memory)

The Concept converter still saves the values in data
structures (but only in a later version of Unity Pro).

Mixed programmed projects
(LL984 + IEC)

The LL984 contribution is converted to LD-IEC.

Data memory - write protection Unity Pro provides write protection variables instead.
 15

Requirements
Hot Standby
(HSBY)

There are the following differences for converting the Concept Hot Standby to Unity
Pro:

The Concept converter replaces the CPU from Concept with the new Hot Standby
CPU 671 60 and the Concept Hot Standby Module 140 CHS 111 00 is removed. All
Hot Standby parameters are transferred to the Unity application.

Concept Unity Pro

The Hot Standby system in
Concept is based on the
140 CHS 111 00 module.

This module is no longer supported by Unity Pro.

The 140 CHS 111 00 module is
purely a Hot Standby Module for a
single slot. The power is supplied
via the rack.

The CPU 671 60 module is a CPU module for two
slots with a fixed assigned connection for data
exchange.
The Hot Standby system is integrated into the
CPU 671 60 module.

Note: As the CPU in Concept only requires one slot, but the new Unity CPU
requires two, overlaps in the rack may arise. These must be resolved manually by
the user.
16

Requirements
System

Security The access authorizations defined in Concept are not converted to Unity Pro.
Security is project specific in Unity Pro and does not refer to the respective
installation as with Concept.

Program
Execution

Program execution using Concept and Unity Pro are different. It can lead to different
behavior during the first program run after a restart.
Program execution for Concept:
1. Write the outputs (program run n-1)
2. Read the inputs (program run n)
3. Program processing

Program execution for Unity Pro:
1. Read the inputs
2. Program processing
3. Write the outputs

Example:
In Concept, you have assigned a 4x register to a digital output and stopped the PLC
when the value is "true". After a restart, the value remains "True" during the first
program run even if you have modified the process conditions.

Specified
execution order

The execution order in the function block language in Concept is determined first of
all by how the FFBs are positioned. If the FFBs are then linked graphically, the
execution order is determined by the data flow. After this the execution order can be
changed based on the intention.
In Unity Pro after conversion it is not possible to see in what order the FFBs were
positioned. Therefore, whenever the order cannot be determined unambiguously
from the data flow rule alone, the order is defined by the Concept project.
The defined execution sequence is shown by means of a rectangle with the step
number in the upper right-hand corner of the FFB.

Single Sweep
Function

The single sweep function is no longer supported by Unity Pro.
The corresponding functionality can be realized in Unity Pro using the Debug
function "Breakpoints".
 17

Requirements
EFB Download Using Concept, all platform dependent EFBs can be placed at any time and loaded
in all PLC platforms. Any errors during runtime are written to the message memory.
In Unity Pro, only valid EFBs can be placed. Download to the PLC is only possible
if the EFBs used are consistent with the PLC platform.

Reference Data
Editor (RDE)

RDE tables created in Concept are converted to Unity Pro when they are placed in
the same directory as the Concept ASCII file.

Global Variable
Values

Because of different restart behaviors after a power failure, it is possible that the
global variable states of two PLCs that restart differently are not the same after the
first program run.
There are two different types of restart behavior:
1. All 16 bit PLCs (all Momentum, Quantum 113, 213, 424) continue executing the

program at the point at which it was interrupted.
2. All 32 bit PLCs (Quantum 434, 534) start the program run at the beginning.
Unity Pro supports the 1st type of restart behavior described above.
18

Requirements
State RAM The Concept State RAM registers are assigned IEC conforming addresses in Unity
Pro.
I/O module addresses are converted to topological addresses.
State RAM register withoutan assigned I/O module

To describe a state RAM register withoutan assigned I/O module, a "flat" address
is used. For this, the register number is added to the end of the introduction.
The address reads as follows:
%[IM][W]Register number
State RAM register with an assigned I/O module

The following information is read from the configuration to provide a sufficient
topological description of a State RAM register with assigned I/O modules:
� Bus number (corresponds to drophead in Concept)
� Drop
� Rack
� Module
� Channel
The complete address reads as follows:
%[IQ][W]\Busnumber\Rack.Drop.Module.Channel

Concept Unity Pro

4x %MWx

3x %IWx

0x %M

1x %Ix

Concept Unity Pro

4x %QW, %IW (mixed I/O)

3x %IW

0x %Q

1x %I
 19

Requirements
State RAM
assignment
using derived
data types

In Concept, data structure elements begin at BYTE limits.
In Unity Pro, data structure elements begin at WORD limits.
Example of a derived data type:
TYPE
 SKOE:
 STRUCT
 PAR1: BOOL;
 PAR2: BYTE;
 PAR3: BOOL;
 PAR4: WORD;
 PAR5: BOOL;
 PAR6: WORD;
 END_STRUCT;
END_TYPE

 The derived data types are stored in the state RAM when using Concept:

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

PAR1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PAR2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

PAR3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PAR4 (LSB)

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

PAR4 (MSB)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PAR5

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

PAR6 (LSB)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PAR6 (MSB)

Word 1

Word 2

Word 3

Word 4
20

Requirements
The same derived data types are stored in the state RAM when using Unity Pro:

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

PAR1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Word 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

PAR2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Word 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

PAR3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Word 3

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

PAR4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Word 4

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

PAR5

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Word 5

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

PAR6

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Word 6
 21

Requirements
Timer, Date,
Battery
Monitoring

Timer address, date/time of day and the battery monitoring can no longer be
assigned to the State RAM with Unity Pro. All required information can be accessed
via the control panel.
When Concept is converted to Unity Pro, DFBs are created which can be simulated
in Unity Pro without further manual modifications of these functionalities.

Quantum
Diagnostics
Words

In Unity, the diagnostics words are specified to be a certain numbert:
� Local I/O: 16 Words
� RIO I/O: 16 Words
� DIO I/O: 16 Words
In Concept it was also possible to specify a smaller number of diagnostics words for
the individual I/Os.
Keep this difference in mind, since it can cause problems.

Topological
Addresses

The topological addresses are assigned so that if the hardware configuration
remains the same, they occupy the same I/O connections as they were assigned in
Concept.
The user sees the hardware addresses in Unity Pro that they are using, without
having to carry out the intermediate step via the State RAM.

Located Variable Located BOOL variables in Concept are converted to EBOOL variables in Unity Pro.
Unity Pro provides this new BOOL variable for the detection of transitions (edges).
This "Elementary BOOL type" is used for %Ix, %Qx and unlocated variables.
EBOOL variables can be forced.
The EBOOL variable provides three types of information depending on the State
RAM registers 0x/1x:
� Current value
� Historical value
� Force information.
Only the current value can be accessed, the other values can only be accessed via
product specific functions.

Note: The Concept Timer Register is 16 bits long and has an accuracy of 10 ms.
The equivalent system word %SD18 in Unity Pro is 32 bits long and has an
accuracy of 100 ms. If this accuracy is not sufficient, the FREERUN function from
the System library can be used, which delivers accuracy of up to 1 ms.

Note: When dealing with days of the week, the value 1 corresponds to Sunday in
Concept and Monday in Unity Pro.
22

Requirements
Longer cycle
time via EBOOL

In Unity, as opposed to Concept, the edges and force information is updated from
EBOOL variables during program runtime.
For this reason on the Quantum CPU 434, CPU 534 and CPU 311 platforms, the
assignment of EBOOL variables is only half as fast as the assignment of BOOL
variables.

Constants Constants in Concept are converted to write-protected variables in Unity Pro.
Unity Pro does not provide constants. Comparable functionality is achieved using
write-protected variables.

0x Register In Concept, the 0x registers are not buffered. They are reset to zero with every
warm restart.
In Unity Pro, the 0x registers are buffered ("RETENTIVE", "VAR_RETAIN"), i.e.
Conform to IEC.
Do not use the possibility to set the 0x register to zero on every warm restart if you
use a project in Concept that you want to convert to Unity Pro.

Note: If you need variables in the signal memory, use BOOL variables and assign
them to the memory area %MW (e.g. BoolVar : BOOL AT %MW10). Otherwise
use unlocated BOOL variables.

Note: If you require non-buffered behavior, define the warm restart event with the
SYSSTATE function block and explicitly copy the value 0 (zero) to the 0x register.
 23

Requirements
Quantum
Remote I/O
Control

In Concept, only LL984 sections can be assigned I/O stations (Drops). This is not
possible in Concept projects with IEC conforming sections (FBD, LD, SFC, IL, ST).
Unity Pro offers this option, in which a logic is recreated in accordance with LL984.
This logic must be entered manually, however.
Example of a section processing order in Unity Pro:

Section n-2
Section n-1
RIO call (u,v,w)
Section n
Section n+1
RIO call (u+1,w,x)
Section n+2
RIO call (u+2,x,y)

RIO (x,y,z) is the explicit I/O call here:
� Write the outputs to the I/O station x.
� Wait at the inputs of the I/O station y.
� Prepare the inputs of the I/O station z.

Setting Variables
Cyclically

Unlocated variables cannot be set cyclically in Unity Pro. (It is possible in Concept).
If you need to set variables cyclically in your project, you should use located
variables.
0x/1x registers (EBOOL) can be forced.
3x/4x registers can be set cyclically (only numerical values).

Note: Take these new settings into consideration when structuring your project.
24

Requirements
EFBs

General The following options are available for converting Concept EFBs to Unity Pro:
� The EFBs are also supported in Unity Pro; They are mapped on a one to one

basis.
� The EFBs are no longer supported by Unity Pro.

Instead of EFBs appropriate DFBs are placed in the application. The functionality
remains unaffected by this.

� The EFBs are no longer supported by Unity Pro.
Instead of EFBs, DFBs with no programmatic content are placed in the
application. These DFBs contain all the Concept parameters.
An error message is displayed that says that the programmatic content for these
DFBs must still be created.

DIAGNO library When converting Concept to Unity Pro for all DIAGNO blocks the station parameter
is omitted.
The following EFBs from the DIAGNO library in Concept are converted to empty
DFB’s in Unity Pro.
� ACT_DIA
� XACT_DIA
� ERR2HMI
� ERRMSG

When creating programs in Unity Pro instead of the ACT_DIA and XACT_DIA EFBs
use the XACT EFB.
For all DIAGNO blocks which can be extended in Concept (D_PRE, D_GRP ...), the
extensible inputs (IN1 ... INx) are gathered together in oneinput. This is
implemented using a nested logic AND link. In the FBD language the AND block is
positioned at the same location as the DIAGNO block by the converter. This overlap
must be resolved manually by the user.

SYSTEM library The SKP_RST_SCT_FALSE and LOOPBACK EFBs cannot be used in Unity Pro.

FUZZY library The FUZZY library is no longer supported by Unity Pro.

Note: These DFBs, created in Unity Pro have all the Concept parameters but no
programmatic content. An error message is displayed that says that the
programmatic content for these DFBs must still be created.
 25

Requirements
HANDTABL
library

The HANDTABL library is no longer supported by Unity Pro.

EXPERTS library The following Concept EFBs are converted to DFBs in Unity Pro:
� ERT_TIME
� SIMTSX22
� EFBs from the EX family
� EFBs from the MVB family
� EFBs from the ULEX family

The data structures DPM_TIME and ERT_10_TTAG from the time stamp module
140 ERT 854 10 have been changed. The MS element was broken up into MS_LSB
and MS_MSB. For more information about this, see State RAM assignment using
derived data types, p. 20.
Outputs which describe data structures must be assigned event variables using the
(=>) assignment operator within the parameter brackets in the ST and IL languages.
This happens automatically during conversion (from Unity 2.0 onwards). The
functionality remains the same but the section of the program looks a little different.

Converted EFBs During conversion, Unity Pro standardizes the EFB offer by grouping redundant
EFBs. The respective EFBs are automatically converted and the project adjusted
accordingly.

Renamed EFBs The following diagnostics EFBs are renamed when converting Concept to Unity Pro:

The Quantum configuration EFB for the Backplane Expander 140 XBE 100 00 is
renamed when converting Concept to Unity Pro:

Note: These DFBs created in Unity Pro have all the Concept parameters but no
programmatic content. An error message is displayed that says that the
programmatic content for these DFBs must still be created.

Concept Unity Pro

XACT D_ACT

XREA_DIA D_REA

XLOCK D_LOCK

XGRP_DIA D_GRP

XDYN_DIA D_DYN

XPRE_DIA D_PRE

Concept Unity Pro

XBP XBE
26

Requirements
Programming Language SFC

General For some programming languages there are restrictions to observe when converting
a project from Concept to Unity Pro.

Parallel/
Alternative
Sequence

A parallel branch may not be directly followed by an alternative branch.
This type of sequence is not permitted according to IEC 1131.
Unity Pro does not support this type of sequence, although it is possible in Concept.
The converter transfers this type of project to Unity Pro, but manual modifications
are subsequently required.
This problem can be solved by inserting an dummy step between the branches.

S_5_12

a

S_5_10 S_5_11

S_5_13

b

S_5_16

g

S_5_14

c

S_5_15

d

e f

S_5_12

a

S_5_10 S_5_11

S_5_13

b

S_5_14

c

S_5_15

d

e f
 27

Requirements
Programming Language LD

General For some programming languages there are restrictions to observe when converting
a project from Concept to Unity Pro.

Converting
the graph

When converting a Concept project to Unity Pro, the ladder diagram LD graph is also
converted, which can lead to a restructuring of the graph.
Concept Application Converter (Unity Pro 2.0.2) was modified. For behaviour
changes please refer to FAQs.

Programming Language ST/IL

General For some programming languages there are restrictions to observe when converting
a project from Concept to Unity Pro.

Generic EFBs Only call generic EFBs instances once.
Using Concept 2.2, assign the outputs directly after the EFB call of a variable.

Syntax with
Concept 2.5

Only use the new syntax for Concept 2.5 (from Unity V2.0 onwards it is
automatically converted).
Syntax with Concept 2.5:

GenEFB(in1:=x1, in2:=x2, out1=>x3, out2=>X4;

in1, in2, out1 and out2 are type ANY.
28

Requirements
Generic EFBs
in Concept

List of generic EFBs in Concept:
� COMM library

� XXMIT
� CONT_CTL library

� DEADTIME
� EXTENDED library

� HYST
� INDLIM
� LIMD
� SAH

� LIB984 library
� FIFO
� LIFO
� R2T
� SRCH
� T2T
� GET_3X
� GET_4X
� PUT_4X

Declaring EFBs The declaration of EFBs in Unity Pro is found in the variables editor and no longer
in the ST/IL sections as with Concept.
EFBs declared this way are no longer limited to only one section.

Programming Language LL984

General For some programming languages there are restrictions to observe when converting
a project from Concept to Unity Pro.

LL984 is no
longer supported
by Unity Pro

Unity Pro only supports IEC conforming programming. The programming languages
LL984 and LL984 specific configurations are not supported by Unity Pro.
Concept sections, created using the LL984 programming language, are converted
to the LD programming language in Unity Soft (from Unity Pro V2.0 onwards).
See also Restrictions for old LL984 Configurations, p. 15.
 29

Requirements
Programming Language FBD

General For some programming languages there are restrictions to observe when converting
a project from Concept to Unity Pro.

Macros When converting a Concept project to Unity Pro, sections created using macros are
also converted.
These sections can also be manually copied and modified.
30

3

Language differences
Introduction

Overview This chapter contains information about language differences.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Functions Not Present in Unity 32

EFB replaced by function 32

INOUT parameters 33

Parameter type changed 33

ANY_ARRAY_WORD parameters 34

Unique Naming required 35

Incomplete LD Generation 35

LD Execution Order Changed 36

Constants 40

Indices in ST 40

Calculate with TIME and REAL 40

WORD Assignments to BOOL Arrays 40

Topological Address Overlapping 41

Structure Alignment Changed 41

Undefined Output on Disabled EFs 42

SFC Section Retains its State When Performing an Online Modification 43

Weekday Numbering 44

System Timer 44

Initial Values 45

Macros 46
31

Language differences
Functions Not Present in Unity

DFB wrapper Functions from Concept that are not present in Unity get a DFB wrapper if they are
called in ST sections (e.g., WORD_AS_UDINT). For example:
WAUD(* UDINT *) := WORD_AS_UDINT (LOW := WAUL, (* WORD *) HIGH
:= WAUH(* WORD *));
. . . looks like this after conversion:
WAUD(* UDINT *) := FBI_ST1_75_33 (LOW := WAUL, (* WORD *)HIGH
:= WAUH(* WORD *));

Manual
correction

FBI_ST1_75_33 is the instance name of the provided DFB wrapper. However, the
call is still invalid for the analyzer because the converter cannot yet do multi-object
syntax corrections in ST. (Will be present in V2.0).
You must correct this manually to:
FBI_ST1_75_33 (LOW := WAUL, (* WORD *) HIGH := WAUH(* WORD *),
OUT => WAUD);

EFB replaced by function

Error message Some standard Concept EFBs are implemented in Unity as functions.
If the converted application contains (in an ST or IL section) a call to such an EFB,
an error will be generated while analyzing the project.
The following figure is a sample explanation of the SET_BIT function block:

Manual
correction

The SET_BIT function officially replaces SET_BITX, which is not implemented in
UNITY. SET_BIT now is a function, and therefore the instance has been eliminated
and the function name itself has been inserted instead.
However, an additional manual correction of the call is required. The converter does
not do multi-object syntax corrections in ST or IL (will be present in V2.0).
Since this is a function call, the result must appear on the left side of a function
assignment:
res1 := SET_BIT(IN := true, NO := 4);
32

Language differences
INOUT parameters

Manual
Correction

INOUT parameter syntax in ST (and IL) must be corrected manually. Examples are
shown:
Ascii_FIFO_OUT (Pile := AscFifo_Mess);

AscFifo_Out := Ascii_FIFO_OUT.DataOut;
. . . is manually corrected to:
Ascii_FIFO_OUT (Pile := AscFifo_Mess, DataOut => AscFifo_Out);

Output
Parameters

INOUT parameters in ST sections that were output parameters in Concept (e.g.,
DataOut of FIFO) must be moved manually in ST and IL to the parameters inside
parentheses associated with the call.
If INOUT parameters that were outputs only in Concept are connected only to a link
at the output side, they must get a manually declared variable at the input side as
well. The link must be deleted if it is not connected to another IN/OUT variable.
Targets of the deleted link must be assigned to the manually declared variable.
This is done automatically in V2.0.

Change of
Variable Type

The converter changes the type of direct variables at INOUT parameters of
communication blocks to ARRAY[0..0] OF WORD.
This must be corrected manually to correspond to the size of the array.

Parameter type changed

Change The parameter type has been changed from type WORD to an array of located words.

Explanation Unity Comm EFBs no longer accept a single WORD address for the communication
field because more than one WORD is written. So the converter introduces an artificial
array (shown in the conversion report) that can be reached from the project tree
through the appropriate hyperlink:
"For var WORD1 type ARRAY[0..0] OF WORD generated"
The array has a single word size because the converter can not determine its size.
The user, therefore, needs to manually configure the correct array size.
 33

Language differences
ANY_ARRAY_WORD parameters

Error Message For EF/EFB pins that have the type WORD in Concept and have been changed to
ANY_ARRAY_WORD in Unity, "Cannot import variables" will be the reported type.
Such pins usually have a single register address as a formal parameter in Concept,
but it is actually used to point to an array of words for which the size has not been
explicitly declared.

Change of
Parameter Type

In Unity, an array of words has to be declared for this purpose. This is why the
converter changes the type to ARRAY[0..0] OF WORD.
However, the converter cannot determine the required size because a size
declaration is absent in the Concept application. Therefore, the converter defines
one data element, [0..0], as a replacement for the original variable.
It is up to the user to replace this default range of one element with the number of
elements required by the application.

Redefine Back
to a One-
Dimensional
WORD Array

In case the application defined data structures that are mapped to registers that
describe the data to be worked with, significant work to redefine this back to a one-
dimensional WORD array is required. However, this is necessary for Unity V1.0, for
example:
{Echanges_CR2 : [MAST]} : (r: 42, c: 7) E1092 data types do
not match ('CREADREG.REG_READ:ANY_ARRAY_WORD'<-
>'table_rec_cr2:peer_Table')
Example:

The Unity converter V2.0 will change these EFB parameter types to ANY, avoiding
this problem.
34

Language differences
Unique Naming required

Unique name In Concept applications, section names can have the same name as a DDT. That is
not the case in Unity.
The converter checks section names to see if they are redundant of DDT names. If
so, the converter appends "_Sect" to the section name.

Incomplete LD Generation

LD Generation
Not Done
Completely

In some cases, LD generation cannot be completed. This can happen when the
algorithm allows an object that requires the same position as an existing object. In
these cases, the pre-existing object is overwritten.
Messages are issued to make you aware of this:
{SAFETY_INTERLOCKS_PLC3 : [MAST]} :
(r: 8, c: 3) E1189 converter error: 'Overwrite happened when
generating LD network - see report'

{SAFETY_INTERLOCKS_PLC3 : [MAST]} : (r: 8, c: 3) E1002 syntax
error

Details in
Conversion
Report

In the conversion report, which may be opened after being imported through the
hyperlink in the project tree, some additional detail about the message is given:
09:29:05.953 > Error: LD Object PTFDTP1_ENABLED with type coil
overwritten
The user should compare the conversion result to a printout of the original section
and correct the converted section accordingly.
 35

Language differences
LD Execution Order Changed

Different
Execution
Orders

The converter follows the Concept execution order in graphical positioning, making
the original order visible to the user. However, since Unity calculates the order anew
(without the possibility of forcing it from the converter), there can be execution order
discrepancies.

Note: Unity’s LD execution order can differ from Concept’s. In Unity, one LD
network can be completed before the next is started.
36

Language differences
Concept When analyzing in Concept, the execution order is calculated. The result is shown
in parentheses after the instance names in this image.
The selected block is executed in the middle of the other network, even though it has
no direct connection to it. Concept calculates the execution order from the block
position.
This is the original section as it appears in Concept:

The used variables are initialized in a way that the result of the comparator EQ_INT
becomes "true" after execution of the first cycle in Concept:
 37

Language differences
Testing execution in single cycle mode in Concept shows the expected result. The
comparator result becomes "true" after the first cycle:
38

Language differences
Unity The converted network reflects the Concept execution order in the graphical position
of the blocks:

The image also shows the execution status stopped at a breakpoint in the first cycle.
The comparator EQ_INT is already executed and will not deliver a "true" result
because the first ADD_INT integrator block is executed after it.

Solution Replace the connection via a variable by a link to achieve the same result as in
Concept.
 39

Language differences
Constants

Losing the Read-
Only Behavior

Constants are not accepted as private DFB variables. Therefore, they are converted
to initialized variables in DFBs, in this way losing the read-only behavior.

Indices in ST

Resolution
Concept Application Converter (Unity Pro 2.0.2) was modified. For behaviour
changes please refer to FAQs.

Calculate with TIME and REAL

Manual
Correction

When TIME and REAL variables are multiplied in ST, REAL_TO_DINT must be
inserted into the REAL variable manually.

WORD Assignments to BOOL Arrays

Manual
Correction

Assignments of HEX WORDS to complete Bool arrays sent to Word registers are
possible in Concept, but not in Unity. A manual correction must be done, for
example:
('AR2_BOOL[0]:BOOL'<->'16#0100:DINT')

('AR2_BYTE[0]:BYTE'<->'16#55AA:DINT')

('AR2_BYTE[0]:BYTE'<->'16#AA55:DINT')

Solution The ST code must be changed to single-component assignments.
The hex word must be split into single bits:
AR2_BOOL[17] := true;
40

Language differences
Topological Address Overlapping

Same
Topological
Address

In Unity, you are warned (during application analysis) if the same topological
address is assigned to multiple variables.

Structure Alignment Changed

DPM_Time
Structure

Unity uses a 2-byte alignment for structures in contrast to Concept (1-Byte) to speed
up the access to structure components. This affects system structures mapped to
StateRam, because the same structures in Unity can be bigger including some byte
gaps.
The concerned structure is DPM_Time, which has been redefined for Unity to re-
map to the correct hardware addresses.
Concept’s DPM_Time definition:
sync: BOOL
ms: WORD
...
Unity’s DPM_Time definition:
sync: BOOL
ms_lsb: BYTE
ms_msb: BYTE
...

Manual
Correction

If an application that includes the DPM_time structure is converted, the analyze/
build process will fail for the redefined structure components (in the above example,
ms_lsb, ms_msb).
The user has to manually change the usage of these structure components in the
application accordingly.
 41

Language differences
Undefined Output on Disabled EFs

Outputs of EFs
Not Kept

In case the EN switches from TRUE to FALSE, the outputs of EFs from the previous
cycle are not kept in Unity. This reduces the memory consumption in the PLC. This
is different from EFBs, which keep their value from the previous cycle. Concept uses
static links to latch the value from the previous cycle.

Execution
Behavior Differs
Significantly

If a Concept application relies on the outputs of EFs to keep their old values, the
execution behavior in UNITY will differ significantly.

Manual
Correction

The application has to be changed manually.
Links from outputs, which are assumed to keep their value, need to be replaced by
variables. If the EN of an EF is set to false, the EF is not executed and a connected
variable is not touched.

Concept The output of the disabled SEL EF is kept and used as input for the EQ_INT function
block:
42

Language differences
Unity The output of the disabled SEL EF gets an undefined value, in this case 0. Therefore
the output of EQ_INT function block has become true:

Solution If the EN of the SEL is set to false, the ENO of the EQ_INT is also set to false, but the
connected output variable keeps its value from the previous cycle:

SFC Section Retains its State When Performing an Online Modification

Online
Modifications
Without
Resetting

In Unity it is possible to do online modifications of an SFC chart without resetting it.
The SFC chart retains its state and will continue the execution.

Note: The use of a variable is mandatory to retain network results in case an EF
becomes disabled.

Note: In Concept, the online modification of an SFC chart usually results in the
resetting of the chart.
 43

Language differences
Weekday Numbering

Different
Numbering

In Unity the numbering of weekdays is different than Concept:

SET_TOD /
GET_TOD

Function blocks: SET_TOD and GET_TOD will be converted to Unity as DFBs, which
work in both directions.
Because SET_TOD expects a "Concept" numbered weekday and translates it as a
Unity coded value. Also the GET_TOD reads Unity value and returns to User the
Concept value.

System Word
%SW49

System Timer

Concept Concept’s system timer was located on a user-defined register word (16-bit) and
incremented at 10 ms.

Unity Unity provides an incremental timer with 100 ms updating (%SD18).
A 10 ms timer can be logically created using the FREERUN function (sec timer).

Number Unity Concept

1 Monday Sunday

7 Sunday Saturday

Note: We do not recommend that you mix GET_TOD and SET_TOD programming
with the use of system words (e.g. %SW49) in the same application.
44

Language differences
Initial Values

Definition of
Initial Values

Concept allows the initial values on DFB pins of a structured array to be defined.
Unity reserves this option for output pins.
The converter reflects this with the following error message in the conversion log:

Error: Cannot convert initial values of call-by-reference data
(pin Add_PV.in1)

Pins to be
Connected

At the same time, Unity enforces pins of array type and input pins of structured type
to be connected, which in this case leads to analysis errors:
{ALL:[MAST]}: (r:26, c:68) E1194 oarameter ´IN2´has to be
assigned
{ALL:[MAST]}: (r:26, c:68) E1194 oarameter ´IN1´has to be
assigned
 45

Language differences
Solution To solve this problem, create a variable of the pin’s type and initialize it with the
original values.
Connect this constant to the appropriate pin of each DFB instance.
Example

Solution: Add initialized variable.

Macros

Macros Replaced
by Dummy DFBs

Macros (name starting with @) are refused by the converter because Unity does not
implement macros. However, if you try to import an application containing macros,
they will be replaced by dummy DFBs (as indicated by the '~' character in the
application name).
While analyzing the project, you will get error messages regarding these dummy
DFBs. To correct these errors, simply remove all of the DFBs that were created as
a replacements for macros.

AXx, EPARx
Parameters

AXx and EPARx parameters in Concept’s extensible motion blocks are automatically
invoked with the newly required array instead of with Unity’s formerly present
extensible pins. Constants present at the Concept pins are also placed as
initialization values to such arrays. However, variables and links must be attached
manually with move blocks to these arrays.
46

4

Possible application behavior
change
Introduction

Overview This chapter contains information about possible application behavior change, when
migrating from Concept to Unity Pro.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

General 48

Concept behavior 49

IEC demands 50

Unity behavior 52

Consequences 54
47

Possible application behavior change
General

Concept In Concept all parameters of EFBs (Elementary Function Blocks) were generally
handled by reference.
Because of this it was possible without any problem to modify a variable connected
to an output of a function block from another location inside the application or by an
HMI tool, when the function block was NOT writing the output.
This behavior was used to realize for example the manual mode of closed-loop-
control function blocks.

Changes in Unity Because of IEC compliance the parameter handling was changed from Concept to
Unity and the way of multi-assignment described above doesn't work any longer.

Behavior may
change

If an application is converted from Concept to Unity and uses this way of multi-
assignment, the behavior may change in some use cases in a way that the output
connected variable is no longer modifiable from another location.

Note: If the application uses multi-assignment on EFB outputs, you should
carefully read the following chapter to verify that the converted application works in
the intended way.
48

Possible application behavior change
Concept behavior

Parameters are
handled by
reference

In Concept all function block parameters are handled by reference, means the
blocks receives a pointer to the data of every function block pin and works directly
on the connected variable.
Connected variables:

Function block
code

Therefore in Concept it is up to the function block code to decide whether:
� to behave IEC compliant or
� to write input data or
� to read output data or
� not to write output data.

Instance data

EFB Code

Connected output variableConnected input variable
 49

Possible application behavior change
IEC demands

Function block For the purposes of programmable controller programming languages, a function
block is a program organization unit which, when executed, yields one or more
values.
Multiple, named instances (copies) of a function block can be created.
Each instance shall have an associated identifier (the instance name), and a data
structure containing its output and internal variables, and, depending on the
implementation, values of or references to its input variables.
All the values of the output variables and the necessary internal variables of this data
structure shall persist from one execution of the function block to the next.
Therefore, invocation of a function block with the same arguments (input variables)
need not always yield the same output values.

Assignment of a
value

Assignment of a value to an output variable of a function block is not allowed except
from within the function block.
The assignment of a value to the input of a function block is permitted only as part
of the invocation of the function block.
Unassigned or unconnected inputs of a function block shall keep their initialized
values or the values from the latest previous invocation, if any.
Allowable usage of function block inputs and outputs are summarized in table below,
using the function block FF75 of type SR.
The examples are shown in the ST language.

Usage Inside function block Outside function block

Input read IF IN1 THEN ... Not allowed 1, 2

Input
assignment

Not allowed 1 FB_INST(IN1:=A,IN2:=B);

Output read OUT := OUT AND NOT IN2; C := FB_INST.OUT;

Output
assignment

OUT := 1; Not allowed 1

In-out read IF INOUT THEN ... IF FB1.INOUT THEN...

In-out
assignment

INOUT := OUT OR IN1; 3 FB_INST(INOUT:=D);

1 Those usages listed as "not allowed" in this table could lead to implementation-
dependent, unpredictable side effects.

2 Reading and writing of input, output and internal variables of a function block may be
performed by the "communication function", "operator interface function", or the
"programming, testing, and monitoring functions" defined in IEC 61131-1.

3 Modification within the function block of a variable declared in a VAR_IN_OUT block is
permitted.
50

Possible application behavior change
EN and ENO in
function blocks

For function blocks also an additional Boolean EN (Enable) input or ENO (Enable
Out) output, or both, can be provided by the manufacturer or user according to the
declarations.
When these variables are used, the execution of the operations defined by the
function block shall be controlled according to the following rules:
1. If the value of EN is FALSE (0) when the function block instance is invoked, the

assignments of actual values to the function block inputs may or may not be made
in an implementation-dependent fashion, the operations defined by the function
block body shall not be executed and the value of ENO shall be reset to FALSE
(0) by the programmable controller system.

2. Otherwise, the value of ENO shall be set to TRUE (1) by the programmable
controller system, the assignments of actual values to the function block inputs
shall be made and the operations defined by the function block body shall be
executed. These operations can include the assignment of a Boolean value to
ENO.

3. If the ENO output is evaluated to FALSE (0), the values of the function block
outputs (VAR_OUTPUT) keep their states from the previous invocation.

In-out variables In-out variables are a special kind of variable used with program organization units
(POUs), i.e., functions, function blocks and programs.
They do not represent any data directly but reference other data of the appropriate
type. They are declared by use of the VAR_IN_OUT keyword. In-out variables may
be read or written to.
Inside a POU, in-out variables allow access to the original instance of a variable
instead of a local copy of the value contained in the variable.

Function block
invocation

A function block invocation establishes values for the function block's input variables
and causes execution of the program code corresponding to the function block body.
These values may be established graphically by connecting variables or the outputs
of other functions or function blocks to the corresponding inputs, or textually by
listing the value assignments to input variables.
If no value is established for a variable in the function block invocation, a default
value is used.
Depending on the implementation, input variables may consist of the actual variable
values, addresses at which to locate the actual variable values, or a combination of
the two.
These values are always passed to the executing code in the data structure
associated with the function block instance.
The results of function block execution are also returned in this data structure.
Hence, if the function block invocation is implemented as a procedure call, only a
single argument - the address of the instance data structure - need be passed to the
procedure for execution.
 51

Possible application behavior change
Unity behavior

Changed
parameter
handling

To fulfill the IEC demands the normal EDT (Elementary Data Types) parameter
handling was changed from Concept to Unity.
The following figure describes the actual implementation in Unity.

The EFBs no longer get pointers to their connected pin variables.
They always get the data by value.
In every scan the application code updates the copy of the input data in the instance
data, before the function block is called (1).
The copy of the pin data is located in the instance data of the block and the function
block code always works on the instance data (2).
After the function block code execution the application code copies the updated
function block output data from the instance data to the connected output variables
(3).
This is valid for all EDTs. Derived data types and more complex data types are
treated still by reference in some cases.

Copy of inputs

Connected output variableConnected input variable

Instance data

EFB Code

Copy of outputs

1

2

3

52

Possible application behavior change
Addressing
modes

The addressing mode of a Function Block element is directly linked to the type of the
element.
The currents known addressing modes are:
� by value (VAL)
� by address (L-ADR)
� by address + Number of elements (L-ADR-LG)
Table with four columns and legend

Function Block
invocation

The following rules must be taken into account while invoking a Function Block
instance:
� All input_output parameters have to be filled
� All input parameters using the L-ADR or L-ADR-LG addressing modes have to

filled
� All output parameters using the L-ADR or L-ADR-LG addressing modes have to

filled
All other kind of parameters could be omitted while Function Block Instance
invocation.
For input parameters, the following rules are applied (in the given order):
� The values of the previous invocation are used.
� If no previous invocation, the initial values are used.

- EDT
(Except
STRING)

STRING DDT Array DDT
Struct

ANY_
ARRAY

ANY...

Input
parameter

VAL L-ADR-LG L-ADR-LG L-ADR L-ADR-LG L-ADR-LG

Input_Output
parameter

L-ADR 1 L-ADR-LG L-ADR-LG L-ADR L-ADR-LG L-ADR-LG

Output
parameter

VAL VAL L-ADR-LG VAL L-ADR-LG L-ADR-LG

Public
Variable

VAL VAL - VAL - -

Private
Variable

VAL VAL - VAL - -

1 Except for BOOL type, the addressing mode is VAL.
 53

Possible application behavior change
Consequences

Potential
problems

Because of this architectural change there might be trouble, when an application is
migrated from Concept to Unity in the following cases:
� Multi assignment of connected output variables:

In Concept there are function blocks, mainly in the closed-loop-control area,
which do not write their output values to the connected variables in special
operating modes (manual mode).
In these special modes it was possible to write the variables from other locations
inside the application.
This will work in Unity only, if the variables are written after the function block call.
If they are written before the function block call, the copy process from the
instance data to the connected variables will overwrite this value with the old
value from the instance data.

� Controlling output variables by animation table or HMI:
If a block doesn't write his outputs in special operating modes (like manual mode,
see above), it was possible to modify the connected output variables by
animation tables or HMI.
This will no longer work in Unity, since the copy process from the instance data
to the connected variables of the function block will overwrite the modified value
with the old value from the instance data.
54

Possible application behavior change
Changed EFB
layout

To avoid major problems, a lot of function blocks (mainly in the Motion and CLC
area) were changed in their layout from Concept to Unity to ensure a correct mode
of operation in the intended way for the function blocks.
The concerned pins were changed from type OUT to IN/OUT.
In nearly all cases the modification meets better the reality, since it is read from the
concerned output pins and so they are in fact IN/OUTs.
The following tables summarize the EFBs, where at least one pin was changed from
OUT to IN/OUT during migration from Concept to Unity.
Library CONT_CTL:

Library Motion:

Family Function Block Concerned Pin

Controller PI_B OUT

PIDFF OUT

Output Processing MS OUT

Setpoint Management SP_SEL SP

Family Function Block Concerned Pin

MMF Start CFG_CP_F MFB, CFG_BLK

CFG_CP_V MFB, CFG_BLK

CFG_CS MFB, CFG_BLK

CFG_FS MFB, CFG_BLK

CFG_IA MFB, CFG_BLK

CFG_RA MFB, CFG_BLK

CFG_SA MFB, CFG_BLK

DRV_DNLD MFB

DRV_UPLD MFB

IDN_CHK MFB

IDN_XFER MFB

MMF_BITS MFB

MMF_ESUB MFB

MMF_INDX MFB

MMF_JOG MFB

MMF_MOVE MFB

MMF_RST MFB

MMF_SUB MFB

MMF_USUB MFB
 55

Possible application behavior change
Library Obsolete Lib:

Concept
Converter
behavior

The Concept Converter normally handles the layout change in the following way,
when a Concept application is imported into Unity:
� Case 1: A variable is connected to the output pin in Concept:

The Concept Converter keeps the variable at the output side of the IN/OUT pin
and adds the variable additionally at the input side of the pin.

� Case 2: A link is connected to the output pin in Concept:
The Concept Converter removes the link, creates a new variable of the needed
type and writes this new variable to the start and end position of the removed link.
Additionally the variable is added to the input side of the pin.

Family Function Block Concerned Pin

CLC_PRO ALIM Y

COMP_PID Y, YMAN_N, OFF_N, SP_CAS_N

DERIV Y

INTEG Y

LAG Y

LAG2 Y

LEAD_LAG Y

PD_OR_PI Y

PI Y

PID Y

PID_P Y

PIP Y

PPI Y

VLIM Y

Extensions/
Compatibility

R2T OFF

SRCH INDEX

T2T OFF
56

Possible application behavior change
Further potential
problems

The following tables contain blocks, where also trouble may arise in case of multi-
assignment, because in Concept:
� The blocks do not write their listed output pin in case of errors inside the block.
� The blocks do not write their listed output pin in COLD or WARM INIT scan.
� The blocks write their listed output pin conditionally depending from internal mode

of operation.
Library CONT_CTL:

Library I/O Management:

Family Function Block Concerned Pin

Conditioning DTIME OUT

SCALING OUT

TOTALIZER OUT, INFO

Controller AUTOTUNE TRI, INFO

PI_B OUT_D, DEV

PIDFF OUT_D, INFO

STEP2 DEV

STEP3 DEV

Output Processing MS OUTD, STATUS

MS_DB OUTD, STATUS

SPLRG OUT1, OUT2

Setpoint Management RAMP SP

RATIO KACT, SP

SP_SEL LSP_MEM

Family Function Block Concerned Pin

Analog I/O
Configurationj

I_SET CHANNEL

O_SET CHANNEL

Analog I/O Scaling I_NORM_WARN WARN

I_PHYS_WARN WARN

I_SCALE_WARN WARN

Quantum I/O
Configurationj

ACI040 CHANNL1..16

ACO130 CHANNEL1..8

AII330 CHANNEL1..8, INTERNAL

AII33010 CHANNEL1..8

AIO330 CHANNEL1..8

ARI030 CHANNEL1..8
 57

Possible application behavior change
Library Motion:

Family Function Block Concerned Pin

MMF Start CFG_CP_F Q, ERROR

CFG_CP_V Q, ERROR

CFG_CS Q, ERROR

CFG_FS Q, ERROR

CFG_IA Q, ERROR

CFG_RA Q, ERROR

CFG_SA Q, ERROR

DRV_DNLD Q, ERROR, IDN_CNT

DRV_UPLD Q, ERROR, REG_CNT,
DATA_B, LK

IDN_CHK Q, ERROR, NOT_EQ

IDN_XFER Q, ERROR, OUT_RAW,
OUTCONV

MMF_ESUB Q, ERROR, RET1, RET2,
RET§

MMF_INDX Q, ERROR

MMF_JOG Q, ERROR

MMF_MOVE Q, ERROR

MMF_RST Q

MMF_SUB Q, ERROR, RET1, RET2,
RET§

MMF_USUB Q, ERROR, RET1, RET2,
RET§
58

Possible application behavior change
Library Obsolete Lib:

Family Function Block Concerned Pin

CLC DELAY Y

PI1 ERR

PID1 ERR

PIDP1 ERR

THREE_STEP_CON1 ERR_EFF

THREEPOINT_CON1 ERR_EFF

TWOPOINT_CON1 ERR_EFF

CLC_PRO COMP_PID STATUS, ERR

DEADTIME Y

FGEN Y, N

INTEG STATUS

PCON2 ERR_EFF

PCON3 ERR_EFF

PD_OR_PI ERR, STATUS

PDM Y_POS, Y_NEG

PI ERR, STATUS

PID ERR, STATUS

PID_P ERR, STATUS

PIP ERR, SP2, STATUS

PPI ERR, SP2, STATUS

PWM Y_POS, Y_NEG

QPWM Y_POS, Y_NEG

SCON3 ERR_FF

VLIM STATUS

Extensions/
Compatibility

FIFO EMPTY, FULL

LIFO EMPTY, FULL

Note: The pins were not changed, because in normal operation mode of the blocks
this has no influence.
 59

Possible application behavior change
60

5

The Conversion Process
Conversion Process

General A Concept project is exported from Concept and then converted automatically into
a Unity Pro project using the Unity Pro Concept Converter.
61

The Conversion Process
Conversion
process

Representation of the conversion process:

Description of the conversion levels:

Error report
and analysis

Errors that occur during conversion are logged in an error report and displayed in an
output window.
Substitute objects are used in place of objects that cannot be converted, and
messages are displayed in the output window to find these objects.
The Unity Pro project can be analyzed using the main menu Build → Analyse
Project.
The errors displayed in the output window must be corrected manually to ensure the
Unity Pro project runs correctly.

Level Description

1 A project is exported from Concept.
An ASCII file is created.

2 The Unity Pro Concept Converter is called.
The ASCII file is converted into a FEF-XML file.

3 The FEF-XML file is imported into Unity Pro.
A Unity Pro project is created.

4 The error report is checked.
There must be no errors.

5 The project is now available in Unity Pro and can be downloaded from there to a
PLC, or can be edited in Unity Pro.

Concept-
Project

Unity Pro-
Project

FEF_XML-
File

ASCII-
File

Export Convert. Import

Concept Converter

Concept Unity Pro

Error report
62

6

Conversion Procedure
Introduction

Overview This chapter contains the procedures required to convert a Concept project into a
Unity Pro project.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Exporting a Project from Concept 64

Importing a Project into Unity Pro 65
63

Conversion Procedure
Exporting a Project from Concept

General A Concept project that should be used in Unity Pro must first be exported from
Concept. It is then possible to use the Unity Concept Converter to make the
conversion to a Unity Pro project.

Export project Perform the following steps to export a project:

Step Procedure

1 Start the Concept Converter program from the Concept program group.

2 Select File → Export..., to open the menu for selecting the export range.

3 Select the export range:
� Project with DFBs: All project information including the DFBs and data

structures (derived data types) used in the project are exported.
� Project without DFBs: All project information including all data structures

(derived data types), but not DFBs and macros, is exported.
Result: The dialog box for selecting the files to be exported is opened.

4 Select the following file extension:
� Export projects: Select the extention .prj from the format list box.

5 Select the project and confirm using OK.
Result: The project is stored in the current directory as an ASCII file (.asc).

6 End the Concept Converter program using File → Exit.
64

Conversion Procedure
Importing a Project into Unity Pro

General A Concept project that should be used in Unity Pro must first be exported from
Concept. It is then possible to use the Unity Concept Converter to make the
conversion to a Unity Pro project.

Import project Carry out the following steps to convert and import a project:

Step Procedure

1 Launch Unity Pro.

2 Open the project exported from Concept using File → Open. Select the data
type CONCEPT PROJECTS (*.ASC).

3 Result:
The ASCII file is converted to Unity Pro source file format and imported
automatically.
Import errors and messages about objects that cannot be converted and have
substitute objects in their place, are displayed in an output window.

4 Edit the errors and messages in the output window manually to ensure the Unity
Pro project runs correctly.

5 To ensure that a project contains no more errors, select the menu command
Build → Analyse Project again.
 65

Conversion Procedure
66

II

Blocks form Concept to Unity Pro
Introduction

Overview This part contains a description of the blocks which are not part of Unity Pro as
standard.
However, if these blocks were used in Concept they are generated during the project
conversion from Concept to Unity Pro in order to map the functionality configured in
Concept into Unity Pro on a one to one basis.

What's in this
Part?

This part contains the following chapters:

Chapter Chapter Name Page

7 DIOSTAT: Module function status (DIO) 69

8 RIOSTAT: Module function status (RIO) 71

9 READREG: Read register 75

10 CREADREG: Continuous register reading 81

11 WRITEREG: Write register 89

12 CWRITREG: Continuous register writing 95

13 LOOKUP_TABLE1_DFB: Traverse progression with 1st
degree interpolation

101

14 PLCSTAT: PLC function status 105

15 SET_TOD: Setting the hardware clock (Time Of Day) 121

16 GET_TOD: Reading the hardware clock (Time Of Day) 125

17 BYTE_TO_BIT_DFB: Type conversion 129

18 WORD_TO_BIT_DFB: Type conversion 133

19 WORD_AS_BYTE_DFB: Type conversion 137

20 DINT_AS_WORD_DFB: Type conversion 139

21 LIMIT_IND_DFB: Limit with indicator 141
67

Blocks form Concept to Unity Pro
68

7

DIOSTAT: Module function
status (DIO)
Description

Function
description

This function provides the function status for I/O modules of an I/O station (DIO).
Each module (slot) is displayed as an output "status" bit. The bit on the far left side
in "status" corresponds to the slot on the far left side of the I/O station.

EN and ENO can be configured as additional parameters.

Representation
in FBD

Representation:

Representation
in LD

Representation:

Note: If a module of the I/O station is configured and works correctly, the
corresponding bit is set to "1".

Status

DIOSTAT

LinkNumber

DropNumber

LINK

DROP

STATUS

DIOSTAT_Instance

DropNumber

LinkNumber

ENOEN

DIOSTAT

LINK

DROP

StatusSTATUS

DIOSTAT_Instance
69

DIOSTAT
Representation
in IL

Representation:
CAL DIOSTAT_Instance (LINK:=LinkNumber, DROP:=DropNumber,
 STATUS=>Status)

Representation
in ST

Representation:
DIOSTAT_Instance (LINK:=LinkNumber, DROP:=DropNumber,
 STATUS=>Status) ;

Parameter
description

Description of the input parameters:

Description of the output parameters:

Parameter Data type Meaning

LINK UINT Link No. (0...2)

DROP UINT I/O station no: (1...64)

Parameter Data type Meaning

STATUS WORD Status bit pattern (See Function description, p. 69)
of an I/O station
70

8

RIOSTAT: Module function
status (RIO)
Description

Function
description

This function block provides the function status for I/O modules of an I/O station
(local/remote I/O).
Quantum I/O or 800 I/O can be used.
An output STATUSx is allocated to each rack. Each module (slot) of this rack is
characterized by a bit of the corresponding STATUSx output. The bit on the far left-
hand side in STATUSx corresponds to the slot on the far left-hand side of the rack x.
Using STATUS1 to STATUS5:
� Quantum I/O

There is only one rack for an I/O station, e.g. only STATUS1 is used.
� 800 I/O

There can be up to 5 racks for an I/O station, e.g. STATUS1 corresponds to
module rack 1, STATUS5 corresponds to module rack 5.

EN and ENO can be configured as additional parameters.

Representation
in FBD

Representation:

Note: If a module on the module rack has been configured and works correctly, the
corresponding bit is set to "1".

StatusBitPatternRack1

RIOSTAT

Local_RemoteDropNo

StatusBitPatternRack2
StatusBitPatternRack3

StatusBitPatternRack4

StatusBitPatternRack5

RIOSTAT_Instance

STATUS1

STATUS2

STATUS3

STATUS4

STATUS5

DROP
71

RIOSTAT
Representation
in LD

Representation:

Representation
in IL

Representation:
CAL RIOSTAT_Instance (DROP:=Local_RemoteDropNo,
 STATUS1=>StatusBitPatternRack1,
 STATUS2=>StatusBitPatternRack2,
 STATUS3=>StatusBitPatternRack3,
 STATUS4=>StatusBitPatternRack4,
 STATUS5=>StatusBitPatternRack5)

Representation
in ST

Representation:
RIOSTAT_Instance (DROP:=Local_RemoteDropNo,
 STATUS1=>StatusBitPatternRack1,
 STATUS2=>StatusBitPatternRack2,
 STATUS3=>StatusBitPatternRack3,
 STATUS4=>StatusBitPatternRack4,
 STATUS5=>StatusBitPatternRack5) ;

StatusBitPatternRack1

StatusBitPatternRack2

StatusBitPatternRack3

StatusBitPatternRack4

StatusBitPatternRack5

ENOEN

RIOSTAT

STATUS1

STATUS2

STATUS3

STATUS4

STATUS5

DROP

RIOSTAT_Instance

Local_RemoteDropNo
72

RIOSTAT
Parameter
description

Description of the input parameters:

Description of the output parameters:

Parameters Data type Meaning

DROP UINT Local/remote I/O station no. (1...32)

Parameters Data type Meaning

STATUS1 WORD Module rack 1 status bit pattern

STATUS2 WORD Module rack 2 status bit pattern (800 I/O only)

...

STATUS5 WORD Module rack 5 status bit pattern (800 I/O only)
 73

RIOSTAT
74

9

READREG: Read register
Overview

Introduction This chapter describes the READREG block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Description 76

Mode of Functioning 79

Parameter description 79
75

READREG
Description

Function
description

With a rising edge at the REQ input, this function block reads a register area from an
addressed slave via Modbus Plus.
EN and ENO can be configured as additional parameters.

Representation
in FBD

Representation:

Note: When programming a READREG function, you must be familiar with the
routing procedures used by your network. Modbus Plus routing path structures will
be described in detail in "Modbus Plus Network Planning and Installation Guide".

Note: This function block only supports the local Modbus Plus interface (no NOM).
If using a NOM please work with the CREAD_REG block from the communication
block library.

Note: This function block does not support TCP/IP- or SY/MAX-Ethernet.
If TCP/IP- or SY/MAX-Ethernet is needed, please use the CREAD_REG block from
the communication block library.

Note: Several copies of this function block can be used in the program. However,
multiple instancing of these copies is not possible.

SetAfterReadingNewData

READREG

StartReadOnce

SetInCaseOfError

READREG_Instance

NDRREQ

DeviceAddress

RoutingPath

OffsetAddress

NumberOfRegisters

NODEADDR

ROUTPATH
SLAVEREG

NO_REG

ErrorCode

ERROR

STATUS

ArrayForValuesReadREG_READREG_READArrayForValuesRead
76

READREG
Representation
in LD

Representation:

Representation
in IL

Representation:
CAL READREG_Instance (REQ:=StartReadOnce,
 NODEADDR:=DeviceAddress, ROUTPATH:=RoutingPath,
 SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters,
 REG_READ:=ArrayForValuesRead,
 NDR=>SetAfterReadingNewData, ERROR=>SetInCaseOfError,
 STATUS=>ErrorCode)

Representation
in ST

Representation:
READREG_Instance (REQ:=StartReadOnce,
 NODEADDR:=DeviceAddress, ROUTPATH:=RoutingPath,
 SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters,
 REG_READ:=ArrayForValuesRead,
 NDR=>SetAfterReadingNewData, ERROR=>SetInCaseOfError,
 STATUS=>ErrorCode;

ENOEN

READREG
READREG_Instance

OffsetAddress

NumberOfRegisters

NODEADDR

ROUTPATH

SLAVEREG

NO_REG

DeviceAddress

RoutingPath

StartReadOnce
REQ

ErrorCodeSTATUS

SetAfterReadingNewData

SetInCaseOfError

NDR

ERROR

ArrayForValuesReadREG_READREG_READArrayForValuesRead
 77

READREG
Parameter
description

Description of the input parameters:

Description of input / output parameters:

Description of the output parameters:

Parameter Data type Meaning

REQ BOOL With a rising edge at the REQ input, this function
block reads a register area from an addressed slave
via Modbus Plus.

NODEADDR INT Device address within the target segment

ROUTPATH DINT Routing path to target segment

SLAVEREG DINT Offset address of the first 4x register in the slave to
be read from

NO_REG INT Number of registers to be read from slave

Parameters Data type Meaning

REG_READ ANY_ARRAY_WORD Writing data
(For the file to be read a data structure must be
declared as a located variable.)

Parameters Data type Meaning

NDR BOOL Set to "1" for one cycle after reading new data

ERROR BOOL Set to "1" for one scan in case of error

STATUS WORD Error Code
78

READREG
Mode of Functioning

Function mode
of READREG_DFB
blocks

Although a large number of READREG function blocks can be programmed, only four
read operations may be active at the same time. It makes no difference whether
these operations are performed using this function block or others (e.g. MBP_MSTR,
CREAD_REG). All function blocks use one data transaction path and require multiple
cycles to complete a task. The status signals NDR and ERROR report the function
block state to the user program.
The complete routing information must be separated into two parts:
� in the NODEADDR of the destination node (regardless of whether it is located in the

local segment or in another segment) and
� the routing path, in case there is a link via bridges.
The resulting destination address consists of these two information components.
The routing path is a DINT data type, which is interpreted as a sequence of two-digit
information units. It is not necessary to use "00" extensions (e.g. both routing paths
4711 and 47110000 are valid, for NODEADDR 34 the result is destination address
47.11.34.00.00).

Parameter description

REQ A rising edge triggers the read transaction.
The parameter can be specified as an address, located variable, unlocated variable
or literal.

NODEADDR Identifies the node address within the target segment.
The parameter can be specified as an address, located variable, unlocated variable
or literal.

ROUTPATH Identifies the routing path to the target segment. The two-digit information units run
from 01 64 (see Mode of Functioning, p. 79). If the slave resides in the local network
segment, ROUTPATH must be set to "0" or must be left unconnected.
The parameter can be specified as an address, located variable, unlocated variable
or literal.

SLAVEREG Start of the area in the addressed slave from which the source data is read. The
source area always resides within the 4x register area. SLAVEREG expects the
source reference as offset within the 4x area. The leading "4" must be omitted (e.g.
59 (contents of the variables or value of the literal) = 40059).
The parameter can be specified as an address, located variable, unlocated variable
or literal.
 79

READREG
NO_REG Number of registers to be read from slave processor (1 ... 100).
The parameter can be specified as an address, located variable, unlocated variable
or literal.

NDR Transition to ON state for one program cycle signifies receipt of new data ready to
be processed.
The parameter can be specified as an address, located variable or unlocated
variable.

ERROR Transition to ON state for one program cycle signifies detection of a new error.
The parameter can be specified as an address, located variable or unlocated
variable.

STATUS Error code, see Modbus Plus Error Codes, p. 87
The parameter can be specified as an address, located variable or unlocated
variable.

REG_READ An ANY_ARRAY_WORD that is the same size as the requested transmission must be
agreed upon (≥ NO_REG) for this parameter. The name of this array is defined as a
parameter. If the array is defined too small, then only the amount of data is
transmitted that is present in the array.
The parameter must be defined as a located variable.
80

10

CREADREG: Continuous
register reading
Overview

Introduction This chapter describes the CREADREG block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Description 82

Mode of Functioning 85

Parameter description 85

Modbus Plus Error Codes 87
81

CREADREG
Description

Function
description

This derived function block reads the register area continuously. It reads data from
addressed nodes via Modbus Plus.
EN and ENO can be configured as additional parameters.

Representation
in FBD

Representation:

Note: It is necessary to be familiar with the routing procedures of your network
when programming a CREADREG function. Modbus Plus routing path structures will
be described in detail in "Modbus Plus Network Planning and Installation Guide".

Note: This function block only supports the local Modbus Plus interface (no NOM).
If using a NOM please work with the block CREAD_REG from the communication
block library.

Note: This function block does not support TCP/IP- or SY/MAX-Ethernet.
If TCP/IP- or SY/MAX-Ethernet is needed, please use the block CREAD_REG of the
communication block library.

Note: Several copies of this function block can be used in the program. However,
multiple instancing of these copies is not possible.

ErrorCode

CREADREG

DeviceAddress

RoutingPath

OffsetAddress

NumberOfRegisters

CREADREG_Instance

STATUSNODEADDR

ROUTPATH
SLAVEREG

NO_REG

ArrayForValuesReadREG_READREG_READArrayForValuesRead
82

CREADREG
Representation
in LD

Representation:

Representation
in IL

Representation:
CAL CREADREG_Instance (NODEADDR:=DeviceAddress,
 ROUTPATH:=RoutingPath, SLAVEREG:=OffsetAddress,
 NO_REG:=NumberOfRegisters,
 REG_READ:=ArrayForValuesRead,
 STATUS=>ErrorCode)

Representation
in ST

Representation:
CREADREG_Instance (NODEADDR:=DeviceAddress,
 ROUTPATH:=RoutingPath, SLAVEREG:=OffsetAddress,
 NO_REG:=NumberOfRegisters,
 REG_READ:=ArrayForValuesRead,
 STATUS=>ErrorCode;

ErrorCode

OffsetAddress

NumberOfRegisters

ENOEN

CREADREG

STATUSNODEADDR

ROUTPATH

SLAVEREG

NO_REG

CREADREG_Instance

DeviceAddress

RoutingPath

ArrayForValuesReadREG_READREG_READArrayForValuesRead
 83

CREADREG
Parameter
description

Description of the input parameters:

Description of input / output parameters:

Description of the output parameters:

Parameters Data type Meaning

NODEADDR INT Device address within the target segment

ROUTPATH DINT Routing path to target segment

SLAVEREG DINT Offset address of the first 4x register in the slave to
be read from

NO_REG INT Number of registers to be read from slave

Parameters Data type Meaning

REG_READ ANY_ARRAY_WORD Writing data
(For the file to be read a data structure must be
declared as a located variable.)

Parameters Data type Meaning

STATUS WORD Error Code
84

CREADREG
Mode of Functioning

Function mode
of CREADREG
blocks

Although a large number of CREADREG function blocks can be programmed, only
four read operations may be active at the same time. It makes no difference whether
these operations are performed using this function block or others (e.g. MBP_MSTR,
READREG). All function blocks use one data transaction path and require multiple
cycles to complete a task.
The complete routing information must be separated into two parts:
� in the NODEADDR of the destination node (regardless of whether it is located in the

local segment or in another segment) and
� the routing path, in case there is a link via network bridges.
The resulting destination address consists of these two information components.
The routing path is a DINT data type, which is interpreted as a sequence of two-digit
information units. It is not necessary to use "00" extensions (e.g. both routing paths
4711 and 47110000 are valid, for NODEADDR 34 the result is destination address
47.11.34.00.00).

Parameter description

NODEADDR Identifies the node address within the target segment.
The parameter can be entered as an address, located variable, unlocated variable
or literal.

ROUTPATH Identifies the routing path to the target segment. The two-digit information units run
from 01 64 (see Mode of Functioning, p. 85). If the slave resides in the local network
segment, ROUTPATH must be set to "0" or must be left unconnected.
The parameter can be entered as an address, located variable, unlocated variable
or literal.

Note: This function block puts a heavy load on the network. The network load must
therefore be carefully monitored. If the network load is too high, the program logic
should be reorganized to work with the READREG function block, which is a variant
of this function block that does not operate in continuous mode, but is command
driven.
 85

CREADREG
SLAVEREG Start of the area in the addressed slave from which the source data are read. The
source area always resides within the 4x register area. SLAVEREG expects the
source reference as offset within the 4x area. The leading "4" must be omitted (e.g.
59 (contents of the variables or value of the literal) = 40059).
The parameter can be entered as an address, located variable, unlocated variable
or literal.

NO_REG Number of registers to be read from slave processor (1 ... 100).
The parameter can be entered as an address, located variable, unlocated variable
or literal.

STATUS Error code, see Modbus Plus Error Codes, p. 87
The parameter can be specified as an address, located variable or unlocated
variable.

REG_READ An ANY_ARRAY_WORD that is the same size as the requested transmission must be
agreed upon (≥ NO_REG) for this parameter. The name of this array is defined as a
parameter. If the array is defined too small, then only the amount of data is
transmitted that is present in the array.
The parameter must be defined as a located variable.
86

CREADREG
Modbus Plus Error Codes

Form of the
function error
code

The form of the function error code for Modbus Plus is Mmss, which includes:
� M is the high code
� m is the low code
� ss is a subcode

Hexadecimal
error code

Hexadecimal error code for Modbus Plus:

Hex. Error
Code

Meaning

1001 Abort by user

2001 An operation type that is not supported was specified in the control block

2002 One or more control block parameters were modified while the MSTR
element was active (this only applies to operations which require several
cycles for completion). Control block parameters my only be modified in
inactive MSTR components.

2003 Illegal value in the length field of the control block

2004 Illegal value in the offset field of the control block

2005 Illegal value in the length and offset fields of the control block

2006 Unauthorized data field on slave

2007 Unauthorized network field on slave

2008 Unauthorized network routing path on slave

2009 Routing path equivalent to own address

200A Attempting to retrieve more global data words than available

30ss Unusual response by Modbus slave (See ss hexadecimal value in 30ss error
code, p. 88)

4001 Inconsistent response by Modbus slave

5001 Inconsistent response by network

6mss Routing path error (See ss hexadecimal value in 6mss error code, p. 88)
Subfield m shows where the error occurred (a 0 value means local node, 2
means 2nd device in route, etc) .
 87

CREADREG
ss hexadecimal
value in 30ss
error code

ss hexadecimal value in 30ss error code:

ss hexadecimal
value in 6mss
error code

The ss subfield in error code 6mss is as follows:

ss hex. Value Meaning

01 Slave does not support requested operation

02 Non-existent slave registers were requested

03 An unauthorized data value was requested

05 Slave has accepted a lengthy program command

06 Function cannot currently be carried out: lengthy command running

07 Slave has rejected lengthy program command

Note: Subfield m in error code 6mss is an Index in the routing information that
shows where an error has been detected (a 0 value indicates the local node, 2
means the second device in the route, etc.).

ss hex. Value Meaning

01 No response receipt

02 Access to program denied

03 Node out of service and unable to communicate

04 Unusual response received

05 Router-node data path busy

06 Slave out of order

07 Wrong destination address

08 Unauthorized node type in routing path

10 Slave has rejected the command

20 Slave has lost an activated transaction

40 Unexpected master output path received

80 Unexpected response received

F001 Wrong destination node specified for MSTR operation
88

11

WRITEREG: Write register
Overview

Introduction This chapter describes the WRITEREG block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Description 90

Mode of Functioning 93

Parameter description 93
89

WRITEREG
Description

Function
description

With a rising edge at the REQ input, this function block writes a register area from the
PLC to an addressed slave via Modbus Plus.
EN and ENO can be configured as additional parameters.

Representation
in FBD

Representation:

Note: When programming a WRITEREG function, you must be familiar with the
routing procedures used by your network. Modbus Plus routing path structures will
be described in detail in "Modbus Plus Network Planning and Installation Guide".

Note: This derived function block only supports the local Modbus Plus interface (no
NOM).
If using a NOM please work with the WRITE_REG block from the communication
block library.

Note: This derived function block also does not support TCP/IP- or SY/MAX-
Ethernet.
If TCP/IP- or SY/MAX-Ethernet is needed, please use the WRITE_REG block from
the communication block library.

Note: Several copies of this function block can be used in the program. However,
multiple instancing of these copies is not possible.

SetAfterWritingData

WRITEREG

StartWriteOnce

SetInCaseOfError

WRITEREG_Instance

DONEREQ

DeviceAddress

RoutingPath

OffsetAddress

NumberOfRegisters

NODEADDR

ROUTPATH
SLAVEREG

NO_REG

ErrorCode

ERROR

STATUS

SourceDataArea REG_WRIT SourceDataAreaREG_WRIT
90

WRITEREG
Representation
in LD

Representation:

Representation
in IL

Representation:
CAL WRITEREG_Instance (REQ:=StartWriteOnce,
 NODEADDR:=DeviceAddress, ROUTPATH:=RoutingPath,
 SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters,
 REG_WRIT:=SourceDataArea,
 DONE=>SetAfterWritingData,ERROR=>SetInCaseOfError,
 STATUS=>ErrorCode)

Representation
in ST

Representation:
WRITEREG_Instance (REQ:=StartWriteOnce,
 NODEADDR:=DeviceAddress, ROUTPATH:=RoutingPath,
 SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters,
 REG_WRIT:=SourceDataArea,
 DONE=>SetAfterWritingData,ERROR=>SetInCaseOfError,
 STATUS=>ErrorCode) ;

ENOEN

WRITEREG
WRITEREG_Instance

OffsetAddress

NumberOfRegisters

NODEADDR

ROUTPATH

SLAVEREG

NO_REG

DeviceAddress

RoutingPath

StartWriteOnce
REQ

ErrorCodeSTATUS

SetAfterWritingData

SetInCaseOfError

DONE

ERROR

SourceDataArea REG_WRIT SourceDataAreaREG_WRIT
 91

WRITEREG
Parameter
description

Description of input parameters:

Description of input / output parameters:

Description of the output parameters:

Parameter Data type Meaning

REQ BOOL With a rising edge at the REQ input, this function
block writes a register area from the PLC to an
addressed slave via Modbus Plus.

NODEADDR INT Device address within the target segment

ROUTPATH DINT Routing path to target segment

SLAVEREG DINT Offset address of the first 4x register in the slave to
be written to

NO_REG INT Number of registers to be written from slave

Parameters Data type Meaning

REG_WRIT ANY_ARRAY_WORD Source data field
(A data structure must be declared as a located
variable for the source file.)

Parameters Data type Meaning

DONE BOOL Set to "1" for one scan after writing data

ERROR BOOL Set to "1" for one scan in case of error

STATUS WORD Error Code
92

WRITEREG
Mode of Functioning

Function mode
of WRITEREG
blocks

Although a large number of WRITEREG function blocks can be programmed, only
four write operations may be active at the same time. It makes no difference whether
these operations are performed using this function block or others (e.g. MBP_MSTR,
CWRITE_REG). All function blocks use one data transaction path and require
multiple cycles to complete a task.
If several WRITEREG function blocks are used within an application, they must at
least differ in the values of their NO_REG or REG_WRIT parameters.

The status signals DONE and ERROR report the function block state to the user
program.

The complete routing information must be separated into two parts:
� in the NODEADDR of the destination node (regardless of whether it is located in the

local segment or in another segment) and
� the routing path, in case there is a link via network bridges.
The resulting destination address consists of these two information components.
The routing path is a DINT data type, which is interpreted as a sequence of two-digit
information units. It is not necessary to use "00" extensions (e.g. both routing paths
4711 and 47110000 are valid, for NODEADDR 34 the result is destination address
47.11.34.00.00).

Parameter description

REQ A rising edge triggers the write transaction.
The parameter can be entered as an address, located variable, unlocated variable
or literal.

NODEADDR Identifies the node address within the target segment.
The parameter can be entered as an address, located variable, unlocated variable
or literal.

ROUTPATH Identifies the routing path to the target segment. The two-digit information units run
from 01 64 (see Mode of Functioning, p. 93). If the slave resides in the local network
segment, ROUTPATH must be set to "0" or must be left unconnected.
The parameter can be entered as an address, located variable, unlocated variable
or literal.
 93

WRITEREG
SLAVEREG Start of the destination area in the addressed slave to which the source data is
written. The destination area always resides within the 4x register area. SLAVEREG
expects the destination address as an offset within the 4x area. The leading "4" must
be omitted (e.g. 59 (contents of the variables or value of the literal) = 40059).
The parameter can be entered as an address, located variable, unlocated variable
or literal.

NO_REG Number of registers to be written to slave processor (1 ... 100).
The parameter can be entered as an address, located variable, unlocated variable
or literal.

REG_WRIT An ANY_ARRAY_WORD that is the same size as the planned transmission must be
agreed upon (≥ NO_REG) for this parameter. The name of this array is defined as a
parameter. If the array is defined too small, then only the amount of data is
transmitted that is present in the array.
The parameter must be defined as a located variable.

DONE Transition to ON state for one program scan signifies data have been transferred.
The parameter can be entered as an address, located variable or unlocated
variable.

ERROR Transition to ON state for one program cycle signifies detection of a new error.
The parameter can be specified as an address, located variable or unlocated
variable.

STATUS Error code, see Modbus Plus Error Codes, p. 87
The parameter can be specified as an address, located variable or unlocated
variable.
94

12

CWRITREG: Continuous
register writing
Overview

Introduction This chapter describes the CWRITREG block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Description 96

Mode of Functioning 99

Parameter description 100
95

CWRITEREG
Description

Function
description

This derived function block writes continuously to the register area. It transfers data
from the PLC via Modbus Plus to a specified slave destination processor.
EN and ENO can be configured as additional parameters.

Representation
in FBD

Representation:

Note: When programming a CWRITREG function, you must be familiar with the
routing procedures used by your network. Modbus Plus routing path structures will
be described in detail in "Modbus Plus Network Planning and Installation Guide".

Note: This function block only supports the local Modbus Plus interface (no NOM).
If using a NOM please work with the CWRITE_REG block from the communication
block library.

Note: This function block does not support TCP/IP- or SY/MAX-Ethernet.
If TCP/IP- or SY/MAX-Ethernet is needed, please use the CWRITE_REG block from
the communication block library.

Note: Several copies of this function block can be used in the program. However,
multiple instancing of these copies is not possible.

ErrorCode

CWRITREG

DeviceAddress

RoutingPath

OffsetAddress

NumberOfRegisters

SourceDataArea

CWRITREG_Instance

STATUSNODEADDR

ROUTPATH
SLAVEREG

NO_REG

REG_WRIT REG_WRIT SourceDataArea
96

CWRITEREG
Representation
in LD

Representation:

Representation
in IL

Representation:
CAL CWRITREG_Instance (NODEADDR:=DeviceAddress,
 ROUTPATH:=RoutingPath, SLAVEREG:=OffsetAddress,
 NO_REG:=NumberOfRegisters,
 REG_WRIT:=SourceDataArea,
 STATUS=>ErrorCode)

Representation
in ST

Representation:
CWRITREG_Instance (NODEADDR:=DeviceAddress,
 ROUTPATH:=RoutingPath, SLAVEREG:=OffsetAddress,
 NO_REG:=NumberOfRegisters,
 REG_WRIT:=SourceDataArea,
 STATUS=>ErrorCode) ;

ErrorCode

OffsetAddress

NumberOfRegisters

ENOEN

CWRITREG

STATUSNODEADDR

ROUTPATH

SLAVEREG

NO_REG

CWRITREG_Instance

DeviceAddress

SourceDataArea

RoutingPath

REG_WRIT REG_WRIT SourceDataArea
 97

CWRITEREG
Parameter
description

Description of the input parameters:

Description of input / output parameters:

Description of the output parameters:

Parameters Data type Meaning

NODEADDR INT Device address within the target segment

ROUTPATH DINT Routing path to target segment

SLAVEREG DINT Offset address of the first 4x register in the slave to
be written to

NO_REG INT Number of registers to be written from slave

Parameters Data type Meaning

REG_WRIT ANY_ARRAY_WORD Source data field
(A data structure must be declared as a located
variable for the source file.)

Parameters Data type Meaning

STATUS WORD Error Code
98

CWRITEREG
Mode of Functioning

Function mode
of CWRITREG
blocks

Although an unlimited number of CWRITREG function blocks can be programmed,
only four write operations may be active at the same time. It makes no difference
whether these operations are performed using this function block or others (e.g.
MBP_MSTR, WRITEREG). All function blocks use one data transaction path and
require multiple cycles to complete a task.
If several CWRITREG function blocks are used within an application, they must at
least differ in the values of their NO_REG or REG_WRIT parameters.

The complete routing information must be separated into two parts:
� in the NODEADDR of the destination node (regardless of whether it is located in the

local segment or in another segment) and
� the routing path, in case there is a link via network bridges.
The resulting destination address consists of these two information components.
The routing path is a DINT data type, which is interpreted as a sequence of two-digit
information units. It is not necessary to use "00" extensions (e.g. both routing paths
4711 and 47110000 are valid, for NODEADDR 34 the result is destination address
47.11.34.00.00).

Note: This function block puts a heavy load on the network. The network load must
therefore be carefully monitored. If the network load is too high, the program logic
should be reorganized to work with the WRITEREG function block, which is a variant
of this function block that does not operate in continuous mode, but is command
driven.
 99

CWRITEREG
Parameter description

NODEADDR Identifies the node address within the target segment.
The parameter can be specified as an address, located variable, unlocated variable
or literal.

ROUTPATH Identifies the routing path to the target segment. The two-digit information units run
from 01 64 (see Mode of Functioning, p. 99). If the slave resides in the local network
segment, ROUTPATH must be set to "0" or must be left unconnected.
The parameter can be specified as an address, located variable, unlocated variable
or literal.

SLAVEREG Start of the destination area in the addressed slave to which the source data are
written. The destination area always resides within the 4x register area. SLAVEREG
expects the destination address as an offset within the 4x area. The leading "4" must
be omitted (e.g. 59 (contents of the variables or value of the literal) = 40059).
The parameter can be entered as an address, located variable, unlocated variable
or literal.

NO_REG Number of registers to be written to slave processor (1 ... 100).
The parameter can be specified as an address, located variable, unlocated variable
or literal.

REG_WRIT An ANY_ARRAY_WORD that is the same size as the planned transmission must be
agreed upon (≥ NO_REG) for this parameter. The name of this array is defined as a
parameter. If the array is defined too small, then only the amount of data is
transmitted that is present in the array.
The parameter must be defined as a located variable.

STATUS If MSTR error code is returned, see Modbus Plus Error Codes, p. 87
The parameter can be specified as an address, located variable or unlocated
variable.
100

13

LOOKUP_TABLE1_DFB:
Traverse progression with
1st degree interpolation
Overview

Introduction This chapter describes the LOOKUP_TABLE1_DFB block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Description 102

Detailed description 103
101

LOOKUP_TABLE1_DFB
Description

Function
description

This function block linearizes characteristic curves by means of interpolation. The
function block works with variable support point width.
The number of XiYi inputs can be increased to 30 by modifying the size of the block
frame vertically. This corresponds to a maximum of 15 support point pairs.
The number of inputs must be even.
The X values must be in ascending order.
EN and ENO can be configured as additional parameters.

Representation
in FBD

Representation:

Representation
in LD

Representation:

Representation
in IL

Representation:
CAL LOOKUP_TABLE1_DFB_Instance (X:=InputVariable,
 XiYi1:=X_Coord_1_SupportPoint,
 XiYi2:=Y_Coord_1_SupportPoint, Y=>OutputVariable,
 QXHI=>IndicatorSignalX>Xm, QXLO=>IndicatorSignalX<X1)

OutputVariable

LOOKUP_TABLE1_DFB

InputVariable

X_Coord_1_SupportPoint

Y_Coord_1_SupportPoint

IndicatorSignalX>Xm
IndicatorSignalX<X1

LOOKUP_TABLE1_DFB_Instance

Y

QXHI

QXLO

X

XiYi1
XiYi2

OutputVariable

Y_Coord_1_SupportPoint

ENOEN

LOOKUP_TABLE1_DFB

YX

XiYi1

XiYi2

LOOKUP_TABLE1_DFB_Instance

InputVariable

X_Coord_1_SupportPoint
IndicatorSignalX>Xm

QXHI
IndicatorSignalX<X1

QXLO
102

LOOKUP_TABLE1_DFB
Representation
in ST

Representation:
LOOKUP_TABLE1_DFB_Instance (X:=InputVariable,
 XiYi1:=X_Coord_1_SupportPoint,
 XiYi2:=Y_Coord_1_SupportPoint, Y=>OutputVariable,
 QXHI=>IndicatorSignalX>Xm, QXLO=>IndicatorSignalX<X1) ;

Parameter
description

Description of the input parameters:

Description of the output parameters:

Detailed description

Parameter
description

Each two sequential inputs (XiYi) represent a support point pair. The first input
XiYi corresponds to X1, the next one to Y1, the one after that to X2, etc.
For all types of input value in X found between these support points, the
corresponding Y output value is interpolated, while the traverse progression
between the support points is viewed linearly.
For X < X1 is Y = Y1
For X > Xm is Y = Ym

If the value at input X is higher than the value of the last support point Xm, the output
QXHI becomes "1".
If the value at input X is less than the value of the first support point X1, the output
QXLO becomes "1".

Parameter Data type Meaning

XiYi1 REAL X coordinate 1. Support point

XiYi2 REAL Y coordinate 1. Support point

XiYin REAL X coordinate m/2. Support point

XiYim REAL Y coordinate m/2. Support point

X REAL Input variable

Parameter Data type Meaning

Y REAL Output variable

QXHI BOOL Indicator: X > Xm

QXLO BOOL Indicate X < X1
 103

LOOKUP_TABLE1_DFB
Principle of
interpolation

Traverse progression with 1st degree interpolation)

Interpolation The following algorithm applies to a point Y:

for Xi ≤ X ≤ Xi+1 and i = 1 ... (m-1)
Assuming: X1 ≤ X2 ≤ ... ≤ Xi ≤ Xi+1 ≤ ... ≤ Xm-1 ≤ Xm

The X values must be in ascending order.
Two consecutive X values can be identical. This could cause a discrete curve
progression.
In this instance, the special case applies:
Y = 0.5 x (Yi + Yi+1)
for
Xi = X = Xi+1 and i = 1 ... (m-1)

Y

0 X

Ym

Yi+1
Ym-1
Y

Yi

Xi X Xi+1 Xm-1Xm

Y Yi
Yi 1 Yi–+

Xi 1 Xi–+
---------------------------- X Xi–()×+=
104

14

PLCSTAT: PLC function status
Overview

Introduction This chapter describes the PLCSTAT block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Description 106

Derived Data Types 108

PLC status (PLC_STAT) 110

RIO status (RIO_STAT) for Quantum 112

DIO status (DIO_STAT) 114
105

PLCSTAT
Description

Function
description

This derived function block reads the Quantum PLC internal states and error bits
and copies this data to the data structures allocated to the respective outputs.

EN and ENO can be configured as additional parameters.
Only data with the input bit (PLC_READ, RIO_READ, DIO_READ) set to "1" will be
read.

Evaluation The evaluation of PLC_STAT (PLC status), RIO_STAT (I/O status) and DIO_STAT
(I/O communications status) is possible.

Representation
in FBD

Representation:

Representation
in LD

Representation:

Note: The name of the output DIO_STAT is confusing. This output only relates to
the remote I/O Drop Status Information (S908) and not to the Distributed I/O status.
To read the distributed I/O status use the function block DIOSTAT (See
DIOSTAT: Module function status (DIO), p. 69).

PLC_IO_Status

PLCSTAT

CopyPLCStatusFlag

CopyRIOStatusFlag

CopyDIOStatusFlag

RIO_IO_Status

DIO_IO_Status

PLCSTAT_Instance

PLC_STAT

RIO_STAT

DIO_STAT

PLC_READ

RIO_READ

DIO_READ

CopyDIOStatusFlag

CopyRIOStatusFlag

CopyPLCStatusFlag

ENO

PLCSTAT

PLC_STATPLC_READ

RIO_READ

DIO_READ

PLCSTAT_Instance

PLC_IO_Status

RIO_IO_Status

DIO_IO_Status

RIO_STAT

DIO_STAT

EN
106

PLCSTAT
Representation
in IL

Representation:
CAL PLCSTAT_Instance (PLC_READ:=CopyPLCStatusFlag,
 RIO_READ:=CopyRIOStatusFlag,
 DIO_READ:=CopyDIOStatusFlag,
 PLC_STAT=>PLC_IO_Status, RIO_STAT=>RIO_IO_Status,
 DIO_STAT=>DIO_IO_Status)

Representation
in ST

Representation:
PLCSTAT_Instance (PLC_READ:=CopyPLCStatusFlag,
 RIO_READ:=CopyRIOStatusFlag,
 DIO_READ:=CopyDIOStatusFlag,
 PLC_STAT=>PLC_IO_Status, RIO_STAT=>RIO_IO_Status,
 DIO_STAT=>DIO_IO_Status) ;

PLCSTAT
parameter
description

Description of the input parameters:

Description of the output parameters:

Parameters Data type Meaning

PLC_READ BOOL 1 = copies the PLC status from the status table to the
output PLC_STAT.

RIO_READ BOOL 1 = copies the RIO status from the status table to the
output RIO_STAT.

DIO_READ BOOL 1 = copies the DIO status from the status table to the
output DIO_STAT.

Parameters Data type Meaning

PLC_STAT PLCSTATE, Contains the PLC status.

RIO_STAT RIOSTATE, Contains the RIO status (I/O status) for Quantum

DIO_STAT DIOSTATE, Contains the DIO status (I/O communication status)
Note: The name of this output is confusing. This
output only relates to the remote I/O Drop Status
Information (S908) and not to the Distributed I/O
status. To read the distributed I/O status use the
function block DIOSTAT (See DIOSTAT: Module
function status (DIO), p. 69).
 107

PLCSTAT
Derived Data Types

Element
description
PLCSTATE

Description of the PLCSTATE element:

Element
description
RIOSTATE

Description of the RIOSTATE element

Element Data type Meaning

word1 WORD CPU status

word2 WORD Hot Standby Status

word3 WORD PLC status

word4 WORD RIO Status

word5 WORD Reserve

word6 WORD Reserve

word7 WORD Reserve

word8 WORD Reserve

word9 WORD Reserve

word10 WORD Reserve

word11 WORD Reserve

Element Data type Meaning

word1 WORD I/O station 1, module rack 1

word2 WORD I/O station 1, module rack 2

...

word5 WORD I/O station 1, module rack 5

word6 WORD I/O station 2, module rack 1

word7 WORD I/O station 2, module rack 2

...

word160 WORD I/O station 32, module rack 5
108

PLCSTAT
Element
description
DIOSTATE

Description of the DIOSTATE element

Element Data type Meaning

word1 WORD Switch on error numbers:

word2 WORD Cable A error

word3 WORD Cable A error

word4 WORD Cable A error

word5 WORD Cable B error

word6 WORD Cable B error

word7 WORD Cable B error

word8 WORD Global communication status

word9 WORD Global cumulative error counter for cable A

word10 WORD Global cumulative error counter for cable B

word11 WORD I/O station 1 health status and repetition counter
(first word)

word12 WORD I/O station 1 health status and repetition counter
(second word)

word13 WORD I/O station 1 health status and repetition counter
(third word)

word14 WORD I/O station 2 health status and repetition counter
(first word)

...

word104 WORD I/O station 32 health status and repetition counter
(first word)

word105 WORD I/O station 32 health status and repetition counter
(second word)

word106 WORD I/O station 32 health status and repetition counter
(third word)
 109

PLCSTAT
PLC status (PLC_STAT)

General
information

The conditions are true when the bits are set to 1.

PLC status
(PLCSTATE:
word1)

Bit allocation:

Hot Standby
status
(PLCSTATE:
word2)

Bit allocation:

Note: Information corresponds to status table words 1 to 11 in the dialog PLC
status.

Bit Allocation

10 Run light OFF

11 Memory protect OFF

12 Battery failed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bit Allocation

1 CHS 110/S911/R911 present and OK

11 0 = CHS shift switch set to A
1 = CHS shift switch set to B

12 0 = PLCs have equal logic
1 = PLCs have unequal logic

13, 14 Remote system condition

15, 16 Local system condition

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Dec
1
2
3

binary
0 1 = Offline
1 0 = Primary
1 1 = Standby

Dec
1
2
3

binary
0 1 = Offline
1 0 = Primary
1 1 = Standby
110

PLCSTAT
PLC status
(PLCSTATE:
word3)

Bit allocation:

RIO status
(PLCSTATE:
word4)

Bit allocation:

Bit Allocation

1 First cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bit Allocation

1 IOP defect

2 IOP timeout

3 IOP Loopback

4 IOP memory disturbance

13-16 00 IO has not responded
01 no response
02 Loopback defect

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 111

PLCSTAT
RIO status (RIO_STAT) for Quantum

General
information

The words show the I/O module function status.
Five words are reserved for each of the maximum 32 I/O stations. Each word
corresponds to one of maximal 2 possible module racks in each I/O station.

Function display
for Quantum
hardware

Each of the module racks for Quantum hardware can contain up to 15 I/O modules
(except for the first rack which contains a maximum 14 I/O modules). Bit 1... 16 in
each word show the corresponding I/O module function display in the racks.

I/O module
function status

Bit allocation:

Conditions for a
correct function
display

Four conditions must be fulfilled if an I/O module can give a correct function display:
� The data traffic of the slot has to be monitored.
� The slot must be valid for the inserted module.
� Valid communication must be established between the module and the RIO

interface at RIO stations.
� Valid communication must be established between the I/O processor in the PLC

and the RIO interface at the RIO station.

Note: The information corresponds to status table words 12 to 171 in the PLC
status dialog.

Bit Allocation

1 Slot 1

2 Slot 2

... ...

16 Slot 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
112

PLCSTAT
Status words for
the MMI user
controllers

The status of the 32 element button controllers and PanelMate units in a RIO
network can also be monitored with an I/O function status word. The button
controllers are located on slot 4 in a I/O rack and can be monitored at bit 4 of the
corresponding status word. A PanelMate on RIO is located on slot 1 in module rack
1 of the I/O station and can be monitored at bit 1 of the first status word for the I/O
station.

Note: The ASCII keyboard communication status can be monitored with the error
numbers in the ASCII read/write instructions.
 113

PLCSTAT
DIO status (DIO_STAT)

General
information

The words contain the I/O communication status (DIO status) Words 1 to 10 are
global status words. Of the remaining 96 words, three words are allocated to each
of the up to 32 I/O stations.
word1 saves the switch on error numbers. This word is always 0 when the system
is running. If an error occurs, the PLC does not start but generates a PLC stop status
(word5 from PLC_STAT).
The conditions are true when the bits are set to 1.

Note: The information corresponds to status table words 172 to 277 in the PLC
status dialog.
114

PLCSTAT
Switch on error
numbers
(DIOSTATE
word1)

The conditions are true when the bits are set to 1.
Switch on error numbers:

Code Error Meaning (location of error)

01 BADTCLEN Traffic cop length

02 BADLNKNUM RIO link number

03 BADNUMDPS I/O station number in traffic cop

04 BADTCSUM Traffic cop checksum

10 BADDDLEN I/O station descriptor length

11 BADDRPNUM I/O station number

12 BADHUPTIM I/O station stop time

13 BADASCNUM ASCII port number

14 BADNUMODS Module number in I/O station

15 PRECONDRP I/O station is already configured

16 PRECONPRT Port is already configured

17 TOOMNYOUT More than 1024 output locations

18 TOOMNYINS More than 1024 input points

20 BADSLTNUM Module slot address

21 BADRCKNUM Rack address

22 BADOUTBC Number of output bytes

23 BADINBC Number of input bytes

25 BADRF1MAP First reference number

26 BADRF2MAP Second reference number

27 NOBYTES No input or output bytes

28 BADDISMAP I/O marker bit not at 16 bit limit

30 BADODDOUT Unmated, odd output module

31 BADODDIN Unmated, odd input module

32 BADODDREF Unmated odd module reference

33 BAD3X1XRF 1x-reference after 3x-register

34 BADDMYMOD Dummy module reference already in use

35 NOT3XDMY 3x-module is not a dummy module

36 NOT4XDMY 4x-module is not a dummy module

40 DMYREAL1X Dummy module, then real 1x-module

41 REALDMY1X Real, then 1x-dummy module

42 DMYREAL3X Dummy module, then real 3x-module

43 REALDMY3X Real, then 3x-dummy module
 115

PLCSTAT
Status of cable A
(DIOSTATE:
word2, word3,
word4)

Bit allocation for word2:

Bit allocation for word3:

Bit allocation for word4:

Bit Allocation

1 - 8 Counts frame fields

9 - 16 Counts DMA receiver overflows

Bit Allocation

1 - 8 Counts receiver errors

9 - 16 Counts I/O station receiver failures

Bit Allocation

1 1 = frame too short

2 1 = no frame end

13 1 = CRC error

14 1 = alignment error

15 1 = overflow error

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
116

PLCSTAT
Status of cable B
(DIOSTATE:
word5, word6,
word7)

Bit allocation for word5:

Bit allocation for word6:

Bit allocation for word7:

Bit Allocation

1 - 8 Counts frame fields

9 - 16 Counts DMA receiver overflows

Bit Allocation

1 - 8 Counts receiver errors

9 - 16 Counts I/O station receiver failures

Bit Allocation

1 1 = frame too short

2 1 = no frame end

13 1 = CRC error

14 1 = alignment error

15 1 = overflow error

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 117

PLCSTAT
Global
communication
status
(DIOSTATE:
word8)

The conditions are true when the bits are set to 1.
Bit allocation for word8:

Global
cumulative error
counter for cable
A (DIOSTATE:
word9)

The conditions are true when the bits are set to 1.
Bit allocation for word9:

Global
cumulative error
counter for cable
B(DIOSTATE:
word10)

The conditions are true when the bits are set to 1.
Bit allocation for word10:

Bit Allocation

1 Comm. function display

2 Cable A status

3 Cable B status

5 - 8 Communication counter lost

9 - 16 Cumulative repetition counter

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bit Allocation

1 - 8 Counts recognized errors

9 - 16 Counts zero responses

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bit Allocation

1 - 8 Counts recognized errors

9 - 16 Counts zero responses

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
118

PLCSTAT
RIO status
(DIOSTATE:
word11 to
word106)

Words 11 to 106 are used to describe the RIO station status, three status words are
planned for each I/O station.
The first word in each group of three shows the communication status for the
corresponding I/O station:

The second word in each group of three is the cumulative I/O station error counter
at cable A for the corresponding I/O station:

The third word in each group of three is the cumulative I/O station error counter at
cable B for the corresponding I/O station:

Bit Allocation

1 Communication health

2 Cable A status

3 Cable B status

5 - 8 Counter for lost communications

9 - 16 Cumulative repetition counter

Bit Allocation

1 - 8 Minimum one error in words 2 to 4

9 - 16 Counts zero responses

Bit Allocation

1 - 8 Minimum one error in words 5 to 7

9 - 16 Counts zero responses

Note: For PLCs where the I/O station 1 is reserved for the local I/O, words word11
to word13 are allocated as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 119

PLCSTAT
word11 shows the global I/O station status:

word12 is used as a 16 bit I/O bus error counter.
word13 is used as a 16 bit I/O repetition counter.

Bit Allocation

1 All modules OK

9 - 16 Counts, how often a module is regarded as not OK, counter overflow is at 255

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
120

15

SET_TOD: Setting the
hardware clock (Time Of Day)
Description

Function
description

This function block searches (together with the other function blocks in the HSBY
group) the configuration of the respective PLC for the necessary components.
These components always refer to the hardware actually connected.
Therefore the correct functioning of this function block on the simulators cannot be
guaranteed.
The function block sets the hardware system clock, if the corresponding registers
are provided within this configuration. If these registers are not present, the
TOD_CNF output is set to "0".
The function block reads the input values on the S_PULSE input at a rising edge and
transfers them to the hardware clock.
For all input values:
� If the value exceeds the specified maximum value, the maximum is used.
� If the value falls below the specified minimum value, the minimum is used.
EN and ENO can be configured as additional parameters.

Representation
in FBD

Representation:

ClockReady

SET_TOD

InputAcceptedFlag

DayOfWeek

BYTE_variable2

BYTE_variable3

BYTE_variable4

BYTE_variable5

BYTE_variable6

BYTE_variable7

TOD_CNFS_PULSE

D_WEEK
MONTH

DAY

YEAR

HOUR
MINUTE

SECOND

SET_TOD_Instance
121

SET_TOD
Representation
in LD

Representation:

Representation
in IL

Representation:
CAL SET_TOD_Instance (S_PULSE:=InputAcceptedFlag,
 D_WEEK:=DayOfWeek, MONTH:=Byte_variable2,
 DAY:=Byte_variable3, YEAR:=Byte_variable4,
 HOUR:=Byte_variable5, MINUTE:=Byte_variable6,
 SECOND:=Byte_variable7, TOD_CNF=>ClockReady)

Representation
in ST

Representation:
SET_TOD_Instance (S_PULSE:=InputAcceptedFlag,
 D_WEEK:=DayOfWeek, MONTH:=Byte_variable2,
 DAY:=Byte_variable3, YEAR:=Byte_variable4,
 HOUR:=Byte_variable5, MINUTE:=Byte_variable6,
 SECOND:=Byte_variable7, TOD_CNF=>ClockReady) ;

BYTE_variable2

BYTE_variable3

BYTE_variable5

BYTE_variable6

ENOEN

SET_TOD

TOD_CNFS_PULSE

D_WEEK

MONTH

DAY

YEAR

HOUR

MINUTE

SECOND

SET_TOD_Instance

BYTE_variable4

BYTE_variable7

DayOfWeek

InputAcceptedFlag ClockReady
122

SET_TOD
Parameter
description

Description of the input parameters:

Description of the output parameters:

Parameters Data type Meaning

S_PULSE BOOL "0 -> 1" = the input values are accepted and written
into the clock.

D_WEEK BYTE Day of week, 1 = Sunday 7 = Saturday

MONTH BYTE Month 1..12

DAY BYTE Day 1..31

YEAR BYTE Year 0..99

HOUR BYTE Hour 0..23

MINUTE BYTE Minute 0..59

SECOND BYTE Second 0..59

Parameters Data type Meaning

TOD_CNF BOOL "1" = %MW register (4x) for the hardware system
clock was found and the clock is operational.
"0" = Time is currently being set or hardware clock
was not found.
 123

SET_TOD
124

16

GET_TOD: Reading the
hardware clock (Time Of Day)
Description

Function
description

This function block searches (together with the other function blocks in the HSBY
group) the configuration of the respective PLC for the necessary components.
These components always refer to the hardware actually connected.
Therefore the correct functioning of this function block on the simulators cannot be
guaranteed.
The GET_TOD function block reads the hardware clock, if relevant registers are
provided with this configuration. If these registers are not present, the TOD_CNF
output is set to "0".
EN and ENO can be configured as additional parameters.

Representation
in FBD

Representation:

RegisterPresentFlag

GET_TOD

DayOfWeek
BYTE_variable2

BYTE_variable3

BYTE_variable4

BYTE_variable5
BYTE_variable6

BYTE_variable7

GET_TOD_Instance

TOD_CNF

D_WEEK

MONTH

DAY

YEAR

HOUR

MINUTE

SECOND
125

GET_TOD
Representation
in LD

Representation:

Representation
in IL

Representation:
CAL GET_TOD_Instance (TOD_CNF=>RegisterPresentFlag,
 D_WEEK=>DayOfWeek, MONTH=>Byte_variable2,
 DAY=>Byte_variable3, YEAR=>Byte_variable4,
 HOUR=>Byte_variable5, MINUTE=>Byte_variable6,
 SECOND=>Byte_variable7)

Representation
in ST

Representation:
GET_TOD_Instance (TOD_CNF=>RegisterPresentFlag,
 D_WEEK=>DayOfWeek, MONTH=>Byte_variable2,
 DAY=>Byte_variable3, YEAR=>Byte_variable4,
 HOUR=>Byte_variable5, MINUTE=>Byte_variable6,
 SECOND=>Byte_variable7) ;

DayOfWeek

BYTE_variable2

BYTE_variable3

BYTE_variable4

BYTE_variable5

BYTE_variable6

BYTE_variable7

ENOEN

GET_TOD

TOD_CNF

D_WEEK

MONTH

DAY

YEAR

HOUR

MINUTE

SECOND

GET_TOD_Instance

RegisterPresentFlag
126

GET_TOD
Parameter
description

Description of the output parameters:

Parameters Data type Meaning

TOD_CNF BOOL "1" = 4x-register for hardware system clock was
found and the clock is operational.
"0" = time is set at the moment. In this case the other
outputs keep their values.

D_WEEK BYTE Weekday, 1 = Sunday .. 7 = Saturday

MONTH BYTE Month 1..12

DAY BYTE Day 1..31

YEAR BYTE Year 0..99

HOUR BYTE Hour 0..23

MINUTE BYTE Minute 0..59

SECOND BYTE Second 0..59
 127

GET_TOD
128

17

BYTE_TO_BIT_DFB: Type
conversion
Description

Function
description

This derived function block converts one input word from the BYTE data type to 8
output values of the BOOL data type.
The individual bits of the byte at the input are assigned to the outputs according to
the output names.

EN and ENO can be configured as additional parameters.

Representation
in FBD

Representation:

BIT0 (2)

BIT7 (2)

0

7

BIT1 (2)1

BIT6 (2)6

27 21 2026

BYTE

BOOL_variable1

BYTE_TO_BIT_DFB

BYTE_variable

BOOL_variable2
BOOL_variable3

BOOL_variable4

BOOL_variable5

BOOL_variable6
BOOL_variable7

BOOL_variable8

BYTE_TO_BIT_DFB_Instance

BIT0

BIT1

BIT2

BIT3

BIT4

BIT5

BIT6

BIT7

IN
129

BYTE_TO_BIT_DFB
Representation
in LD

Representation:

Representation
in IL

Representation:
CAL BYTE_TO_BIT_DFB_Instance (IN:=BYTE_variable,
 BIT0=>BOOL_variable1, BIT1=>BOOL_variable2,
 BIT2=>BOOL_variable3, BIT3=>BOOL_variable4,
 BIT4=>BOOL_variable5, BIT5=>BOOL_variable6,
 BIT6=>BOOL_variable7, BIT7=>BOOL_variable8)

Representation
in ST

Representation:
BYTE_TO_BIT_DFB_Instance (IN:=BYTE_variable,
 BIT0=>BOOL_variable1, BIT1=>BOOL_variable2,
 BIT2=>BOOL_variable3, BIT3=>BOOL_variable4,
 BIT4=>BOOL_variable5, BIT5=>BOOL_variable6,
 BIT6=>BOOL_variable7, BIT7=>BOOL_variable8) ;

ENOEN

BOOL_variable1

BYTE_TO_BIT_DFB

BOOL_variable2

BOOL_variable3

BOOL_variable4

BOOL_variable5

BOOL_variable6

BOOL_variable7

BOOL_variable8

BIT0

BIT1

BIT2

BIT3

BIT4

BIT5

BIT6

BIT7

BYTE_TO_BIT_DFB_Instance

BYTE_variable IN
130

BYTE_TO_BIT_DFB
Parameter
description

Description of the input parameters:

Description of the output parameters:

Parameter Data type Meaning

IN BYTE Input

Parameter Data type Meaning

BIT0 BOOL Output bit 0

BIT1 BOOL Output bit 1

: : :

BIT7 BOOL Output bit 7
 131

BYTE_TO_BIT_DFB
132

18

WORD_TO_BIT_DFB:
Type conversion
Description

Function
description

This derived function block converts one input word from the WORD data type to 16
output values of the BOOL data type.
The individual bits of the word at the input are assigned to the outputs according to
the output names.

EN and ENO can be configured as additional parameters.

BIT0 (2)

BIT15 (2)

0

15

BIT1 (2)1

BIT14 (2)14

215 21 20214

WORD
133

WORD_TO_BIT_DFB
Representation
in FBD

Representation:

Representation
in LD

Representation:

Representation
in IL

Representation:
CAL WORD_TO_BIT_DFB_Instance (IN:=WORD_variable,
 BIT0=>Bit1, BIT1=>Bit2, BIT2=>Bit3, BIT3=>Bit4,
 BIT4=>Bit5, BIT5=>Bit6, BIT6=>Bit7, BIT7=>Bit8,
 BIT8=>Bit9, BIT9=>Bit10, BIT10=>Bit11, BIT11=>Bit12,
 BIT12=>Bit13, BIT13=>Bit14, BIT14=>Bit15, BIT15=>Bit16)

WORD_TO_BIT_DFB

Bit1BIT0

Bit2BIT1

Bit3BIT2

Bit4BIT3

Bit5BIT4

Bit6BIT5

Bit7BIT6

Bit8BIT7

Bit9BIT8

Bit10BIT9
Bit11BIT10

Bit12BIT11

Bit13BIT12

Bit14BIT13

Bit15BIT14

Bit16BIT15

WORD_variable IN

WORD_TO_BIT_DFB_Instance

ENOEN

Bit1

WORD_TO_BIT_DFB

Bit16

BIT0

BIT15

IN

WORD_TO_BIT_DFB_Instance

::

WORD_variable
134

WORD_TO_BIT_DFB
Representation
in ST

Representation:
WORD_TO_BIT_DFB_Instance (IN:=WORD_variable,
 BIT0=>Bit1, BIT1=>Bit2, BIT2=>Bit3, BIT3=>Bit4,
 BIT4=>Bit5, BIT5=>Bit6, BIT6=>Bit7, BIT7=>Bit8,
 BIT8=>Bit9, BIT9=>Bit10, BIT10=>Bit11, BIT11=>Bit12,
 BIT12=>Bit13, BIT13=>Bit14, BIT14=>Bit15,
 BIT15=>Bit16) ;

Parameter
description

Description of the input parameters:

Description of the output parameters:

Parameter Data type Meaning

IN WORD Input

Parameter Data type Meaning

BIT0 BOOL Output BIT0

BIT1 BOOL Output BIT1

: : :

BIT15 BOOL Output BIT15
 135

WORD_TO_BIT_DFB
136

19

WORD_AS_BYTE_DFB:
Type conversion
Description

Function
description

This derived function block converts one input word from the WORD data type to 2
output values of the BYTE data type.
The individual bytes of the word at the input are assigned to the outputs according
to the output names.
EN and ENO can be configured as additional parameters.

Representation
in FBD

Representation:

Representation
in LD

Representation:

LowByte

WORD_AS_BYTE

WORD_variable

HighByte

LOW

HIGH

IN

LowByte

HighByte

ENOEN

WORD_AS_BYTE

LOW

HIGH

INWORD_variable
137

WORD_AS_BYTE_DFB
Representation
in IL

Representation:
CAL WORD_AS_BYTE_DFB_Instance (IN:=WORD_variable,
 LOW=>LowByte, HIGH=>HighByte)

Representation
in ST

Representation:
WORD_AS_BYTE_DFB_Instance (IN:=WORD_variable,
 LOW=>LowByte, HIGH=>HighByte) ;

Parameter
description

Description of the input parameters:

Description of the output parameters:

Parameter Data type Meaning

IN WORD Input

Parameter Data type Meaning

LOW BYTE least significant byte

HIGH BYTE most significant byte
138

20

DINT_AS_WORD_DFB:
Type conversion
Description

Function
description

This derived function block converts one input word from the DINT data type to 2
output values of the WORD data type.
The individual words of the DINT input are assigned to the outputs according to the
output names.
EN and ENO can be configured as additional parameters.

Representation
in FBD

Representation:

Representation
in LD

Representation:

LowWord

DINT_AS_WORD

DINT_variable

HighWord

LOW

HIGH

IN

LowWord

HighWord

ENOEN

DINT_AS_WORD

LOW

HIGH

INDINT_variable
139

DINT_AS_WORD_DFB
Representation
in IL

Representation:
CAL DINT_AS_WORD_DFB_Instance (IN:=DINT_variable,
 LOW=>LowWord, HIGH=>HighWord)

Representation
in ST

Representation:
DINT_AS_WORD_DFB_Instance (IN:=DINT_variable,
 LOW=>LowWord, HIGH=>HighWord) ;

Parameter
description

Description of the input parameters:

Description of the output parameters:

Parameters Data type Meaning

IN DINT Input

Parameters Data type Meaning

LOW WORD least significant word

HIGH WORD most significant word
140

21

LIMIT_IND_DFB:
Limit with indicator
Description

Function
description

This derived function block transfers the unchanged input value (Input) to the
Output, if the input value is not less than the minimum value (LimitMinimum) and
does not exceed the maximum value (LimitMaximum). If the input value (Input)
is less than the minimum value (LimitMinimum), the minimum value will be
transferred to the output. If the input value (Input) exceeds the maximum value
(LimitMaximum), the maximum value will be transferred to the output.
Additionally, a indication is given if the minimum or maximum value is violated. If the
value at the (Input) input is less than the value at the (LimitMinimum) input, the
(MinimumViolation) output becomes "1". If the value at the (Input) input is more
than the value at the (LimitMaximum) input, the (MaximumViolation) output
becomes "1".
The data types of the (LimitMinimum, Input, LimitMaximum) input values and
the (Output) output value must be identical.
EN and ENO can be configured as additional parameters.

Formula Block formula:
OUT = IN, if (IN ≤ MX) & IN ≥ MN
OUT = MN, if (IN < MN)
OUT = MX, if (IN > MX)

MN_IND = 0, if IN ≥ MN
MN_IND = 1, if IN < MN

MX_IND = 0, if IN ≤ MX
MX_IND = 1, if IN > MX
141

LIMIT_IND_DFB
Representation
in FBD

Representation:

Representation
in LD

Representation:

Representation
in IL

Representation:
CAL LIMIT_IND_DFB (MN:=LimitMinimum, IN:=INPUT,
 MX:=LimitMaximum, MN_IND=>MinimumViolation,
 OUT=>Output, MX_IND=>MaximumViolation)

Representation
in ST

Representation:
LIMIT_IND_DFB (MN:=LimitMinimum, IN:=INPUT,
 MX:=LimitMaximum, MN_IND=>MinimumViolation,
 OUT=>Output, MX_IND=>MaximumViolation) ;

MinimumViolation

LIMIT_IND_DFB

LimitMinimum

Input

LimitMaximum

Output

MaximumViolation

MN_IND

OUT

MX_IND

MN

IN

MX

LIMIT_IND_DFB_Instance

Output

LimitMaximum

ENOEN

LIMIT_IND

OUT

MN

IN

MX

LimitMinimum

Input

MinimumViolation
MN_IND

MaximumViolation
MX_IND

LIMIT_IND_DFB_Instance
142

LIMIT_IND_DFB
Parameter
description

Description of the input parameters:

Description of the output parameters:

Parameter Data type Meaning

LimitMinim

um

BOOL, BYTE, WORD,
DWORD, INT, DINT,
UINT, UDINT, REAL,
TIME

Limit of minimum value

Input BOOL, BYTE, WORD,
DWORD, INT, DINT,
UINT, UDINT, REAL,
TIME

Input

LimitMaxim

um

BOOL, BYTE, WORD,
DWORD, INT, DINT,
UINT, UDINT, REAL,
TIME

Limit of maximum value

Parameter Data type Meaning

MinimumVio

lation

BOOL Display of minimum value violation

Output BOOL, BYTE, WORD,
DWORD, INT, DINT,
UINT, UDINT, REAL,
TIME

Output

MaximumVio

lation

BOOL Display of maximum value violation
 143

LIMIT_IND_DFB
144

CBAIndex
Numerics
0x Register, 23

A
ADD_INT, 39
ANY_ARRAY_WORD, 34
Application behavior change, 47

B
Battery Monitoring, 22
Behavior change, 47
Behavior of Concept, 49
Behavior of Unity, 52
BOOL arrays

WORD assignment, 40
BYTE_TO_BIT_DFB, 129

C
Change of

application behavior, 47
Concept behavior, 49
Concept EFBs

CREAD_REG, 33
CWRITE_REG, 33
READ_REG, WRITE_REG, 33

Concept Version, 14
Configuration, 15
Consequences, 54
Constants, 23

DFBs, 40
Continuous Register Reading

CREADREG, 81
Continuous Register Writing

CWRITREG, 95
Conversion

Report, 35
Conversion Procedure, 63
Conversion Process, 61
CREAD_REG, 33
CREADREG, 81
CWRITE_REG, 33
CWRITREG, 95
145

Index
D
Date, 22
DDTs

Redundant names, 35
Declaring EFBs, 29
DFB variables

Private, 40
DFBs

Constant variables, 40
Initialized variables, 40

DINT_AS_WORD_DFB, 139
DIOSTAT, 69
DPM_time

Concept, 41
Structure, 41
structure, 41
Unity, 41

E
EF/EFB pins

type, 34
EFBs, 25

replaced by function, 32
values, 42

EFs
correction, 42
disabled, 42
executive behavior, 42
outputs, 42

EQ_INT, 37, 39
Execution order, 17
Execution order (LD)

changed, 36
Export from Concept, 64
146
Extension/Compatibility
BYTE_TO_BIT_DFB, 129
CREADREG, 81
CWRITREG, 95
DINT_AS_WORD_DFB, 139
DIOSTAT, 69
GET_TOD, 125
LOOKUP_TABLE1_DFB, 101
PLCSTAT, 105
READREG, 75
RIOSTAT, 71
SET_TOD, 121
WORD_AS_BYTE_DFB, 137
WORD_TO_BIT_DFB, 133
WRITEREG, 89

F
FBD Function Block Diagram, 30
FBI_ST1_75_33, 32
Function

EFB replaced by, 32
Not present in Unity, 32

Function Block Diagram FBD, 30

G
General Description, 11
Generic EFBs, 28
GET_TOD, 44, 125
Global Variables, 18

H
Hardware Platforms, 14
Hot Standby, 16
HSBY, 16

Index
I
IEC demands, 50
IL Instruction List, 28
Import to Unity Pro, 65
Incomplete LD generation, 35
Indices, 40

ST, 40
Initial values, 45
INOUT parameters, 33
Instruction List IL, 28

L
Ladder Diagram LD, 28
Ladder Diagram LL984, 29
Language differences, 31
LD

Execution order changed, 36
Incomplete generation, 35

LD Ladder Diagram, 28
Limit with Indicator

LIMIT_IND_DFB, 141
LIMIT_IND_DFB, 141
LL984 Ladder Diagram, 29
LL984 Restrictions, 15
Located Variable, 22
LOOKUP_TABLE1_DFB, 101

M
Macros, 30, 46
Module Function Status (DIO)

DIOSTAT, 69
Module Function Status (RIO)

RIOSTAT, 71

N
Names

Redundant (DDT and section), 35

O
Online modification

SFC section, 43

P
Parallel/Alternative Sequence, 27
Parameter type

Changed, 33
pins

EF/EFB, 34
PLC Function Status

PLCSTAT, 105
PLC Types Quantum, 14
PLCSTAT, 105
Possible application behavior change, 47
Program Execution, 17
Programming Language FBD, 30
Programming Language IL, 28
Programming Language LD, 28
Programming Language LL984, 29
Programming Language SFC, 27
Programming Language ST, 28

Q
Quantum PLC Types, 14

R
Read Register

READREG, 75
READ_REG, 33
Reading the Hardware Clock (Time Of Day)

GET_TOD, 125
READREG, 75
REAL

Calculating, 40
REAL_TO_DINT, 40
Redundant names

DDTs and sections, 35
Reference Data Editor (RDE), 18
Remote I/O Control, 24
Requirements, 13
RIOSTAT, 71
147

Index
S
Sections

Redundant names, 35
Security, 17
Sequential Function Chart SFC, 27
SET_BIT, 32
SET_BITX, 32
SET_TOD, 44, 121
Setting the Hardware Clock (Time Of Day)

SET_TOD, 121
Setting Variables Cyclically, 24
SFC Chart

Modifying, 43
SFC Sequential Function Chart, 27
Single Sweep Function, 17
Specified execution order, 17
ST code, 40
ST Structured Text, 28
State RAM, 19
Statistics

LIMIT_IND_DFB, 141
Structure

Alignment changed, 41
Structured Text ST, 28
System, 17
System timer, 44

T
The Conversion Process, 61
TIME

Calculating, 40
Timer, 22
Topological address

overlapping, 41
Topological Addresses, 22
Traverse progression with 1st degree
interpolation

LOOKUP_TABLE1_DFB, 101
Type Conversion

BYTE_TO_BIT_DFB, 129
DINT_AS_WORD_DFB, 139
WORD_AS_BYTE_DFB, 137
WORD_TO_BIT_DFB, 133
148
U
Unique name requirement, 35
Unity behavior, 52

W
Weekday numbering, 44
WORD assignment

BOOL arrays, 40
WORD_AS_BYTE_DFB, 137
WORD_TO_BIT_DFB, 133
Write Register

WRITEREG, 89
WRITE_REG, 33
WRITEREG, 89

	Table of Contents
	About the Book
	Requirements and conversion
	General Description of the Unity Pro Concept Converter
	Requirements
	Language differences
	Possible application behavior change
	The Conversion Process
	Conversion Procedure
	Blocks form Concept to Unity Pro
	DIOSTAT: Module function status (DIO)
	RIOSTAT: Module function status (RIO)
	READREG: Read register
	CREADREG: Continuous register reading
	WRITEREG: Write register
	CWRITREG: Continuous register writing
	LOOKUP_TABLE1_DFB: Traverse progression with 1st degree interpolation
	PLCSTAT: PLC function status
	SET_TOD: Setting the hardware clock (Time Of Day)
	GET_TOD: Reading the hardware clock (Time Of Day)
	BYTE_TO_BIT_DFB: Type conversion
	WORD_TO_BIT_DFB: Type conversion
	WORD_AS_BYTE_DFB: Type conversion
	DINT_AS_WORD_DFB: Type conversion
	LIMIT_IND_DFB: Limit with indicator
	Index

