
33
00

28
30

.0
1

Unity Application Generator
(UAG)
Version 2.1
User Manual
 eng

2

Table of Contents
About the Book . 11

Part I Understanding Unity Application Generator 13
Overview . 13

Chapter 1 Introduction to Unity Application Generator15
Overview . 15
What is Unity Application Generator? . 16
The foundations of Unity Application Generator . 19
Building an Application . 22

Chapter 2 The Physical Model . 25
Overview . 25

2.1 Overview of the Physical Model . 27
Structure of the Physical Model. 27

2.2 The Elements Area, Process Cell and Unit . 29
Area, Process Cell and Unit Description and Properties. 29

2.3 The Element Equipment Module . 30
Overview . 30
What is an Equipment Module? . 31
Equipment Module Features . 32
Equipment Module Properties . 33

2.4 The Element Control Module and Control Module Types
(Smart Control Devices) . 35
Overview . 35
Introduction . 36
Control Module Features. 37
Control Module Types or Smart Control Devices (SCoDs) 38
Free Control Module . 40
Control Module Properties. 41
Instruments . 42
Interlocks for Control Modules. 43
Links between SCoDs. 46
3

2.5 Variables . 47
Overview . 47
Introduction . 48
Connection Types and Data Types of Variables . 49
General Variable Properties. 51
HMI Related Variable Properties . 53

Chapter 3 The Topological Model . 59
Overview . 59

3.1 Control System Topology and Topological Model . 61
Overview . 61
The Topology of a Control System . 62
Structure of the Topological Model . 67
Communication via Modbus Plus and Ethernet . 69
Additional Information Concerning Ethernet . 71
Quantum Hot Standby Configuration (HSBY) . 74

3.2 The Groups Network Segments and Routing Paths . 78
Overview . 78
Network Segment Description and Properties . 79
List of Network Nodes . 80
Routing Paths Description and Properties . 82

3.3 The PLC Group . 84
Overview . 84
Introduction . 85
PLC Properties. 87
PLC Channels . 90
Copy and Paste of PLCs . 92
PLC <-> PLC Communication via Modbus Plus . 93
PLC <-> PLC Communication via Ethernet . 95
Additional Racks . 97
Racks and Modules . 98
Enhanced Ethernet Module . 107

3.4 The HMI Group . 110
Overview . 110
Introduction . 111
HMI Properties . 112
Control Domain Properties. 113

3.5 The Data Server Group . 114
Data Server - Description and Properties . 114

3.6 The Network Nodes Group . 117
Overview . 117
Net Partner Description . 118
Net Partner Properties . 119
Other Node Description . 120
Other Node Properties . 121
4

Part II Working with Unity Application Generator 123
Overview . 123

Chapter 4 Rules for Working with Unity Application Generator 125
Overview . 125
General Rules for Project Configuration and Generation 126
Open Costumization and SCoD Editor . 127
Rules Concerning the PLC and Concept . 128
Rules Concerning the PLC and Unity Pro . 130
Rules Concerning HMI . 131

Chapter 5 Tool Handling and Features for Effective Work.133
Overview . 133
Concepts of the User Interface . 134
Working with Tables (Lists) . 137
Drag & Drop of Objects, Modules and Variables. 139
How to Find Objects with Search Criteria . 140
Working with the Instrument List . 142
Copy and Paste in the Physical and Topological Model 145
How to Build an Interlock Definition. 147
Working with the Topological Viewer . 151
How to View the Generation Status . 154

Chapter 6 Workflow to Build an Application .155
Overview . 155
General Workflow to Build an Application . 156
Defining the Customization . 158
Defining the Physical Model . 159
Defining the Topological Model . 160
Complete the Physical Model . 163
Generate PLC and HMI Applications . 164
Generate Import File for Net Partners . 166
Document the Application or Individual Objects (Report) 167

Part III Project Management . 169
Overview . 169

Chapter 7 Managing Distributed Project Development -
Project Merge .171
Overview . 171
Overview . 172
Code Generation for Individual PLCs . 173
Workflow of Distributed Project Development . 174
General Preconditions for Project Merge . 177
Merging of Physical Models . 178
Merging of Topological Models . 180
5

Chapter 8 Interfaces with other Tools
(Import and Export Features) . 183
Overview . 183
Concept of Open Interfaces . 184
How to Import/Export CSV Files . 186
Example: Import Instruments / Physical Model Hierarchy 188
Example: Import Initial Values for Variables . 191

Chapter 9 Supported HMIs and their Setup . 193
Overview . 193

9.1 Monitor Pro and Unity Application Generator . 195
Overview . 195
Introduction . 196
Monitor Pro - Default Server Application . 197
Generation Modes of Monitor Pro Server Application . 200
Data Conversion Monitor Pro vs. Unity Application Generator 202
Monitor Pro Drivers and Communication . 206
Alarming. 210
Archiving . 215
Monitor Pro Client Application . 221

9.2 iFIX and Unity Application Generator. 226
Overview . 226
Introduction . 227
How to Configure iFIX for the Use with Unity Application Generator. 228
Manual Configurations Before Generation for iFIX . 230
How to Generate a New iFIX Application. 233
How to Generate an iFIX Application Incrementally . 234
Unity Application Generator and iFIX Drivers . 235
How to Deploy the Generated Application to the iFIX Nodes 236
How to Run an Existing Unity Application Generator Project 237
Configuring iFIX Redundancy . 238

9.3 Generic HMI and Unity Application Generator. 239
Using Unity Application Generator with a Generic HMI 239

Chapter 10 Customization and Project Maintenance 241
Overview . 241

10.1 Customizing Unity Application Generator . 243
Overview . 243
Introduction . 244
Working with the Customization Editor . 245
The Customization Options . 247
Defining Naming Conventions . 249
User Defined Modules - Overview . 251
User Defined Modules - Properties . 253
How to Define a Generic Module . 255
6

How to Define a ModConnect Partner Module . 256
How to Change the Customization . 257

10.2 Project Maintenance . 258
Overview . 258
Setting Options for Analysis and Generation . 259
Version Management and Change Tracking. 260
Project Documentation (Report Generator). 262
Trouble Shooting . 262

Appendices . 263
Overview . 263

Appendix A Release Notes Version 2.1 . 265
Overview . 265
New Features in Unity Application Generator Version 2.1 266
Hardware Requirements . 266
Software Requirements. 267
Installation information for new Users . 268
Upgrade of Existing Projects to UAG 2.1 and Concept V2.6 271

Appendix B Generated Code .273
Overview . 273

B.1 Overview of Generated Code and Generation Principles 275
Overview . 275
Overview of Generated Code . 276
Generation Principles . 277

B.2 Generation for Concept . 278
Overview . 278
What is generated? . 279
Generation from General Project Settings - Overview 280
Generation from the Topological Model - Overview . 281
Generation from the Physical Model - Overview. 287
Generated PLC Configuration . 294
Generated Variables . 295
Generated Code: Equipment Modules, Control Modules and
Interlocks. 297
Generated Code: Communication. 300
Generated Code: Initialization . 302
Generated Code: Scaling of Analog Values (Quantum only) 303
Generated Code: Hot Standby . 303

B.3 Generation for Unity Pro . 304
Overview . 304
What is generated? . 305
Generation from General Project Settings - Overview 306
Generation from the Topological Model - Overview . 307
Generation from the Physical Model - Overview. 313
7

Generated PLC Configuration . 320
Generated Variables . 320
Generated Code: Equipment Modules, Control Modules and
Interlocks . 323
Generated Code: Communication . 326
Generated Code: Initialization (Quantum only) . 328
Generated Code: Scaling of Analog Values (Quantum only). 328
Generated Code: Discrete Configuration (Premium only) 329

B.4 Generation for Monitor Pro . 332
Overview . 332
Introduction . 333
Generated Variables and their Graphical Representation in the HMI 333
Generated Screens . 335
Generated Monitor Pro Database Objects. 336
Generated Monitor Pro Pictures . 340

B.5 Generation for iFIX. 344
Overview . 344
Characterization. 345
Generated Variables and their Graphical Representation in the HMI 346
Generated Screens . 347
Generated iFIX Database Objects . 348
Generated iFIX Pictures. 354
Generated iFIX Driver Configuration from Unity Application Generator
Point of View . 359
Generated iFIX Driver Configuration from the Driver Point of View. 361

B.6 Generation for a Generic HMI . 363
Generation for a Generic HMI . 363

B.7 Generation for Net Partners. 364
Overview . 364
Generation for Net Partners. 365
Net Partner Variables: CSV File Format . 366

Appendix C Format of the CSV Files for Import and Export. 367
Overview . 367
General Format . 368
Physical Model Elements: CSV File Format . 370
Topological Model Elements: CSV File Format . 376
Instruments: CSV File Format . 385
Initial Values: CSV File Format . 386

Appendix D Format of the XML File for Generic HMI 389
XML File Format for Generic HMI . 389
8

Glossary . 401

Index . 409
9

10

About the Book
At a Glance

Document Scope This manual is
� to let you understand what Unity Application Generator (UAG) is and what it can

do for you.
� to get an overview of the functionality of UAG.
� to explain all elements which are used to build an application.
� to give you a clear roadmap how to create an application with UAG.
� to give reference to all elements of UAG.

It is not the intention of the manual
� to give a reference to all menus and dialogs of Unity Application Generator. This

you will find in the Help of the software.

Validity Note This manual is valid for Unity Application Generator (UAG) V2.1 in conjunction with:
� Unity Pro V2.0
� Concept V2.6 SR2
� Concept V2.6 SR1
� Concept V2.5 SR2
� Monitor Pro V7.2
� iFIX V2.6
� Modbus/Ethernet MBT V2.0 Driver and V3.0
 11

About the Book
Related
Documents

User Comments We welcome your comments about this document. You can reach us by e-mail at
techpub@schneider-electric.com

Title of Documentation Reference Number

SCoD Library IATBASIC10; refer to separate Word documents
provided for each SCoD in the DOC subdirectory of the Unity
Application Generator directory

-

SCoD Editor V2.1 User Manual -

Unity Pro Software Reference Manual -

Quantum Hot Standby with Unity Pro User Manual UNY USE 10710

Concept User Manual 840 USE 503 00

Quantum Hot Standby Planning and Installation Guide with Concept 840 USE 106 00

D. W. Fleming, V. Pillai: S88 Implementation Guide McGraw Hill,
ISBN 0-07-021697-5
12

I

Understanding Unity Application
Generator
Overview

Introduction UAG is a new kind of process design tool for process automation. For efficient work
it is required to understand the basic principles of the tool. This part will explain these
principles to you.
In addition it will explain the details of all elements within UAG, which are used to
describe the process.

What's in this
Part?

This part contains the following chapters:

Chapter Chapter Name Page

1 Introduction to Unity Application Generator 15

2 The Physical Model 25

3 The Topological Model 59
13

Understanding Unity Application Generator
14

1

Introduction to Unity Application
Generator
Overview

Introduction This chapter introduces the principles of the Unity Application Generator and the
benefits for the user. It explains the general concept and the process to develop an
application with UAG.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

What is Unity Application Generator? 16

The foundations of Unity Application Generator 19

Building an Application 22
15

Introduction
What is Unity Application Generator?

What is Unity
Application
Generator?

Unity Application Generator is a new kind of process design tool for process
automation. It closes the gap which normally exists between the process engineer
and the control engineer. In the past, both groups have worked with specialized tools
which were not compatible. Changes to the process design defined by the process
engineer had to be repeated by the control engineer. This situation is now changed
with UAG.

For the process engineer UAG allows the user:
� to define a general layout of the process based on objects defined in the Physical

Model of ISA S88.01 standard like Area, Process Cell, Unit, Equipment Module
and Control Module and

� to link from UAG objects to his basic tools like E-plan, Autocad, P&ID drawings
etc.

For the control engineer UAG allows the user:
� to build the control architecture with PLCs, HMIs and networks as the Topological

Model
� to assign the control logic to the objects the process engineer has defined
� to generate 30 - 50% of the control logic for the PLC and the HMI from the

process design

Supporting this approach, UAG allows the user to design a distributed control
system with multiple PLCs and HMIs in one step.
16

Introduction
What does it look
like?

The frame window of Unity Application Generator displays the Physical Model and/
or the Topological Model as an object tree in a similar way to Windows Explorer.
� The Physical Model is typically designed by the process engineer. The elements

of the Physical Model are mapped to the resources in the Topological Model.
� The Topological Model is typically designed by the control engineer.

The following figure shows the frame windows of the Physical Model and the
Topological Model of an example process:

Physical Model

Site
Area1

Cell11
Unit11

Test11
Valve1 [VASD01]
PID1 [PID301]

Unit12
Test12

Valve1 [VASD01]
PID1 [PID301]
Free1 [Free]

Area2
Cell21

Test21
Unit22

Unit21

Topological Model

Site

PLCs
PLC1

Local
1 - CPS-114-x0
2 - CPU-534-14
3 - NOM-2xx-00
4 - NOE-771-00
5 - NOE-771-00
6 - AMM-090-00

PLC2
Local

HMIs
Eagle

Preparation
Production

Data Servers
Collect

Network Nodes
HandheldPannel

Network Segments
Routing Paths

Network Segments
 17

Introduction
What is the
Output of UAG?

Unity Application Generator generates code for:
� PLC

Logic for Concept/Unity Pro, the IEC 61131 programming software of Schneider
Electric.

� Monitor Pro
HMI tags and graphics related to the objects created with UAG for Monitor Pro.

� iFIX
HMI tags and graphics related to the objects created with UAG for Intellution’s
iFIX.

� Generic HMI
HMI tags with all relevant information stored in a data exchange file to be used
by any HMI that has an import functionality. See also Using Unity Application
Generator with a Generic HMI, p. 239.

The output of UAG is downloaded directly to the PLC or the HMI. It builds the static
process design (about 30% of the total design).
To build the final application, the output of UAG has to be completed by adding the
dynamic behaviour of the process to the PLC and the HMI system.

Additional
Features and
Benefits

Additional features of the Unity Application Generator are:
� One database for PLC and HMI parameters. The communication is always

consistently defined between PLC and HMI.
� Object oriented design with reusable technological objects like motors, valves,

pumps etc.
� Change tracking system allowing the user to keep track of all changes done by

multiple users who can work on the project in parallel.
� Use of industry standards and quasi-standards like ActiveX.
� Documentation like CAD drawings, text documents etc. can be linked to the

respective objects.

Benefits for the user of the Unity Application Generator are:
� Reduced application and test effort of the system due to reusable objects.
� Faster design, thus reduced total life cycle costs.
� Quicker maintenance of the system.
� Faster re-validation of the process design with the help of the change tracking

system. Every change of the process will be logged by the Change History.
� Facilitated validation effort for projects which must be validated due to state

regulation.
� Significantly increased application software quality.
� Reduced time required for installation and commissioning.
18

Introduction
The foundations of Unity Application Generator

ISA S88.01
compliance

Unity Application Generator uses the terminology of the ISA Standard S88.01 for
Batch Control Part 1 "Models and Terminology". By adopting the S88 structure, the
user of Unity Application Generator is able to break his process tasks down in-line
with the standard, and then carry out a bottom up implementation, assisted by Unity
Application Generator.
The S88 standard describes a hierarchy to structure the complete automation
facilities in an enterprise as the Physical Model. In this release of Unity Application
Generator the decomposition of an enterprise starts at the Site level.
The figure shows the complete hierarchy the designer can define to describe the
automation of the Site. The lines symbolize a one-to-many relation, e.g. a Unit
consists of one or multiple Equipment Modules. The Areas, Process Cells and Units
are used to structure the plant into parts that perform different tasks.
 19

Introduction
Physical Model according to ISA S88.01

Single Process
Database

Building an automation application using Unity Application Generator produces in
one step the output for:
� the HMI
� the PLC
� the communication
This enables the user to have one single process database which stores all the
process data for both HMI and PLC. Thus both applications, HMI and PLC, which
had been separated in the past now work with the same data model and construct
one single process control solution.

Site

may consist of multiple

Area

may consist of multiple

Process
Cell

may consist of multiple

Unit

may consist of multiple

Equipment
Module

may consist of multiple

Control
Module

Enterprise

may consist of multiple
20

Introduction
New Object:
Smart Control
Devices (SCoD)

A Control Module is a generic term used to define sensors, actuators and regulatory
control equipment that, from a control viewpoint, are operated as a single entity. A
Control Module may be an object in the real world, which can be picked up and
looked at, e.g. motor, valve, temperature transmitter, etc. or it can be a logical
software object, which is used for regulation control or other control functions, e.g.
PID loop, timer, counter.
A Smart Control Device (SCoD) is a predefined Control Module of a special type
within Unity Application Generator, a so called Control Module Type.
A SCoD can be instantiated as many times as required by the process. It is fully
tested. This will reduce the costs for testing the whole application significantly.
A SCoD contains:
� The PLC logic required to control a real world device of a defined type.
� Animated HMI symbols.
� Full manual control of the Control Module through the HMI.
� Access to all variables required for the PLC and the HMI.
� Connection to the HMI alarm management.

Features for 21
CFR Part 11

To fulfill the 21 CFR Part 11 requirements UAG provides the following information:
� Concept timestamp in Change History shown.
� UAG timestamp in Change History and PLC property dialog shown.
� Customization timestamp in project property dialog shown.
� UAG timestamp in Concept / Unity Pro log file shown.
� UTC timezone shown when ever times are logged.

Adaptable to
Customer
Standards

UAG can be adapted to the specific needs of a project according to machinery,
products, automation configuration, design tools etc.
The system administrator can define individually the naming conventions or taging
conventions for all named objects using the configurable fields:
� Area
� Process Cell
� PLC
� HMI
� ...

In addition it is possible to define valid automation configurations, for example:
� PLC families (Quantum, Premium, ...)
� PLC hardware (racks, modules, processors, ...)
For detailed information see Customization and Project Maintenance, p. 241.
 21

Introduction
Building an Application

The Different
Roles of People
to Build an
Application

To make the methodology of the tool transparent, different roles are used in this
document.
To build an application with Unity Application Generator requires different kinds of
users or user groups. Each group is responsible for a different aspect of the
application development.
The main roles are:
� The administrator
� The process engineer
� The control engineer

Customization;
Task of the
Administrator

The administrator sets up UAG according to the company standards. A lot of
different options can be defined before the project really starts (nevertheless it is
also possible to start a project with the default settings), for example:
� Naming conventions
� PLC standard configurations
� Specific engineering units
� ...

Process Design;
Task of the
Process
Engineer

The process engineer is the person who defines the general decomposition of the
Site into logical Units according to the process he is designing.
The elements are:
� Enterprise
� Site
� Area
� Process Cell
� Unit
� Equipment Module
� Control Module

The process engineer defines each element, its constituents and interlocks. He can
also link information to the different elements which already exist, for example CAD
drawings. On the other hand he does not define the control architecture.

Note: The roles can be defined slightly different in each project according to the
project organization.
22

Introduction
System
Architecture;
Tasks of the
Control Engineer

The tasks of the control engineer are the following:
� Definition of the topological model of the process control system.
� Allocation of all inputs and outputs.
� Assignment of information from the topological model to the physical model.
� Set up of the communication, for example PLC-PLC.

By performing these tasks, the control engineer is defining in one single step the
different HMIs, PLCs and the system network. UAG will generate 30 - 50% of the
code for the PLCs and HMI. The rest of the logic has to be added manually by using
the respective PLC and HMI programming tools.
Examples are
� Dynamical behaviour as Sequential Function Charts (SFC) in the PLC logic.
� Additional graphics for pipes, vessels, etc.
� Navigation between operator screens in the HMI application.
� etc.

Advantages of
Unity Application
Generator

By joining the tasks of a process engineer and a control engineer into one single
software, the consistency between formerly separate tasks is guaranteed.
Additionally the following tasks are also integrated within UAG:
� Definition of the network.
� Configure and program the PLCs.
� Configure and program the HMIs.
� Define the communications between PLCs and HMIs.
 23

Introduction
24

2

The Physical Model
Overview

Introduction This chapter describes the general structure of the basic model of ISA S88.01 and
contains detailed information about the elements and their properties.
The knowledge about the Physical Model is necessary for the process engineer to
make the definition of the Physical Model of the process.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

2.1 Overview of the Physical Model 27

2.2 The Elements Area, Process Cell and Unit 29

2.3 The Element Equipment Module 30

2.4 The Element Control Module and Control Module Types
(Smart Control Devices)

35

2.5 Variables 47
25

The Physical Model
26

The Physical Model
2.1 Overview of the Physical Model

Structure of the Physical Model

Structure With the help of the Physical Model the process engineer is able to represent the
process perspective within Unity Application Generator.
The Physical Model

Site

may consist of multiple

Area

may consist of multiple

Process
Cell

may consist of multiple

Unit

may consist of multiple

Equipment
Module

may consist of multiple

Control
Module

Berlin, Germany

Biotech

Insulin

Reactor

Temperature
Control

Valve

Enterprise

may consist of multiple

Pharma Ltd.

For example:
 27

The Physical Model
Elements of the
Physical Model

The Physical Model of UAG starts with the element Site. In this version of UAG the
Site is always the top node of the S88 Physical Model.
The following elements are used to structure the process:
� Area
� Process cell
� Unit
� Equipment Module
� Control Module

The follwing list explains the last three elements from bottom-up.
� From the control viewpoint Control Modules represents a single entity build up of

sensors, actuators and control modules. A Control Module may represent an
object in the real world, e.g. a motor, a valve, a temperature transmitter, etc. or it
represents a logical software object, which is used for regulatory control or other
control functions, e.g. a PID loop, a timer, a counter. All higher level objects are
composed of Control Modules, to form the more complex process objects, like
Equipment Module.
Within UAG, Control Modules are instances of Control Module Types (also called
SCoDs for Smart Control Devices). All attributes associated with a SCoD are
owned by that SCoD. For further details see The Element Control Module and
Control Module Types (Smart Control Devices), p. 35.

� An Equipment Module is a functional group of Control Modules that combines the
necessary physical processing and control modules required to carry out a finite
number of processing activities for example a conveyer. Functionally the scope
of the Equipment Module is defined by the finite task it is designed to carry out.
An Equipment Module is typically a collection of sensors, actuators, and
associated process equipment that, from the process control viewpoint is
operated as a single entity.
� In the PLC it is represented as a section.
� In the HMI it is represented as one operator screen.

� A Unit is a group of Equipment Modules, Control Modules and other different
process equipment. In that groups one or more process functions can be
conducted on a batch or can be part of a batch.

Note: Some of the elements described previously are used only to structure the
process, others are responsible for the generation of the code in the PLC or HMI
etc. Nevertheless all elements can have attachments of different kinds of files
which allow the user to document the process design in detail.

Note: In earlier versions of Unity Application Generator (One Step Generator), the
Equipment Module was called "Equipment" and the Control Module was called
"Device". The naming has been adjusted to the standard ISA S88.01.
Control Module Types in UAG are the generic types of Control Modules.
28

The Physical Model
2.2 The Elements Area, Process Cell and Unit

Area, Process Cell and Unit Description and Properties

What is an Area,
Process Cell and
Unit?

The elements
� Area
� Process cell
� Unit
are used to structure the process. As mentioned in the ISA S88.01 standard, this
structure is determined by physical, geographical, or logical reasons.
The boundaries of these elements are usually based on organizational or business
criteria as opposed to technical criteria. There are many factors other than process
control that affect these boundaries.
For all these elements there is no equivalent created in the HMI.
In Concept these elements are represented as groups in the project browser.
In Unity Pro these elements are represented as functional modules in the project
browser (functional view).

Properties Area, Process Cell and Unit have the properties name. Additionally it is possible to
assign a comment and document references
Properties of Areas, Process Cells and Units:

Details of customization see Customization and Project Maintenance, p. 241

Property Comment

Name Unique name in the whole project
Like a lot of other conventions, the name used for Area, Process Cell and
Unit has to follow the naming conventions defined in the customization.
The customization should be adopted before the project begins.

Comment The comment field is a free text field. It can be used to document the
process design

Documents... Any number of documents of different types can be assigned to each
element. The possible file types to be assigned are defined in the
customization
 29

The Physical Model
2.3 The Element Equipment Module

Overview

Introduction This section describes the element Equipment Module and its properties.

What's in this
Section?

This section contains the following topics:

Topic Page

What is an Equipment Module? 31

Equipment Module Features 32

Equipment Module Properties 33
30

The Physical Model
What is an Equipment Module?

What is an
Equipment
Module?

An Equipment Module is a functional group of Control Modules that combines the
necessary physical processing and devices required to carry out a finite number of
processing activities. Examples of Equipment Modules are conveyers or reactors.
Functionally the scope of the Equipment Module is defined by the finite task it is
designed to carry out.
An Equipment Module is typically a collection of sensors, actuators, and associated
process modules that, from the process control viewpoint is operated as a single
entity.
 31

The Physical Model
Equipment Module Features

Features The following list describes the features of an Equipment Module:
� It performs a specific activity of the process for the conversion, transportation or

storage of material or energy.
� It is composed of Control Modules, which functionally depend on each other and

are exchanging information to perform the task of the Equipment Module.
� It does not communicate directly with the process I/O. The Control Modules are

connected to the actuators and sensors.
� It may communicate directly with the HMI that displays the process values or

provides the means for the operator to interact with the process.

Equipment
Module and PLC

� Typically, an Equipment Module and all its Control Modules are assigned to one
PLC. Nevertheless it is possible to assign individual Control Modules of the same
Equipment Module to different PLCs.

� Within Concept/Unity Pro an Equipment Module is represented as an FBD
section. Each Control Module is represented by a Function Block (FB) within this
section.
In the Concept project browser the Equipment Module section is included in the
Units group.
In the Unity Pro project browser (functional view) this Equipment Module section
is included in the Functional Module structure Area → Process Cell → Unit →
Equipment Module section.

Equipment
Module and HMI

For each Equipment Module Unity Application Generator always generates a
graphical representation in the HMI. The relation between the Equipment Module
and the HMI is done through the Control Domain and not directly through the HMI.

Equipment
Module and
Variables

After generating the PLC logic and the HMI assignments with Unity Application
Generator, it is still necessary to add more logic to the Concept/Unity Pro program
and to complete the HMI design. Nevertheless all variables used in the PLC and the
HMI are defined within Unity Application Generator. These variables must be
assigned to the objects of the Physical Model to which they belong. For this reason,
the designer can safely assign additional variables to an Equipment Module.
32

The Physical Model
Equipment Module Properties

Overview There are three different kinds of properties to be defined for the Equipment Module:
� Process properties
� PLC related properties
� HMI related properties

For the initial creation of an Equipment Module, the process engineer only needs to
define the process properties. The PLC and HMI related properties can be applied
later by the control engineer.

General
Properties

General Equipment Module properties

PLC Related
Properties

The PLC related properties define the relation between the Physical Model in which
the Equipment Module is created and the PLC Topological Model.
PLC related Equipment Module properties

Property Comment

Name Each Equipment Module is identified by a unique name. This
name has to follow the naming conventions defined by the
administrator. This name is used for the name of the
corresponding HMI picture.

Description A short description of the Equipment Module can be made in the
description field.

Comment... The comment field is a free text field. It can be used to document
the process design

Documents... Any number of documents of different types can be assigned to
the Equipment Module element. The possible file types to be
assigned are defined in the customization

Property Comment

PLC Name Defines the PLC the Equipment Module belongs to and where
the logic is executed. The PLC has to be defined in the
Topological Model before it can be assigned to the Equipment
Module.

PLC Section Name Defines the name of the section within Concept/Unity Pro. The
name has to be unique, and Unity Application Generator will not
allow duplicate names to be used.
 33

The Physical Model
HMI Related
Properties

The HMI related properties define the relation between the Physical Model in which
the Equipment Module is created and the Topological Model. The relation between
the Equipment Module and the HMI is defined through the Control Domain and not
directly through the HMI.
HMI related Equipment Module properties:

Property Comment

Control Domain Defines to which Control Domain the Equipment Module
belongs. The Control Domain has to be defined in the
Topological Model before it can be assigned to the Equipment
Module. For details seeThe HMI Group, p. 110
34

The Physical Model
2.4 The Element Control Module and Control Module
Types (Smart Control Devices)

Overview

Introduction This chapter describes the properties of Control Modules and the general
functionality of Control Module Types.

Where do I Find
Further
Information

For detailed information on special Control Module Types refer to the specific
Control Module Type library documentation.

What's in this
Section?

This section contains the following topics:

Topic Page

Introduction 36

Control Module Features 37

Control Module Types or Smart Control Devices (SCoDs) 38

Free Control Module 40

Control Module Properties 41

Instruments 42

Interlocks for Control Modules 43

Links between SCoDs 46
 35

The Physical Model
Introduction

What is a Control
Module?

From the control viewpoint Control Modules represent a single entity built up of
sensors, actuators and control equipment. A Control Module may represent an
object in the real world, e.g. a motor, a valve, a temperature transmitter, etc. or it
represents a software object, which is used for regulatory control or other control
functions, for example a PID loop, a timer, a counter.
All higher level objects are composed of Control Modules, to form the more complex
process objects.
The specific behaviour of a Control Module is defined in the Control Module Type,
the so called Smart Control Device (SCoD) from which the Control Module is
derived, for example
� a two speed drive,
� a three position valve,
� a reversing motor,
� ...

What is a Control
Module Type?

A Smart Control Device is a predefined Control Module Type. It describes one
specific part of the process and comprises all functional aspects of the automation
task. It takes into account all aspects of the technological object it represents.
It contains
� the PLC logic required to control a real world Control Module of a defined type,
� the operator representation in the HMI system,
� full manual control of the Control Module through the HMI,
� all variables required for the PLC and the HMI and
� a connection to the HMI alarm management

Control Module Types are organized in standard libraries which are delivered
together with Unity Application Generator. Alternatively, Schneider Electric can
implement specific Control Module Types for a customer and include these in
customer specific libraries.
If additional project specific Control Module Types are required, please contact your
Schneider Electric sales representative.
36

The Physical Model
Control Module Features

Features The following list describes the features of a Control Module:
� It represents a process object, i.e. an actuator or sensor, or a function of the

process which manipulates data.
� It belongs to one Equipment Module. Control Modules cannot be shared between

Equipment Modules.
� Either it is of a specific Control Module Type (SCoD), or it is a Free Control

Module; during the development of a project also type-less Control Modules are
possible as an intermediate state.

� It can communicate with the Control Modules of other Equipment Modules.
� It provides the (primary) entry point for the HMI for visualization and interaction

with the process.
� It communicates directly between the PLC and the HMI.

Control Module
and PLC

� Each Control Module is represented by a Function Block within the Concept/Unity
Pro section generated for the Equipment Module.

� A Control Module is always assigned to one PLC. It cannot be split between
multiple PLCs.

Control Module
and HMI

� A Control Module is automatically assigned to the HMI as defined in the
Equipment Module properties.

� Each Control Module is represented by a graphic of its related physical object on
the screen generated for the Equipment Module.

Control Modules
and Variables

After generating the PLC logic and the HMI representation with Unity Application
Generator, it is still necessary to add more logic to the Concept/Unity Pro program
and to complete the HMI development. Nevertheless all variables used in the PLC
and the HMI have to be defined by Physical Model they belong to. For that reason,
the designer can assign additional variables to the Control Module, so called free
variables.
 37

The Physical Model
Control Module Types or Smart Control Devices (SCoDs)

Introduction A Control Module Type or SCoD comprises all aspects of the automation task. It is
a predefined Control Module which takes into account all aspects of the
technological object it represents.
38

The Physical Model
What is Defined
in a Control
Module Type?

A Control Module Type takes into account all aspects of the technological object it
represents
Illustration of a Control Module Type

For the PLC:
� The logic which controls the Control Module
� The logic which detects failures and alarms of the PLC logic
� The logic which detects process failures and generates alarms
� The communication with the HMI system
� The attributes and process variables displayed by the HMI
� The I/O connected to the Control Module
� The variables of the Control Module logic
� The commands to control the Control Module by the PLC logic (e.g. reset, start,

stop)
� The link with the other Control Modules
� The ability to optimize default values
� The logic to allow the operator to maintain his process.

For the HMI:
� The graphical representation on the operator screen
� The physical units to be displayed on the operator screen
� The communication with the PLC
� The operator commands to control the Control Module, e.g. a start/stop push

button, a prompt to adjust a set point etc.
� The management of alarms
� Logging of operator actions

Control
Module

Type

PLC

C
PU

N
O

M

- Function Block
- Variables
-Communication
- Interlocking
- Physical IO
- Alarms & Diagnostics

HMI
- Animated graphical symbols
- Status display
- Alarms & Diagnostics
- Maintanance
- Variables

e.g.
- Word Documents
- CAD Drawings
- Excell spreadsheets
- etc.

Engineering
Server
 39

The Physical Model
Free Control Module

What is a Free
Control Module

A Free Control Module is a Control Module which is not derived from a Control
Module Type. It does not define any logic for the PLC nor any predefined
functionality for the HMI. It is also possible to define free variables for a Free Control
Module.

Purpose of a
Free Control
Module

Special Control Module Types may not be available for all process devices.
Nevertheless these objects have to be part of the process design.
The logic in the PLC and the graphics in the HMI will be defined manually but all
variables required to perform this task have to be defined in the Free Control
Module.

Free Control Modules allow the user to build the objects logically at their right
position in the Physical Model.

Note: All variables for the entire process design have to be defined within Unity
Application Generator to keep the data consistent in the control application.
40

The Physical Model
Control Module Properties

Overview For a Control Module only a few properties are necessary. The behaviour of the
Control Module is primarily defined by the customization of Control Module
properties which are different for every Control Module Type.

Properties Control Module properties:

Property Comment

Control Module Type Defines the Control Module Type of the Control Module.
Options depend on the selected Control Module Type library
(standard library, custom library, customer specific library).

Name Each Control Module is identified by a name unique within the
Equipment Module the Control Module belongs to. This name
has to follow the naming conventions defined in customization.

Description A short description of the Control Module can be made in the
description field.

Comment... The comment field is a free text field. It can be used to document
the process design.

Documents... Any number of documents of different type can be assigned to
each Control Module. The possible file types to be assigned are
defined in the customization.

PLC Name Each Control Module is assigned to one PLC. By default this
field shows the PLC defined in the Equipment Module. If
required, a different PLC can be selected. The Function Block
of the Control Module will be processed on the selected PLC
 41

The Physical Model
Instruments

What is an
Instrument?

An Instrument is any sensor, actor or associated processing equipment used in the
process. An Instrument becomes a Control Module as soon as it is integrated in the
Physical Model. Instruments are listed in the Instrument List. From there they can
be moved into the Physical Model.
See also: Working with the Instrument List, p. 142

What is it for? The Instrument as a preliminary stage of a Control Module has been defined in order
to allow the process engineer to enter a flat list of Instruments before defining the
complete Physical Model hierarchy.
The creation of Instruments in the Instrument List is very efficient and saves time
compared to the creation of Control Modules in the Physical Model tree.
Furthermore, time can be saved by importing Instruments from the P&ID (pipework
and instruments drawing).

Properties An Instrument has the following properties:
� Name
� Description
� Control Module Type
� Comments...
� Documents...
� Properties specific to the Control Module Type
� Variables

Note: Compared to a Control Module, for an Instrument no PLC and no interlocks
can be assigned.
It is possible create an Instrument without specifying the Control Module Type
(Control Module_type=Not_assigned). A type-less Instrument can be moved to
the Physical Model without restriction. It will be a type-less Control Module within
the Physical Model.
42

The Physical Model
Interlocks for Control Modules

Characterization For Control Modules with interlock inputs (for example motors, valves, drives,
pumps, ...) interlocks can be defined in the Physical Model. A Control Module can
have one or more interlock inputs; these are defined as interlock pins in the SCoDs.
Unity Application Generator generates PLC code as a Function Block network for all
PLC interlock definitions if they are syntactically correct. If the syntax is not valid,
Unity Application Generator generates the textual description of the interlock
definition as a comment in the corresponding Function Block in Concept/Unity Pro.
In this case the PLC logic has to be completed by the control engineer accordingly.
See also: How to Build an Interlock Definition, p. 147

Restriction Interlocks cannot be defined for Control Modules without interlock inputs. Interlock
inputs (interlock pins) are defined in the SCoD.

Interlock
Definition

An interlock definition consists of one or more interlock conditions and is assigned
to a specific interlock input. An interlock definition can be stated for each interlock
input of a Control Module.
An interlock definition is composed of
� interlock conditions and
� logical operators for the combination of the interlock conditions (AND, OR, XOR,

NOT).
� opening and closing parenthesis

Example interlock definition:
((Boiler1_Motor1_FTR = 1) And (Boiler1_Valve1_FT >= 100)) Or
(Boiler1_AIn1_AHH = 1)
 43

The Physical Model
Interlock
Condition

An interlock condition is a logical comparison between variable values (from any
other Control Module or Equipment Module) or between a variable value and a
constant. The result of such a condition is of type Boolean.

Example:
Boiler1_Motor1_FTR = 1

Meaning: If Failed To Run output of Control Module Motor1 of Equipment Module
Boiler is ON
The interlock condition is composed of the following elements:

Furthermore the following information belongs to each interlock condition:

Components of the
interlock condition

Description

Interlock variable The interlock variable is a variable that will be compared with
another variable or literal. It can be any variable defined in a
Control Module or Equipment Module.

Operator The comparison operator for the condition (=,<>,<,>,<=,>=).

Condition variable /
literal

Either a variable or a literal, with which the interlock variable is
compared.
If it is a variable: It can be any variable defined in a Control
Module or Equipment Module belonging to the same PLC. To
interlock with variables from other PLCs these variables have to
be communicated via a Channel in advance, see PLC Channels,
p. 90.

Components of the
interlock condition

Description

Number A sequential number defining the number of the condition. This
number is necessary for referencing the condition when combining
the conditions to a complete interlock definition. The user cannot
change this number.

Description Free text for the description of the condition.
44

The Physical Model
Copy of
Interlocks

The interlock definition is part of the Control Module definition. A Control Module
belongs typically to an Equipment Module. An Equipment Module implementation
can be the inlet part of a Tank, consists of a valve and a pump. The pump has, for
example, one interlock. This interlock describes that the pump must not run if the
interlock is set. This behavior is general for all inlets part of any tank in the plant.
When the user copies an Equipment Module the interlock will be pasted into the new
Equipment Module. The variables used in the interlock condition will be replaced
with the new Control Module variables.

The following figure shows an example for copied interlocks.

The Equipment Module InletletTank1 was copied as InletTank2.
The Control Module variable InletTank1_Valve1_OPND is replaced by the new
Control Module variable InletTank2_Valve200_OPND.

Physical Model

Site
asdfsafdsa

zuckerproduction
RawMaterial

Pump1 [PSS01]

InletTank2
Valve1 [VASD01]

Interlock [InletTank1_Pump1]

Interlock Definition:

Delete

$1

(InletTank1_Valve1_OPND = Opend)

Show Description

Interlock Condition:

Comment...PINLCKInput:

Number Interlock Variable Operator Condition Va
1 InletTank1_Valve1_OPND = 1

InletTank1

Pump200 [PSS01]
Valve200 [VASD01]

Interlock [InletTank2_Pump200]

Interlock Definition:

Delete

$1

(InletTank2_Valve200_OPND = Opend)

Show Description

Interlock Condition:

Comment...PINLCKInput:

Number Interlock Variable OperatorCondition Va
1 InletTank2_Valve200_OPND = 1
 45

The Physical Model
Links between SCoDs

Introduction Input or Input / Output pins of SCoDs can be linked with other pins of SCoDs or with
free variables.
The context menu of a control module offers a menu item Open Links. If this dialog
is opened, a table appears that contains all input and in / out pins of the parent
control module. To link a variable with a pin of this control module, a variable is
moved with drag-and-drop from the variables table to the link table.
A link variable can be used several times in the link table of the same or different
control modules, therefore multiple connections are possible.
The following restrictions have to be considered:
� The datatypes of the input pin and the link variable must be the same.
� Variables of datatype HMI cannot be linked (they do not exist in the PLC section).
� Variables can only be linked to input pins or in / out pins.
� Variables can only be linked to pins with the Pin Usage Not Connected.

Additionally a link variable can be moved in the link table of a control module, also
with drag-and-drop.
If a link has been created in UAG, it is generated in Concept / Unity Pro during
generation of the PLC program.
If the link variable is a pin of a SCoD that exists in the same section as the input pin,
a graphical link is created. Otherwise the pin is connected with the variable.
46

The Physical Model
2.5 Variables

Overview

Introduction This section describes the Variables.

What's in this
Section?

This section contains the following topics:

Topic Page

Introduction 48

Connection Types and Data Types of Variables 49

General Variable Properties 51

HMI Related Variable Properties 53
 47

The Physical Model
Introduction

Significance of
Variables

In usual tools for PLC or HMI programming, variables are used everywhere. The
disadvantage is, that these variables have to be defined in each system separately.
So if a variable is needed in both systems, the variable has to be defined twice. The
manual synchronization of variables is a major reason for bugs in a control
application. With Unity Application Generator all variables are defined only once and
are automatically generated in all of the systems, in which they are needed.

To Which
Objects are
Variables
Assigned?

In general variables are related to a Control Module Type. They are automatically
generated for each instance of a Control Module Type. These variables are called
Control Module Type variables.
In addition variables can be added to
� Equipment Modules and
� Control Modules.

These variables are called free variables.

Naming
Conventions

Variables have to be named according to the naming convention defined during
customization. The name must be unique only inside the element it is attached to.
The name in the PLC or in the HMI is built by the concatenation of the variable name
and the object name it is assigned to.
Example:

Note: Type-less Control Modules have no variables.

Variable name Failed

Variable belongs to Control Module Motor1

Control Module belongs to Equipment Module EQ411A

Resulting variable name in Concept, Unity Pro
and HMI

EQ411A_Motor1_Failed
48

The Physical Model
Connection Types and Data Types of Variables

Connection
Types

If a variable is specified in Concept, Unity Pro or in an HMI system, it is obvious to
which system it belongs. If a variable is defined in Unity Application Generator, it is
necessary to define to which part of the control system it belongs. The required
connection type depends on where the variable is used.
Simple connection types of variables

Very often variables are not only used in one part of the control system but in
multiple parts, e.g. the PLC and the HMI. In the classical approach to build a control
system this means that the variables have to be specified twice. With Unity
Application Generator this is done only once by the combination of two connection
types. Variables of these connection types are communicated between the different
parts of the control system.
Combined connection types of variables

Variable Data
Types

For each variable it is necessary to define which data type it is. The available data
types depends on the category of the variable. In general all data types of the
destination system are available. Unity Application Generator also supports the
structured data types of Concept and Unity Pro, but not the individual elements of
the structure.

Handling of
Initial Values in
Concept

An initial value can be assigned to each variable (except structured variables). Even
though Concept do not allow the user to specify initial values for variables of type
BOOL which are located in the 0x address range of the PLC, it is possible to assign
an initial value to these variables using Unity Application Generator. Unity
Application Generator automatically generates one or more initialization sections
which avoid this restriction.

Connection
Type

Comment

PLC Used PLC internal only

IO_PLC Variable is used within the PLC logic and connected to a physical I/O point

HMI Used HMI internal only

Connection
Type

Comment

PLC_HMI Variable is communicated between the PLC and the HMI

PLC_NET Variable is communicated between the PLC and a network node, e.g. hand-
held panel
 49

The Physical Model
Handling of
Initial Values in
Unity Pro

An initial value can be assigned to each variable (except IODDT variables and
structured variables). No restrictions exist for initial values for located variables of
type BOOL.

Free properties
for Variables &
Control Modules

Variables and Control Modules have several properties that can be defined in SCoD
editor and used in UAG application. The basic property types are e.g. Command,
Initial Value, Alarm, Measurement Unit etc. In specific cases users would like to
describe the Variables and Control modules with some other properties which are
not predefined in UAG which could be seen in the whole system as regular property
with inheritance possibility. The most important feature of the free properties is
concerning Generic HMI generation. The properties will be included in the XML and
CSV files and in this way accessible for the user to be imported into a specific HMI
system.
The free properties will be defined in SCoD editor as normal ones. The number of
possible free properties will be fixed to specific number e.g. 20. The user will always
see the properties as strings. No data type control will be done on UAG side.
50

The Physical Model
General Variable Properties

Control Module
Type Variables

Variables coming from a Control Module Type have most properties already
predefined. The designer can only change the required fields.

Free Variables Free variables defined by the process designer have no predefined properties and
these must be specified in detail. What properties are available depends on the
categories of the variable. HMI related variables have several additional properties
which define their behaviour in the HMI system. If you are using Monitor Pro or iFIX,
a free variable can be represented by a graphical symbol (option in basic
properties).

Basic Properties Properties of a variable

Property Description Options Comment

Name Unique name of
variable

The Control Module or
Equipment Module name
has to be unique.
The name has to follow the
naming conventions defined
during customization.

Variable Used

(line is marked
with a check)

Defines if a variable of
connection type
IO_PLC is assigned to
a physical IO, if it is
used in the
communication table
to a Net Partner, or if it
is not used

� Yes
� No

A variable can be set to not
used, e.g. because a real
world object valve has no
feedback limit switch but the
Control Module Type offers
one.
Not used variables will not
be generated for Concept/
Unity Pro.

Description Description of the
variable

Free text field.
This text is by default a part
of the alarm text.

Variable

Inverse

Inverts the variable
(only for IO_PLC
variables)

Connection

Type

Defines the connection
type of the variables

� PLC
� HMI
� IO_PLC
� PLC_HMI
� PLC_NET

See Connection Types and
Data Types of Variables,
p. 49.
 51

The Physical Model
Data Type Data type of variable � ANL_IN
� ANL_OUT
� BOOL
� BYTE
� DINT
� INT
� REAL
� TIME
� UDINT
� UINT
� WORD
� Structured

data types of
Concept/
Unity Pro

Available options depend
on connection type.

In/Out Defines the usage of
the variable

� Input
� Output
� In/Out

The variable is connected to
an input and an output if the
Function Block changes the
value of the variable.

Initial Value Initial value of variable Depending on the datatype
of the variable there may be
additional checks related to
boundaries and scaling.

Timeout state Defines failure
(timeout) action of an
output I/O variable

� Not_Assigned
� Disabled
� Last value
� User defined

If an error occurs in a PLC
output module, the user can
define what should happen
to the output signals:
� Disable: the signal is set

to 0.
� Last value: the signal is

holding the last value
before it failed.

� User defined: the user
can define the state of
the signal if the hardware
module fails.

Timeout value Defines the value of
the variable if a failure
(timeout) occurs

Only available if timeout
state is set to "user
defined".

Property Description Options Comment
52

The Physical Model
HMI Related Variable Properties

Overview HMI related properties are only available for variables of category HMI or PLC_HMI.
These properties are devided into the following categories, depending on which
aspect they are related to:
� Alarm related properties
� Command related properties
� Display related properties
 53

The Physical Model
Alarm Related
Properties

These properties are always available independent of the variable´s data type.
Up to 8 alarms can be defined for a variable, except for Boolean variables, which
can only have one.
Alarm related properties:

Property Description Options Comment

Alarm Defines if the variable is
an alarm

� Yes
� No

Alarm

Limit

To set the active value
for the alarm

Any value of the same
data type as the variable
(0 or 1 for Boolean
variables).

Value to be compared
with the variable value.

Alarm

text

Message to the operator
if alarm occurs

String Free text field.
If no text is specified, the
text will be built
automatically.
The default is generated
by concatenating the
description of the
variable, the description
of the device and the
description of the
equipment.

Alarm
Operator

Comparison operator for
comparing the variable
value against the
respective alarm limit.

=, <>, >, <, >=, <= Not available for
Boolean variables
(always „=").

Alarm

Priority
Defines the alarm´s
priority

Select from customized
list.

The alarm priorities are
defined during
customization.

Alarm Group Defines grouping of
alarms.

Select from cutomized
list.

The alarm groups are
defined during
customization.
54

The Physical Model
Command
Related
Properties

These properties are always available independent of the variable´s data type.
Command related properties

Property Description Options Comment

Command Command Type of the
variable

Select from list
� View only

� Operator

� Logic

� Constant

� Parameter

� Not assigned

For device type
variables, the command
type is predefined:
� Variables connected

to an input are
always Operator or
Parameter.

� Variables connected
to an output are
always View only.

� Variables connected
to In/Out could be
everything exept
View only.

Access

level

Access level for operator Select from list. The access levels are
defined during
customization.

State 0

text

Text to be displayed in
HMI if variable is 0

� String of max 9
characters

� Not assigned

Only for boolean
PLC_HMI variables

State 1

text

Text to be displayed in
HMI if variable is 1

� String of max 9
characters

� Not assigned

Only for boolean
PLC_HMI variables
 55

The Physical Model
Meaning of the different commands:

Option Change by
operator?

Comment

View only No The value of the variable is displayed on the HMI but the
operator cannot change it.

Logic No The value of the variable is displayed in the HMI but the
operator cannot change it (the generated code will be same as
for View only, but setting this attribute tells the control
engineer to add additional logic).

Operator Yes The value of the variable is displayed in the HMI and the
operator can change it.

Parameter Yes The value of the variable is displayed in the HMI and the
operator can change the initial value of the variable. Data
transfer between the PLC and HMI is slower than for the option
Operator

Constant No Depending on the variables type, the methodology to set the
value is different:
� If it is a DeviceType Variable, the input of the FB of the

device will be connected with the value specified in initial
value.

� If it is a Free Variable, the initial value will be set in Concept/
Unity Pro.
56

The Physical Model
Display Related
Properties

These properties are only available for analog values.
Display related properties

Property Description Options Comment

Display

format

Format for HMI system to
display analog values

� 999.9
� 99.99
� 9.999…

Analog values only.

Scaling min.

Scaling max.

The PLC system needs a
scale for analog values.
Consist of 2 variables in
the PLC for the minimum
and maximum value

Available to HMI for
display

Boundary min.

Boundary max.

The boundaries for the
operator consist of a
minimum and a
maximum value.

Depend on the analog
value

Attribute used by HMI
to check process
limits

Unit Group Group of physical units � Select from list
� Not assigned

Analog variables
only.
The groups are
defined during
customization.

Unit Physical unit of variable � Select from list
� Not assigned

Analog variables
only.
The units are defined
during customization.
 57

The Physical Model
58

3

The Topological Model
Overview

Introduction The Topological Model describes the topology of the control system. The
Topological Model is used by the control engineer to define the architecture of the
control system. Here you will learn about the general topological layout which is
supported by Unity Application Generator. In addition you will understand which
elements are used within UAG to define this layout.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

3.1 Control System Topology and Topological Model 61

3.2 The Groups Network Segments and Routing Paths 78

3.3 The PLC Group 84

3.4 The HMI Group 110

3.5 The Data Server Group 114

3.6 The Network Nodes Group 117
59

The Topological Model
60

The Topological Model
3.1 Control System Topology and Topological Model

Overview

Introduction In this section you will learn how a typical control system topology is represented in
the Topological Model.
In addition you get the information which elements are supported by Unity
Application Generator.

What's in this
Section?

This section contains the following topics:

Topic Page

The Topology of a Control System 62

Structure of the Topological Model 67

Communication via Modbus Plus and Ethernet 69

Additional Information Concerning Ethernet 71

Quantum Hot Standby Configuration (HSBY) 74
 61

The Topological Model
The Topology of a Control System

Introduction Unity Application Generator flexibly supports complex control system topologies.
These topologies are built with elements typical for all control systems. The figure
shows a control system topology and gives an overview of the elements supported
by UAG. These elements and their relationships are described in the Topological
Model of UAG.
62

The Topological Model
Example of a
Typical Control
System

Typical Control System

Office
Ethernet

Router

131.107.8.1

131.107.16.1

131.107.16.3

Subnet Mask
255.255.248.0
Default Gateway
131.107.8.1

HMI

HMI-System

131.107.8.4

HMI

131.107.8.6

1

C
P
S

C
P
U

N
O
E

Plant
Ethernet

Subnet Mask
255.255.248.0
Default Gateway
131.107.16.1

MB+ 1

PLC

131.107.16.4

1

C
P
S

C
P
U

N
O
E

PLC

131.107.16.2

MB+ 2

Bridge BP85

4

2

2

Net
Partner

131.107.16.8

Net
Partner

131.107.8.7

5

Concept/
Unity Pro

SCADA

Data
Server

131.107.16.5

131.107.8.5

Data
Server

131.107.8.3
 63

The Topological Model
Supported
Elements

The following elements are defined within the Topological Model of UAG
� Concept/Quantum PLCs including:

� Remote and Distributed I/O
� hot standby systems
� Momentum Modbus Plus I/O
� Momentum Ethernet I/O
� user defined HW Modules (generic modules and ModConnect partner

modules)
� Concept/Momentum PLCs including:

� Momentum I/O Bus
� Momentum Modbus Plus I/O
� Momentum Ethernet I/O
� user defined HW Modules (generic modules and ModConnect partner

modules)
� Unity/Quantum PLCs including:

� Remote and Distributed I/O
� Momentum Modbus Plus I/O
� Momentum Ethernet I/O
� user defined HW Modules (generic modules)

� Unity/Premium PLCs including:
� Momentum Modbus Plus I/O
� Momentum Ethernet I/O
� XBus I/O
� user defined HW Modules (generic modules)

� Data Servers (Monitor Pro, iFIX and others)
� HMIs (Monitor Pro, iFIX and others)
� Network Nodes (Net Partners and Other Nodes)
� Routers
� Bridges
� Network Segments of type Modbus or Ethernet

The following elements are defined as Other Nodes within the Topological Model
� The engineering workstations shown in the figure (Concept/Unity Pro, Monitor

Pro, iFIX) can be created as Other Network Nodes.
� The HMI devices and their addresses
64

The Topological Model
The Network UAG supports Modbus Plus and Ethernet networks.
The communication capabilities of the network types are different
� For Monitor Pro and iFIX, the Data Servers can be connected to Ethernet or

Modbus Plus (iFIX only)
For a generic HMI, the Data Server can be connected via Modbus Plus or
Ethernet

� Network Nodes can be connected via Modbus Plus or Ethernet
� PLCs can be connected via Modbus Plus or Ethernet
� Modbus Plus Bridges can be configured.

Ethernet Routers are not configured explicitly in UAG, but it is assumed that an
existing default Gateway in the network segment definition represents a router.

Note: Quantum
All modules can be used for communication between PLCs and to Data Servers or
to Net Partners. But only the listed CPU/NOE modules can be used in the sending
PLC for an PLC <-> PLC communication via Ethernet.
� 140-NOE-771-00
� 140-NOE-771-01
� 140-NOE-771-11
The other NOE modules can only be used in the receiving PLC.

Note: Momentum
All Ethernet processor modules can be used for communication between PLCs and
to Data Servers or to Net Partners without restrictions.

Note: Premium
All modules can be used for communication between PLCs and to Data Servers or
to Net Partners. But only the listed Ethernet modules can be used in the sending
PLC for an PLC <-> PLC communication via Ethernet.
� TSX ETY4103
� TSX ETY5103
� TSX P57 5634M
� TSX WMY 100
The other Ethernet modules can only be used in the receiving PLC.
 65

The Topological Model
Redundancy
with UAG

UAG supports to set-up redundancy in several parts of the control topology:
� Multiple Network Segments can be defined.
� For communication between Quantum and Momentum PLCs redundant network

paths can be defined.
� Concept / Quantum PLCs can be defined as redundant using the

140 CHS 110 00 see Quantum Hot Standby Configuration (HSBY), p. 74
� Unity Pro / Quantum PLCs can be defined as redundant using the 140 CPU 671

60 see Quantum Hot Standby Configuration (HSBY), p. 74
� Data servers with redundant network card
� Data Servers can be set up redundant; nevertheless, this is not defined within

UAG, it is done e. g. using Monitor Pro or iFIX functionality. For more details
please refer to the iFix and Monitor Pro documentation.

� For communication between Quantum, Premium and Momentum PLCs and Data
Servers redundant network paths can be defined.

Restrictions
Fipio and
CANOpen

The configuration of Fipio and CANOpen is not supported within Unity Application
Generator.
66

The Topological Model
Structure of the Topological Model

Introduction Within the Topological Model the control engineer defines the architecture of the
control system. Doing this, the control engineer defines resources which are used
by the elements of the Physical Model.

How does it look
like?

The Topological Model with some user defined elements.

Overview of the
Elements

The Topological Model contains the following groups:
� The PLC group
� The HMI group
� The Data Server group
� The Network Nodes group
� The network group

Topological Model

Site

PLCs
PLC1

Local
1 - CPS-114-x0
2 - CPU-534-14
3 - NOM-2xx-00
4 - NOE-771-00
5 - NOE-771-00
6 - AMM-090-00

PLC2
Local

HMIs
Eagle

Preparation
Production

Data Servers
Collect

Network Nodes
HandheldPannel

Network Segments
Routing Paths

Network Segments
 67

The Topological Model
PLC Group In the PLC group the PLCs are defined.
� For each PLC the complete configuration with racks is defined.
� For each rack the complete configuration with modules is defined.
� For communication modules their network addresses are defined
� For each PLC the communication channels are defined. These channels define

which data are exchanged between which objects of the control system.
� Routing paths,

which defines connections between different Network Segments via bridges or
routers.

HMI Group In the HMI group multiple HMI applications are defined.
� For each HMI multiple Control Domains can be defined.

Data Server
Group

In the Data Server group, the Data Servers and their connection to the network
(network type and address) are defined.

Network Nodes
Group

In the Network Nodes, the Net Partners and/or Other Nodes, their connection to the
network (network type and address) and their symbol in the Topological Viewer are
defined.

Miscellaneous In the network group the complete communication architecture is defined.
The elements of the network group are the
� Network segments,

which defines names and types of Network Segments.
� For each I/O module the I/O points are defined
68

The Topological Model
Communication via Modbus Plus and Ethernet

What are
Network
Segments?

A Network Segment is a single network line of a defined type (e.g. Modbus Plus) with
the full range of addresses available. Network nodes like PLCs, HMIs, Data Servers,
Network Partners and Other Nodes are attached to one or more Network
Segment(s).

What Kind of
Segments are
Supported?

Unity Application Generator supports networks of type
� Modbus Plus
� Ethernet

Routers and
Bridges

In general, routers and bridges connect different Network Segments or different
kinds of networks like Modbus Plus and Ethernet.
Within UAG bridges can be defined between Modbus Plus Segments.
Unity Application Generator does not distinguish between a router or a bridge. From
UAG point of view both perform the same task; they connect different Network
Segments.
The graphic shows an Ethernet router and a Modbus Plus bridge

Office_Ethernet

Subnet Mask
255.255.248.0
Default Gateway
131.107.8.1

Plant_Ethernet

Subnet Mask
255.255.248.0
Default Gateway
131.107.16.1

Router

131.107.8.1

131.107.16.1

Plant1_MBplus

Plant2_MBplus

Bridge BP85

4

2

 69

The Topological Model
Defining a Router
between
Ethernet
Segments

In a Windows environments, the address of a router is defined as the default
gateway address.
In UAG this is similar. For each Ethernet segment, a default gateway address can
be defined together with the subnet mask in the segment properties.

Defining a Bridge
between Modbus
Segments

Modbus Plus bridges are defined separately from the Network Segments in the
Routing Paths. The Routing Path simply defines the address of the bridge from
the segments point of view. For details see Routing Paths Description and
Properties, p. 82

What is a
Channel?

A Channel describes
� to which objects of the control system the PLC communicates,
� via which communication path the communication takes place,
� an alternative, on which communication path the communication takes place and
� which variables have to be exchanged.
The communication is always done through a PLC. This means, one communication
partner in a Channel is always a PLC.

How to Define
the
Communication

The definition of the network between the different parts of the control system is
done with multiple objects of UAG.
One major element in the network design is to define which data are exchanged
� between which objects of the control system (communication partners),
� via which communication paths.
This is done mainly through the Channel definition of the PLC.
The Channel definition is based on information about the network design, defined
through the network elements of the Topological Model. These elements have to be
defined first, before the Channel definition can be performed.
These elements are
� the network addresses of the communication modules of the PLC, see Module

Properties, p. 105,
� the Network Segment, see Network Segment Description and Properties, p. 79,
� the Routing Paths, see Routing Paths Description and Properties, p. 82,
� the network addresses of the Data Servers, see Data Server - Description and

Properties, p. 114, and Net Partners, see Net Partner Properties, p. 119.
70

The Topological Model
Additional Information Concerning Ethernet

Introduction Additional Information are:
� Specific information concerning Ethernet for Unity Application Generator.
� No general information concerning Ethernet. Nevertheless, it is required to know

how to configure an Ethernet network to set up the network definitions properly
within UAG.

Requirements
for Ethernet
segment

An Ethernet Network Segment is specified by
� Subnet Mask

The subnet mask defines which part of the IP address belongs to the network and
which to nodes

� Default Gateway
The default gateway defines the routing address to other network segments.

All nodes on an Ethernet segment have the same subnet mask and the same
gateway.

Addressing rules
checked by UAG

The following conditions are checked:
� The Network Segment name must be unique.
� The subnet mask and gateway have the format of an IP-address (4 bytes)
� Different Ethernet segments must not have the same default gateway address,

but the subnet mask may be equal

Local Ethernet
Network
Segments

In addition to the segments, which belong to the plant network or even the Internet,
local Network Segments can be defined. These networks are not connected to the
plant network (via routers), but are only connected locally to a Ethernet module
(NOE, M1 Ethernet, ETY, etc.).
The local networks are defined with an empty default gateway (not connection to the
other networks). In this case the IP addresses need not to be unique within all
segments but only on this local segment.
The IP standard recommends using the following address ranges for private (local)
networks:
� 10.0.0.0 to 10.255.255.254: Class A
� 172.16.0.0 to 172.31.255.254: Class B
� 192.168.0.0 to 192.168.255.254: Class C
Nevertheless, Unity Application Generator does not enforce the use of these
addresses for local Network Segments.

Note: UAG does not check if a node address is a valid address concerning the
subnet mask!
 71

The Topological Model
Ethernet Nodes For a node connected to the Ethernet, only the IP address has to be defined.
UAG will check the following rules
� Each node must be assigned to a network segment
� Each node has a TCP/IP address (4 byte N1.N2.N3.N4)

Ranges of the the addresses are:
� N1 between 1-126 or 128 - 223
� N2 between 0-254
� N3 between 0-254
� N4 between 1-254

� The address 1.1.1.1 is not allowed
� The TCP/IP address of the nodes on all segments must be unique, except local

networks, see above.

Supported
Quantum
Ethernet
Modules

The following Quantum Ethernet communication modules are supported:
� 140-NOE-771-00
� 140-NOE-771-01
� 140-NOE-771-10
� 140-NOE-771-11

Supported
Momentum
Ethernet
processor
adapters

The following M1 Ethernet processor adapters are supported:
� 171-CCC-960-30-IEC
� 171-CCC-960-91
� 171-CCC-980-30-IEC
� 171-CCC-980-91

All modules can be used for communication between PLCs and to Data Servers or
to Network Nodes.

Note:
All modules can be used for communication between PLCs and to Data Servers or
to Network Nodes. But only the listed CPU/NOE modules can be used in the
sending PLC for an PLC <-> PLC communication via Ethernet.
� 140-NOE-771-00
� 140-NOE-771-01
� 140-NOE-771-11
The other NOE modules can only be used in the receiving PLC.
72

The Topological Model
Supported
Premium
Ethernet
Modules

The following Premium Ethernet communication modules are supported:
� TSX ETY4103
� TSX ETY5103
� TSX P57 5634M
� TSX WMY 100

Note:
All modules can be used for communication between PLCs and to Data Servers or
to Network Nodes. But only the listed Ethernet modules can be used in the sending
PLC for an PLC <-> PLC communication via Ethernet.
� TSX ETY4103
� TSX ETY5103
� TSX P57 5634M
� TSX WMY 100
The other Ethernet modules can only be used in the receiving PLC.
 73

The Topological Model
Quantum Hot Standby Configuration (HSBY)

What is a Hot
Standby System

The Quantum Hot Standby system is designed for use where downtime cannot be
tolerated. The system delivers high availability through redundancy.
Two backplanes are configured with identical hardware and software.
One of the PLCs acts as the Primary controller. It runs the application by scanning
user logic and operating remote I/O.
The other PLC acts as the Standby controller. The Primary controller updates the
Standby controller after each scan. The Standby is ready to assume control within
one scan if the Primary fails.
Primary and Standby states are switchable. Either controller can be put into the
Primary state, but to do this, the other must be in the Standby state. The remote I/O
network is always operated by the Primary controller.

For details about Quantum Hot Standby, refer to the Quantum Hot Standby Planning
and Installation Guide.
Example of a hot standby system (Concept):

Note: A Quantum Hot Standby system supports only remote I/O. It does not
support local I/O or distributed I/O (DIO). Except in Unity Pro Hot Standby. In Unity
Pro it is allowed to use local I/Os. For data integrity it is not advisable to use local
I/O within a Hot Standby controller.

P
S

C
P
U

N
O
E

PLC1

3

C
R
P

C
H
S

P
S

C
P
U

N
O
E

PLC1 (Hot Standby)

35

C
R
P

C
H
S

P
S

C
R
A

Remote_Drop2

2MB_Plus_1

Modbus Plus

..111 ..112Plant_Ethernet

Ethernet
74

The Topological Model
How does it
Work?

The Quantum Hot Standby system is designed for use where downtime cannot be
tolerated. The system delivers high availability through redundancy. Two
backplanes are configured with identical hardware and software. Each controller is
paired with a 140 CHS 110 00 Hot Standby module (Concept). Use the 140 CPU
671 60 controller for Hot Standby with Unity Pro without the 140 CHS 110 00 Hot
Standby module. It is included within the controller. The module monitors its own
controller and communicates with the other hot standby module. The system
monitors itself continuously.

Primary and
Standby
Controller

One of the PLCs acts as the primary controller. It runs the application by scanning
the logic and operating remote I/O.
The other PLC acts as the standby controller. The primary controller updates the
standby controller after each scan. The standby is ready to assume control within
one scan if the primary fails.

Hot Standby and
Unity Application
Generator

Within Unity Application Generator a hot standby system is defined at the PLC
group. As soon as a 140 CHS 110 00 module is placed into a local rack of a Concept
PLC, this PLC automatically is treated as a hot standby system. The same with the
140 CPU 671 60 module within a Unity Pro PLC. For more information on placing
modules refer to The PLC Group, p. 84.

Limitations General restrictions of a Hot Standby system:
� A Quantum Hot Standby system supports only remote I/O. It does not support

local I/O or distributed I/O. Except in Unity Pro Hot Standby. In Unity Pro it is
allowed to use local I/Os. For data integrity it is not advisable to use local I/O
within a Hot Standby controller.

� Concept
Only PLCs of type 140 CPU 534 14(A) and 140 CPU 434 12(A) are supported.

� Unity Pro
Only the controller 140 CPU 671 60 is supported for Hot Standby.

Note: As soon as a 140 CHS 110 00 (Concept) or 140 CPU 671 60 (Unity Pro)
module is placed into a PLC, Unity Application Generator will enforce these
limitations. This implies that as soon as a module is placed into a PLC which is
beyond these limitations, it is not longer possible to insert a 140 CHS 110 00
module into this PLC.
 75

The Topological Model
Minimal
Configuration of
a Hot Standby
PLC

The minimal configuration for Concept consists of the following modules:
� Backplane
� Power supply
� Remote I/O Head Process or module
� 140 CHS 110 00 Hot Standby module
� At least one RIO drop

The minimal configuration for Unity Pro consists of the following modules:
� Backplane
� Power supply
� Unity Pro Hot Standby CPU (140 CPU 671 60)
� At least one RIO drop

Hot Standby and
Communication

Even though a hot standby system consists of two PLCs, from the communication
point of view it works like a single PLC. Nevertheless both PLCs are connected to
the network. To enable this, a special network address is automatically assigned to
the standby PLC. These addresses cannot be used for other network participants.
Automatically assigned address for Modbus Plus
� Primary PLC address = n
� Standby PLC address = n+32

If n+32>64, then standby PLC address = n -32

Automatically assigned address for Ethernet
� Primary PLC address = x.y.z.n
� Standby PLC address = x.y.z.n+1

If n+1 = 255, then standby PLC address = x.y.z.1

Allocation of
Registers

To run a Quantum HSBY system, at least five 4x registers have to be allocated
(Concept). In Unity Pro the system word %SW60 will be used as the command
register, %SW62 and %SW63 are used as transfer registers. This is done
automatically by Unity Application Generator. UAG will make no further use of these
registers and will not manipulate the content of these registers. The following list
splits-up the registers within Concept.
� The first register is the command register
� The next 4 registers are part of the so called non transfer area of the state RAM

� The first 2 registers are the "reverse transfer" registers
� The third register is the status register
� The fourth has no special meaning

Unity Application Generator does not allocate any further registers for the non
transfer area.
76

The Topological Model
The Hot Standby
Command
Register

This register will allow the user to manipulate the various modes of HSBY operation
during runtime. This may either be done through programmed logic or just by access
through the reference data editor (RDE) of Concept or the animation table in Unity
Pro.

The Reverse
Transfer
Registers

The reverse transfer registers can be used to transmit diagnostic data from the
standby controller to the primary controller. They are copied from the standby to the
primary controller.

The Status
Register

This register provides information to the user logic about the current situation of the
hot standby system. Use this register to monitor the current machine status.

CAUTION

Risk of unintended behavior!

Don’t use the command register for any other purpose throughout the
programmed application, otherwise the system will end up with
unintended behavior.

Failure to follow this precaution can result in injury or equipment
damage.
 77

The Topological Model
3.2 The Groups Network Segments and Routing
Paths

Overview

Introduction The network group contains the general layout for the network.
In the network group are defined:
� The Network Segments
� The Routing Paths, and implicitly the routers

An overview of a typical control system and its network you will find in Example of a
Typical Control System, p. 63.

What's in this
Section?

This section contains the following topics:

Topic Page

Network Segment Description and Properties 79

List of Network Nodes 80

Routing Paths Description and Properties 82
78

The Topological Model
Network Segment Description and Properties

What are
Network
Segments?

A Network Segment is a single network line of a defined type (Modbus Plus or
Ethernet) with the full range of addresses available. Network nodes like PLCs, HMIs,
Data Servers, Net Partners and Other Nodes are attached to one or more Network
Segment(s).

How are Network
Nodes
Associated to a
Segment?

The definition which hardware components are attached to a segment is not done
under the Network Segment node. This kind of definition is always done as a
property of the respective object group.

How are Multiple
Segments
Connected?

Network Segments are connected via bridges. The definition of bridges depends on
the network type.
� For Ethernet, the bridges are defined by assigning the default gateway
� For Modbus Plus, the bridges are defined under the Routing Paths group.

Properties Segment properties:

Additional properties for Ethernet segments:

Property Comment

Name Unique name of segment
The name has to follow the naming conventions defined during
customization.

Type Defines the network type
Select from list.

Property Comment

Subnet Mask The subnet mask defines which part of the IP address belongs
to the network and which to the nodes.

Default Gateway The default gateway defines the routing address to other
Network Segments.
 79

The Topological Model
List of Network Nodes

Overview For a better overview of the network partners, a table will display all network nodes
connected to a selected network segment. It allows additionally a simple change of
multiple network addresses.
Both network types, Ethernet or Modbus Plus, can be displayed.

How to get the
Network Nodes

The following table shows how to get the information of the Network Nodes.

Step Action

1 Open the explorer View → Explorer

2 Select the Network Segments with in the topological view and expand the
Network Segments tree.

3 Select a Network Segment.

4 Open the context sensitive menu by clicking the right mouse button on the
selected segment and Open Network Nodes.
80

The Topological Model
Table of Network
Nodes

The table of network nodes implies the following columns:
� Address

Shows the network address of the connected network node.
This attribute can be modified.

� Type
Shows the type of the network node, e.g. HW module, Data Server or others.
This attribute cannot be modified.

� PLC
If the type is a HW Module, the name of the PLC will be displayed.
This attribute cannot be modified.

� Name
Shows the name of the network node. E.g. the name of a Dataserver or the
identifier of a hardware module with rack type, slot number and module type.
This attribute cannot be modified.

The following figure shows the list of network nodes for an Ethernet segment.

The header of the table contains the name of the Network Segment and the
Network Type (Modbus Plus or Ethernet). Additionally the Subnet Mask and the
Default Gateway will be displayed for Ethernet segments.

Unity Application Generator - training01 [Exclusive] - [Network Nodes [ETHSTRAN...

File View Generate Window Help
1

13:31

Network Segment: ETHSTRANG01 Network Type: Ethernet

Subnet Mask: 255.255.255.0 Default Gateway:

Generate PLC(s) Generate HMI(s) 13.06.2004

Address Type PLC Name
192.168.0.11 HW Module PLC01 Local_Slot7_140-NOE-771-11

192.168.0.12 HW Module PLCtst Local_Slot14_140-NOE-771-01
192.168.0.13 HW Module PLCtst Ethernet I/O_Drop14_Slot1_PowerMeter
192.168.0.14 HW Module PLC02 Local_Slot7_140-NOE-771-11

192.168.0.20 Data Server FIX

...
 81

The Topological Model
Routing Paths Description and Properties

What are Routing
Paths?

The Routing Paths define the bridges and their addresses which connect different
Modbus Plus Network Segments.
The Routing Paths should be defined early in the project. The definitions made here
will appear as options for other elements.

Properties Properties of the Routing Paths:

Property Description Options Comment

Send Name of transmitting
segment

Select from
list

Segments have to be defined
before the bridges can be defined

Receive Name of receiving segment Select from
list

Segments have to be defined
before the bridges can be defined

Path Address of the bridge or
bridges at the transmitting
segment

According to the respective
network addressing options.
82

The Topological Model
Example Path
Definition

Paths between segments that are connected via several bridges have to be defined
explicitly.
Example path definition:

Paths for different send/receive combinations

Send Receive Path

Segment 1 Segment 2 1

Segment 2 Segment 1 2

Segment 2 Segment 3 3

Segment 3 Segment 2 4

Segment 1 Segment 3 1.3

Segment 3 Segment 1 4.2

Segment 1

Segment 2

Bridge BP85

1

2

Segment 3

Bridge BP85

3

4

 83

The Topological Model
3.3 The PLC Group

Overview

Introduction This section describes the PLC Group and their properties.

What's in this
Section?

This section contains the following topics:

Topic Page

Introduction 85

PLC Properties 87

PLC Channels 90

Copy and Paste of PLCs 92

PLC <-> PLC Communication via Modbus Plus 93

PLC <-> PLC Communication via Ethernet 95

Additional Racks 97

Racks and Modules 98

Enhanced Ethernet Module 107
84

The Topological Model
Introduction

Introduction In the PLC group the PLCs are defined.
� A PLC is built up of Racks.
� A PLC has properties which which define the type of the PLC, CPU, Local rack, ...
� A PLC has communication channels assigned which define to which other

network nodes a communication takes place.

For each PLC the complete configuration with racks and modules inside the racks
is defined. In addition the communication of the modules with the process is also
defined, e.g. how the variables are connected to the I/O modules.
 85

The Topological Model
Structure of the
PLC Group

The PLC groups contain
� PLCs,

which contain
� Racks,

which contain
� Modules.
Example of a PLCs group

Topological Model

Site
Network Segments
Routing Paths
Data Servers
HMIs
PLCs

PLC1
Local

1 - 140-CPS-111-00
2 - 140-CPU-534-14
3 - 140-NOM-2xx-00
4 - 140-NOE-771-00
5 - 140-CRP-93x-00

DIO Link0_Drop 2
1 - 140-CRA-21x-x0

Remote_Drop 2
1 - 140-CRA-93x-x0

SY/MAX_Drop 3
PLC2

Local Momentum
0 - 171-CCC-960-91
1 - 170-ADI-340-00
2 - 172-PNN-210-22

1 - 170-ADI-540-50
2 - 170-ANR-120-90

I/O Bus
1 - 170-ADI-350-00
2 - 170-AEC-920-00

Network Nodes

Ethernet I/O_Drop 0
86

The Topological Model
PLC Properties

Overview A PLC has different types of properties. Some of the properties have to be defined
explicitly by the designer, some are derived from definitions made in other objects.

Structure of a
PLC

A PLC always represents one Concept/Unity Pro project. If there are several PLCs,
each of them will have its own Concept/Unity Pro project.
Concept and Unity Pro PLCs can be mixed in the same UAG project.
For each Concept/Unity Pro project, the PLC node consists of:
� the PLC type,
� the PLC configuration,
� the IO map and
� communication channels.
 87

The Topological Model
Properties to be
Defined

The following properties have to be defined for each PLC:

Basic Comment

Name Unique name for the PLC

Description Short description of the PLC

PLC Project Name Unique name for the Concept/Unity Pro project. The project will
be generated inside the PLC Project Path defined in the
Options dialog of Unity Application Generator. Each project
will be stored in its own directory.

PLC Family Defines the programming software (Concept or Unity Pro) and
the PLC family the PLC comes from. The valid PLC families are
displayed in a list.

Local Rack For Concept:
Defines the type of the local rack.
For Quantum PLCs rack types with a size between 2 and 16 can
be defined.
For Momentum PLCs the rack type can not be changed. The
rack size is fixed to 2, representing the I/O base and the
communication adapter, which can be added to the processor.
For Unity Pro:
For Quantum and Premium PLCs the Local Rack can be
selected during the generation of the new PLC. The rack can be
changed within the rack properties.

CPU Defines the CPU type. The valid CPU types are displayed in a
list.
For Concept/Quantum the CPU model can be changed later if
necessary.
For Concept/Momentum the CPU can not be changed after the
PLC has been created.
For Unity/Quantum the CPU can not be changed after the PLC
has been created.
For Unity/Premium the CPU can not be changed after the PLC
has been created.
88

The Topological Model
Properties which
are Displayed

The following properties can be displayed for each PLC:

Addresses Comment

Address ranges Default values for the address ranges are predefined. For
optimum configuration, address ranges can be assigned by the
user by filling out the columns Start and Length. Within these
ranges the addresses are automatically assigned during the
generate process of memory mapping.
Quantum/Momentum: I/O (local I/O, Ethernet I/O, Momentum
I/O, etc.) are mapped to the HW Modules address range.
Premium: For I/O located on the XBus no address ranges are
assigned, because topological addresses are used. I/O located
on a bus (Ethernet I/O, Modbus Plus I/O, Momentum I/O, etc.)
are mapped to the PLC Communication address range.
Note: A change of address ranges leads to a remapping of
addresses; this may require to stop the PLC.

Reserve For the different kinds of registers (0x, 1x, 3x and 4x for
Concept; %M, %I, %IW and %MW for Unity/Quantum and %M
and %MW for Unity/Premium) reserved register ranges can be
defined. These ranges will not be used by Unity Application
Generator. These ranges can be used in Concept/Unity Pro for
functionality that is not defined in Unity Application Generator,
for example IO modules on field busses.

IO Statistics Comment

IO statistics The IO statistics offers the information how many IO
modules are needed for the IO variables of the existing
Equipment Modules and Control Modules. It shows the number
of all IO variables, the mapped IO variables and free IO points
separately for inputs/outputs, digital/analog.
 89

The Topological Model
PLC Channels

What is a
Channel?

A Channel describes
� to which objects of the control system the PLC communicates,
� via which communication path the communication takes place,
� an alternative communication path on which the communication takes place and
� which variables have to be exchanged.

The communication is always done through a PLC. This means, one communication
partner in a Channel is always a PLC.

Communication
Definition

How it is defined and what has to be communicated via a Channel depends on the
communication partner.
Communication definition:

Communication
Partner

Definition Method

Data Server A Channel to exactly one Data Server must be assigned for each PLC.
The definition of which variables have to be communicated to the Data
Server is implicitly defined by the relation of an Equipment Module to a
PLC, the Control Domain (and thus the HMI) to which the Equipment
Module is assigned, and the communication type of the variable. All
variables of the communication type PLC_HMI are communicated.

PLC Each variable to be communicated is put into the PLC communication
table by drag and drop.

Net Partner Each variable to be communicated has to be put into the net
communication table by drag and drop (only variables of type
PLC_NET).
90

The Topological Model
Communication
Methods

The communication method depends on the communication partner.
Communication methods

Communication
Partner

Method Comment

PLC for Modbus:
Peer Cop

Peer Cop data is only transferred between nodes on the
local network. Transfer through bridges to other nodes is
not possible. Peer Cop data is restricted to 32 words. 1
word is always used to check the health status of the
communication
Note: The communication between different networks
with MSTR is not supported.

for Ethernet:
I/O Scanner

IO scanner data is restricted to 100 words. 1 word is
always used to check the health status of the
communication
Note: The communication between different networks
with MSTR is not supported.

HMI Via located
variables

Operator inputs are transmitted immediately to the PLC.
The refresh rate for reading PLC values depends on the
refresh category. There are three categories for the
refresh rate (how often the communication takes place).
The category is specified by command type and alarm of
the variable:
� Event

Events have the highest priority because events like
alarms have to be transmitted as soon as possible.

� Synoptic
Synoptic variables typically represent the real-time
values of animated screens. They are communicated
when the screen is displayed

� Parameter
Parameters are values which are transmitted less
often.

Net Partners Via located
variables

In the programming tool of the Net Partner the control
engineer has to take care to poll the required data.
Net Partners communicate via PLC addresses, thus the
variables to be communicated have to be located to the
appropriate memory range. For each Channel to a Net
Partner the ranges for bits (0x/%M) and words (4x/%MW)
have to be configured. It is possible to create a comma
separated value (CSV) file with these variables and
addresses. This file can be imported into the
programming software of the Net Partner.
 91

The Topological Model
Supported Data
Types

Supported data types for PLC <-> HMI communication:
� BOOL(DIGITAL)
� BYTE (ASCII)
� WORD
� INT
� DINT
� UINT
� UDINT
� REAL (FLOAT)

Supported data types for PLC <-> PLC communication:
� All data types with the exception of structured variables

Copy and Paste of PLCs

Copy and Paste
of PLCs

 The user of Unity Application Generator is able to copy and paste every PLC within
the Topological Model. The copy of the PLC includes every local or remote rack
which is belonging to the PLC.

Note: After copy and paste of a PLC all network addresses of Modbus Plus and/or
Ethernet segments are lost to avoid multiple addresses.
92

The Topological Model
PLC <-> PLC Communication via Modbus Plus

Communication
Method

For PLC <-> PLC communication via Modbus Plus, Unity Application Generator
always builds up the communication as Peer Cop. Communication with MSTR
Function Block is not supported.
Unity Application Generator automatically generates the Peer Cop configuration and
logic necessary for communication. To define the Peer Cop communication with
Unity Application Generator, it is necessary to understand some basic facts of Peer
Cop.

Supported
Communication
Capabilities

Peer Cop communication is restricted to 32 words per Channel. Unity Application
Generator always uses one word for the health check. The remaining 31 words are
free.
16 bits (BOOL) are communicated in one word (WORD). Unity Application
Generator builds the logic to transfer the BOOL as WORD.
Also variables of other types are transformed to WORD, e.g. a REAL is split into two
WORD.
Each Modbus Plus connection to the Modbus Plus network can be used for:
� Quantum, Momentum:

One Global Channel, which means that this information is sent to / received by all
PLCs on the same segment

� Quantum, Momentum, Premium:
One Specific Channel, which means that the information is explicitly sent to /
received by one other PLC

A Quantum PLC can have up to 3 connections to the Modbus Plus network (via the
CPU and 2 NOMs).
A Momentum PLC can have 1 connection to the Modbus Plus network (via the
communication adapter 172-PNN-210-22 or 172-PNN-260-22).

Health Check For Quantum and Momentum:
Unity Application Generator creates its own communication logic. One word is used
for a counter to check if the communication is valid or has errors. For this purpose,
one word of each Channel is allocated.
For Premium:
For health check use the IODDTs in Unity Pro.

Redundancy for
Channels

For Quantum and Momentum:
To set up a redundant communication Channel, it is possible to define two
alternative Routing Paths. If redundancy is selected, one Channel uses 2 Peer Cop
connections.
 93

The Topological Model
Communication
Failure

If the first Modbus Plus connection fails, the generated logic switches to the
redundant communication Channels, which means that the values from the second
Peer Cop connection are used.
If the second Modbus Plus connection also fails, the values specified as failure
values are used. If no failure values are specified, 0 respectively false are used.
If no redundant communication is specified in case of communication failures the
generated logic switches directly to the failure values.

Channel Settings
for a Specific
Channel

To set up a Specific Channel, the following rules apply:
� The Channel has only to be defined for the transmitting PLC.
� A Specific Channel is defined by selecting a specific PLC as "Communication

Partner".
� A Channel for the receiving PLC automatically is set up by defining the Channel

for the transmitting PLC.

Channel Settings
for a Global
Channel

To set up a Global Channel, the following rules apply:
� A Channel has to be defined for the transmitting PLC and for all receiving PLCs.
� A Global Channel for the transmitting PLC is defined by selecting "ALL" as

"Communication Partner".
� A Global Channel for the receiving PLC is defined by selecting the option "Select

from existing global input" and afterwards by selecting an existing Channel from
the list.
94

The Topological Model
PLC <-> PLC Communication via Ethernet

Communication
Method

For PLC <-> PLC communication via Ethernet, Unity Application Generator always
builds up the communication as Ethernet I/O Scanner.
Communication with MSTR Function Block is not supported.
Unity Application Generator automatically generates the Ethernet I/O Scanner
configuration and logic necessary for communication. To define the Ethernet I/O
Scanner communication with Unity Application Generator, it is necessary to
understand some basic facts of Ethernet I/O Scanner.

Supported
Communication
Capabilities

Communication capabilities
� Depending on the module up to 64 or 128 Channels can be defined.
� Up to 100 words can be exchanged on each Channel. One of these words is used

to check the health of the communication Channel.
� 16 bits (BOOL) are communicated in one word (WORD). Unity Application

Generator builds the logic to transfer the BOOL as WORD.
Also variables of other types are transformed to WORD, e.g. e REAL is split into
two WORD.

� In general, each entry in the Ethernet I/O Scanner configuration table allows to
define read and write of defined registers. Unity Application Generator only uses
the write functionality of each channel/entry.

Health Check For Quantum and Momentum:
Unity Application Generator creates its own communication logic. One word is used
for a counter to check if the communication is valid or has errors. For this purpose,
one word of each Channel is allocated.
The Quantum Ethernet I/O Scanner requires as a standard the definition of a health
block of 8 words. Therefore Unity Application Generator allocates 8 words in the 3x
register range.
The Quantum Ethernet I/O Scanner requires as a standard the definition of a
diagnosis block of 128 words. Therefore Unity Application Generator allocates 128
words in the 4x register range.
The Momentum Ethernet I/O Scanner requires as a standard the definition of a
health block of 4 words. Therefore Unity Application Generator allocates 4 words in
the 3x register range.
The Momentum Ethernet I/O Scanner requires as a standard the definition of a
diagnosis block of 64 words. Therefore Unity Application Generator allocates 64
words in the 4x register range.
This ranges will not be used by Unity Application Generator to check the health, see
above.
For Premium:
For health check use the IODDTs in Unity Pro.
 95

The Topological Model
Redundancy for
Channels

For Quantum and Momentum:
To set up a redundant communication Channel, it is possible to define two
alternative Routing Paths. If redundancy is selected, one Channel uses 2 Ethernet
I/O Scanner entries.

Communication
Failure

If the first Ethernet connection fails, the generated logic switches to the redundant
communication Channels, which means that the values from the second Ethernet I/
O Scanner entry are used.
If the second Ethernet I/O Scanner connection also fails, the values specified as
failure values are used. If no failure values are specified, 0 respectively false are
used.
If no redundant communication is specified in case of communication failures the
generated logic switches directly to the failure values.

Generated
Ethernet I/O
Scanner
Configuration

To set up a Channel with the Ethernet I/O Scanner, Unity Application Generator sets
up the Ethernet I/O Scanner configuration according to the following definitions:
� Slave IP Address (destination node address)
� Health Timeout: Unity Application Generator uses it´s own logic to check the

health.
� Rep Rate is set by Unity Application Generator to 0 in that case the transaction

will be repeated continuously
� Write Ref Master (start address in sending PLC)
� Write Ref Slave (start address in the receiving PLC)
� Write Length (number of words to communicate, max. is 100)

These definitions only take place in the sending PLC. The receiving communication
partner does not require any setting in it´s Ethernet I/O Scanner.

Channel Settings
for an Ethernet
Channel

To set up a Ethernet Channel, the following rules apply:
� The Channel has only to be defined for the transmitting PLC.
� A Channel for the receiving PLC automatically is set up by defining the Channel

for the sending PLC.

CAUTION

Risk of communication failures

Within Concept/Unity Pro, manual modification of the Ethernet I/O
Scanner is prohibited except for the Rep Rate setting.

Failure to follow this precaution can result in injury or equipment
damage.
96

The Topological Model
Additional Racks

Overview It is not possible to plug in Ethernet or Modbus Plus modules directly into the local
or remote racks. Therefore the user has to arrange „virtual" racks within UAG for
Peer Cop (Modbus Plus) and/or I/O Scanner (Ethernet) communication.

Create an
additional Rack

After the creation of a new PLC with a local rack it could be necessary for the user
to create additional racks. The local PLC rack is automatically equiped with the CPU
module without any adjustments for the communication (Modbus Plus, Ethernet).
The adjustments are required to get the possibility to create an additional rack.
These racks could be necessary for using enhanced Ethernet modules, Modbus
Plus modules or other ones.
The following figure shows an example for the Link Types of new racks.

New Rack vs.
New Extension
Rack

The user is able to select a New Rack or a New Extension Rack. For a New
Extension Rack the user needs for different links an expander module on the
local rack. For a new Ethernet I/O or Modbus Plus I/O rack parallel to an existing
rack, the user needs a Modbus Plus or Ethernet communication. These racks are
virtual, just for Peer Cop and/or I/O Scanner communication. The result of these
racks after the code generation in Unity Pro or Concept are not physical racks but
register adjustments for Peer Cop or I/O Scanner communication with the plugged
modules.

New Rack

PLC:

Cancel

Link Type:

...

OK

PLC01

Drop Number:

Drop Slave:
Remote
DIO Link0
SY/MAX
800 I/O
Ethernet I/O
MBP I/O Link0
 97

The Topological Model
Communication
Parameters

For the creation of a new rack parallel to an existing rack, the configuration for the
communication is required. That means, the user has to set-up the communication
parameters at the local rack, e. g. the user has to add an Ethernet module for the
communication with an enhanced Ethernet module or has to adjust the Modbus Plus
communication. The user has to create Network Segments first to realize this.
Remote I/O require only a drop head, but they are not connected to a network.

Possible Racks The user is able to add different racks depending on the communication possibilities
and parameters of the PLC. See also Racks and Modules, p. 98

Racks and Modules

Overview In Unity Application Generator for Concept and Unity Pro applications all PLCs with
their racks and modules are defined. Which racks and modules are available
depend on the PLC family defined in the PLC properties and the settings in the
customization file.
In Unity Application Generator for Unity applications all PLCs with default racks are
defined.
Depending on the selected module type, there are additional dialogs and windows
available in Unity Application Generator:
� With the I/O module window and the variable window the I/O variables can be

assigned to the I/O points (drag a variable from the variable table and drop on an
I/O point).

� Communication modules or CPUs have a property dialog to assign the network
segment and network address.

� Digital output modules have a property dialog to assign the timeout failure
behaviour.

The definition of racks and modules creates the PLC configuration and the I/O map
as well as the assignment of the variables to the I/O points of the modules.
In the following cases no entries will be generated in the I/O map:
� Momentum Modbus Plus I/O Modules,
� Momentum Ethernet I/O Modules and
� Generic Modules
98

The Topological Model
Rack Properties
(Concept)

The following properties have to be defined

Property Description Quantum Options Momentum Options Comment

Link Type Defines how the
rack is connected
to the PLC

� Local
� Local (Ex)
� Remote
� Remote (Ex)
� DIOLink 0
� DIOLink 1
� DIOLink 2
� SY/MAX
� 800 I/O
� MBP I/O Link 0
� MBP I/O Link 1
� MBP I/O Link 2
� Ethernet I/O
� Generic

� Local Momentum
� Ethernet I/O
� MBP I/O Link0
� I/O Bus
� Generic

For
comments
on the
options see
tables
below.

Drop Number Defines the drop
number

� Remote I/O: 2...32
� Distributed I/O: 1...64
� MBP I/O: 1
� Ethernet I/O: Drop number

corresponds to NOE slot

� Local Momentum: 1
� MBP I/O: 1
� Ethernet I/O: 0
� I/O Bus: 2
� Generic: 0...9999

Drop

number
defines
Modbus
Plus
address of
this
segment in
case of
distributed
IO.
 99

The Topological Model
Rack Type Defines the rack
type

� Local, RIO, DIO:
140 XBP 002 00,
140 XBP 003 00,
140 XBP 004 00,
140 XBP 006 00,
140 XBP 010 00,
140 XBP 016 00

� SY/MAX: 8030-RRK-100,
8030-RRK-200,
8030-RRK-300

� 800 I/O: AS-H810-100 ,
AS-H810-208, AS-H810-
209, AS-H819-100, AS-
H819-103, AS-H819-209,
AS-H827-100, AS-H827-
103, AS-H827-209, AS-
H810-100, 800 I/O (55)

� MBP I/O: MBP I/O (64 slots)
� Ethernet I/O: Ethernet I/O

(128)

� Generic: Generic
(255 slots)

� Local: Local Momentum
(2 slots)

� MBP I/O: MBP I/O
(64 slots)

� Ethernet I/O: Ethernet I/O
(64)

� I/O Bus: I/O Bus (44),
I/O Bus (128) (CPU
depending)

� Generic: Generic
(255 slots)

-

Property Description Quantum Options Momentum Options Comment
100

The Topological Model
Comments on the options for Link Type for Quantum:

Link Type
Option

Comment

Local The local rack is automatically created together with the PLC.
Note: Communication modules are only allowed in this rack.

Local (Ex) A rack that is connected via a backplane expander (XBE) to the local rack.

Remote A rack that is connected as remote IO. It is required to configure a remote head
module (CRP-93x-00) in the local rack to connect remote IO.

Remote
(Ex)

A rack that is connected via a backplane expander (XBE) to the remote IO
rack.

DIOLink A rack that is connected as distributed IO. A rack connected to the Modbus
Plus segment connected to the CPU is called DIOLink0. Additional distributed
IO can be connected with one or two NOM-2xx-00 as DIOLink1 and DIOLink2.

MBP I/O
Link

A virtual rack that is connected as Modbus Plus I/O. A rack connected to the
CPU is called MBP Link 0. Additional Modbus Plus I/O can be connected with
one or two NOM-2xx-00 as MBP Link 1 and MBP Link 2.

Ethernet I/O A virtual rack that is connected as Momentum Ethernet I/O. For each Ethernet
I/O rack it is required to configure an Ethernet communication module (NOE)
in the local rack.

SY/MAX A rack belonging to the SY/MAX product family of IO hardware. It is required
to configure a remote head module (140-CRP-93x-00) in the local rack.

800 I/O 800 I/O needs a remote head module (140-CRP-93x-00) in the local rack.

Generic A generic rack is a rack which is not entered in the Concept I/O map. It serves
for integrating generic modules into the configuration.
Unity Application Generator assigns StateRAM addresses to the modules and
the I/O variables mapped to the modules.
 101

The Topological Model
Comments on the options for Link Type for Momentum:

Link Type
Option

Comment

Local
Momentum

The local rack is automatically created together with the PLC.

MBP I/O
Link 0

A rack that is connected as Modbus Plus I/O. It is required to configure a
Modbus Plus adapter (171-PNN-xxx) in the local rack.

Ethernet
I/O

A rack that is connected as Momentum Ethernet I/O. (Only available for
Ethernet processors.)

I/O Bus A rack that is connected as I/O Bus. (Only available for I/O Bus processors.)

Generic A generic rack is a rack which is not entered in the Concept I/O map. It serves
for integrating generic modules into the configuration.
Unity Application Generator assigns State RAM addresses to the modules and
the I/O variables mapped to the modules.
102

The Topological Model
Rack Properties
(Unity Pro)

The following properties have to be defined

Property Description Quantum Options Premium Options Comment

Link Type Defines how the
rack is connected
to the PLC

� Local
� Local (Ex)
� Remote
� Remote (Ex)
� DIOLink 0
� DIOLink 1
� DIOLink 2
� SY/MAX
� 800 I/O
� MBP I/O Link 0
� MBP I/O Link 1
� MBP I/O Link 2
� Ethernet I/O
� Generic

� XBus
� Ethernet I/O
� MBP I/O Link0
� Generic

For
comments
on the
options see
tables
below.

Drop Number Defines the drop
number

� Remote I/O: 2...32
� Distributed I/O: 1...64
� MBP I/O: 1
� Ethernet I/O: Drop number

corresponds to the slot of the
Ethernet module

� XBus: 0...7
� MBP I/O: 1
� Ethernet I/O: Drop number

corresponds to Processor/
ETY slot

� Generic: 0...9999

Drop

number
(equipment
number)
defines
Modbus
Plus
address of
this
segment in
case of
distributed
IO.

Rack Type Defines the rack
type

� Local, RIO, DIO
� SY/MAX
� 800 I/O
� MBP I/O: MBP I/O (64 slots)
� Ethernet I/O: Ethernet I/O

(128)

� Generic: Generic (255
slots)

� XBus
� MBP I/O: MBP I/O (64

slots)
� Ethernet I/O: Ethernet I/O

(64)
� Generic: Generic (255

slots)

-

 103

The Topological Model
Comments on the options for Link Type for Quantum:

Comments on the options for Link Type for Premium:

Link Type
Option

Comment

Local The local rack is automatically created together with the PLC.

Local (Ex) A rack that is connected via a backplane expander (XBE) to the local rack.

Remote A rack that is connected as remote IO. It is required to configure a remote head
module (CRP-93x-00) in the local rack to connect remote IO.

Remote
(Ex)

A rack that is connected via a backplane expander (XBE) to the remote IO
rack.

DIOLink A rack that is connected as distributed IO. A rack connected to the Modbus
Plus segment connected to the CPU is called DIOLink0. Additional distributed
IO can be connected with one or two NOM-2xx-00 as DIOLink1 and DIOLink2.

MBP I/O
Link

A virtual rack that is connected as Modbus Plus I/O. A rack connected to the
CPU is called MBP Link 0. Additional Modbus Plus I/O can be connected with
one or two NOM-2xx-00 as MBP Link 1 and MBP Link 2.

Ethernet I/O A virtual rack that is connected as Momentum Ethernet I/O. For each Ethernet
I/O rack it is required to configure an Ethernet communication module in the
local rack.

SY/MAX A rack belonging to the SY/MAX product family of IO hardware. It is required
to configure a remote head module (140-CRP-93x-00) in the local rack.

800 I/O 800 I/O needs a remote head module (140-CRP-93x-00) in the local rack.

Link Type
Option

Comment

XBus The XBus rack is automatically created together with the PLC.
Note: Communication modules are only allowed in XBus_Rack 0 and
extension of it.

MBP I/O
Link 0

A rack that is connected as Modbus Plus I/O. It is required to configure a
Modbus Plus adapter in the local rack.

Ethernet I/O A rack that is connected as Momentum Ethernet I/O. (Only available for
Ethernet processors.)
104

The Topological Model
Module
Properties

The properties depend on the selected module category.
Properties of a communication modules/adapters or CPUs:

Property Description Options Comment

Link Type The link type is defined
by the system.
Link types for
Quantum:
� The CPU is always

Link 0
� Two additional

NOMs are Link 1 or
Link 2

Link types for
Momentum:
� The

communication
adapter on the CPU
is always Link 0

- This property is available
for Quantum with
Modbus Plus only

Network Segment Defines the segments
to which the module is
attached.

Choose from list. The list depends on the
definitions defined in the
Network Segment setup.

Modbus Plus

Address or IP
Address

Defines the address of
the module

Network
address

The valid network
addresses depend on
the type of network.

Local Remote Bus

Children

Defines the number of
bus children for IO
Bus.

Number of bus
children

This property is available
for Momentum BNO
modules only.
 105

The Topological Model
I/O points spreadsheet for I/O modules:

Property Description Options Comment

IOPoint Displays the position
of I/O point in I/O
module

None Display only

IO Type Shows the type of I/O � Digital In/Out
� Analog In/Out

Display only

Variable Defines the variable
assigned to the I/O
point

Any variable of the
appropriate data
type

The assignment can be performed
by dragging and dropping
appropriate variables.
Note: To change the association
of a variable to an IO point, the
variable can be dragged and
dropped within a module or even
between modules.

Address Displays the address
of the I/O point, if the
memory has already
been mapped.

- Display only.

Timeout

state

Defines failure action
of a digital output in
case of timeout

� Not_Assigned
� Disabled
� Last value
� User defined

If an error occurs in a PLC output
module, the user can define what
should happen to the output
signals:
� Disable: the signal is set to 0.
� Last value: The signal holds

the last value it had before it
failed.

� User defined: The user can
define the state of the signal if
the hardware module fails.

Timeout

value

Defines the value of
the variable if a failure
(timeout) occurs

Only available if timeout state
is set to "user defined".

Note: The timeout state of the module has to be the same as for the variables
which are assigned to the module.
106

The Topological Model
Enhanced Ethernet Module

Overview It is possible to create user-defined Ethernet modules which are not supported by
default within UAG. An Ethernet rack belongs to an Ethernet communication module
(like ETY 4103 or NOE 771-xx). After the creation of an Ethernet rack, the user can
assign these Ethernet communication modules. See also Additional Racks, p. 97

Possible
Modules for the
Enhanced
Ethernet Rack

Possible modules for the integration into the Enhanced Ethernet Rack are:
� All Momentum bases with an Ethernet communication head.
� User-defined Modules, like Altivar 58 with Ethernet connection.

Special Modules All Momentum modules communicate (read and write) on the 4x00001 address. But
other communication devices like for example the SPANG Power Electronics -
Power Controller Unit; 850 Series; Type 853 0040 E1 00 use an offset for the
communication.
These registers and their offsets are:
� Read Ref Register Starting Address 4:200, Length 15
� Write Ref Register Starting Address 4:200, Length 5

Therefore it is possible to enter "Read Ref Slave" and "Write Ref Slave" register-
starting address. UAG generates these addresses into the IO_Scanner table
automatically.

Input/Output
Offset

The input offset ("Read Ref Slave") and output offset ("Write Ref Slave") can be
entered in the customization editor. Thus all modules can be generated with the
configured offsets.
 107

The Topological Model
Enhanced
Ethernet
Modules
Costumization

[To announce an Enhanced Ethernet Module within Unity Application Generator, the
user has to costumize the module in the UAG Costumization as an user-defined
module.]
The following figure shows an example for the configuration of an Enhanced
Ethernet Module within the UAG Costumization.

Enhanced
Ethernet
Modules in UAG

[After the costumization the modules are usable in Unity Application Generator.]
The following figure shows an example for an Enhanced Ethernet Module within an
additional Ethernet rack.

Modify User Defined Module

Cancel

PowerMeter

Module Name:

OK

15

Analog In/Out

Module Category:

SPANG Power Electronics - Power Controller Unit

Description:

Ethernet I/O

Possible Racks:

...

Input / Output

Number Inputs: 200Input Offset:

5Number Outputs: 200Output Offset:

Register 1x:

Status Register 4x:

Register 0x:

Status Register 3x:

Register 4x:Register 3x:

Unity Application Generator - training01 [Exclusive] - [HW Modules [PLCtst_Ethernet I/O_Drop14]]

File View Generate Window Help
1

PLC: PLCtst Rack: Ethernet I/O_Drop14 (Ethernet I/O (120))

Network Segment: ETHSTRANG01

Module Category Module Input Output Offset

Analog In/Out PowerMeter %MW79 - %MW93 %MW200

Slot

1

2

3

4

5

Input Offset

%MW200

Output

%MW170 - %MW174

IP Address

192.168.0.13

Description

SPANG Power Electronics - Power Controller Unit
108

The Topological Model
Enhanced
Ethernet
Modules in
Concept and
Unity Pro

The following figure shows an example for the automatically generated I/O Scanner
table (Concept/Unity Pro):

123.34.111.11 0 2000 0 100001 400200 15 Hold Last 000049 Power400200 5

123.34.111.12 0 2000 0 100017 400001 1 Hold Last 000065 TIO400001 1

Slave IP Address

1

Unit ID
Health Time-

out (ms)
Rep Rate

(ms)
Read Ref

Master
Read Ref

Slave
Read

Length
Last Value

(Input)
Write Ref
Master

Write Ref
Slave

Write
Length DDiag Code

2

 109

The Topological Model
3.4 The HMI Group

Overview

Introduction This section describes the HMI Group and its properties.

What's in this
Section?

This section contains the following topics:

Topic Page

Introduction 111

HMI Properties 112

Control Domain Properties 113
110

The Topological Model
Introduction

Introduction In the HMI group, the HMIs are defined. An HMI contains all screens of the related
Equipment Module and their Control Modules.
� For each HMI several Control Domaines can be defined.
� Each Equipment Module is linked to exactly one HMI.
� The relation of an Equipment Module to an HMI is defined indirectly by assigning

an Equipment Module to a Control Domain.

What is an HMI? An HMI represents the controlled process for the operator and service engineers.
An HMI contains all of the screens of all related Equipment Module and their Control
Modules.

What is a Control
Domain?

Control Domains are created to allow that different operators control different parts
of the process. In this way the complete HMI application is segmented into different
Control Domains.
Associated with the Control Domain are the access rights of the operator. Thus, a
Control Domain is part of the complete HMI application for which the operator is
responsible. For this Control Domain the operator can control the Control Modules
(start, stop, change setpoints, ...). The operator will only receive the alarms of his
Control Domain(s). Which operator controls the Control Domain is not defined within
Unity Application Generator but has to be configured in the HMI system.
 111

The Topological Model
HMI Properties

Overview Unity Application Generator generates one screen for each Equipment Module in
the HMI application. All Control Modules of each Equipment Module belong to the
same HMI and are generated in the same Equipment Module sreen.

Properties of an
HMI

Properties of an HMI:

Property Description Options Comment

HMI Name Unique name of the
HMI

The name has to follow
the naming conventions
defined during
customization.

HMI Type Defines the type of
HMI Unity Application
Generator will
generate for

� Monitor Pro
� iFIX
� Generic HMI

This setting has a major
influence to Unity
Application Generator.
The functionality of
different HMI differs
widely. So HMI options
in other dialog boxes
depend on the HMI type
selected here.

Comment... The comment field is a
free text field. It can be
used to document the
process design.

Documents... Any number of files of
different document types
can be assigned to each
element. The possible
file types to be assigned
are defined in the
customization.
112

The Topological Model
Control Domain Properties

Overview Control Domaines are related to one HMI. A Control Domain gathers the screens
which represent a logically related part of the process which will be controlled by an
operator. In this way they describe logical parts of the HMI and the structure of the
HMI application. Thus, a Control Domain is part of the complete HMI application for
which an operator is responsible. For this the operator can control the Control
Modules (start, stop, change setpoints, etc.). The operator will only receive the
alarms of his Control Domain(s). Which operator controls which Control Domain is
not defined in Unity Application Generator but has to be configured in the HMI
system.

Properties of a
Control Domain

Properties of a Control Domain:

Property Description Options Comment

Control Domain

Name

Name of Control
Domain

The name has to follow
the naming conventions
defined during
customization.

Control Domain
Description

Text field

Comment The comment field is a
free text field. It can be
used to document the
process design.
 113

The Topological Model
3.5 The Data Server Group

Data Server - Description and Properties

What is a Data
Server?

The Data Server communicates data from one or several PLCs to HMIs. One Data
Server can be used by multiple HMIs. A PLC is assigned to only one Data Server
(polled only by one Data Server).

Relation to other
Elements

The Data Server is linked to other elements of the Topological Model, to HMIs and
PLCs:
� The assignment of a PLC to the Data Server is done via the communication

Channel associated with the PLC.
� The assignment of the HMI to the Data Server is not done directly, it is done

through elements of the Physical Model.
� Each Equipment Module is managed within a Control Domain.
� Each Equipment Module is therefore linked to an HMI.
� Each Equipment Module is controlled within a PLC.
� The PLC is polled by a Data Server via a communication Channel.
In this way the Data Server is assigned to an HMI through the relation of the
Equipment Module.
114

The Topological Model
Properties The properties of the Data Server are mainly network oriented. There are no
definitions to be done concerning other elements.
Properties of a Data Server:

Property Description Options Comment

Data Server

Name

Unique name of Data
Server.
Unity Application
Generator will
generate the Monitor
Pro server application
in the subdirectory
DATASERVERNAME of
the dataserver
application path
specified in the
Options dialog. For
iFIX, UAG will
generate the tag
database as
DATASERVERNAME.P

DB.

The name has to follow
the naming conventions
defined during
customization.

Comment... The comment field is a
free text field. It can be
used to document the
process design.

Documents... Any number of files of
different document
types can be assigned
to each element. The
possible file types to
be assigned are
defined in
customization.

Generic

Export Format

A name associated
with a stylesheet file
that defnines how data
is exported for this
Data Server.
The format names are
defined in the
customization.

Select from list. Only available in projects
for Generic HMIs.
 115

The Topological Model
Network

Timeout

Timeout for health
status of
communication

Can be defined from
seconds down to ms

Network Type - � Ethernet
� Modbus +

If Monitor Pro or iFIX is
used, only Ethernet is
supported.

Network

Segment

Defines the Network
Segment the Data
Server is connected to.

Select from list. The Network Segments
have to be defined
before they are available
in the list.

Network

Address or IP
Address

- Valid addresses The address has to be
unique within one
Segment.

Property Description Options Comment
116

The Topological Model
3.6 The Network Nodes Group

Overview

Introduction This section describes what Network Nodes are and their properties.

What's in this
Section?

This section contains the following topics:

Topic Page

Net Partner Description 118

Net Partner Properties 119

Other Node Description 120

Other Node Properties 121
 117

The Topological Model
Net Partner Description

What are Net
Partners?

In a control system multiple hardware components are used. Components, which
can be connected via the network with other components but are neither of type PLC
nor of type HMI nor Data Server cannot be directly generated with Unity Application
Generator, for example Magelis hand-held panels. For those so called Net Partners
Unity Application Generator can export a CSV file containing the variables with the
information needed for the polling by the Net Partner (addresses, data type, initial
value and so on).
See also: Net Partner Variables: CSV File Format, p. 366

Requirements For the inclusion of Net Partners the following conditions must be fulfilled:
� The Net Partners have to be defined in Unity Application Generator.
� All required variables for the Net Partners have to be defined (in the Equipment

Module or the Control Module) as PLC_NET variables.
� A Channel has to be defined for the communication between the PLC and the

Net Partner.
� In the programming tool for the Net Partner an option has to be available to import

a list of variables as a CSV file.

What is
Generated for
Net Partners?

For the PLC
� Unity Application Generator creates located variables so that the Net Partner can

access them.

For the Net Partner
� Unity Application Generator creates a variable list in comma separated value

format (CSV) for further processing, for example for the import into the Net
Partner, see Generation for Net Partners, p. 364.

Magelis Export UAG is able to generate CSV files for import into Magelis panels via a new button
Magelis Export within the properties dialog box for Network Nodes.
The following table shows the differences between the regular and Magelis export.

Regular Export Magelis Export

PLC Files Creates a single CSV file for all PLCs. Magelis export creates one file per
PLC.

File Format plc;networktype;networkpath;
var;datatype;984addr;
initial;alarmtext

N;var;datatype;984addr;
initial;alarmtext
118

The Topological Model
Net Partner Properties

Memory Range
of Net Partners

The overall memory range for all Net Partners is defined in the PLC properties. The
memory ranges for each Net Partner are defined in the Channel properties. Each
Net Partner uses a 0x/%M and a 4x/%MW range in the PLC.

Properties Properties of a Net Partner:

Property Comment

Type Net Partner (Type of the Network Node.)

Name Unique name of Net Partner. The name has to follow the
naming conventions defined during customization.

Description A short description of the Net Partner can be made in the
description field.

Bitmap file For each Net Partner a bitmap file can be choosen, which is
displayed in the Topological Viewer.
The possible bitmap formats are:
� .bmp
� .jpg
� .gif
� .ico
If no bitmap file is choosen, a default symbol is displayed in the
Topological Viewer.

Network Type Modbus Plus or Ethernet

Network Segment Defines the segment the Net Partner is connected to

Network address or IP
address

Modbus Plus or Ethernet network address

Comment... The comment is a free text field. It can be used to document the
process design.

Documents... Any number of files of different document types can be assigned
to each element. The possible file types to be assigned are
defined in the customization.

Export Var... A .CSV file containing the variables assigned to the current Net
Partner is generated.
 119

The Topological Model
Other Node Description

What are Other
Nodes?

In a control system multiple hardware components are used. Components, which
can be connected via the network with other components but are neither of type PLC
nor of type HMI nor Data Server nor Net Partner cannot be generated with Unity
Application Generator. For those so called Other Nodes Unity Application Generator
can reservate a network address to prevent the multi-assignenment of network
addresses.

Requirements For the inclusion of Other Nodes the following conditions must be fulfilled:
� The Other Nodes have to be defined in Unity Application Generator.

What is
Generated for
Other Nodes?

Nothing. A network address is reservated, only.
120

The Topological Model
Other Node Properties

Properties Properties of a Other Node:

Property Comment

Type Other Node (Type of the Network Node.)

Name Unique name of Other Node. The name has to follow the
naming conventions defined during customization.

Description A short description of the Other Node can be made in the
description field.

Bitmap file For each Other Node a bitmap file can be choosen, which is
displayed in the Topological Viewer.
The possible bitmap formats are:
� .bmp
� .jpg
� .gif
� .ico

If no bitmap file is choosen, a default symbol is displayed in the
Topological Viewer.

Network Type Modbus Plus or Ethernet

Network Segment Defines the segment the Other Node is connected to

Network address or IP
address

Modbus Plus or Ethernet network address

Comment... The comment is a free text field. It can be used to document the
process design.

Documents... Any number of files of different document types can be assigned
to each element. The possible file types to be assigned are
defined in the customization.
 121

The Topological Model
122

II

Working with Unity Application
Generator
Overview

Introduction This part enables you to work with Unity Application Generator in a correct and
effective way. For building an application follow the steps of the workflow and look
up the detail information needed to perform the steps in the other parts of the
manual.

What's in this
Part?

This part contains the following chapters:

Chapter Chapter Name Page

4 Rules for Working with Unity Application Generator 125

5 Tool Handling and Features for Effective Work 133

6 Workflow to Build an Application 155
123

Working with UAG
124

4

Rules for Working with Unity
Application Generator
Overview

Introduction This chapter contains the rules, guidelines and warnings that you should keep in
mind when working with Unity Application Generator.

What's in this
Chapter?

This chapter contains the following topics:

WARNING

Risk of erroneous project configurations or loss of code

Please read these rules carefully and have them in mind whenever you
are working with Unity Application Generator.
If you don´t follow these rules, you risk erroneous project
configurations, double work or even loss of code.

Failure to follow this precaution can result in death, serious injury,
or equipment damage.

Topic Page

General Rules for Project Configuration and Generation 126

Open Costumization and SCoD Editor 127

Rules Concerning the PLC and Concept 128

Rules Concerning the PLC and Unity Pro 130

Rules Concerning HMI 131
125

Rules
General Rules for Project Configuration and Generation

Define Process
only Once

In classical automation environments, in which the definition of the PLC logic, the
HMI screens and the network is done by separate tools, a lot of the definitions have
to be repeated twice or three times. In UAGUAG these definitions are done only
once and therefore are always consistent. This requires that all changes to the
process defined by UAG are only defined with UAG and nowhere else e.g. all
located variables have to be defined in UAG and must not be changed in Concept/
Unity Pro.

New or
Incremental
Generation

A significant part of the PLC logic and the HMI screens is generated by UAG
automatically. Nevertheless, it is necessary to add more PLC logic and to complete
the HMI screens later on. Even though the logic and the screens are changed with
the PLC and HMI programming tools, it is possible to make changes to all parts of
the process defined in UAG and to rebuild the application incrementally without
destroying any changes made outside of UAG.

Equipment and
Control Moduls

If an Equipment or Control Modul is already generated, it is not possible to change
the PLC anymore.

Note: Use the Unity Application Generator always to define the process and for
making changes to the configuration later on! This assures the consistency of the
definitions.

Note: Be careful with the option for a completely new generation! If you have
already started to complete the logic after an earlier generation, perform an
incremental generation. Otherwise your manual changes will be lost!
126

Rules
Open Costumization and SCoD Editor

Introduction In UAG 2.1 the user is able to open the SCoD and Customization Editors within the
user interface of UAG. To do this, two menu items - View → Customization Editor
and View → SCoD Editor - as well as two toolbar buttons are available.

Read-only Open If the SCoD or Customization Editor are opened within UAG, the editors are in read-
only mode.That means the user is able to browse the data, but cannot change it. But
it is possible to save the data with a new filename.
When the Customization Editor is started within UAG, it shows the current project's
customization. If no project is open, the Customization Editor opens without a loaded
customization.
When the SCoD Editor is started within UAG, it shows the currently selected SCoD
in View FFB mode. If a control module variable is selected in UAG, then the SCoD
editor will open the respective SCoD and shows the selected variable. If no project
is open in UAG, or no SCoD and no control module variable is selected, the SCoD
editor opens without a loaded library.
Both SCoD editor and Customization Editor will allow to open the databases
(libraries or customization) in read-only mode also when working stand-alone. An
additional option (check-box) will be added to the standard open file dialog. If the
library of customization database is already opened exclusively by Unity Application
Generator the database will be opened automatically in read-only mode.
 127

Rules
Rules Concerning the PLC and Concept

Overview In general all that can be defined in Unity Application Generator must be defined in
UAG and nowhere else. It allows the user to define all necessary information about
the memory of the PLC, e.g. variables, I/Os etc. If anything is changed to these
definitions by Concept, UAG will overwrite these changes during the next generation
of the code for Concept.

Please keep in
mind ...

UAG offers a simple and fast way to update the Concept project with information
modified by UAG by means of Incremental Generation. Using this feature without
doing any manual changes in Concept you ensure that your process design -
defined in UAG - is always in synchronization with the PLC program and
configuration.

Rules
Concerning
Generated Logic

Apply the following rules:
� Do not manually create PLC logic that can be specified by means of UAG.
� Don’t change literals connected to inputs of Function Blocks, because their

values are defined in UAG.
� Do not remove variables from function blocks which have been generated by

UAG.
� If you change values in Concept, don´t forget to update in UAG.

Rules
Concerning
Variables

Apply the following rules:
� Do not declare located variables in Concept, all located variables must be

declared in UAG in order to ensure the consistency of the memory layout
generated by UAG.

� For additional logic, unlocated variables can be created in Concept, but it is even
possible to define them in UAG because UAG offers the functionality to add free
variables to either Equipment Modules or Control Modules.

Rules
Concerning PLC
Configuration

Apply the following rules:
� Whatever could be edited in the PLC configuration by UAG should be edited only

by UAG.
Items which are not covered by UAG (and therefore allowed to be defined in
Concept):
� ASCII setup
� Loadables other than IEC
� Data protection
� RTU extensions
128

Rules
Rules
Concerning
Names

Apply the following rules:
� Never change names of objects in Concept that have been generated by UAG,

for example the name of a variable, the instance name of a Control Module
function, or the name of a section.
If you do change the name UAG will not be able to find the objects any more in
the Concept project and thus cannot generate subsequent changes that have
been made to the process design.

Changes and
PLC Stop

Changes to you project can be either changes of logic or changes of configuration.
Concept allows the user to download changes to a running PLC without stopping the
PLC. A change of configuration however (for example new definition of address
ranges) is not possible without stopping the PLCs.
Changes of you project have different consequences:

If you ... Then ...

Change only logic You can download the new logic in the running PLCs. No
production stop is necessary!

Change the configuration
For example:
� Change of 0x and 4x

address ranges
� Adding new Modules

The change can only be carried out by stopping the PLCs.
You have to accept a production stop!
 129

Rules
Rules Concerning the PLC and Unity Pro

Overview In general all that can be defined in UAG must be defined in UAG and nowhere else.
UAG allows the user to define all necessary information about the memory of the
PLC, e.g. variables, I/Os etc. If anything is changed to these definitions by Unity Pro,
UAG will overwrite these changes during the next generation of the code for Unity
Pro.

Please keep in
mind ...

UAG offers a simple and fast way to update the Unity Pro project with information
modified by UAG by means of Incremental Generation. Using this feature without
doing any manual changes in Unity Pro you ensure that your process design -
defined in UAG - is always in synchronization with the PLC program and
configuration.

Rules
Concerning
Generated Logic

Apply the following rules:
� Do not manually create PLC logic that can be specified by means of UAG.
� Don’t change literals connected to inputs of Function Blocks, because their

values are defined in UAG.
� Do not remove variables from function blocks which have been generated by

UAG.
� If you change values in Unity Pro, don´t forget to update in UAG.

Rules
Concerning
Variables

Apply the following rules:
� Do not declare located variables in Unity Pro, all located variables must be

declared in UAG in order to ensure the consistency of the memory layout
generated by UAG.

� For additional logic, unlocated variables can be created in Unity Pro, but it is even
possible to define them in UAG because UAG offers the functionality to add free
variables to either Equipment Modules or Control Modules.

Rules
Concerning
Names

Apply the following rules:
� Never change names of objects in Unity Pro that have been generated by UAG,

for example the name of a variable, the instance name of a Control Module
function, or the name of a section.
If you do change the name UAG will not be able to find the objects any more in
the Unity Pro project and thus cannot generate subsequent changes that have
been made to the process design.
130

Rules
Rules Concerning HMI

Overview In the following you find rules for the work with Unity Application Generator
combined with a special HMI.

Rules for Monitor
Pro / iFIX

When combining an Monitor Pro / iFIX HMI with Unity Application Generator, apply
the following rules:
� If a new Control Domain is added in Unity Application Generator, add the

corresponding Alarm Area and Security Areas in Monitor Pro / iFIX.
� If the access levels are changed in Unity Application Generator customization,

adjust the existing Security Areas in Monitor Pro / iFIX.
� Do not modify in Monitor Pro / iFIX what has been generated by Unity Application

Generator, for example:
� Do not rename pictures.
� Do not modify properties of AxtiveX controls (except color setting).
� Do not delete tags.
� And so on.
 131

Rules
132

5

Tool Handling and Features for
Effective Work
Overview

Introduction Unity Application Generator is designed with the overall goal to enhance the
efficiency of configuring a process control.
Submitted to this goal, the user interface has been designed in a way that you will
be able to use it intuitively if you are used to other Windows applications.
This chapter explains the basic concepts of the user interface and features for
enhancing your productivity when configuring your project.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Concepts of the User Interface 134

Working with Tables (Lists) 137

Drag & Drop of Objects, Modules and Variables 139

How to Find Objects with Search Criteria 140

Working with the Instrument List 142

Copy and Paste in the Physical and Topological Model 145

How to Build an Interlock Definition 147

Working with the Topological Viewer 151

How to View the Generation Status 154
133

Handling
Concepts of the User Interface

Introduction The main goal of Unity Application Generator is to increase the efficiency of the
process engineer and the control engineer in order to build the automation
application. This is not only provided by the totally new concept of Unity Application
Generator as a process design tool but is also the main goal for the design of the
user interface.

Windows Look
and Feel

The handling of Unity Application Generator is similar to other Windows programs
like Word, Excel and so on.
The following general concepts are specific to Unity Application Generator
� Object oriented properties: The properties are accessible from the object.
� Context menus: There are only a few menu items in the main menu. Most of the

items are provided by context menus, accessible by right-clicking the mouse.

Powerful
Navigation

Unity Application Generator offers the following navigation possibilities:
� From the Physical Model and the Topological Model: Context menus for all

objects for navigation to tables/lists and dialog boxes for property definition
� From tables and lists: Context menus for each row for navigation to other

tables/lists and dialog boxes for property definition
� From Analyzer report: Navigation to the erroneous object by double-clicking on

the entry
� From Find report: Navigation to one of the found objects by double-clicking on

the entry
� From the Topological Viewer: Navigation to property dialogs from the

topological view.

Multiple User
Tool

Multiple users are able to work on the same project at the same time. All changes
made by a single user are directly available by the other users.

Note: If code generation is intended, the project has to be opened exclusively to
prevent other users from changing the project while it is generated. This means
that other users are excluded from opening the same project.
134

Handling
No Save
Command

Unity Application Generator works with a database in the background and has multi-
user capabilities and therefore has no save command.
Otherwise a user could work with old data already changed by another user. Another
advantage of this method is, that you don’t loose any information if you have for
example a PC crash.

Checking all
Inputs

While defining an application with Unity Application Generator, all user inputs are
checked directly as much as possible for correctness. Consequently the debugging
time for the application is decreased.
In addition list boxes are used wherever possible to make the entry as easy as
possible and to avoid faulty inputs. Many of the limits used to check inputs are set
up during the customization process, which is carried out with a special tool, the
Unity Application Generator Customization Editor.

Assigning
Default Values

Wherever feasible, default values are assigned. Even though a user’s input is
sometimes required, it is not necessary to assign values to an object as soon as it
is entered. In principle, three options can be assigned:
� A value
� None/zero/not used

This means in general that the field is not used.
� Not assigned

This means that a value is required but is not yet defined, e.g. the process
engineer has defined something which has to be completed by the control
engineer later on. During the analysis of the project all not assigned values are
reported.

Note: Because Unity Application Generator does not have a special save
command all changes you make are immediately stored in the database.
 135

Handling
Refresh by User The displayed project design is refreshed actively by the user with the Refresh
function (in context menu or by pressing F5 button).
Since you are working in a multi-user environment, the project design can be
modified by several users concurrently. This is very similar to the file and directory
behavior on a shared file server.
Therefore it can happen that you see information on your screen, for example in the
tree structure of the Physical Model or in a table, that is not up-to-date because it
has already been changed by another user.

Note: Thus, from time to time or if you are not certain of the correctness of the
display, you should refresh the information by selecting the refresh menu item in
the different popup menus or simply press the F5 button.
136

Handling
Working with Tables (Lists)

Tables Tables are used to enter and display lists of a group of objects with their attributes.
Examples
� List of objects: Equipment Modules, Control Modules, Variables, HW modules ...
� Instrument List

Features � Direct editing of fields
� Copy and paste
� Navigation to property dialog boxes or other tables

Context Menus Context menus appear by right-clicking in a line or in the table dialog box.
A context menu exists for example:
� For each line of the table with items like Delete (for deleting the line) or

Properties (for accessing the properties dialog box of the object).
� For the table dialog box with items like New (for adding a new line) or Paste for

pasting a copied object into the table.

Add New Lines A new line in a table is added by the New item from the context menu. With New you
enter a dialog.

New... Dialogs In the New... dialog you define the properties of the object(s) to be created. Apply
saves the entered information, OK save the information and close the dialog.
 137

Handling
Create Free
Variables

In the New Variable dialog it is possible to create only one or several free variables
in one step. Follow the steps:

Save Line Whenever you enter information in a line of a table, the changes are stored in the
database when you switch to another line. As long as you work in the different fields
of the same line the data is not stored.

Select and Delete
Lines

The following table explains how you select and delete lines in a table: :

If you want to ... Then ...

Create a free variable or
Create a number of equivalent free
variables

1. Right-click somewhere in the variables list.
2. Choose New from the context menu.
3. Enter the Name, Description and Connection

Type, Data Type and In/Out of the variable(s).
4. Optional: Enter the Startnumber and Number of

equivalent variables to create.
5. Press Apply.

Result: In the variables list the new variable(s)
appear. In the case of more than one variable, the
names are numbered consecutively.

6. If necessary, enter other properties by moving
through the tabs (Alarm, Command, Display).

7. Confirm with OK.
The properties are saved as entered for all variables
just having been created. The dialog closes.

If you want to... Then...

Select a line Click into the most left column of the line.

Select a range of lines � Click the left most column of the first line and drag
the mouse over several lines without releasing the
mouse button.
Or:

� Click the left most column of the first line, press the
Shift key while clicking the last line to be selected.

Select several non-consecutive
lines

Click into the left most column of each line to be selected
while pressing the Ctrl key.

Delete several selected lines Use the del key.
138

Handling
Drag & Drop of Objects, Modules and Variables

Drag & Drop
Editing Feature

Drag & Drop makes the configuration of a project easier for both the project engineer
and the control engineer.

Drag & Drop in
the Physical
Model Tree

In the Physical Model tree you can move objects from one position to another by
Drag & Drop . Valid/unvalid target positions are indicated while you are moving the
object with the mouse.
What happens when an object is moved by Drag & Drop?
� All variable names are automatically changed corresponding to the naming

conventions.
� Concept/Unity Pro sections, HMI features and so on are automatically moved and

adapted.
� The changes are documented in the change history file.

Moving HW
Modules

For Concept/Unity Pro PLCs:
Hardware Modules can be moved within a rack and from one rack to another by
Drag & Drop within the rack table or from one rack table to another (within the same
PLC).

Assigning
Variables

From the variables table you assign variables by Drag & Drop for the following
connections:
� Variable type IO_PLC to IO modules
� Variable of all types to PLC-PLC-Channels
� Variable type PLC_NET to Net Partner Channels
� Variables to the interlock conditions

Note: After moving an object within the Physical Model tree it is necessary to carry
out a code generation in order to update the code.

Note: Moving a Unit will influence the execution order in Concept. The execution
order in Unity Pro will not be influensed.

Note: If Communication or Analog Modules are moved in Unity Pro, the modules
at the old positions are deleted and new modules are created at the new position.
This has the effect that all data (channels, I/O, etc.) which was assigned to this
modules is deleted.
The same happens if you are changing a RIO Drop number in Unity Pro. The
complete rack including all modules is deleted and a new one is created.
 139

Handling
How to Find Objects with Search Criteria

Find Feature Unity Application Generator offers the ability to search for objects, which meet
certain criteria. A search is based on a specific object type (Control Module, variable,
PLC...). One or several search criteria, combined by AND or OR function as filters.
The criteria are based on the object attributes. In text strings the use of wildcard
characters is possible.
Example: You can search for variables, which are alarm variables with an alarm
priority high.

Components of a
Search
Condition

A search is based on the specification of the
� Object type
A single search criterion is composed of the following parts:
� Attribute: Attribute of the selected object type. Unity Application Generator

provides a list box.
� Operator: Operator for the comparison with the criterion. Unity Application

Generator provides a list box with operators corresponding to the kind of attribute.
� Criterion: Value of the attribute searched for. Depending on the kind of attribute

Unity Application Generator provides a list box or a free field for entering a
number or a text string.

Several search criteria are logically combined by
� And/Or: Operator for the combination of several search criteria. The first search

criterion does not need an AND or OR. In a search condition with AND and OR,
AND has the higher priority.

LIKE Operator The LIKE operator can be used if the criterion is a text. The use of wildcard
characters for the definition of string patterns is possible.

Example for using wildcard characters to find a range of values: LIKE Va*
But: Example for specifying the complete value: =Valve

Note: In the text string or pattern the special characters | and " are not allowed.
140

Handling
Wildcard
Characters

The wildcard characters used in string patterns of LIKE expressions are defined as
follows:

Find Procedure For finding objects fitting your seach criteria follow the steps:

Result All objects meeting the search condition are displayed in the message window.

Wildcard
Character

Kind of match Example Match No match

* Multiple characters a*a Aa, aBa, aBBBa ABC

ab w AZb, bac

ab* Abcdefg, abc Cab, aab

[*] Special character a[*]a A*a Aaa

? Single character a?a aaa, a3a, aBa ABBBa

Single digit a#a a0a, a1a, a2a Aaa, a10a

[...-...] Range of characters [a-z] f, p, j 2, _

[!...-...] Outside a range [!a-z] 9, _ b, a

Not a digit [!0-9] A, a, &, ~ 0, 1, 9

Step Action

1 Open the Find dialog with View → Find.

2 Choose the object type you are looking for from the pull down list box.

3 Enter your first search criterion by filling out the fields Attribute, Operator,
Criteria.

4 Add a new line in the table of search criteria (right-click in the table and left-click
New).

5 Repeat Steps 3 and 4 until you have entered all your search criteria.

6 Combine the search criteria by AND or OR by filling out the And/Or column.

7 Start the search with Find.

Note: From the message window you can navigate directly to specific objects by
double-clicking on the entry.
 141

Handling
Working with the Instrument List

Instrument List The Instrument List is a flat list of Instruments (Control Modules). It is a feature for
the process engineer allowing to enter the Instruments before defining the complete
Physical Model hierarchy. Once the hierarchy down to the Equipment Module level
is defined, the Instruments are simply dragged into the Physical Model and become
Control Modules.
See also: Instruments, p. 42

Advantageous
Features

With the Instrument List you can do the following:
� Create multiple objects in an easy way, for example 100 equivalent motors at one

time
� Simply drag and drop the selected Instrument(s) to the target Equipment Module

node in the Physical Model
� Import Instruments from the P&ID (pipework and Instruments drawing)

What you Can
Define for an
Instrument

Using the Instrument List you can define Control Modules with all of their properties
except of the property PLC.
For each Instrument you can define the following properties:
� Name
� Description
� Control Module Type
� Comments...
� Documents...
� Properties specific to the Control Module Type
� Variables

Note: Using the Instrument List for the creation of Control Modules is an alternative
way for creating them from the Physical Model tree. In comparing both ways, using
the Instrument List enhances your productivity.

Note: For an Instrument you cannot define interlocks. This is possible only after
having moved the Instrument into the Physical Model.
142

Handling
How to... The table explains how to work with the Instrument List:

If you want to... Then...

Import Instruments from the P&ID See Example: Import Instruments / Physical Model
Hierarchy, p. 188

Open the Instrument List Press the Instrument List button or use the Site context
menu.

Create a new Instrument or
Create a number of equivalent
Instruments

1. Right-click somewhere in the dialog box.
2. Choose New from the context menu.
3. Enter the Type, Name and Description of the

Instrument(s).
4. Optional: Enter the Startnumber and Number of

equivalent Instruments to create.
5. Press Apply.

Result: The property tabs corresponding to the
selected Control Module Type appear. In the
Instrument List the new Instrument(s) appear.

6. Enter the properties by moving through the tabs.
7. Confirm with OK.

Open the properties of an
Instrument

Right-click somewhere in the row and choose
Properties from the context menu.

Open the variables of an
Instrument

Right-click somewhere in the row and choose Open
Variables from the context menu.

Copy, paste, delete an Instrument Right-click somewhere in the row and choose the
desired item from the context menu.

Move or copy one or several
Instruments into the Physical
Model

1. Select the Instrument(s) to be moved.
2. For moving: Drag the selected Instrument(s) into the

target Equipment Module node of the Physical
Model.
For copying: Press Ctrl key while dragging the
selected Instrument(s) into the target Equipment
Module node of the Physical Model.

Result:
Before pasting Unity Application Generator checks for
uniqueness of names and if the maximum number of 32
Control Module in one Equipment Module will be
exceeded. If the paste is allowed the Instruments
become part of the Physical Model.
 143

Handling
Restrictions The following restrictions apply to the Instrument List:
� Control Module Type:

� It is possible to create an Instrument without specifying the Control Module
Type (controlmodule_type=Not_assigned). You can drag the type-less
Instrument to the Physical Model without restriction. In the Physical Model it
becomes a type-less Control Module.

� Once you have assigned the Control Module Type of a new Instrument with
Apply in the New dialog, you cannot change it to another type. If you want to
change the Control Module Type, delete this Instrument and create a new one
with the correct Control Module Type.

� Edit properties: You cannot edit properties for multiple Instruments. This is only
possible in the New dialog during the creation of multiple equivalent Instruments.

� Max. 32 Control Modules in an Equipment Module: Dragging a Control
Module from the Instrument List to the target Equipment Module node of the
Physical Model cannot be completed, if the Equipment Module already contains
32 Control Modules. In this case you need to delete one or more Control Modules
in the Equipment Module or create a new Equipment Module.

� Uniqueness of names: You cannot drag Control Modules with the same name
into one Equipment Module. The uniqueness of names within one Equipment
Module is checked before the dragging is completed. Change the names before
dragging.
144

Handling
Copy and Paste in the Physical and Topological Model

Copy and Paste
Editing Feature

In many cases the designer builds up similar structures in the Physical Model and
the Topological Model of the process. For an efficient process design with Unity
Application Generator you can copy and paste objects of the Physical and
Topological Model. Copy and paste is possible within a project and even between
projects.

Copy and Paste
in the Physical
Model

You can copy objects of the Physical Model. For example it is possible to copy a
complete Area with the complete hierarchy.
Depending on the copied object types, the paste menu item is only available for
those objects which can contain the copied object types. For example: If the copied
object is an Equipment Module, the paste is only available for Unit objects, because
an Equipment Module always belongs to a Unit.
 When you try to paste the copied object, Unity Application Generator opens a
window with a list of elements that are contained in the object and which have to be
renamed for the copy because of uniqueness of names. Only after having filled out
the complete list, Unity Application Generator will paste the new object.

Copy and Paste
in the
Topological
Model

In the Topological Model you can copy and paste PLCs and Racks. When you try to
paste the copied object UAG opens a window with a list of elements that have to be
renamed for the copy and network addresses which have to be assigned for the
copy. Only after having filled out the complete list, Unity Application Generator will
paste the new object.

Note: In the copy the references to the Topological Model have been removed.
This means that for example the assignment of Equipment Modules or Control
Modules to a PLC or HMI are lost or that IO_PLC variables are not mapped to IO
modules anymore (It is not possible to map more than one variable to the same IO
point on the same IO module). These references have to be added manually after
the copy-paste action. For efficiency, you should use the Analyzer.

Note: In the copy the references to the Physical Model have been removed. This
means that for example the assignment of Equipment Module or Control Modules
to a PLC or HMI are lost or that IO_PLC variables are not mapped to IO modules
anymore (It is not possible to map more than one variable to the same IO point on
the same IO module). These references have to be added manually after the copy-
paste action. For effective working, you should use the Analyzer.
 145

Handling
Copy and Paste
between Projects

It is possible to copy and paste objects from one project to another if the
customization is identical. For this the same principles are valid as described above.
Often, this is less work, because the copied objects may keep the same names, if
they are not yet existent in the target project.

Note: Unity Application Generator allows only one project to be open. If you need
to open two projects at once for the copy-paste action, you can run Unity
Application Generator twice on your PC.
146

Handling
How to Build an Interlock Definition

Overview The following procedure explains step by step, how you build an interlock definition
for a Control Module. The interlock definition field allows a restricted syntax.
See also: Interlocks for Control Modules, p. 43
See also: Generated Code: Equipment Modules, Control Modules and Interlocks,
p. 297
 147

Handling
Procedure for
Building an
Interlock
Definition

For building an interlock definition for a Control Module follow the steps:

Step Action

1 Right-click on the Control Module to be interlocked in the Physical Model.

2 Choose Open Interlocks from the context menu.
Result: The interlock dialog for this Control Module opens.

3 In the Input field select the name of the interlock input pin.

4 Define each interlock condition (See Interlock Condition, p. 44) in one line of the
table.
� Enter interlock variables and condition variables by dragging them from a

variables table and dropping them in the corresponding field of the interlock
condition.

� Enter literals directly in the input field (only numbers).
� To check if a Boolean variable is TRUE, enter it as Interlock Variable

and leave Condition empty.
� If desired, delete interlock conditions by using the context menu.
Note:
� Variables belonging to another PLC may be configured as condition

variables. In order to achieve a correct generation, this variable has to be
communicated via a Channel to the PLC of the interlock.

� If you modify the name of a condition variable, it is automatically converted
to a literal.

� If you need to use functions like SIN, COS,... see below.

5 In the field Interlock Definition describe the logical combination of the interlock
conditions by using $<condition number> to refer to the 1st, 2nd, 3rd ... condition
and combining the conditions with logical operators and parenthesis.
Note:
Below the editing text box the expanded interlock definition is displayed, where
$<condition number> is replaced by the condition from the table above. If you
change a condition in the table, the expanded interlock definition is
automatically adapted.

6 Add a comment to your interlock definition.

7 Save your interlock definition in the database with Apply.
Result: When applying the input, a parser checks the correct syntax of your
expression.
148

Handling
Result In case of a syntactically correct interlock definition the following will happen:
� The Concept/Unity Pro generator later will generate the code for each interlock

definition as Function Block network connected to the interlock input pin of the
corresponding SCoD.

If your interlock definition is syntactically incorrect, you may decide not to correct the
syntax. In this case the following will happen:
� The interlock definition will be marked as a comment.
� The Analyzer will report a warning, when the project is analyzed.
� The code generator will generate a comment in the corresponding Function Block

instead of PLC code.

Functions like
SIN or COS in an
Interlock
Definition

In some cases you may need complex functions like SIN or COS in your interlock
definition. You must configure such functions directly in Concept/Unity Pro because
Unity Application Generator allows only the use of comparing operators and
Boolean operators. The solution is to define a free variable as a placeholder for the
complex function and adding the complex logic after generation directly in Concept/
Unity Pro:.

Step Action Example

1 Define a free variable in the
Equipment Module.
Note: This free variable shall be
the placeholder for the complex
function in the interlock
condition.

You want to use the variable Angle as
argument of the SIN function SIN(Angle) in
an interlock condition.
Define a free variable with the name
SIN_ANGLE which shall be the placeholder
for SIN(Angle).

2 Drop this free variable to an
interlock condition where you
need the complex function.

Define the interlock condition number 1:
SIN_ANGLE=1

3 Use the reference number of the
interlock condition in your
interlock definition.

$1

4 After Concept/Unity Pro
generation add your complex
logic to the corresponding
ConceptUnity Pro section and
connect it with the free variable
pin of the generated Function
Block.

Integrate a SIN Function Block into the
corresponding section.
Define Angle as input and connect the output
to the free variable SIN_ANGLE.
 149

Handling
Example:
Interlock
Definition

The screen shot shows a syntactically correct interlock definition:

Unity Application Generator - Testproject

File View Generate Window Help

Project Explorer

1

Physical Model

Site
area1

pc1
unit1

equ1
msr1 [MSR01]

Site
PLCs

plc2
HMIs
Data Servers
Network Nodes
Network Segments
Routing Paths

aia1 [AIA01T]
equ2

Topological Model

msr2 [MSR01]

plc1

Interlock [equ1_msr2]

Interlock Definition:

Delete Commit

$1 or $2 or ($5 xor $6) or ($3 and $4)

(equ1_msr1_RDY) or (equ1_aia1_DAHH) or ((equ1_msr1_FTR) xor
(equ1_msr1_FTS)) or ((equ1_aia1_SP > 50.5) and (equ1_aia1_TH <=
equ1_aia1_TL))

Show Description

Interlock Condition:

Comment...PINLCKInput:

Number Interlock Variable Operator Condition Variable/Literal Description
1 equ1_msr1_RDY
2 equ1_aia1_DAHH
3 equ1_aia1_SP > 50.5
4 equ1_aia1_TH <= equ1_aia1_TL
5 equ1_msr1_FTR
6 equ1_msr1_FTS
7

Comment

Comment:

OK Cancel

Internetlocks Motor Control MSR2
with Motor Control MSR1
and Mesurement Unit AIA1

OneStep

Generator
150

Handling
Working with the Topological Viewer

Topological
Viewer

The Topological Viewer is part of Unity Application Generator. The Topological
Viewer allows the graphical representation of the Topological Model in a separate
screen on Unity Application Generator. The topological view is created from the
contents of the Topological Model.
With the Topological Viewer you get an overview of the current status of the
automation hardware configuration of your project at any time.

Features Compared to the Topological Model tree the topological view displays more
information on the relations between the hardware components and more details
like for example the free slots in a PLC in a graphical form.
The following features are interesting for you work:
� You can save the topological view as a bitmap and include it into a Word report

file.
� The topological view is synchronized with the Topological Model.
� You can use the topological view for navigating to property dialogs.
� After having changed something in the configuration the topological view is

refreshed as soon as the window of the Topological Viewer is re-activated.
� The window of the Topological Viewer can be open while other dialogs are open.

Note: The Topological Viewer is not a graphical editor. It is not possible to create
new objects like PLCs, hardware modules, ... or deleting them. This has to be done
by the menus of the Topological Model tree.
 151

Handling
Example
Topological View

Topological View of an example project:

1 The topological view is based on the Network Segments which are represented as
horizontal lines in different colors. The color indicates the protocol type (Modbus Plus or
Ethernet).

2 The Network Segments are labeled with the name and protocol type.

3 The PLCs, Data Servers, Network Nodes or Routing Paths are connected to the Network
Segments.

4 A PLC consists of racks and HW modules. The racks are represented as a box showing
the slot with the HW modules and - in the display mode ’complete’ the remaining empty
slots. The HW modules are marked with an abreviation of the module category. The
communication modules are connected with the corresponding Network Segment.

5 Link number: The link number is the Modbus Plus address, the Ethernet address or the
comunication path (for Routing Path objects). For Ethernet addresses only the last byte is
displayed, for communication paths only the first byte is displayed. Moving the mouse over
the abreveated address shows the complete address.

Eth_Seg1

Ethernet

4 14

6

NetPartner2

Eth_Seg2

Ethernet

5

DatServ2

7

Ethernet I/O_Drop0

15 16

C
P
U

A
O

M_PLC2

A
O

D
D
I

17 18

A
O

A
O

19

E
X
P

8

36

P
S

C
P
U

N
O
E

N
O
E

C
R
P

E
X
P

E
X
P

Q_PLC1

D
D
I

D
D
O

A
I

A
O

E
X
P

C
R
A

Remote_Drop23

23

D
D
I

D
D
O

A
I

A
O

D
I
O

E
X
P

Ethernet I/O_Drop3

9 10 11 12 13

MBP_Seg1

Modbus Plus

20

6

C
P
U

D
D
I

C
O
M

M_PLC1

D
D
I

A
O

A
I
O

D
D
I

MBP I/O Link0

MBP_Seg2

Modbus Plus

20 7

D
D
I

A
I

A
I

E
X
P

I/O Bus

8 9 10 11

P
S

C
P
U

N
O
M

Q_PLC2

1

N
O
E

1

6

C
R
A

D
D
O

D
D
I

DIO Link0_Drop2

2

A
O

D
D
I

A
I

D
I
O

MBP I/O Link0

3

E
X
P

4 5 6

NetPartner1

DatServ1

Network Segment: MBP_Seg2
Network Type: Modbus Plus

Data Server: Datserv1 (20)
HW Module: Q_PLC2 Local_Slot2_140-CPU-534-14 (1)
HW Module: Q_PLC2 MBP I/O Link0_Slot3_170-ADI-340-00 (3)
HW Module: Q_PLC2 MBP I/O Link0_Slot4_170-AAI-030-00 (4)
HW Module: Q_PLC2 MBP I/O Link0_Slot5_170-ADM-370-10 (5)
HW Module: Q_PLC2 MBP I/O Link0_Slot6_170-ANM-050-10 (6)
HW Module: M_PLC1 Local Momentum_Slot2_172-PNN-210-22 (7)
HW Module: M_PLC1 MBP I/O Link0_Slot8_170-ADI-340-00 (8)
HW Module: M_PLC1 MBP I/O Link0_Slot9_170-AAO-921-00 (9)
HW Module: M_PLC1 MBP I/O Link0_Slot10_170-ADM390-10 (10)
HW Module: M_PLC1 MBP I/O Link0_Slot11_170-ADI-340-00 (11)

43

2 5

7

6 1
152

Handling
6 A thin line between the CRP head and the CRA drop module connects remote racks. The
connection to a CRA module is labeled with the rack number.

7 A window opens containing information on the object when moving the mouse over the
object.

How to ... The table explains how to work with the Topological Viewer:

If you want to... Then...

Change the display to
� Complete: Displaying all slots

of PLCs
� Compact: Displaying only

used slots
� Communication: Displaying

only the hardware
configuration for the
communication

Use the context menu by clicking somewhere in the
window of the Topological Viewer.

See more information of an
object

Move the mouse over the symbolized object.
Result: Near to the mouse pointer a window opens
containing detail information on the object.
Note: If you click once on the symbolized object the
object is selected in the Topological Model tree.

Move a non-visible object into
the visible area of the topological
view

Select the desired object in the Topological Model tree.
Note: The selected object moves into the visible area of
the display and its name displayed with a yellow
background.

Edit an object Right-click on the symbolized object or on it’s label; the
context menu opens
Double-click on the symbolized object or on it’s label; the
objects property dialog opens
Note: If you now enter new information in the property
dialog, this will be automatically applied in the topological
view.

Save the topological view as a
bitmap

Right-click somewhere in the topological view, select
Create Bitmap... and enter the target filename for the
bitmap.

Include the topological view in a
MS Word report file

In the Report dialog select the topological view.
 153

Handling
How to View the Generation Status

Overview You can view at any time, which objects have been changed after the last generation
and have to be re-generated. This possibility is necessary for keeping the project
consistent, for example if you have generated individual PLCs for testing purposes
or other reasons.

Viewing the
Generation
Status

Possibilities for viewing the information about the status of generation:

If you need information about ... Then...

How the project was generated (new or
incremental?)

View the change history of the project with
File → Change History

Which objects still have to be generated for
the PLC

Open the list of objects to be generated with
File → Properties → Objects to be
generated → PLC

Which HMIs have to be generated Open the list of HMIs to be generated with
File → Properties → Objects to be
generated → HMI

Which Data Servers have to be generated Open the list of Data Servers to be generated
with File → Properties → Objects to be
generated → Data Server
154

6

Workflow to Build an Application
Overview

Introduction The workflow described in the following is valid for projects developed at a single
site. Unity Application Generator supports also multi-site development. In this case
the overall project is splitted into partial projects, which can be developed in the
same way as described in this chapter.
For more information concerning multi-site project development see: Managing
Distributed Project Development - Project Merge, p. 171

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

General Workflow to Build an Application 156

Defining the Customization 158

Defining the Physical Model 159

Defining the Topological Model 160

Complete the Physical Model 163

Generate PLC and HMI Applications 164

Generate Import File for Net Partners 166

Document the Application or Individual Objects (Report) 167
155

Workflow to Build an Application
General Workflow to Build an Application

Introduction Building an application with Unity Application Generator is divided into several
phases:
� Preparation phase
� Application development
� Test and documentation

Preparation
Phase

The first phase is used to adapt Unity Application Generator to the requirements of
the user company and the specific process. It offers a wide range of customization
options.

Stage Description

1 Customize Unity Application Generator so that it applies to the guidelines of the
specific project e. g.:
� Naming convention
� List of tools linked to the project
� Allowed PLC types and PLC modules
� ...
156

Workflow to Build an Application
Application
Development

The application development is a multi stage process:

Test and
Documentation

The last phase covers the testing and bug fixing as well as the documentation of the
project:

Stage Description

1 Define the Physical Model:
� Areas
� Process Cells
� Units
� Equipment Modules
� Control Modules
� Parametrize the Control Modules

2 Define your Topological Model:
� Network
� PLCs
� HMIs

3 Complete the Physical Model with control information e. g.
� which Equipment Module is controlled by which PLC,
� which Equipment Module belongs to which Control Domain,
� ...

4 Analyze the application:
� Missing information
� Consistency of information

5 Generate the PLC and HMI applications

6 Complete the PLC and HMI applications with the standard PLC and HMI
programming tools e. g. Concept, Unity Pro, Monitor Pro, iFIX

7 Generate import files for Net Partners

Stage Description

1 Test your application.

2 Make all required changes to your process design in Unity Application Generator
and if necessary regenerate incrementally.

3 Document your application with the report generator.
 157

Workflow to Build an Application
Defining the Customization

Overview This section gives an overview of the first steps of a project.

Steps with the
Customization
Editor

Customization steps (for more information how to work with the Unity Application
customization editor see Customizing Unity Application Generator, p. 243):

Steps within
Unity Application
Generator

In Unity Application Generator do the following:

Step Action

1 Define the libraries to be used in your project.

2 Define the tools which you use to document your process e.g. CAD, Word Doc,
etc.

3 Define the description length of your comments.

4 Define the naming conventions for the different elements of Unity Application
Generator.

5 Define the access levels.

6 Define the alarm groups.

7 Define the alarm priorities.

8 Define the archive names.

9 Define the communication frames.

Step Action

1 Open a new project and select a customization file (File → New).

2 Save the new project in the desired directory (File → Save as ...).

3 Define the path of the PLC application (View → Options → PLC → PLC Project
Path).
Note: The PLC project path is the path for Concept/Unity Pro projects, which will
be generated each in its own subdirectory.
158

Workflow to Build an Application
Defining the Physical Model

Overview This section will give an overview of what has to be done to define the Physical
Model.

See also:
� The Physical Model, p. 25
� Interfaces with other Tools (Import and Export Features), p. 183

Steps to Define
the Physical
Model

To define the Physical Model take the following steps:

Note: For efficiency use the possibility of importing data from other tools, like
AutoCAD. Unity Application Generator is able to import parts of the Physical Model
or the complete Physical Model as a CSV file.

Step Action

1 Enter Instruments (future Control Modules) in the Instrument List and specify the
properties.
Note: It is possible to import Instruments as a CSV file from the Pipe &
Instruments Drawing (P&ID) into the Instrument List.

2 Define the Areas, comment each and attach the documents which are relevant
to the Areas.

3 Repeat step 2 for Process Cells and Units.

4 Define the Equipment Module, describe and comment each and attach the
documents which are relevant to the Equipment Module. PLC and HMI related
definitions will be done after the Physical Model is built up.

5 Create Control Modules in the Equipment Module objects or drag Instruments
from the Instrument List to the Equipment Module objects (by this, the
Instruments become Control Modules and disappear from the Instrument List).
Complete the Control Module properties.
Note: It is possible to configure Control Modules without specifying a type (type-
less Control Module), if you are not sure yet about the necessary Control Module
implementation.
 159

Workflow to Build an Application
Defining the Topological Model

Overview This section will give an overview of what has to be done to define the Topological
Model. First the network should be defined. Information from this definition is needed
for other elements in the Topological Model.
See also: The Topological Model, p. 59

Steps to Define
the Network

To define the network take the following steps:

Steps to Define
the PLCs

To define the PLCs take the following steps:

Step Action

1 For Modbus Plus define the Network Segment (name and network type).
For Ethernet define the Sunbnet mask and the Default Gateway.

2 For Modbus Plus define the Routing Paths (send/receive, path).

Step Action

1 Define the PLCs, comment each and attach the documents which are relevant
for the PLC. Then define the PLC project name (one project for each PLC). For
Quantum in addition define the local rack size. For Momentum the local rack size
is fixed to 2.
The Momentum PLC is only available in Concept. Within Unity Pro the Quantum
and Premium PLCs are available.

2 Assign the Equipment Module to the PLCs. In the properties of the PLC there is
an I/O statistic which shows how many I/O points are needed.

3 Define additional racks for each PLC, defining its link type, drop number and rack
size.

4 Define the hardware modules inside each rack.

5 Define address ranges for each PLC.
Note: Check the addresses at the end of the process definition to optimize the
PLC memory usage.

6 For communication modules and CPUs define their connection to the Network
Segment and network address.
160

Workflow to Build an Application
Steps to Define
the HMI

To define the HMI take the following steps:

Steps to Define
the Data Servers

To define the Data Servers take the following steps:

Steps to Define
the Network
Nodes

To define the Network Nodes take the following steps

Step Action

1 Define the HMI, comment each and attach the documents which are relevant to
the HMI.

2 Define the Control Domains of each HMI and comment the Control Domain.

3 Assign the Equipment Modules to the Control Domains.

Step Action

1 Define the Data Servers, comment each and attach the documents which are
relevant for the Data Server.

2 Define the time out for the Data Server

3 Define the connection to the network (segment, address).

Step Action

1 Define the Network Nodes, comment each and attach the documents which are
relevant for the Network Node

2 Define the connection to the network (segment, addresses)
 161

Workflow to Build an Application
Steps to Define
the
Communication
Channels

To define the communication Channels of each PLC take the following steps:

Steps to
generate the
PLCs

To generate the PLCs take the following steps:

Steps to finalize
the project

To finalize the project take the following steps:

Step Action

1 Select a PLC

2 Define the communication Channels and comment them. A Channel is required
for each communication partner of the PLC.
� Channel name
� Communication type (PLC, Data Server, Net Partner) and communication

partner
� Communication Routing Path and timeout
� Address ranges for 0x and 4x in case of Net Partners
Note: For communication type Data Server the statistics (Number of available
variables, number of used variable, variables used in percent) of the HMI
variables can be displayed using the menu command Open HMI
Communication. If more than 100 % of the a communication frame is used, with
the next run of the memory mapper this communication frame will be
recalculated. To prevent this, increase the number of HMI variables in the PLC
properties.

3 Repeat step 1 until you have defined the communication Channels and
communication partners for each PLC.

Step Action in Unity Application Generator

1 Open project exclusively.

2 Generate PLCs.

3 Select a PLC in the Topological Model and press the Concept/Unity Pro icon in
the tool bar to open the project in Concept/Unity Pro.

4 After each Generate PLC establish the connection between communication
module and network in Concept/Unity Pro.

Step Action in Concept/Unity Pro

1 Create user logic of the project.

2 Analyse project using Build → Analyse Project (Unity Pro only).

3 Debug project if necessary.

4 Download project to PLC.
162

Workflow to Build an Application
Complete the Physical Model

Overview This section will give an overview what has to be done to complete the Physical
Model following the Topological Model.

Steps to
Complete the
Physical Model

Steps to complete the Physical Model

Step Action

1 Assign a PLC to each Equipment Module and define a Concept/Unity Pro section
name for the generated code of the Equipment Module.

2 Assign an HMI/Control Domain to each Equipment Module.

3 Define free variables for all Equipment Modules.

4 Assign a type to type-less Control Modules; define the properties corresponding
to the type.

5 Define free variables for the Control Modules.

6 To get an overview of the available and required IO points consult the IO
statistics in the PLC properties. Add more IO modules if needed.

7 Assign variables of type IO_PLC to the IO modules (drag from the variable
spreadsheet and drop on the IO point spreadsheet of an IO module).

8 Define the variables to be communicated e.g. between PLCs (drag from the
variables spreadsheet to the PLC communication table)
Note: The communication with the HMI via Data Servers is done automatically
by Unity Application Generator.

9 Define the variables type PLC_NET to be communicated between PLCs and Net
Partners (drag frome the variables table to the Net Partners communication
table).
Note: Each variable of type PLC_NET may only be used once for this action,
otherwise the address is ambiguous.

10 Optional: To get an overview of the calculated addresses, you can run the
Memory Mapper seperately.

Note: For the communication with the HMI via Data Servers you do not need to
define anything. This is done automatically by Unity Application Generator.
 163

Workflow to Build an Application
Generate PLC and HMI Applications

Overview This section will give an overview what has to be done to generate and test the PLC
and HMI applications.
An application will neither be totally correct nor complete after the first code
generation. This will require changes to the design. In the following the procedures
for the first generation and update generations are described.
See also:
� General Rules for Project Configuration and Generation, p. 126
� How to View the Generation Status, p. 154
� Overview of Generated Code and Generation Principles, p. 275
� Code Generation for Individual PLCs, p. 173

Steps to
Generate New
PLC and HMI
Applications

To generate the PLC and HMI applications take the following steps:

Step Action

1 Run the Analyzer. It will check the entire application. The result is a shown in the
so called message window.

2 Check the Analyzer report and correct all problems. Each line in the report is a
hyperlink to the source of the problem, which can be accessed by double clicking
the line.

3 Repeat step 1 and 2 until all problems are solved.

4 Check the used memory ranges in the PLC properties and define the reserve
locations.

5 Open the project with Open Exclusive
Note: Open Exclusive excludes other users from working on the same project.
This is necessary if you intend to carry out a code generation.

6 Generate the Concept/Unity Pro application.

7 Prepare and generate the HMI application.
See: Supported HMIs and their Setup, p. 193.

8 Complete the PLC and HMI applications with the appropriate standard tools
e. g. Concept/Unity Pro and Monitor Pro or iFIX.
164

Workflow to Build an Application
Steps to Update
the Application

To update the application take the following steps::

Step Action

1 Identify changes to the process design which have to be made within ONESTEP
Generator, for example:
� Definition of new variables
� Adding modules to a PLC
� Additional Equipment Modules or Control Modules
� ...

2 Make all changes to the design in Unity Application Generator.
Rule: Whatever can be done within Unity Application Generator must be done
by Unity Application Generator.

3 Run the Analyzer. It will check the entire application.
Result: The Analyzer report is a shown in a message window.

4 Check the Analyzer report and correct all problems.
Note: Each line in the report is a hyperlink to the source of the problem, which
can be accessed by double clicking the line.

5 Repeat steps 3 and 4 until all problems are solved.

6 Open the project with Open Exclusive
Note: Open Exclusive excludes other users from working on the same project.
This is necessary if you intend to carry out a code generation.

7 Generate the Concept/Unity Pro application.
Note: By default the generation is done incrementally. In the Options dialog you
can switch between incremental generation and new generation.

8 Prepare and generate the HMI application (this is done incrementally by default).
See: Supported HMIs and their Setup, p. 193.

9 Complete the PLC and HMI applications with the appropriate standard tools e.
g. Concept/Unity Pro and Monitor Pro or iFIX.
 165

Workflow to Build an Application
Generate Import File for Net Partners

Overview For the communication of the Net Partners with the control application, Unity
Application Generator generates a CSV file, which can be imported into the Net
Partners.
See also Generation for Net Partners, p. 364.

Step to Generate
Import File for
Net Partners

Step to generate CSV-file for import in the Net Partners

Step Action

1 For each Net Partner generate CSV-file (Net Partner → Properties → Export
Variables)
166

Workflow to Build an Application
Document the Application or Individual Objects (Report)

Overview With the Report function you can generate different reports for the documentation
of your project, for example the network configuration, the complete Physical Model
or I/O variables. Additionally, you have the possibility to print a report of individual
objects.
Unity Application Generator provides several document properties
(DOCPROPERTY) (e.g. UAGVersion, UAGProjectName, etc.) which can be used
in Microsoft Word template files (.dot). The final list of the document properties
provided can be found in the ReleasenNotes.txt. An example template file
(example.dot) can be found in "Doc" directory.

Steps to
Document
Individual
Objects

To generate the documentation for individual objects take the following steps:

Steps to
Document the
Application

To generate the documentation the complete application take the following steps:

Note: The documentation is generated as a Microsoft Word document. This
requires to have Microsoft Word installed on the PC on which the documentation
shall be generated.

Step Action

1 Right-click on the object to report on.

2 Select Report from the context menu.
Result: The Report-dialog opens.

3 Define a Word template file and a destination for the generated report file.

4 Define if the sub-objects shall be included in the report (checkbox).

5 Run the report generator (Report button).

Step Action

1 Open the report generator dialog (File → Report).

2 Define a Word template file and a destination for the generated report file.

3 Select the chapters to be generated.

4 Run the report generator (Report button).
 167

Workflow to Build an Application
168

III

Project Management
Overview

Introduction In this part you will learn how a new project can be managed when using Unity
Application Generator and what tasks the project administrator has to fulfil.
The following features offer very interesting possibilities for a modern project
management:
� Merge of projects
� Open interfaces (import/export via CSV files)
� HMI support
� Customization tool (Unity Application Generator Customization Editor)

What's in this
Part?

This part contains the following chapters:

Chapter Chapter Name Page

7 Managing Distributed Project Development - Project Merge 171

8 Interfaces with other Tools (Import and Export Features) 183

9 Supported HMIs and their Setup 193

10 Customization and Project Maintenance 241
169

Project Management
170

7

Managing Distributed Project
Development - Project Merge
Overview

Introduction This chapter describes the collaborative engineering (remote, multi-site engineering
efforts).

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Overview 172

Code Generation for Individual PLCs 173

Workflow of Distributed Project Development 174

General Preconditions for Project Merge 177

Merging of Physical Models 178

Merging of Topological Models 180
171

Distributed Development
Overview

Managing
Distributed
Project
Development -
Project Merge

Unity Application Generator supports collaborative engineering (remote, multi-site
engineering efforts) with the following functionalities:
� Project merging: An automation project is separated into partial projects which

are developed by independently working engineering groups. The partial projects
can be merged to a single, overall project in a safe and easy way.

� Code generation for individual PLCs

Characterization
of the Merge
Functionality

The merge functionality has the following characteristics:
� All objects of the project to be merged will be created in the overall project exactly

as they are defined in the project to be merged.
� One task of engineering is to complete the generated PLC logic and the HMI

applications. Therefore merging includes the existing Concept or Unity Pro
projects, data servers and HMIs belonging to the merged project.

� To be able to merge two separately developed projects, several pre-conditions
have to be met. Before the merging takes place, both projects will be analyzed if
they meet these conditions. If the Analyzer detects errors, merging is aborted and
the user has to correct these errors first.

� When the user selects to merge two projects, Unity Application Generator asks
to save the current project as a version in the archive to have a backup of the
existing project in case of undesired results.
172

Distributed Development
Code Generation for Individual PLCs

Code Generation
for Individual
PLCs

It is possible to select an individual PLC and generate the code for this PLC via a
context menu item.
This is especially useful in the case of distributed development, where different
engineers or groups are responsible for different PLCs. This feature may also be
useful for a control engineer elaborating the PLCs one after another.

What is
Generated?

If you generate for an individual PLC only the variables of this PLC are mapped to
memory addresses, all other variables are not influenced.

Rule Ensure that the PLC projects are generated consistently and are downloaded
correctly to the PLCs.
See: How to View the Generation Status, p. 154

CAUTION

Risk of inconsistencies between the PLCs

Be careful when generating individual PLCs! Generating only one PLC
may cause inconsistencies between PLCs.
This can for example be the case, if the communication between PLCs
has been configured in Unity Application Generator. Then the
generated PLC has already the correct communication setup while the
other PLCs have not. This is comparable with the situation that the code
for one PLC is already downloaded, while for the others not.

Failure to follow this precaution can result in injury or equipment
damage.
 173

Distributed Development
Workflow of Distributed Project Development

Phase 1: Split the
Work

Split the work of the process engineers into different groups as described in the
following steps:

Guidelines for
the Split

Do not split the following objects:
� Equipment Module
� PLCs
� HMIs
� Data Servers

Note: Even if the complete system is designed to work with only one Data Server,
it is still necessary to define a Data Server in each partial project (because it is
not possible to merge two iFIX PDB files). After the merge, the Data Servers must
be merged manually in the overall project, see phase 4, step 3.

Step Action

1 Define the customization.

2 Create a new Unity Application Generator project.

3 Define the network setup with Network Segments and Routing Paths.

4 If only one HMI application will be used for the complete project, define it now.
If there will be more HMI applications, let each engineering group define its HMI
application later.

5 Define the Physical Model hierarchy down to the level of responsibility of each
group.

6 Define clearly which group is responsible for which part of the automation of
the plant.

7 Create a copy of the project for each group, each copy (partial project) with a
different name.
174

Distributed Development
Phase 2:
Independent
Work of Groups

Each group now works independently to complete their part of the process design:

Phase 3: Project
Merge

After each group has completed their work the projects can be merged.

1 Define the following for the project parts of their responsibility:
� Equipment Module, Control Modules and variables with different names
� PLCs with different names and the PLC configurations
� The mapping of the objects of the Physical Model to the objects of the

Topological Model
� Data Servers with different names
� Network Partners with different names
� HMIs (if not defined globally in phase 1)
� The communication between the PLCs (in the scope of the PLCs defined

by the group)

2 Generate the PLC for each partial project.
Note: It is possible to generate code for individual PLCs, see Code Generation
for Individual PLCs, p. 173.

3 Complete the Concept/Unity Pro applications manually as far as desired in
each project group.
Note: Manual changes in Concept/Unity Pro will not be lost! They will be taken
over in the overall project when the project parts are merged.

4 Copy the Concept/Unity Pro projects belonging to the partial projects to the
PLC project path of the overall project.

5 In the case of using iFIX HMIs:
1. Generate for iFIX HMI for all partial projects.
2. Copy the iFIX GRF files of all partial projects into the local DYNAMICS/PIC

directory.
3. Copy the iFIX PDB files of all partial projects into the local DYNAMICS/PDB

directory.

1 Open one of the projects exclusively.

2 Start project merge with File → Merge and select the project to merge.
Result: The projects will be analyzed for consistency and uniqueness of
names and addresses. If there are errors reported, the projects will not be
merged and the errors have to be corrected. If no errors occur, the projects will
be merged.
Note: The archived versions and the change history of the project to be merged
will not be copied to the overall project.

3 Repeat Step 2 for all partial projects.
 175

Distributed Development
Rules after
Project Merge

Once you have merged projects obey the following rules:
� After project merge do not use and modify the partial projects anymore!
� Perform all further modifications only in the overall project!

Phase 4:
Complete Overall
Project

After the merge, the overall project has to be completed:

Note: A repeated merge is not possible because the overall project already
contains the objects of the projects to be merged (for example Equipment Modules,
PLCs) which would lead to errors during analysis of the projects to be merged.

1 Define the communication between PLCs that belonged to different partial
projects.

2 Define the interlocking between Control Modules that belonged to different
partial projects.

3 If you had created a Data Server for each partial project, but the overall project
shall have only one Data Server, merge the Data Servers as follows:
1. Delete all existing Channels to the obsolete Data Server(s).
2. Create new Channels between the PLCs and the finally desired Data

Server.
3. Delete the obsolete Data Server(s).
Note: No additional manual work has to be done (like recreating the
communication tables), and no data is lost.

4 Generate the project incrementally.
176

Distributed Development
General Preconditions for Project Merge

Overview When two projects are merged, Unity Application Generator checks some general
conditions before the merge is possible. When merging two projects you open the
main project and merge another project into the opened (current) project. If you have
more projects to merge, you merge one project after the other into the current
project.
For two projects to be merged the following restrictions are valid.

Software Version The projects to be merged have to be created with the same version of Unity
Application Generator.

HMI Brand The HMI brand has to be same in both projects.

SCoD Libraries � The SCoD libraries used in both projects have to be the same.
� The SCoD library and SCoD versions in both projects have to be the same.

Opening of
Projects

� The current project has to be opened exclusively.
� The project to be merged must not currently be opened by another user.
� All objects must be consistently generated. This means: the lists of objects to be

generated must be empty, see How to View the Generation Status, p. 154.

Customization It is not required that both projects have the same customization. Thus, after a
successful merge an analysis of the project customization may be necessary. This
case is detected by Unity Application Generator and an analysis of the
customization will be offered to the user.

Network
Addresses

The network addresses of the network nodes in the project to be merged must be
different from the addresses in the current project.
 177

Distributed Development
Merging of Physical Models

Overview All objects are identified by their name. Thus, if two objects are detected with the
same name, they are considered as being the same, at least from the point of view
of the merge function.

Note: There may be objects existing identically in both projects (identified by their
name). In this case merging will keep the existing objects in the current project and
will not check inconsistencies between the object properties in the two projects.
178

Distributed Development
Merge of
Elements and
Rules

For the elements of the Physical Model, some rules have to be obeyed for correct
merge:

Element Rules Merge Processing

Areas, Process
Cells, Units

The hierarchy may be identical,
partly overlapping or totally
different in both projects. If they
are partly overlapping, these
objects have to be identical.

Merging will take care to combine
the hierarchy of both projects
appropriately.

Equipment
Module

The Equipment Module names in
both projects have to be different.

The Equipment Module of the
project to be merged will be created
identically in the overall project.

Control Modules Control Module names must be
unique within one Equipment
Module. Two or more Control
Modules with the same name may
exist in both projects as long as
they belong to different Equipment
Module.

The Control Modules of the project
to be merged will be created
identically in the overall project.

Variables Variable names must be unique
within one Equipment Module or
Control Module. Two or more
variables with the same name
may exist in both projects as long
as they belong to different
Equipment Module or Control
Module.

The variables of the project to be
merged will be created identically in
the overall project.

Instrument List Two or more Control Modules with
the same name may exist in the
Instrument Lists in both projects,
because the name of the Control
Modules in the Instrument List do
not have to be unique.

The Control Modules in the
Instrument List of the project to be
merged will be created identically in
the overall project.
 179

Distributed Development
Merging of Topological Models

Overview All objects are identified by their name. Thus, if two objects are detected with the
same name, they are considered being same, at least from the point of view of the
merge function.

Merging of
Elements and
Rules

For the elements of the Topological Model, some rules have to be obeyed for correct
merging:

Note: There may be objects existing identically in both projects (identified by their
name). In this case merging will keep the existing objects in the current project and
will not check inconsistencies between the object properties in the two projects.

Element Rules Merge Processing

Network
Segments

The same Network Segments
may exist in both projects. If
Network Segments with the same
name exist in both projects they
have to be identical.

If Network Segments are existing in
the project to be merged and not in
the current project, they will be
created in the overall project.

Routing Paths The same Routing Paths may
exist in both projects. The network
addresses must be unique, for a
new Routing Path.

If Routing Paths are existing in the
project to be merged and not in the
current project, they will be created
in the overall project

PLCs � The PLCs in both projects have
to be different.

� The Concept/Unity Pro
projects have to be generated
before the merging.

� The Concept/Unity Pro
projects belonging to the
project to be merged have to
be copied manually to the PLC
project path of the overall
project.

The PLCs of the project to be
merged will be created identically in
the current project.
Merging will take care to create all
administration information to enable
the user to continue to generate
incrementally the PLCs in the
overall project.
180

Distributed Development
HMIs � The HMIs in both projects may
be the same.

� Monitor Pro / iFIX: The HMI
screens (GRF files) have to be
generated before the merging
and the Monitor Pro / iFIX GRF
files have to be copied
manually to local
DYNAMICS\PIC directory.

If HMIs exist in the project to be
merged and not in the current
project, they will be created in the
overall project.
Merging will take care to create all
administration information to enable
the user to continue to generate
incrementally the HMIs in the
overall project.

Control Domains The control domains in both
projects may be the same as long
as they belong to the same HMI.

Data servers � The data servers in both
projects have to be different.

� Monitor Pro / iFIX: The Data
Servers (tag databases = PDB
files) have to be generated (as
part of the HMIs) before the
merging and the iFIX PDB files
have to be copied manually to
local DYNAMICS\PDB
directory.

The Data Servers of the project to
be merged will be created
identically in the overall project.

Net Partners The Net Partners in both projects
have to be different.

The Net Partners of the project to be
merged will be created identically in
the overall project.

Channels The Channels in both projects
have to be different, since all
Channels belong to PLCs.

The Channels of the project to be
merged will be created identically in
the overall project.

Element Rules Merge Processing
 181

Distributed Development
182

8

Interfaces with other Tools
(Import and Export Features)
Overview

Introduction Unity Application Generator allows for the import and export of data to and from it´s
database by the means of CSV files. This concept of open interfaces facilitates the
project development, because data can be exchanged with other tools like for
example AutoCAD.
In this chapter you learn about the concept of open interfaces and read about
examples for using them.
As reference information use: Format of the CSV Files for Import and Export, p. 367.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Concept of Open Interfaces 184

How to Import/Export CSV Files 186

Example: Import Instruments / Physical Model Hierarchy 188

Example: Import Initial Values for Variables 191
183

Import and Export
Concept of Open Interfaces

Open Interfaces Unity Application Generator offers open interfaces for the import and export of data
from and to other applications. Import and export is possible for objects of both, the
Physical and the Topological Model. The data is exchanged via CSV files (Comma
Separated Value) for which a specific format has been defined in Unity Application
Generator.
During the import process Unity Application Generator checks all data before it is
included in the database, for example for compliance with the project customization.
Erroneous data is ignored and a message informs the user about the errors.

Examples Examples for import:
� Import Instruments from the pipework and instruments drawing, created for

example with AutoCAD
� Import initial values of existing variables for tuning purposes

Examples for export:
� Export a PLC for the creation of wiring diagrams with AutoCAD
� Export the variables for a Net Partner

Restrictions for
Unity Pro

Only objects which are created in Unity Application Generator can be imported e.g.:
� Instruments
� Initial values of existing variables
� Hardware modules in Modbus Plus, Ethernet or Generic racks.

Objects which are NOT created in Unity Application Generator CANNOT be
imported e.g.:
� Unity Pro PLCs
� Unity Pro racks
The export of objects is not restricted. All objects can be exported.

CSV File A CSV (comma separated value) file is an ASCII file containing a number of lines.
Each line of a CSV file contains a number of entries, separated by a separator, for
example a comma or a semicolon or a tab.
184

Import and Export
Format of CSV
Files

The CSV files for import and export to and from Unity Application Generator are
defined as follows:
� The first entry in each line contains a keyword to specify which object is contained

in the line.
� The following entries in the line contain the attributes of the object. The order of

the values is fixed for each keyword.
� The separator can be selected by the user.

The format of CSV files is the same for import and export.
For more information see: Format of the CSV Files for Import and Export, p. 367
 185

Import and Export
How to Import/Export CSV Files

Procedure for
Import

For importing a CSV file follow the steps:

Result During the import process the message window is used to display the current activity
of the import. The CSV file is processed line by line. First, the line is analyzed to be
syntactically and logically correct. In case of an error a message is written to the
message window. Unity Application Generator ignores the erroneous line and
processes the next line. If the line is correct, the line is interpreted and the different
objects are created - if necessary. The Import function uses the settings of the
Analyzer options whether to display warnings and stop after a certain number of
errors or warnings.

Note: Import / Export between different product versions of UAG is not supported.

Step Action

1 Prepare a CSV file corresponding to the format described in Format of the CSV
Files for Import and Export, p. 367
Note: The import data must fit the naming conventions of your target project
customization.

2 Open the Unity Application Generator target project.

3 Set the separator in Unity Application Generator to fit the separator in your CSV
file (View → Options).

4 In the Analyzer options (View → Options → Analyzer) set if warnings should
be displayed and if the import should be stopped after a certain number of
errors or warnings.

5 Start the import process with File → Import... .
186

Import and Export
Procedure for
Export

For exporting parts of the physical or Topological Model as a CSV file follow the
steps

Result Unity Application Generator generates a CSV file containing the selected object
including all objects which are contained in it. The lines in the CSV file correspond
to the format described in Format of the CSV Files for Import and Export, p. 367.

Step Action

1 Set the separator in Unity Application Generator as desired for the target CSV
file (View → Options).

2 Open the context menu of the object to export by right-clicking on it in the
model tree and select Export.

3 Follow the instructions in the dialog box.

Note: If you intend to export the complete project, thus Physical and Topological
Model, use File → Export... .
 187

Import and Export
Example: Import Instruments / Physical Model Hierarchy

Introduction The import functionality provides an open interface to fill Unity Application Generator
project databases from an external source in a simple but very powerful way. By
means of a CSV (comma separated values) file it is possible to create Instruments
or even the complete hierarchy of the Physical Model.
See also: Instruments, p. 42 and Instruments: CSV File Format, p. 385.

Import from P&ID The import feature is especially useful for customers who start the design with the
P&ID, that is with the drawing of the pipe works and instruments created with
another tool like AutoCAD with Rebis extensions. Having already defined all
instruments (Control Modules) with these kind of tools, you can save the time to re-
enter the same information into the Unity Application Generator project by using the
import functionality.

Line in CSV File For importing Instruments or the Physical Model hierarchy each line in the CSV file
has the following entries:
INSTRUMENT;controlmodule_name;controlmodule_type;library_name;control
module_description;controlmodule_comment;equipmentmodule_name;
unit_name;processcell_name; area_name

Separator The separator must not necessarily be a semicolon. The separator character is set
in the View → Options dialog in Unity Application Generator.

Note: This simplified format is only available for import. The format for exporting
the objects of the Physical Model hierarchy is described in Physical Model
Elements: CSV File Format, p. 370.

Note: Do not use a separator character that may be used in the fields.
188

Import and Export
Options You have the option to either import Instruments without the hierarchy in the
Physical Model or with the complete hierarchy up to the area level:

Description of
Entries

The entries in one line of the CSV file for importing Instruments have the following
meaning. Required fields are marked with a star *. If not required field are not
specified, they remain empty (;;).

If you want to... Then...

Import only Instruments (without hierarchy
in the Physical Model)

Omit the last four entries
equipmentmodule_name;
unit_name;processcell_name;
area_name.

Import Instruments as Control Modules with
complete hierarchy in the Physical Model

Specify all the four entries
equipmentmodule_name;
unit_name;processcell_name;
area_name.

Entry Description and Check during Import Example

* INSTRUMENT The first entry must be exactly the string INSTRUMENT to identify
the contents of the line.

* controlmodule_name This entry contains the name of the Control
Module to be created. The name is
checked to be compliant with the naming
convention used in the project
customization. If the Control Module
should be created in an Equipment
Module, the uniqueness of the Control
Module name in the scope of the parent
Equipment Module is checked.

motor1

* controlmodule_type This element contains the name of the
Control Module Type of the Control Module
to be created. The name is checked to be
exactly one of the Control Module Types in
the Control Module Type library specified
in controlmodule_type_library.

MSR01

* library_name This entry contains the name of the Control
Module Type library, which contains the
specified Control Module Type. The library
is checked to be contained in the project
customization.

IATBasic10

* controlmodule_
description

If the text is longer than the allowed
description length, the text is truncated to
the maximum length.

Motor for

conveyer No. 1
 189

Import and Export
Errors During the import process Unity Application Generator checks the entries for
uniqueness of names and for compliance with the customization. If during these
checks an error occurs the processing of the line is aborted and the rest of the line
is ignored. An error message is displayed in the message window.

controlmodule_
comment

This entry contains the comment of the
Control Module to be created. If the text is
longer than the allowed comment length,
the text is truncated to the maximum
length.
Note: The special character sequence \n
can be used to specify line feeds as part of
the comment. The special characters
sequence \t can be used to specify tabs as
part of the comment.

Motor for

conveyer

No.1\nThe motor

can be operated

in manual or

auto mode

* equipmentmodule_
name

These four optional entries specify the
hierarchy in the Physical Model where the
Control Module should be created.
If they are omitted, the Control Module is
created in the Instrument List and not
within an equipment in the Physical Model.
If they are specified,
� the objects will be created if they are not

yet existing and
� the Control Module will be created in

the Physical Model hierarchy

Equipment1

unit_name Unit1

processcell_name ProcessCell1

area_name Area1

Entry Description and Check during Import Example
190

Import and Export
Example: Import Initial Values for Variables

Introduction By simply importing a CSV file it is possible to change the initial values of existing
variables. Often PID parameters have to be tuned during commissioning time to
optimize the loops. To restart the process with the optimized loop parameters, these
values have to be stored as the initial value of the appropriate variables. With the
import functionality of the initial values this requirement can be fulfilled in an easy-
to-use way.

Line in the CSV
File

For importing initial values for variables each line in the CSV file has the following
entries:
INITIALVALUE;variable_full_name;initial_value

Example: Initial
Values in a CSV
File

A CSV file for importing initial values for variables looks for example like this:

Description of
Entries

The entries in one line of the CSV file for importing initial values have the following
meaning:

Note: The separator must not necessarily be a semicolon. The separator character
is set in the View → Options dialog in Unity Application Generator for correct
reading of the CSV file.

Line 1 IN ITIALVALUE;variable_name1;initial_value1
Line 2 IN ITIALVALUE;variable_name2;initial_value2
Line 3 IN ITIALVALUE;variable_name3;initial_value3
Line 4 IN ITIALVALUE;variable_name4;initial_value4
Line 5 IN ITIALVALUE;variable_name5;initial_value5
Line 6 IN ITIALVALUE;variable_name6;initial_value6

1 2 3

Entry Description and Check during Import Example

INITIALVALUE The first element must be exactly the string INITIALVALUE to
identify the contents of the line.

variable_full_name This entry contains the full name of the
variable for which the initial value should
be changed. The name is checked to be
the name of an existing variable.

Boiler1_Motor1_

FTR

initial_value This entry contains the initial value of the
variable. The initial value is checked to be
valid according to the data type of the
variable.

3.1415
 191

Import and Export
Errors During the import process Unity Application Generator checks the entries as
described in the above table. If during these checks an error occurs the processing
of the line is aborted and the rest of the line is ignored. An error message is
displayed in the message window.
192

9

Supported HMIs and their Setup
Overview

Introduction Unity Application Generator is able to generate tags and graphics for Monitor Pro or
Intellution´s iFIX or to create a XML file with tag information that may be used by any
HMI (generic HMI). This chapter gives you overview information about the specific
combination HMI - Unity Application Generator and some specific instructions for the
correct configuration of the HMI.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

9.1 Monitor Pro and Unity Application Generator 195

9.2 iFIX and Unity Application Generator 226

9.3 Generic HMI and Unity Application Generator 239
193

Supported HMIs
194

Supported HMIs
9.1 Monitor Pro and Unity Application Generator

Overview

Introduction Unity Application Generator supports Monitor Pro as HMI . For Monitor Pro Unity
Application Generator generates all databases and pictures necessary for the
process visualization.
The Monitor Pro application is generated on the engineering PC and then the
generated objects must be transferred to the production PCs. This chapter
describes in detail the procedures from the preparation of the Monitor Pro
generation to the running of an existing application.

What's in this
Section?

This section contains the following topics:

Topic Page

Introduction 196

Monitor Pro - Default Server Application 197

Generation Modes of Monitor Pro Server Application 200

Data Conversion Monitor Pro vs. Unity Application Generator 202

Monitor Pro Drivers and Communication 206

Alarming 210

Archiving 215

Monitor Pro Client Application 221
 195

Supported HMIs
Introduction

Monitor Pro
Server
Application

To be able to generate a Monitor Pro Server Application, Monitor Pro has to be
installed already. There are no special settings required for UAG during Monitor Pro
installation.

Terminology The following table explains the corresponding terms in Unity Application Generator
and in Monitor Pro:

Term in Unity Application Generator Corresponds to the term in Monitor Pro

Data Server SCADA node

HMI View node

Data Servers and HMIs (all nodes of HMI
system)

Monitor Pro nodes
196

Supported HMIs
Monitor Pro - Default Server Application

Introduction The code generation for SCADA systems creates a Monitor Pro server application
for each data server defined within the UAG project. A Monitor Pro server application
consists of different folders and files.
The user has to specify a Data Server Path for the server application. UAG will
create a default server application in this path. The default server application will be
installed with UAG in the installation directory
\MonitorPro\Server\Standard.zip. The default application includes a set of
default mailbox tags, trigger tags, settings, etc.

Setup of the
Server
Application
Generation

A Monitor Pro server application corresponds to an UAG data server. Several data
servers can be defined. Each data server will be deployed as a different Monitor Pro
server application node.

Data Server Path To be able to generate a dataserver, it is necessary to specify a Data Server Path
in the Options of Unity Application Generator. UAG automatically creates a sub
directory with the name of the dataserver. Thus the generated server application is
located in OPTIONS_PATH\DATASERVER_NAME. Each dataserver has it own
directory structure.

Mailboxes Mailbox is a unique data type that specific tasks use to communicate with each
other.

Tags A tag is a data element stored in the real-time database which is assigned to a
logical name. This tag name is used by Monitor Pro tasks to reference the element
in the real-time database.

Note: If the user wants to enhance the default server application, it is possible to
unzip the file, modify it and save it back as a Standard.zip.
 197

Supported HMIs
Default Server
Application

The default application Standard includes:
� Data logging setup with 4 Mailboxes for:

� ALLOG_HIST_MBX
Used for alarm logging

� DBLCHISTMBX
Used for database logging

� DPLCHISTMBX
Used for datapoint logging

� SECURITYMBX
Used for security logging

These mailboxes exist in the following configuration tables:
� Historian Mailbox Information for dBase IV
� Historian Mailbox Information for ODBC

Monitor Task It is necessary to set the Run flag in the System Configuration table, depending on
the database system the user wants to use. The UAG user can choose between two
database systems, dBase IV and ODBC.
The following figure shows the System Configuration table:

System Configuration Information - SHARED (D:\Monitor\UAG\UAG)FL

Flags Task Name Description Start
Trigger

Task
Status

Task
Message

Dis
Sta

14 F OPC_CLIENT OPC Client TASKSTART_S[13] TASKSTART_S[13] TASKMESSAGE_S[13] TA
15 F DB4_HIST Historian for dBase IV (R) TASKSTART_S[14] TASKSTART_S[14] TASKMESSAGE_S[14] TA

16 F ODBCHIST Hitorian for ODBC TASKSTART_S[15] TASKSTART_S[15] TASKMESSAGE_S[15] TA
17 F DBLOG Database Logger TASKSTART_S[16] TASKSTART_S[16] TASKMESSAGE_S[16] TA
18 R DPLOGGER Data Point Logger TASKSTART_S[17] TASKSTART_S[17] TASKMESSAGE_S[17] TA

19 FR VRN Virtual Real-time Network for Ser TASKSTART_S[18] TASKSTART_S[18] TASKMESSAGE_S[18] TA
198

Supported HMIs
Trigger Tags Some trigger tags are created in the Default Server Application.
The following figure shows the list of available interval timers:

Communication
Mailboxes

Additionally some default communication mailboxes are created in the default
server application.
One mailbox is created to exchange data between the driver and the Ioxlator
task. This mailbox is called MODTIOXMbx. Another mailbox is created to exchange
the data with the PLC. This mailbox is called MODTDrvMbx. The MODTDrvMbx is
used in the driver task and therefore it is created in the Modbus TCP/IP driver
mailbox Definition table. The MODTIOXMbx mailbox is used in the Ioxlator task
and therefore it is created in the I/O Translator Mailbox Definition table.

Interval Timer Information - SHARED (D:\Monitor...FL

Tag Name

1 ALARMSRV POLL
2 FLLANSIG

Hours Mins. Secs.

1
10

10ths

3 sec1 1

4 sec2 2
5 sec3 3
6 sec4 4

7 sec5 5
8 sec6 6
9 sec10 10

10 sec12 12
11 sec15 15
12 sec20 20

13 sec30 30
14 min1 1
15 min2 2

16 min3 3
17 min4 4
18 min5 5

19 min6 6
20 min10 10
21 min12 12

22 min15 15
23 min20 20
24 min30 30
25 hour1 1

*

 199

Supported HMIs
Generation Modes of Monitor Pro Server Application

Introduction There are two modes for the generation of the Monitor Pro server application

Mode: New
Generation

A new generation rebuilds the entire Monitor Pro applications. After confirmation, the
old applications will be renamed to DATASERVER_NAME.BAK.
If Unity Application Generator generates a data server the first time, it makes sure
that there is no existing Monitor Pro server application with the same name. If there
is no subdirectory with the name of the data server, UAG creates it and copies the
default server application to this directory.

Mode:
Incremental
Generation

Incremental or relative generation will be used to synchronize the data of UAG and
the data of the Monitor Pro server application. A relative generation takes the
existing Monitor Pro server applications into account. Since UAG does not generate
the complete data for the Monitor Pro application, the programmer has to add data
manually. UAG does not force the user to adopt a one way strategy. This strategy
makes it possible to modify the process design after having modified the generated
data.

Note: During the generation, all Monitor Pro applications have to be stopped.
200

Supported HMIs
Rules for
Incremental
Generation

Nevertheless, some rules have to be obeyed by the designer and the Monitor Pro
programmer.
� Do not manually create Data Server application that will be generated by means

of UAG.
� Structured variables, which can not be managed by UAG, have to be declared in

the reserved memory range of the PLC in UAG. The overall memory layout
belongs to the PLC. The PLC memory is segmented into different parts, HW
Modules, HMI, Net Partner, PLC Communication and Reserve.

� Do not manually add or modify variables in the Ioxlator datasets generated by
UAG.

� For additional logic (e.g. IML), internal variables can be created in Monitor Pro.
The programmer of this variables in Monitor Pro has to ensure that the variable
name is unique.

The relative generation will not alter the manual enhancements in the server
application, as long as they are consistent with the process design.
When starting the incremental generation, UAG checks the timestamp written to the
Monitor Pro project during the last generation and compares it with the UAG
timestamp for this data server. If no timestamp exists in the Monitor Pro project or
the timestamps have different values, UAG will ask the user how to continue. The
user can select to either start a new generation of this data server or to stop the
generation of this data server.

Generation and
Monitor Pro

If a Monitor Pro application has been generated, this application will not be
intergrated within Monitor Pro directly. It has to be added within the
Configuration Explorer manually on the target machine.
 201

Supported HMIs
Data Conversion Monitor Pro vs. Unity Application Generator

Data Conversion
Types

The data exchange variables for the communication with the HMI system are
categorized according to their communication frames. There are four different
communication frame types and one combined frame (ReadWrite) within Monitor
Pro.
The following table shows the Communication Frame Types available in UAG.

The only valid combination of different frame types is RD & EW and has the meaning
of a read / write frame.
Available UAG data types will be converted to appropriate Monitor Pro data types by
the specific configuration of I/O tasks in Monitor Pro. This configuration will be
generated by UAG.
The following data types can be assigned to a communication frame.

The user can select only one data type per frame in UAG, e.g. BOOL, WORD , DINT,
REAL. The read or write trigger of a specific frame has to be adjusted in Monitor Pro.
UAG will not modify these triggers in the communication setup. Analog, Long, Float
data types will be generated as HREG, Digital will be generated as COIL.
For example, a variable of the datatype BOOL can be assigned only to a frame with
the datatype BOOL. UAG creates for this communication frame a dataset within the
device driver and a dataset in the I/O Translator Dataset Definition. The
variable will be created as Digital in Monitor Pro.

Frame Type Monitor Pro, Generic HMI iFix, PCVue

Read Data (RD) x

Exception Write (EW) x

Block Write (BW) x

Unsolicited Read(UR) x

ReadWrite (RD & EN) x x

Monitor Pro data
type

Equivalent data type
in UAG

UAG frame data type Monitor Pro data
set definition type

Digital BOOL BOOL COIL

Analog BYTE, INT, WORD,
UINT

WORD HREG

Long DINT, UDINT DINT HREG

Float REAL REAL HREG
202

Supported HMIs
Communication
Frame Example

The following table shows an example of communication frames.

The communication frames can be defined in the Customization and the SCoD
Editor. The following properties are required for frame type definition:
� Frame Name (max. 8 characters because of extension _Number. _Number is a

unique number which will be created by UAG. The user must not change this
number.)

� Frame Data Type
� Frame Type

If a PLC has a channel to a data server, all variables assigned to a communication
frame will be generated in the Monitor Pro server application. UAG imports all
defined frame types from the customization into the project, when a channel to data
server is created. If there is a new frame type definition in the SCoD or the
customization, UAG will update the frame definitions of the project with the new
frame. Used frames can not be deleted or modified in the Customization Editor.
If the user opens the HMI Communication dialog in UAG, all frame definitions are
shown.

Frame Name UAG Frame Data Frame Type

ReadFast BOOL Read Data

WritSlow WORD Write Data

WritFast REAL Write Data

... x
 203

Supported HMIs
The following figure shows an example for the HMI communication.

The user has to enter the address ranges for each used frame. He has two different
possibilities to define the ranges.
� Automatic

The Default button in the HMI Communication grid calculates the start
addresses and lengths of all communication frames. This calculation is based on
the available address range and the used memory. After the calculation the
unused memory is evenly distributed to all communication frames. The previous
values will be irreversibly overwritten.
The user has to be aware, that even small changes in the used memory (e.g. by
adding a control module) can lead to a reassignment of several communication
frames.

� Manual
The user has to enter the addresses manually. The address has to fit to the end
address which is defined in the PLC properties and is shown in the header of the
dialog.

Unity Application Generator - gbeck [Exclusive] - [HMI Communication [channel01]]

File View Generate Window Help
1

10:13

Data Server: moni01 Address Range (%M): 1025 - 2048, Length: 1024

PLC: plc01

Generate PLC(s) Generate HMI(s) 27.08.2004plc01 [plc01 - Unity

Name

SynBOOL

Address Range (%MW): 1025 - 2048, Length: 1024

Data Type

BOOL

Frametype

Read & Write (RD & EW

Type

%M

Address

1025

Length

259

End Address

1283

Used

8

% Used

3

ParBOOL BOOL Read & Write (RD & EW %M 1284 251 1534 0 0

EvtBOOL BOOL Read & Write (RD & EW %M 1535 251 1785 0 0

ReadBOOL BOOL Read Data (RD) %M 1786 263 2048 12 5

SynDINT DINT Read & Write (RD & EW %M 1026 86 1111 3 7

ParDINT DINT Read & Write (RD & EW %M 1112 84 1195 0 0

EvtDINT DINT Read & Write (RD & EW %M 1196 84 1279 0 0

ReadDINT DINT Read Data (RD) %M 1280 86 1365 3 7

SynREAL REAL Read & Write (RD & EW %M 1366 84 1449 0 0

ParREAL REAL Read & Write (RD & EW %M 1450 84 1533 0 0

EvtREAL REAL Read & Write (RD & EW %M 1534 84 1617 0 0

ReadReal REAL Read Data (RD) %M 1618 84 1701 0 0

SynWORD WORD Read & Write (RD & EW %M 1702 84 1785 0 0

ParWORD WORD Read & Write (RD & EW %M 1786 84 1869 0 0

EvtWORD WORD Read & Write (RD & EW %M 1870 84 1953 0 0

ReadWord WORD Read Data (RD) %M 1954 84 2037 0 0

Default
204

Supported HMIs
Variable
Communication
Frame
Assignment

Each PLC_HMI variable has to be assigned to a Communication Frame. This is
possible in the SCoD Editor, which means on the type definition. In UAG the
communication frame of a variable can be modified. All the variables of a PLC,
assigned to the same Communication Frame in UAG are packed for optimization
without gaps in the corresponding data set in Monitor Pro.

Alarm Group and
Archive Name

Note: Communication Frames, Alarm Groups and Archive Names are only
deletable if they are not used.
 205

Supported HMIs
Monitor Pro Drivers and Communication

Introduction The adjustments of the Monitor Pro SCADA system are very complex. Unity
Application Generator sets all these adjustments automatically. The following
information gives an overview about the adjustments made by UAG within the
Monitor Pro communication.

Communication
in Monitor Pro

The Monitor Pro server application database tags are updated through Ethernet
(TCP/IP) drivers with the actual values of the PLC variables. IOX/RAPD driver tasks
are used between SCADAs and the PLCs.

Modbus TCP/IP
Driver Device
Definition

Each PLC with a channel to a data server gets the following entries in the Monitor
Pro server application. UAG will generate one Modbus TCP/IP Driver definition per
PLC. The driver definition includes the following items.
� PLC name (max. 16 character)
� IP network address (address of used communication module in channel path)
� Connection timeout (in seconds)

Frame Type
Names

The frame type names consists of different parts. The constituent parts are:
8 characters + _XXXX + YYY, for example readfast_0010002 - frame type name
readfast with the PLC Id 10 and the frame number 2
The following table explains the different parts of the type frame name.

Note: All fields which are not mentioned here will not be filled or modified by the
Unity Application Generator.

Part Description

Name Frame type name. Maximum 8 characters, specified in SCoD or
Costomization Editor.

XXXX PLC identification. A number from 1 to 9999 generated by UAG.

YYY Frame number. A number from 1 to 999 generated by UAG.

Note: The PLC Id and the frame number must not be changed by the user. They
will be generated and administered by Unity Application Generator.
206

Supported HMIs
Modbus TCP/IP
Driver Dataset
Definition

For each frame type there will be at least one data set definition in the driver
definition. If the number of variables assigned to one frame type exceeds the
maximum frame length, UAG will automatically generate additional frames with an
incremental extension number. E.g. the first frame of the frame type = ReadFast
(PLC Id = 1) will be generated as data set ReadFast_0001001, the second of type
ReadFast as ReadFast_0001002 etc. UAG creates more than one frame at the
same time in Monitor Pro when the length exceeds 100 words.
The following table shows the Modbus TCP/IP driver Dataset Definition.

I/O Translator
Protocol Driver
Definition

In addition each PLC gets one I/O translator protocol driver definition. The Ioxlator
driver definition includes the following items.
� Protocol Driver Name (PLC name)
� Protocol Driver Mailbox Tag
� Max MSG in PD (Protocol Driver)

Field Content generated by UAG

Mailbox Tag MODTIOMbx

Data Set Frame Name + _FrameNumber

Type HREG (no booleans) or COIL (booleans)

Start Frame start address

Len Length of the frame (max. 100 for HREG and 1600 for COIL)

Note: All fields which are not mentioned here will not be filled or modified by the
Unity Application Generator.

Note: All fields which are not mentioned here will not be filled or modified by the
Unity Application Generator.
 207

Supported HMIs
I/O Translator
Dataset
Definition

For each frame type there will be at least one data set definition in the I/O translator
configuration, according to the data sets in the driver definition shown above.
The following table shows the I/O Translator Dataset Definition.

The user can adjust the read trigger to have optional read/write rate. The parameter
will not be regenerated by UAG.

Field Content generated by UAG

Data Set Name Frame Name + _FrameNumber

Data Set Control Tag Frame Name + _FrameNumber

Read Trigger IOXRDTrigger

RD Read Data
Depends on frame communication type

EW Exception Write
Depends on frame communication type

BW Block Write
Depends on frame communication type

UR Unsolicited Read
Depends on frame communication type

Abs Yes

Note: All fields which are not mentioned here will not be filled or modified by the
Unity Application Generator.
208

Supported HMIs
Ioxlator Tag
Definition

UAG will generate for each I/O Translator Dataset Definition the appropriate
variables.
The following table shows the I/O Translator Tag Definition.

The following table shows the I/O Translator conversions for UAG data types.

Field Content generated by UAG

Data Tag Variable Name

Dimension 1

Address Absolute variable address

Conv Conversion type, according to the following table

Note: All fields which are not mentioned here will not be filled or modified by the
Unity Application Generator.

UAG data type I/O Translator conversion

Bool Bit

BYTE, INT, WORD, UINT Word

DINT, UDINT, RLNG Long

REAL RFLT
 209

Supported HMIs
Alarming

Introduction The alarm logger task in Monitor Pro is responsible for monitoring specified tags to
check whether their values fulfill specified alarm conditions. If a tag is recognized to
be in an alarm state, an alarm record is created and passed to a historian task, which
writes it to a relational database. If a tag value does no longer meet the alarm
criteria, the alarm logger creates an additional record. Alarm viewer controls in client
applications communicate with the alarm server allowing the user to browse and
acknowledge the alarms.
210

Supported HMIs
Generation of the
Alarming
Configuration

UAG configures the alarm logger, its connection to both the dBase4 historian and
the ODBC historian tasks, and the alarm server. The user is responsible for running
only one historian task in his application.
The Alarm Logger Setup tables will only be created when UAG creates a new
Monitor Pro application, these tables (and others) are part of the UAG Standard
server application, which will be copied when creating a new Monitor Pro
application.
The Alarm Group Control table of the alarm logger in Monitor Pro will be filled with
the names of the corresponding Alarm Group of UAG. It is possible to create
Alarm Groups in the SCoD / Costumization editor. These Alarm Group can be
assigned to a variable on Type Level (SCoD) or instance level (UAG). If a variable
is set to Alarm Yes the Alarm Group is not empty the following tables will be
generated into Monitor Pro application.
The following table shows the Alarm Group Control Table.

The Alarm Definition Information table of an alarm group in Monitor Pro will be filled
with entries for all alarm variables belonging to the corresponding Alarm Group.
The following table shows the Alarm Group Control Table.

Field Content generated by UAG

Group Name Alarm Group Name

Acknowledgement YES

Audible YES

Logging YES

Field Content generated by UAG

Unique Alarm ID Unique number corresponding to the alarm definition.

Cond. Alarm condition property of variable.

Limit Alarm limit property of variable (i.e. a constant value,not
a tag).

Deadband -

Message Text Alarm text property of variable.

Priority Alarm priority property of variable.

Area Name Equipment name of variable (i.e. a picture with
thisname will be generated).

Use Global Hide YES

Note: In case of manual addition of the alarm entries directly in Monitor Pro the
user has to check the uniqueness of the alarm IDs.
 211

Supported HMIs
Configuration of
the Alarm in UAG

UAG will allow the configuration of the alarm state for both boolean and non-boolean
variables.
Unity Application Generator variable objects will expose two properties for alarms.
The configuration of the alarms are the same than the configuration of the archive
data.
The following list shows the two different alarming properties.
� Alarm

It can store values for Not_Assigned, Yes or No
� Alarm Group Name

It stores a string that will be used as the name of the database table in Monitor
Pro. With this property the user is able to group the alarm variables, which will
handle the same alarm and which will use the same trigger.
212

Supported HMIs
The following figure shows the UAG Alarm Properties for a BOOL variable.

Variable Properties

Show DetailsShow List

Apply

AHHM

Selected Object:

Visible Changeable

Yes

Inheritance

Alarm:

Visible Changeable

AlarmGroup1 - high prior alarms

Inheritance

Alarm Group:

General Value Alarm Command Archive Display

Select Alarm: 1

Visible Changeable

3 - high

Inheritance

Alarm 1 - Priority:

Visible Changeable

(Default)

Inheritance

Alarm 1 - Text:

Visible Changeable

=

Inheritance

Alarm 1 - Operator:

Visible Changeable

1 - AHHM

Inheritance

Alarm 1 - Limit:

Default

CancelOK
 213

Supported HMIs
The variable properties can be set and used in SCoD editor as with other variable
properties and can also be viewed and/or modified in UAG.
The following table shows the attributes of the alarm for the datatype BOOL.

The following table shows the attributs of the alarms for other possible datatypes.

Number of alarms 1

Alarm Group The alarm can be set to an Alarm Group to combined alarms.

Alarm Priority The Alarm Priority will be preset within the SCoD Editor or the
Costumization. For example:
1 - low

2 - medium

3 - high

4 - urgent

Alarm Text default or user-defined

Operator =

Alarm Limit Not_Assigned

0 - OFF

1 - ON

Number of alarms 1 to 8

Alarm Group The alarm can be set to an Alarm Group to combined alarms.

Alarm Priority The Alarm Priority will be preset within the SCoD Editor or the
Costumization. For example:
1 - low

2 - medium

3 - high

4 - urgent

Alarm Text default or user-defined

Operator Not_Assigned

=, <>, >, <, >=, <=

Alarm Limit Number for the selected alarm.

Note: All alarms of a non-boolean variable must be in the same Alarm Group.
214

Supported HMIs
Archiving

Introduction In Monitor Pro there are several tasks that can perform archiving (logger tasks).
They read values of specified tags from the real-time database and pass the values
or derived data through to one of the several other tasks (historian tasks). The
historian tasks perform saving of the values in a relational database according to
specified database schemes. For archiving real-time values there are two logger
tasks, the Database Logger and the Data Point Logger. For the historian tasks we
consider here only the two probably most commonly used tasks, the dBase4
Historian and the ODBC Historian. Only one of the four possible combinations of
logger and historian tasks should be used in one server application.
The following figure shows the data structure for logging/archiving.

Database Logger
vs. Data Point
Logger

One of the main differences between Database Logger and Data Point Logger is the
database schema for storing the values. The Database Logger uses database
tables where up to 1100 tag values can be stored in a row together with a time
stamp, whereas the Data Point Logger uses database tables where only one tag
value can be stored in a row together with a time stamp. The Database Logger
saves space and is more efficient, whereas the Data Point Logger is easier to use,
especially when tags have to be added or removed from logging. With the Database
Logger, adding or removing tags from logging could lead to a change of the
database schema and this means to change an already existing database table
manually in the database system.
The following table shows the different properties of the available Logger functions.

Tag

Tag

Tag

Tag

Tag

Tag

dB4
Files

dBase4
Historian

SQL
Server

ODBC
Historian

Database
Logger

Data Point
Logger

Mailbox

Mailbox

Logger type Stored values

Database Logger up to 1,024 tags in one row

Data Point Logger 1 tag in one row
 215

Supported HMIs
Generating the
Archiving
Configuration

UAG delivers together with the standard server application the pre-configured
mailboxes for both DB Logger and DP Logger that are also introduced into the
configuration for dBaseIV and ODBC historians. However the user has to configure
the chosen historian information table on his own using the database names
generated by UAG for corresponding DB or DP Loggers. Both historian tasks will
be entered in the system configuration table, but the user has to also here activate
one of the historian tasks manually.

UAG configures both Database Logger and Data Point Logger to allow the user to
choose one of them to run in his application. UAG creates schema information and
logger control information for both logger tasks, but the user is responsible for
starting one of these tasks.

Since UAG does not know, which combination of tasks the user prefers, UAG can
only issue a warning message to the user, if the schema columns are longer than 8
characters.
For Database Logger, when a tag is added or removed from logging, UAG adds or
removes the corresponding column to/from the database schema and issues a
warning message to the user that he must change an existing database manually
before (re-)starting the application. If the database is not existing, Monitor Pro will
create it, using the new schema when the first value will be stored.
UAG creates tags for triggering both Database and Data Point Loggers actions. The
user if required can enter them into the Interval timer or Event timer information
tables accordingly to the chosen logging strategy.

Note: The user must not delete or modify the pre-configured by UAG historian
mailboxes (DBLCHISTMBX and DPLCHISTMBX).

Note: It is not possible to activate more than one historian tasks.

Note: The user has to be aware that the Database Logger can be used with the
dBase4 Historian only if the length of the column names (i.e. tag names) in the
database schema does not exceed 8 characters.
216

Supported HMIs
Database Logger
Configuration

The Schema Control table of the database logger in Monitor Pro will be filled with
the archive names defined in UAG appended with the number like _001 if required.

The following table shows the Schema Control Table.

The first child table of the Schema Control table is the Index Information table. It will
be filled with the same content for all schemas.

The following table shows the Index information Table.

The second child table of the Schema Control table is the Schema Information table.
It will be filled with the names of all variables that are assigned to the archive, which
is represented by the current schema.

Note: All fields which are not mentioned here will not be filled by the Unity
Application Generator.

Field Content generated by UAG

Schema Name Archive name (in upper case) if necessary appended with _001,
_002 etc. This can be necessary if more than 1100 variables are
assigned to a schema.

Note: All fields which are not mentioned here will not be filled by the Unity
Application Generator.

Field Content generated by UAG

Index Number 1

Unique Index YES

Column List FLTIME

Note: All fields which are not mentioned here will not be filled by the Unity
Application Generator.
 217

Supported HMIs
The following table shows the Schema Information Table.

The Database Logging Control table of the database logger in Monitor Pro will be
filled with the archive names defined in UAG.

The following table shows the Schema Information Table.

The Database Logging Information table of the database logger in Monitor Pro will
be filled with the tags defined within UAG.
The following table shows the Database Logging Information table entries
generated by UAG.

Field Content generated by UAG

Column Name FLTIME for the first column, the variable name otherwise.

Column Usage TIME for the first column, DATA otherwise.

Column Type " " for the first column, either INTEGER, SMALLINT, NUMBER or
FLOAT according to the variable's data type otherwise.

Note: All fields which are not mentioned here will not be filled by the Unity
Application Generator.

Field Content generated by UAG

Log Name Archive name, if necessary appended with _001, _002 etc.

Log Trigger Log name appended with _TRIG

Historian Mailbox DBLCHISTMBX

Database Alias Name Archive location as defined within Customization Editor.

Database Table Name Same as Log Name

Schema Name Archive name if necessary appended with _001, _002 etc

Field Content generated by UAG

Tag Name � First name has to be empty (recommendation of Monitor Pro).
� Following names will be the tag names.

Column Name FLTIME for the first tag and variable name (schema columns are
named with variable names for uniqueness puroposes).

Logon Change No

Column Usage � If the Tag Name is empty and the Column Name is FLTIME the
Column Usage is TIME.

� If the Tag Name is unequal empty the Column Usage is DATA.
218

Supported HMIs
Data Point
Logger
Configuration

The Data Point Schema Control table of the Data Point Logger in Monitor Pro will be
filled with only one schema definition for all archives defined in UAG.

The following table shows the Data Point Schema Control Table.

The Data Point Logger Control table will be filled with the archive names defined in
UAG.

The following table shows the Data Point Logger Control Table.

The Data Point Logger Information table will be filled with the names of all variables
which are assigned to the archive, which is represented by the current Data Point
Logger Control table.

Note: All fields which are not mentioned here will not be filled by the Unity
Application Generator.

Field Content generated by UAG

Schema Name TAGDATA

Logged Value Data Type FLOAT

Note: All fields which are not mentioned here will not be filled by the Unity
Application Generator.

Field Content generated by UAG

Table Name Archive name, if necessary appended with _001, _002 etc.

Schema Name TAGDATA

Database Alias Name Archive location as defined within Customization Editor.

Historian Mailbox DPLOGHISTMBX

Note: All fields which are not mentioned here will not be filled by the Unity
Application Generator.
 219

Supported HMIs
The following table shows the Data Point Logger Information Table.

The Customization editor imports the list of archive names from the SCoD library,
but the user can add additional archive names.
The user has to specify the additional Archive parameter in Customization Editor,
the archive location. This attribute corresponds in the Monitor Pro application to the
database name alias configured in the historian configuration table.

Archive
Configuration

Unity Application Generator variable objects will expose two properties for archiving.
The following list shows the two different archiving properties.
� Archive

It can store values for Not Assigned, No or Historic
� Archive Name

It stores a string that will be used as the name of the database table in Monitor
Pro. With this property the user is able to group the variables, which will be stored
within the same archive and which will use the same trigger.

If there are too much variables for the same database table, UAG will create
additional table names automatically (e.g. by appending a number to the name
specified by the user) rather than limiting the user when he assigns archive names
to variables. Since the length of the schema name in Monitor Pro is restricted, the
UAG archive name should be restricted to 8 characters.
Both variable properties can be set within the SCoD editor (if Monitor Pro is assigned
to the list of HMIs of the library) and the properties can be set to be changeable or
invisible for UAG. In the SCoD editor the user has to define any value of the
Archive Name property in a list (similar to access levels) prior to its use in a
variable's property. Both archive-related properties can be used in user-defined
SCoD properties and with inheritance.
The Customization editor imports the list of archive names from the SCoD library,
but the user can add additional archive names. The user can only modify or delete
archive names if they are not used in the UAG project. This will be checked
automatically by the Customization editor.
In UAG, the user can modify the values for both properties if they were set to be
changeable in the SCoD editor. The value of the archive name property can be
selected from the list of names defined in the customization. If a variable with the
archive property is used for a HMI other than Monitor Pro, the archive settings have
no effect.

Field Content generated by UAG

Log Tag Variable name

Log On Change No

Log Trigger Log name appended with _TRIG
220

Supported HMIs
Monitor Pro Client Application

Introduction The HMI generation part includes the mimic and the symbol generation for the
Monitor Pro Client Builder. For this the file Client.zip is used by UAG.

Client.zip The file Client.zip will be installed within the Unity Application Generator
installation. The installation path is: ..\Unity Application
Generator\MonitorPro\Client\Client.zip. This file contains every
symbol for the integrated SCoDs of UAG. The user has to set the adjustment for the
OPC Cluster just once. After this UAG is generating the complete Monitor Pro Client
Builder directory structure for the complete project.

Steps for
Client.zip

The user has to do the following steps.

HMI Path To be able to generate the HMI mimics, it is necessary to specify a HMI path within
the Options of UAG. UAG automatically creates a subdirectory with the name of
the HMI.Thus the generated HMI application is located in the directory
HMI_PATH\HMI_NAME.

Step Action

1 Expand the file Client.zip with the whole directory structure.

2 Open the project client.fvp with the Monitor Pro Client Builder application..

3 Set the adjustment for the OPC Cluster.
� Tools → Servers → Cluster → OPC Cluster

Change the OPC Cluster name to the Data Server name which is used within
the UAG project.

4 Create a new file Client.zip with the whole directory structure.

5 Copy the file Client.zip into the client directory (..\Unity Application
Generator\MonitorPro\Client\Client.zip).
 221

Supported HMIs
Generation of the
Monitor Pro
Client Builder
mimics

UAG generates all available Client Builder mimics and symbols which are useds
within the SCoDs or free variables. For this UAG has a task list for the elements
which will be generated new or incremental. This list is available within UAG under
File → Properties → Objects → to be generated → HMI.
The generation for HMI consists of creating a set of Client Builder mimics. The mimic
files have no extensions. They are located in HMI_PATH\HMI_NAME\Mimic
Files.
The generator creates a mimic for each UAG Equipment Module that has been
assigned to a Control Domain and to a PLC. The name of the mimic is the name of
the Equipment Module. For each Control Module of that Equipment Module a SCoD
symbol is generated in the Client Builder mimic. The name of the HMI symbol has
to be specified in the SCoD library. For each free variable a symbol can be
generated. The user has to select this within the user interface of the variable.
If UAG detects a modification of a Control Module or a Control Module free variable,
all corresponding Control Module properties (Name, Data Server Name) will be
set with the actual values from the UAG database.
At run time, the symbol gets the real-time information from the Monitor Pro server
runtime database. This is achieved by using the OPC Server.
222

Supported HMIs
Client Builder
Symbol and
Mimic Format

The symbols and mimics for Monitor Pro are generated in ASCII format. The format
is explained in the document "Client Builder ASCII Mimic guide" that belongs to the
Monitor Pro documentation.
The following programming code shows the ASCII format of a Control Module
(symbol) generated by UAG for Monitor Pro Client Builder.

The following programming code shows the ASCII format of a free variable
generated by UAG for Monitor Pro Client Builder.

Monitor Pro supports branching. Thus it is possible to generate the Symbol Name
(e.g. Symbol6), the Branch Name (e.g. monitor1:gerequip_VAS01) and the
Variable Name (e.g. monitor1:@gerequip_con01) to define the complete
symbol. The symbol will substitute the variable animation, with the Branch Name
+ Variable Name. The declaration @ANA is for non-bool variables, @DIGI is for
boolean variables.
The following programming code shows the header format which will be generated
for every Monitor Pro mimic.

O,BEGIN,S,""
 B,25,25,0,0,0,0,1,0,6400,0,1
 PP,"valve_en","monitor1:gerequip_VAS01",25,25,0,0,1,0,,,,,,,,,,,
O,END

O,BEGIN,S,""
 B,25,25,0,0,0,0,1,0,6400,0,1
 PP,"symb","monitor1:gerequip_con01",25,25,0,0,1,0
 SUB,"@DIGI","monitor1:@gerequip_con01"
O,END

ASCII32,27,8,2004,13:51,46
W,BEGIN,"gerequip","Mimic1"
 TEMPLATE,"",1,1,1,0,1,0,1,1,1,0,0
 POSITION,0,0
 SIZE,1023,747
 BACKCOLOR,212,208,200,0,0,0
 TITLE,0,"","gerequip"
 STYLE,1,1,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0
 GRID,1,1,8,8,0,0,0,0,0,0
 LAYERS,65535
 RIGHTS,0,1,0.000000,64.000000,1,65535,0,0
 INCLUDED,0,0,0,0,0
 LINK,1,"","","",""
 LINK,2,"","","",""
 LINK,3,"","","",""
 LINK,4,"","","",""
 LINK,5,"","","",""
 LINK,6,"","","",""
 LINK,7,"","","",""
 LINK,8,"","","",""
 LINK,9,"","","",""
 LINK,10,"","","",""
 BACKBMP,"",0,0
 BACKOBJECT,"",0,0
 BEFORE,"","","",""
 BINOBJ,"gerequip.binary"
W,END
 223

Supported HMIs
The following programming code shows the complete Monitor Pro mimic.
ASCII32,27,8,2004,13:51,46
W,BEGIN,"gerequip","Mimic1"
 TEMPLATE,"",1,1,1,0,1,0,1,1,1,0,0
 POSITION,0,0
 SIZE,1023,747
 BACKCOLOR,212,208,200,0,0,0
 TITLE,0,"","gerequip"
 STYLE,1,1,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0
 GRID,1,1,8,8,0,0,0,0,0,0
 LAYERS,65535
 RIGHTS,0,1,0.000000,64.000000,1,65535,0,0
 INCLUDED,0,0,0,0,0
 LINK,1,"","","",""
 LINK,2,"","","",""
 LINK,3,"","","",""
 LINK,4,"","","",""
 LINK,5,"","","",""
 LINK,6,"","","",""
 LINK,7,"","","",""
 LINK,8,"","","",""
 LINK,9,"","","",""
 LINK,10,"","","",""
 BACKBMP,"",0,0
 BACKOBJECT,"",0,0
 BEFORE,"","","",""
 BINOBJ,"gerequip.binary"
W,END
FONTS,BEGIN
 FONT,1,-24,0,700,0,0,"Arial"
 FONT,2,-13,0,400,0,0,"System"
 FONT,3,-16,0,700,0,0,"Arial"
FONTS,END
COLORS,BEGIN
 COLOR,1,0,0,0,0,0,0
 COLOR,2,222,216,163,0,54,0
 COLOR,3,192,192,192,0,0,0
 COLOR,4,192,192,192,0,0,1
COLORS,END
O,BEGIN,S,""
 B,25,25,0,0,0,0,1,0,6400,0,1
 PP,"symb","monitor1:gerequip_con01",25,25,0,0,1,0
 SUB,"@DIGI","monitor1:@gerequip_con01"
O,END
O,BEGIN,S,""
 B,25,25,0,0,0,0,1,0,6400,0,1
 PP,"valve_en","monitor1:gerequip_VAS01",25,25,0,0,1,0,,,,,,,,,,,
O,END
224

Supported HMIs
The following figure shows the symbol and free variable from the coding example
above.

Client Builder

File Edit Display Insert Draw Arrange Animate Mode Tools

gerequip

Ready 363,2

State xxx u

LSO LSC

NRDY
 225

Supported HMIs
9.2 iFIX and Unity Application Generator

Overview

Introduction Unity Application Generator supports Intellution´s iFIX as HMI. For iFIX Unity
Application Generator generates all databases and pictures necessary for the
process visualization.
The iFIX application is generated on the engineering PC and then the generated
objects must be transferred to the production PCs. This chapter describes in detail
the procedures from the preparation of the iFIX generation to the running of an
existing application.

What's in this
Section?

This section contains the following topics:

Topic Page

Introduction 227

How to Configure iFIX for the Use with Unity Application Generator 228

Manual Configurations Before Generation for iFIX 230

How to Generate a New iFIX Application 233

How to Generate an iFIX Application Incrementally 234

Unity Application Generator and iFIX Drivers 235

How to Deploy the Generated Application to the iFIX Nodes 236

How to Run an Existing Unity Application Generator Project 237

Configuring iFIX Redundancy 238
226

Supported HMIs
Introduction

Terminology The following table explains the corresponding terms in Unity Application Generator
and in iFIX:

Reference
Information

A detailed list of the generated objects for iFIX you will find in Generation for iFIX,
p. 344

Term in Unity Application Generator Corresponds to the term in iFIX

Data Server SCADA node

HMI View node

Data Servers and HMIs (all nodes of HMI
system)

iFIX nodes
 227

Supported HMIs
How to Configure iFIX for the Use with Unity Application Generator

Introduction Before you use iFIX with Unity Application Generator, you must configure iFIX in a
certain way. The steps for this configuration are described in the following.

How to get the
MBT Driver?

The MBT driver is not a product of the Schneider Electric company. You have to
contact Dimension Software Inc. to order the driver.
� Phone

+1 (828) 635-7189
� Fax

+1 (828) 625-5319
� Web

http://www.caro.net/dsi
� e-Mail

dsi@caro.net

The part number of the driver is MBT, the description is MODBUS TCP/Plus OPC
Server.

Note: Intellution recommends that the iFIX node name and the computer name are
the same. The iFIX node name is specified as part of the installation of iFIX.
After the installation the Modbus Plus/Ethernet Driver MBT V2.0 has to be installed.
228

Supported HMIs
Procedure for
iFIX
Configuration

For iFIX configuration for Unity Application Generator follow the steps:

Step Action

1 Run the system configuration from Programs → iFIX in the task bar.

2 Select Configure → SCADA.

3 In the I/O driver name click the ? button.

4 From the list of available drivers choose Modbus Plus/Ethernet Driver MBT
V2.0.

5 Confirm with OK.

6 Click the Add button.
Result: The driver appears in the configured I/O drivers list.

7 Confirm with OK.
Result: You will be asked to answer the question: Database
DATABASENAME does not currently exist, or is not in your database
directory, use anyway?

8 Answer with Yes.

9 Save with File → Save.

10 End the configuration with Exit
 229

Supported HMIs
Manual Configurations Before Generation for iFIX

Introduction Unity Application Generator is not able to generate all information needed in the
system configuration (SCU) of iFIX. Therefore, some configurations have to be done
manually before generation. These are described in the following.

Alarm Areas
Configuration

For the Alarm Area configuration the following rules apply:
� You must define an Alarm Area for each Control Domain of the HMI.
� You must name the Alarm Area the same as the Control Domain name.
� The maximum length of an Alarm Area name is 30 characters.
� The number of Alarm Areas in iFIX is unlimited.

Result Each generated tag belongs to an Alarm Area (if the Control Domain is defined).

Security Area
Configuration

For the Security Area configuration the following rules apply:
� You must define a Security Area for each combination of Control Domain and

access level.
� Each Security Area name must be the concatenation of the Control Domain name

and of the ID of the different access levels (see example below). Access levels
are defined in the customization.

� The maximum length of a Security Area name is 20 characters.
� The maximum number of Security Areas is 254.
� The access rights of the operators to the different Security Areas must be defined

in iFIX Security.
� An operator can have access rights for multiple Security Areas. Groups can be

defined with access rights on multiple Security Areas.
� An ActiveX variable belongs to a Security Area because the Control Module,

which is represented by the ActiveX, belongs to an Equipment Module. If an
operator wants to modify a variable value, the ActiveX first queries the iFIX
security system if the operator currently logged in has rights on the Security Area
of that variable.

Result Each generated tag belongs to a Security Area (if the Control Domain and access
level are defined).
230

Supported HMIs
Default Values
for Access
Levels

The default values for access levels in the default customization file
IATBASIC10.OSC are:

Example For example, for a Control Domain named CDWashing, the following Security Areas
have do be defined in the iFIX system configuration:

Working with
Remote Nodes

For working with remote nodes the following rules apply:
� The iFIX node name and the computer's name must be exactly the same.

Note: Special characters like "-" are not allowed in the iFIX node names.
� In the iFIX system configuration you have to declare the remote nodes (in the

network configuration section).

Modbus TCP/IP
I/O Driver

Most of the configuration for the I/O driver will be carried out by the generation in
Unity Application Generator: There will be a configuration file for each Data Server
and each communication driver. This file will be named DATASERVERNAME.MBT.
Other modifications have to be made to complete driver configuration (see driver
manual). Fields set by generation are defined in Generated iFIX Driver Configuration
from Unity Application Generator Point of View, p. 359 and Generated iFIX Driver
Configuration from the Driver Point of View, p. 361. If these fields are modified they
will be overwritten by Unity Application Generator generation.

Access
Level

Default Value in IATBASIC.OSC

1 Operator

2 Production

3 Technical

4 Maintenance

5 Factory

Access
Level

Example Value Example Security Area Name

1 Operator CDWashing_1

2 Production CDWashing_2

3 Technical CDWashing_3

4 Maintenance CDWashing_4

5 Factory CDWashing_5
 231

Supported HMIs
Duplicates of
SCoD ActiveX

It is possible to create multiple copies of SCoD ActiveX in different pictures of iFIX.
To do so, you can copy and paste the ActiveX, but the properties of the copies must
not be changed. There is an option in Unity Application Generator to manage
correctly the manually copied ActiveX.
If this option is selected in Unity Application Generator and Control Modules are
modified, the generator seeks if the same object has been copied to other pictures
of the ...\DYNAMICS\PIC directory and will update all copies (SAME ActiveX type
and same object name).

Delete a Control
Module

If a Control Module is deleted in Unity Application Generator all copies of the ActiveX
will be deleted.
232

Supported HMIs
How to Generate a New iFIX Application

Procedure for
New Generation

Steps how to generate a new iFIX application:

Step Action

1 Generate the Concept/Unity Pro project(s).

2 Download Concept/Unity Pro project(s) into the PLC(s) or Concept/Unity Pro
simulator.

3 Start iFIX.

4 Login in as a user who has all access rights.

5 Start iFIX workspace.

6 Run iFIX generation.

7 Check warnings and errors in generation.

8 Check PowerTool for driver.

9 Reload the generated configuration file of the driver (the name of the
configuration file is the name of the Data Server defined in Unity Application
Generator).

10 Complete the driver configuration.

11 Check if Channels, Control Modules and Data Blocks are enabled.
If not: Enable them and start the driver in run mode (start button)

12 Reload the generated database in the Database Manager (the name of the
database is the name of data server defined in Unity Application Generator).

13 Switch to run mode.

14 Open the pictures.
 233

Supported HMIs
How to Generate an iFIX Application Incrementally

Procedure for
Incremental
Generation

Steps how to incrementally generate an iFIX application:

Step Action

1 Generate the Concept/Unity Pro project(s).

2 Download the changes of the Concept/Unity Pro project(s) into the PLC(s) or
Concept/Unity Pro simulator.

3 In iFIX switch to configure mode.

4 Generate the iFIX application incrementally.

5 Check PowerTool for the driver.

6 Reload the generated configuration file of the driver (the name of the
configuration file is the name of Data Server defined in Unity Application
Generator).

7 Check warnings and errors in generation.

8 Complete the driver configuration.

9 Check if Channels, Control Modules and Data Blocks are enabled.
If not: Enable them and start the driver in run mode (start button)

10 Reload the database after incremental generation.

11 Switch to run mode.

12 Open the pictures.
234

Supported HMIs
Unity Application Generator and iFIX Drivers

Overview At the moment, the only driver that can be used is the Schneider Automation
Modbus Plus / Ethernet driver MBT V2.0.
The driver configuration file is generated before the SCADA generation and is
loaded automatically into the driver, otherwise the I/O addresses of the tags would
not be accepted as a valid address by the iFIX database.
The driver's Data Blocks are defined using different address ranges defined by the
Unity Application Generator Memory Mapper according to data types and priority
(event, parameter, synoptic).

Data Types The data types managed by the driver must match the Unity Application Generator
data types.
The following table defines the correspondences between the Unity Application
Generator types, how they are grouped by the Memory Mapper, which Data Block
types are used, and which auxiliary conversion has to be made at the tag level.

Redundancy The MBT driver supports redundancy for Quantum and Momentum. Two IP
addresses can be configured (primary and backup) for two NOE modules. This
protects against NOE module failure but not against network failure or from PC
Ethernet card failure.

UAG / Concept /
Unity Pro
HMI, PLC_HMI Type

Memory Mapper
Type

Driver’s Data Block
Type

Tag special
conversionType

BOOL BOOL Digital None

WORD WORD Unsigned Integer None

UINT WORD Unsigned Integer None

INT WORD Unsigned Integer Signed Integer

UDINT DINT Unsigned Long None

DINT DINT Unsigned Long Signed Long

REAL REAL Float None

BYTE WORD Unsigned Integer None
 235

Supported HMIs
How to Deploy the Generated Application to the iFIX Nodes

Overview When the generation for HMI is completed on the engineering workstation, the
generated objects have to be copied manually to the corresponding PCs in the
production plant. The generated objects are contained in the ...\DYNAMICS
directories of the engineering workstation.
For an overview of the control topology see The Topology of a Control System,
p. 62.

Terminology The following table explains the corresponding terms in Unity Application Generator
and in iFIX:

Procedure For deploying the generated HMI application to the iFIX nodes follow the steps:

Term in Unity Application Generator Corresponds to the term in iFIX

Data Server SCADA node

HMI View node

Data Servers and HMIs (all nodes of HMI
system)

iFIX nodes

Step Action

1 Configure each iFIX node manually:
� Each SCADA node must have the same name as the corresponding Data

Server in Unity Application Generator.
Note: To ensure the functioning of the distributed system it is recommended
that the iFIX nodes have the same names as the PCs.

2 On each View node PC install the SCoD Library and ActiveX support DLLs
needed for ActiveX access to the iFIX database.

3 Copy the database files <SCADA NODE NAME>.PDB from the engineering
workstation to the corresponding SCADA node PC in the plant.

4 Copy the driver configurations <SCADA NODE NAME>.MBT from the
engineering workstation to the corresponding SCADA node PC in the plant.

5 Copy the *.GRF pictures from the ...\DYNAMICS\PIC directory of the
engineering workstation to the corresponding iFIX View nodes PCs.
236

Supported HMIs
How to Run an Existing Unity Application Generator Project

Functioning of
Communication

At run time, the ActiveX get the real-time information from iFIX runtime databases.
This is achieved by using DLLs developed by Unity Application Generator, which
use the Intellution EDA toolkit functions. Thus, communication exists only between
SCADAs and PLCs.
Two DLLs have been implemented to manage exchanges between the iFIX
databases and the ActiveX: one for read/write values, another for security, alarming
and alarm acknowledgment. Using the iFIX network capabilities, an ActiveX can get
its information from a SCADA on a different iFIX node.

Procedure for
Running an
Existing Project

Steps how to run an existing Unity Application Generator project:

Step Action

1 Run Concept/Unity Pro.

2 Open corresponding Concept/Unity Pro project(s).

3 Connect to the PLC(s), make sure that you are EQUAL.

4 Start iFIX.

5 Login in as any user with the appropriate access rights.

6 Start iFIX workspace.

7 Check warnings and errors in generation.

8 Check PowerTool for the driver.

9 Reload the generated configuration file of driver (the name of the configuration
file is the name of Data Server defined in Unity Application Generator).

10 Complete the driver configuration.

11 Check if Channels, Control Modules and Data Blocks are enabled.
If not: Enable them and start the driver in run mode (start button)

12 Reload the generated database into the Database Manager (the name of the
database is the name of data server defined in Unity Application Generator).

13 Switch to run mode.

14 Open the pictures.
 237

Supported HMIs
Configuring iFIX Redundancy

iFIX Redundancy iFIX provides network capabilities for SCADA node redundancy. Two different PCs
can be defined as one SCADA node with different physical node name but same
logical node name. This is considered as a unique SCADA node, made of a Primary
node plus a Backup node.
A View node gets the data from the logical node, and the configuration of the logical
node defines which physical node is the Primary node and which one is the Backup
node. During normal operation the data come from the Primary node, but if it fails,
the iFIX system switches to the Backup node.

Unity Application
Generator and
iFIX Redundancy

From Unity Application Generator point of view, managing SCADA redundancy is
transparent and is not configured in Unity Application Generator. The user has to
define the data server as the logical SCADA node name. The logical node will be
used for iFIX pictures generation.

LAN
Redundancy

LAN redundancy between different iFIX nodes (View and SCADA nodes, but not
PLCs) can be also implemented, but this is outside of the scope of Unity Application
Generator and belongs to the supervisory system redundancy capabilities.

Reference Detailed information about iFIX Redundancy can be found in :
iFIX Electronic Books - Mastering iFIX - 2. Redundancy.
238

Supported HMIs
9.3 Generic HMI and Unity Application Generator

Using Unity Application Generator with a Generic HMI

Working
Principle

When you start a new customization with the customization editor you select the
option for using a generic HMI.
If you have selected this option Unity Application Generator creates a XML file for
each Data Server for import containing all tags necessary for your HMI application,
see Generation for a Generic HMI, p. 363.
Additionally, Unity Application Generator creates a second file for each Data Server
that contains data from the XML file reformatted in a way the user’s HMI is able to
import. How the data is reformatted is defined in a stylesheet file (XSL file).
With the customization editor the user specifies which export formats (XSL files) are
available in the Unity Application Generator project.
You can create your own XSL files to adjust the format of the output file to the format
of your HMI. The XSL files have to be copied to the DB directory of the Unity
Application Generator directory.
Each Data Server in the Unity Application Generator project has a property to
specify which export format to use for generation.

Specifying
Export Formats
for Generic HMI
Data

UAG provides the possibility to specify more than one transformation for the XML
file which will be generated during the generation of a Generic HMI. This allows
extracting different parts of the data in the XML file to different resulting files.
For each transformation the user has to specify the style sheet file and the name of
the file to be created as the result of the transformation. All transformations use the
same generated XML file as input, this means it is not possible to define a chain of
transformations.

Note: The XML file for generic HMIs will always be generated completely new,
even for incremental changes in Unity Application Generator.
 239

Supported HMIs
240

10

Customization and Project
Maintenance
Overview

Characterization The project initialization, customization and maintenance is an important part in an
application development done with Unity Application Generator. In fact it is the first
step before starting a new project.
The tasks are divided into different parts:
� Adapting Unity Application Generator with the help of the Unity Application

customization editor
� Setting the Analyzer options and the code generation options inside Unity

Application Generator
� Version management and project documentation inside Unity Application

Generator.

This chapter will explain these tasks.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

10.1 Customizing Unity Application Generator 243

10.2 Project Maintenance 258
241

Customization and Project Maintenance
242

Customization and Project Maintenance
10.1 Customizing Unity Application Generator

Overview

Introduction This section describes how to create and use customization files.

What's in this
Section?

This section contains the following topics:

Topic Page

Introduction 244

Working with the Customization Editor 245

The Customization Options 247

Defining Naming Conventions 249

User Defined Modules - Overview 251

User Defined Modules - Properties 253

How to Define a Generic Module 255

How to Define a ModConnect Partner Module 256

How to Change the Customization 257
 243

Customization and Project Maintenance
Introduction

Introduction Unity Application Generator can be adapted to the customer needs with respect to
libraries used, tools used, naming conventions, data format and so on. This
adaptation is done with the help of the Unity Application customization editor.
Customization information is stored in files named PROJECTNAME.OSC. Each Unity
Application Generator project requires its own customization file.
When a new project is created with Unity Application Generator, a customization file
has to be selected. The selected file is then used for the customization of the project
and a copy is created of the selected file with the name of the project.
In this way all new projects can be created with a standard customization, but it is
also possible to change the customization of an existing project by editing the file
PROJECTNAME.OSC.
If the customization file for an existing project is changed Unity Application
Generator will detect this and offers to analyse the customization. In case of an
error, e.g. an existing name does not fit to the changed naming convention, Unity
Application Generator will report an error which has to be corrected manually. Unity
Application Generator will give the option to analyse the customization every time
the project is opened until the project conforms to the customization.
244

Customization and Project Maintenance
Working with the Customization Editor

What is the
Customization
Editor?

The customization editor of Unity Application Generator is a seperate program used
for the creation and modification of customization files for Unity Application
Generator projects. A customization file named PROJECTNAME.OSC is necessary
for each project.
The customization file contains user defined information for the configuration of the
Unity Application Generator environment, like libraries and tools used, naming
conventions, data formats and so on.

File
Administration

For the administration of customization files you use the functions New, Open,
Close, Save, Save as..., Exit in the File-Menu.

Display File
Information

The HMI supported by the currently open customization file can be displayed with
Customization → Supported HMI.

The version of the currently open customization file can be displayed with
Customization → Version.

Enter
Customization
Information

In the left part of the customization editor´s starting screen you see the structure of
your customization file in form of a tree.
The tree contains four principal groups of subjects that you can customize:
� General
� Naming convention
� Data
� PLC

When clicking on the + in front of these groups the sub items are displayed. For
entering all customization information you go through all items given in the tree.
Each time when you select another item a dialog is opened leading your input. For
more detailed information on the options see The Customization Options, p. 247
and Defining Naming Conventions, p. 249.

Note: The HMI used in the project is selected when a new customization is
created. It cannot be changed afterwards.
 245

Customization and Project Maintenance
Check
Customization

The entered customization can be checked with Customization → Check. The
result is a report containing a validation for all customized items. Erroneous items
are displayed in red. An error in customization can for example be a name definition
that exceeds the maximum length of the object name. All errors have to be corrected
before the customization file can be used in the project.

Handling The handling of the Unity Application Generator customization editor is similar to
most menu-driven modern software programs.
For most actions, you have different possibilities for getting the task done:
� Use the buttons of the dialogs or the menu items
� Double-left-click on the element or in the field which is the target of your action
� Right-click on the element or in the field which is target of your action to display

a context menu
246

Customization and Project Maintenance
The Customization Options

General
Customization
Options

Under the general customization options the available Control Module Type
libraries, the supported tools and the generic export formats are defined.
Unity Application Generator allows the user to attach documents for the process
design to the different objects. Any number of Windows applications (or tools) for the
different document types (for example Microsoft Word, Microsoft Excel, Autocad)
can be defined in the customization.
The user defines which export formats can be used in the Unity Application
Generator project by assigning names to the stylesheet files (XSL files). Only
stylesheet files located is Unity Application Generator’s "DB" directory can be
selected.

Naming
Conventions

Every industry has its own standards (e.g. S88 for batch control) and methods (e.g.
GAMP in pharmaceutical). In addition, each company has its own standard for
naming objects. Unity Application Generator allows the user to define rules for the
naming of the objects according to the customer standards.
Separate naming rules can be defined for each object shown in this table:

You will find more detailed infomation about the definitions of naming conventions
in Defining Naming Conventions, p. 249.

Physical Model Topological Model

Area PLC

Process Cell Data Server

Unit Control Domain

Equipment Module Channel

Control Module HMI

Variable Network Segment

Network Node
 247

Customization and Project Maintenance
Data This part of the customization defines:
� Access levels
� Alarm groups
� Alarm priority

Note: The customized options for alarm values have to fit the available options in
the HMI (e.g. low, medium, and high for iFIX).

� Archive names
� Communication frames
� Display formats for numbers
� Measurement units and measurement groups
� Valid data types

Note: Valid data types are the elementary data types of Concept/Unity Pro.
Structured data types which are defined and used in Concept/Unity Pro must be
added by name.

PLC This part of the customization defines which PLC configurations are allowed in the
projects:
� PLC families
� Racks
� HW modules

The standard customization file IATBASIC10.OSC contains complete lists of rack
types and HW modules from which the project manager can select the subset of
racks and modules which are valid for his projects. Only the selected racks and
modules will be offered to the control engineer when he is configuring a project.
Unity Application Generator allows furthermore to integrate user defined HW
modules: generic modules (with Concept and Unity Pro) or ModConnect partner
modules (only with Concept).
For more information on user defined modules, see: User Defined Modules -
Overview, p. 251
248

Customization and Project Maintenance
Defining Naming Conventions

Description
Length

The first sub item in the naming conventions tree is called description length. Here,
you define the maximum length of the description of each object, that can be
introduced when such an object is created in Unity Application Generator.

Object Name
Composition

The next sub items in the naming conventions tree are the objects, for which a
naming convention can be defined: Area, Process Cell, Unit, Equipment Module,
Control Module, variable, PLC, Channel, HMI, Control Domain, alarm overview,
data server, network node, network segment. For each object you get a dialog for
the definition of the name composition.
The naming convention for each object can be built of one to six different fields.
Each field can be of the following types:
� Letter
� Number
� List

Letter Field The following options are available for letter fields:
� Fixed size
� Variable size
� Define a fixed string
� Capital and/or small letters, with or without digits

Number Field For a number field you define the maximum number of digits. Furthermore, you
choose, if leading zeros shall be added or not.

Note: The text of a letter field with a fixed string cannot be changed later on in Unity
Application Generator.

Note: The variable size string may start with a digit (but the complete field must not
be numeric).
 249

Customization and Project Maintenance
Field Defined by
User´s List

The third type of field allows the user of Unity Application Generator to select a part
of the object name from a list. The elements of this list are defined with the
customization editor using the list designer. Lists can be newly created, deleted and
modified using the list designer. All lists defined during customization get a unique
name and can be used for fields of different objects.
Such a list contains two columns
� Short: The contents of the short column is the text used for the object name.
� Description: The contents of the Description column serves as description for

the user of Unity Application Generator when selecting list element for the name
to be defined.

Note:
� An empty list cannot be used in the name convention.
� It is not possible to delete a list used by an object of the naming conventions.
� The elements of a list may have a different number of characters for the short

column, e.g.
� a, b, c, d, e, ...
� 11, 12, 13, 14, ...
� A, B, AB, ABC, ABCD, ...

� "_" is allowed in the short column. (Lists containing "_" are not allowed in naming
convention for Equipment Modules, Control Modules and Variables.)
250

Customization and Project Maintenance
User Defined Modules - Overview

What are User
Defined
Modules?

User defined modules are hardware modules that shall be used in the automation
project configured with Unity Application Generator but do not belong to the
Schneider Automation product catalog.
User defined modules can be either
� ModConnect partner modules (only with Concept) or
� Generic modules (with Concept and Unity Pro).

ModConnect
Partner Modules

ModConnect is an initiative to integrate third party modules into Concept.
ModConnect partner modules are modules that are known by name in Concept,
specified in the Concept ModConnect Tool.
The administrator adds them to the list of modules in the customization.
He must specify the following for each ModConnect partner module:
� Exact name as in the Concept ModConnect Tool
� Number of inputs and outputs
� Number of 0x,1x,3x and 4x registers consumed
� Number of status registers
� Possible rack type(s)

ModConnect partner modules can be configured in Quantum racks and are
generated in the Concept I/O map.
The ModConnect partner modules have to be imported in Concept with ModConnect
Tool.
 251

Customization and Project Maintenance
Generic Modules Generic modules are user defined hardware modules which are not known by name
in Concept/Unity Pro.
The administrator adds them to the list of modules in the customization.
He must specify the following for each generic module:
� Unique name within the customization file
� Number of inputs and outputs
� Number of 0x (%M), 1x (%I), 3x (%IW) and 4x (%MW) registers consumed
� Number of status registers
� Possible rack type (Modbus Plus, Ethernet, Generic)

With the restriction of the possible rack types to Generic the user defined module
is defined as a generic module. In the project, such modules can only be configured
in generic racks and they are not generated in Concept/Unity Pro. They can not be
configured in Quantum/Momentum/Premium racks and are not entered in the
Concept/Unity Pro I/O mapping.
The specifications made are only used for the reservation of state RAM addresses
and for the addresses of the I/O variables.
After generation, the integration of generic modules have to be completed manually.
What the tasks are depends on the type of module.
For example, if you configure Momentum I/O, the data must be communicated with
Peer Cop or I/O Scanner.
Or, if you configure PROFIBUS DP, you must additionally import the configuration
into Concept with the Sycon tool.
252

Customization and Project Maintenance
User Defined Modules - Properties

Description of
Properties

The properties for user defined modules are the following:

Property Description Options Comment

Module Name Name of the user
defined module

Free text Name must be unique
within the customization
file!
� For a generic module:

choose a free name.
� For a ModConnect

partner module: Name
must be exactly the
same as in ModConnect
Tool.

Module Category Type of module � Digital I/O
� Analog I/O
� Experts

-

Description User defined
description of the
user defined module

Free text -

Possible racks Rack type in which
the user defined
module can be
configured;
corresponds to
property Link
Type.

� Quantum
� Premium
� SY/MAX
� 800 I/O
� Momentum
� I/O Bus
� Ethernet I/O
� MBP I/O
� Generic

Generic rack: With the
assignment of the user
defined module to a generic
rack, it becomes a generic
module.
For more information on link
types see Racks and
Modules, p. 98

Number Inputs Number of input
connections on user
defined module

Integer -

Number Outputs Number of output
connections on user
defined module

Integer -
 253

Customization and Project Maintenance
Register 0x, 1x,
3x, 4x resp. %W,
%I, %IW, %MW

Number of 0x, 1x, 3x,
and 4x resp. %W, %I,
%IW, %MWregisters
needed for user
defined module

Integer For the number of inputs,
outputs and registers, the
following is valid:
� Number of outputs must

be the same as number
of registers 0x/%M or
4x/%MW.

� Number of inputs must
be the same as number
of registers 1x/%I or 3x/
%IW.

Status Register
3x/%IW, 4x/
%MW

Number of status
registers 3x/%IW
and 4x/%MW
needed for user
defined module

Integer -

Property Description Options Comment
254

Customization and Project Maintenance
How to Define a Generic Module

Overview If generic modules shall be configured in the Unity Application Generator project(s),
the administrator has to define them in the customization file with the Unity
Application customization editor.

Procedure for
Defining a
Generic Module

For defining generic modules with the Unity Application customization editor follow
the steps:

Result When using this customization file for projects, your user defined generic modules
are available in the drop down lists for entering modules. They can be configured in
a project as other hardware modules. They can only be configured in a generic rack.
For such generic modules no entries are generated in the Concept/Unity Pro I/O
map. The necessary addresses will be defined in the corresponding PLC as defined
for the generic module.

Enhanced
Ethernet Rack

It is possible to create user-defined Ethernet racks which are not supported by
default within UAG. An Ethernet rack belongs to an Ethernet communication module
(like ETY 4103 or NOE 771-xx). After the creation of an Ethernet rack, the user can
assign these Ethernet communication modules. See also Enhanced Ethernet
Module, p. 107

Step Action

1 Open the subgroup User Defined Module.
Result: An empty list with the columns Module Category, Name,
Description, ... appears.

2 Right-click anywhere in the list and select Add from the context menu.
Result: The dialog window Add User Defined Module appears.

3 Enter the information on your generic module in the fields.
Please note:
� By restricting the possible rack type to only Generic, the user defined

module is defined as a generic module.
� Be sure to very precisely fill out the fields, because the data cannot be

checked by Unity Application Generator!
For field descriptions see User Defined Modules - Properties, p. 253.

4 When you have filled out all the fields, confirm with OK.
Result: The new generic module is entered in a line of the list.

5 If necessary, revise data with the context menu items Remove and Modify.

6 Save your customization file.
 255

Customization and Project Maintenance
How to Define a ModConnect Partner Module

Overview If ModConnect partner modules shall be configured in the Unity Application
Generator project(s), the administrator has to define them in the customization file
with the Unity Application customization editor.
When using this customization file for projects, these ModConnect partner modules
are available in the drop down lists for entering modules and can be used as any
other hardware module.

Procedure for
Defining a
ModConnect
Partner Module

For defining ModConnect partner modules with the Unity Application customization
editor follow the steps:

Result When using this customization file for projects, your user defined ModConnect
partner modules are available in the drop down lists for entering modules. They can
be configured in a project as other hardware modules. They can be configured in a
Quantum rack.

Step Action

1 Open the subgroup User Defined Module.
Result: An empty list with the columns Module Category, Name,
Description, ... appears.

2 Right-click anywhere in the list and select Add from the context menu.
Result: The dialog window Add User Defined Module appears.

3 Enter the information on your ModConnect partner module in the fields.
Please note:
� For using a ModConnect partner module fill out the exact name, as it is

defined in ModConnect Tool.
� Be sure to very precisely fill out the fields, because the data cannot be

checked by Unity Application Generator!
For field descriptions see User Defined Modules - Properties, p. 253.

4 When you have filled out all the fields, confirm with OK.
Result: The new ModConnect partner module is entered in a line of the list.

5 If necessary, revise data with the context menu items Remove and Modify.

6 Save your customization file.

Note: ModConnect partner modules must be imported into Concept with
ModConnect Tool.
256

Customization and Project Maintenance
How to Change the Customization

General The customization file is the basic information which is required by Unity Application
Generator. Each time a new project is created, a customization file has to be
selected. The selected customization file is copied into the project directory with the
same name as the project, with the file extension .OSC.

How to Change
the
Customization of
an Existing
Project

Changes to the original customization file will not influence a project. The changes
must always be made to the file PROJECTNAME.OSC or the changed
customization file has to be copied as PROJECTNAME.OSC.
If the customization file for an existing project is changed, Unity Application
Generator will detect this and will offer to analyse the customization. In case of an
error, e.g. an existing name does not fit the changed naming convention, Unity
Application Generator will show an error which has to be corrected manually. Unity
Application Generator will show the option to analyse the customization every time
the project is opened until every error of the customization has been corrected.
 257

Customization and Project Maintenance
10.2 Project Maintenance

Overview

Characterization Project management inside Unity Application Generator is divided in two major
tasks:
� Setting the Analyzer and generation options Unity Application Generator
� Version management and project documentation

What's in this
Section?

This section contains the following topics:

Topic Page

Setting Options for Analysis and Generation 259

Version Management and Change Tracking 260

Project Documentation (Report Generator) 262

Trouble Shooting 262
258

Customization and Project Maintenance
Setting Options for Analysis and Generation

Introduction You have options for the way the project is analyzed and if a completely new
generation should be carried out instead of an incremental generation (see
Overview of Generated Code and Generation Principles, p. 275.
Under View → Options you find the tabs General, PLC, Monitor Pro, Analyze
Project, Memory Mapper.

Options for
Project Analysis

Under the tab Analyze Project you have the possibility to select which parts of the
project shall be analyzed and how many details the report should contain.

Option for New
Generation

Under the tabs PLC and Monitor Pro / iFIX you have for each the option Generate
completely new (only next generation). If you select this option for PLC
or Monitor Pro / iFix, completely new PLC project(s) or Monitor Pro / iFIX
applications(s) will be generated.
The same option exists for the Memory Mapper to optimize the PLC memory usage.

Note: Here, you may enter, after how many warnings the Analyzer should stop. If
you desire an unlimited number of warnings, enter 0.

CAUTION

Risk of loosing code

If you use the option for new generation all manual changes in PLC or
Monitor Pro / iFIX will be lost.

Failure to follow this precaution can result in injury or equipment
damage.

Note: When you have carried out a new generation, your old code is saved in a
backup, see Version Management and Change Tracking, p. 260.
 259

Customization and Project Maintenance
Version Management and Change Tracking

Overview Unity Application Generator allows the user to save different versions of a project. If
necessary, it is possible to go back to an older version of the project. In addition,
Unity Application Generator keeps track of all changes which have been made in a
change history.

Version
Management

Besides the possibility to save a project with the Save as... command, the user
can create snapshots of the actual status in the Versions dialog, invoked by the
menu item Files / Versions.
In opposite to the Save as... command, the version management has two
significant advantages:
� Multiple development steps can be frozen in the same project.
� Not only the UAG project will be saved, but the according PLC and HMI projects.

In the Versions dialog the actual version can be saved, and stored versions can
be restored or deleted. A comment will be attached to each version. The user can
enter additional information. The Change History since the last safe or the
beginning of the project can be displayed. So it is very easy to go back to another
version, if the last user modifications did not fulfill her expectations. While an old
version is restored, already existing folders are copied in folders with the extension
.BAK.
The following informations will be saved:
� Unity Application Generator project and customization file
� Generated Concept / Unity Pro projects
� MonitorPro projects:

Generated HMIs in HMI application path
Generated Data Servers in Data Server application path

� iFIX projects:
Pictures (*.grf in dynamics\pic)
HMIs (*.gil in dynamics\pic)
DataServers ([ObjectName].* in dynamics and dynamics\pdb)
AlarmAreas (AlarmAreas.aad in dynamics\pdb)
260

Customization and Project Maintenance
Change Tracking Any user action which changes an object in Unity Application Generator will be
recorded in the change history. The change history shows the information who has
done which changes at what time. The change history can be exported as a comma
separated value file (CSV) for further processing e. g. with Microsoft Excel.
If a project is saved as a particular version by Unity Application Generator version
management, the change history file will be stored in the saved version but cleared
in the current version. With this approach the change history file always contains the
changes done since the last version freeze. This is especially useful if a version had
been validated and one wants to check what has been changed since the last
validation. I.e changes made since validation are always recorded in the change
history.
 261

Customization and Project Maintenance
Project Documentation (Report Generator)

Overview Unity Application Generator allows the user to document the project automatically.
A report generator is built into Unity Application Generator which creates a project
report as Microsoft Word file.

What Will be
Documented?

The report generator offers multiple options for the generated report, for example:
� Table of contents
� Physical Model hierarchy
� Equipment Modules
� Alarm variables
� Command variables
� IO variables
� PLCs
� HMIs
� Network configuration
� Interlocks
� Instruments

The generated report can either be a new report or it can be appended to an existing
report.

How to Define
the Document
Layout

When the report is generated, a template file (DOT) has to be selected which will be
used by the report generator. Adopting this template file allows the user to design
the report according to the user company requirements.

Additional
Documentation
Options

Other functions in Unity Application Generator can also be used to document
additional information:
� The change history file can be exported as a comma separated value (CSV) file.
� The message window content (Analyzer, code generator output) can be exported

as a comma separated value (CSV) file.

Trouble Shooting

Repair Project
Database

If your project database has been damaged, for example due to power failure or a
PC crash, use the item File → Repair Project Database for repair.
262

Appendices
Overview

What Kind of
Information is in
the Appendices

The appendices contains release notes and reference information, e. g. information
related to the generated output of Unity Application Generator.

What's in this
Appendix?

The appendix contains the following chapters:

Chapter Chapter Name Page

A Release Notes Version 2.1 265

B Generated Code 273

C Format of the CSV Files for Import and Export 367

D Format of the XML File for Generic HMI 389
 263

Appendices
264

A

Release Notes Version 2.1
Overview

Introduction Unity Application Generator Version 2.1 replaces Unity Application Generator V2.0,
V1.5, V1.4 and V1.3.
Some new features and functionalities have been implemented. This chapter
decribes:
� The changes compared to Version 2.0,
� How you migrate your existing projects to the new versions of Unity Application

Generator
� How you migrate your existing projects to the new versions of Concept.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

New Features in Unity Application Generator Version 2.1 266

Hardware Requirements 266

Software Requirements 267

Installation information for new Users 268

Upgrade of Existing Projects to UAG 2.1 and Concept V2.6 271
265

Release Notes
New Features in Unity Application Generator Version 2.1

New Features for
Unity Pro

The following (new) features for Unity Pro have been implemented:

UAG and Monitor
Pro

Integration of Monitor Pro Version 7.2.

Hardware Requirements

Hardware
Requirements

The minimum configuration of the PC to run Unity Application Generator is:
� PC Pentium 1000 MHz or higher
� Minimum 512 MB RAM
� 50 MB hard disk space for the installation of Unity Application Generator
� CDROM drive
� VGA graphics adapter and screen (minimum resolution: 1024x768)
� Microsoft compatible mouse

Feature Description See..

Support of Unity Pro
version 2.0 XL

- -

Complete integration of
Unity Pro

Complete customization of the Unity Pro PLCs
Quantum and Premium within UAG. Included the
selection of racks and modules.

-

Note: The following hardware modules are not supported.
� TSX P57 0244M
� TSX P57CA 0244M
� TSX P57CD 0244M
266

Release Notes
Software Requirements

Operating
System

Unity Application Generator runs under Microsoft Windows 2000 and Windows XP.

Programming
Software

UAG is generating PLC logic and configuration for Quantum/Momentum type PLCs
in Concept and Quantum/Premium type PLCs in Unity Pro.
Therefore the following programming software has to be installed on your PC:
� Concept V2.5 SR2 or Concept V2.6 SR1

and/or
� Unity Pro XL V2.0

Monitor Pro Unity Application Generator generates tags and graphics for the Monitor Pro
SCADA system.
Therefore the following software has to be installed on your PC:
� Monitor Pro Version 7.2

iFIX Unity Application Generator generates tags and graphics for the Intellution iFIX
SCADA system.
Therefore the following software has to be installed on your PC:
� Intellution iFIX V2.6 or iFIX V3.0
� Modbus Plus / Ethernet MBT V2.0 Driver

Acrobat Reader With Unity Application Generator you have received the user manual and the
documentation for Smart Control Devices.
Therefore the following software needs to be installed on your PC:
� Adobe Acrobat Reader

The setup for Acrobat Reader is available on the Unity Application Generator
product CD.

MS Word Unity Application Generator allows to generate reports for project documentation.
This is done with Microsoft Word.
Therefore the following software has to be installed on your PC:
� Microsoft Word 97 or Word 2000/2003

Note: During installation Unity Application Generator detects the existing Concept/
Unity Pro versions on your PC and will install the compliant DLLs and Function
Blocks. Setting a PC with different Concept versions or different Unity versions in
parallel is not supported.
 267

Release Notes
Installation information for new Users

Installation
Overview

As a new user of Unity Application Generator you need to install the following
software:
1. PLC programming software: Schneider Electric Concept V2.5 SR2 or V2.6 SR1

and/or
Schneider Electric Unity Pro XL V2.0

2. HMI programming software: Schneider Electric Monitor Pro V7.2 or Intellution
iFIX V2.6 or V3.0

3. Driver for iFIX: Schneider Electric Modbus Plus / Ethernet MBT V2.0
4. Schneider Electric Unity Application Generator V2.1

Unity Pro
Installation

For the installation of Unity Pro follow the steps:

Concept
Installation

For the installation of Concept follow the steps:

Monitor Pro
Installation

For the installation of Monitor Pro follow the steps:

Note: If you want to generate documentation of your Unity Application Generator
projects, Microsoft Word 97 or Word 2000/2003 has to be installed on your PC.

Step Action

1 From Unity-CD run SETUP.EXE

2 Follow the instuctions of the installation routine.

Step Action

1 From Concept-CD run SETUP.EXE and follow the instructions.

2 From Concept Service Release CD run SETUP.EXE and follow the
instructions.

Step Action

1 From CD Monitor Pro V7.2 run SETUP.EXE

2 Follow the instuctions of the installation routine.
Note: Do not install any driver!
268

Release Notes
iFIX Installation For the installation of iFIX follow the steps:

MBT Driver
Installation

For the installation of the Modbus Plus / Ethernet Driver MBT V2.0 follow the steps:

Unity Application
Generator
Installation

For the installation of Unity Application Generator follow the steps:

Step Action

1 From CD iFIX V2.6 or V3.0 run SETUP.EXE

2 Follow the instuctions of the installation routine.
Note: Do not install any driver!

Step Action

1 From CD MBT V2.0 run SETUP.EXE.

2 Follow the instructions to install MBT, use default values offered by Setup.

3 Configure the MBT driver in iFIX’s System Configuration.
Note: Do not change the Auto Create option in the Power Tool to Off (Options
→ Setup → Advanced).

Step Action

1 Introduce the CD Unity Application Generator in the CD-ROM drive of your
system.
Result: A startup screen for the installation process appears.
Note: If the startup screen does not appear automatically do the following:
From Unity Application Generator CD run SETUP.EXE.

2 Follow the instructions of the installation routine.
Note: Specify the same directory for Concept as you have chosen in the
Concept installation.
 269

Release Notes
Specifying
Directories for
Application Data
Files

UAG uses several files to read or write different kinds of application data. In older
versions of UAG the user has to specify the directories for some of the files, but not
for all. Some files types are expected to be located in subdirectories with fixed
names of the UAG installation directory. These subdirectories are created during
installation.
The following list specifies the predefined directories for the application data files in
older versions of UAG.
� SCoD libraries (*.osl) in subdirectory \DB
� XML style sheets (*.xsl) for Generic HMI generation in subdirectory \DB
� Help files for SCoDs (user defined, e.g. *.pdf) in subdirectory \Doc

Today UAG will provide the possibility to specify the directories for all application
data files, to allow archiving all application-related data files easily.
All directories for application-related data files should be specified on a single page
of the options dialogue of UAG. It will be possible to specify a base directory for all
application files, whereby subdirectories with appropriate default names are
created. But the user is able to override those default names. It is also possible to
specify those directories either with absolute pathnames or relative to the directory
of the current project file. The names of the directories will be stored in the project
file as in older versions of UAG.
The following list shows the names of the directories which should be specified.
� The path for PLC projects
� The default documentation path
� The data server application path (for Generic HMI only)
� The path for SCoD libraries (*.osl)
� The path for XML style sheets (*.xsl) (for Generic HMI only)
� The path for help files for SCoDs (user defined, e.g. *.pdf)
� The path for archiving application data

In UAG, a new option dialogue has to be implemented and different UAG DLLs have
to take care to use the files from the user-defined directory names.
The UAG system database files (*.osy, EmptyProject.osp,
EmptyCustom.osc and EmptyLibrary.osl), currently located in the DB
subdirectory of UAG's installation directory, should be moved to UAG's installation
directory.
270

Release Notes
Upgrade of Existing Projects to UAG 2.1 and Concept V2.6

Automatic
Upgrade

Unity Application Generator V2.1 is downward compatible to the existing product
Unity Application Generator V2.0.
Existing Unity Application Generator projects, customizations and SCoD libraries
will be automatically updated to the new structure of V2.1.

Migration to
Concept V2.6
SR1

If you additionally want to upgrade existing projects Concept V2.6 SR1, the Concept
projects have to be updated first with the Concept converter. Follow the steps:

Note Please read in any case the Readme.txt file delivered with your software!

Step Action

1 Export the Concept projects with Concept V2.2 or V2.5.

2 Install Concept V2.6.

3 Import Concept projects with Concept V2.6.

4 Install Unity Application Generator V2.0.
 271

Release Notes
272

B

Generated Code
Overview

Introduction This chapter includes an overview and detailed information about the generated
code and the generation principles.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

B.1 Overview of Generated Code and Generation Principles 275

B.2 Generation for Concept 278

B.3 Generation for Unity Pro 304

B.4 Generation for Monitor Pro 332

B.5 Generation for iFIX 344

B.6 Generation for a Generic HMI 363

B.7 Generation for Net Partners 364
273

Generated Code
274

Generated Code
B.1 Overview of Generated Code and Generation
Principles

Overview

Introduction This section gives an overview of the generated code of Unity Application Generator
and the generation principles.

What's in this
Section?

This section contains the following topics:

Topic Page

Overview of Generated Code 276

Generation Principles 277
 275

Generated Code
Overview of Generated Code

Introduction Unity Application Generator generates
� code to be downloaded for the PLCs,
� tags and graphics for Monitor Pro / iFIX

or
XML files with all tags and their attributes and a customziable text file for usage
in any HMI (generic HMI) and

� CSV files for import into Net Partners.

Generation for
PLCs

For each PLC Unity Application Generator generates the following:
� The PLC configuration
� Code for program initialization
� Code for analog scaling
� Code for communication Channels
� Code for Control Modules
� All variables
� PLC memory managing

Generation for
Monitor Pro / iFIX
HMI

For the HMI Monitor Pro / iFIX Unity Application Generator generates:
� Screens for Equipment Modules
� All tags needed for the communication between HMI and PLC
� All HMI internal tags

Generation for
Generic HMI

For a generic HMI Unity Application Generator generates a XML file and a
customziable text file for each Data Server containing all tags and their attributes
necessary for process visualization.

Generation for
Net Partners

For Net Partners Unity Application Generator generates a CSV file containing all
variables related to a Net Partner.

Note: The generated code will be in IEC 61131-3 standard FBD language.
276

Generated Code
Generation Principles

Introduction Unity Application Generator is used to generate PLC and HMI applications as well
as import files for Net Partners. The generated code has to be completed by the
control engineer in order to build the complete control application.
The generation can be started seperately for
� address calculation with the Memory Mapper,
� PLC,
� HMI and
� Net Partners.

Generation
Principles for
PLC and HMI

When completing the control application, the control engineer has the choice of two
modes of code generation in Unity Application Generator:
� New generation (available in options)
� Incremental generation (by default)
New generation: Unity Application Generator builds the entire application code

from scratch. Existing code for the PLC and the HMI will be overwritten.
Incremental generation: Only the objects modified in Unity Application Generator

will be updated. Additions made by the control engineer in the PLC and HMI logic
will be left unchanged.

Note: Generation includes automatically the address calculation by the Memory
Mapper.

CAUTION

Risk of losing code!

Do not make any changes to the part of code generated by Unity
Application Generator. Even for incremental generation this part of
code will be overwritten. Only additional code is maintained.

Failure to follow this precaution can result in injury or equipment
damage.
 277

Generated Code
B.2 Generation for Concept

Overview

Introduction This section describes the generation of Unity Application Generator for Concept.

What's in this
Section?

This section contains the following topics:

Topic Page

What is generated? 279

Generation from General Project Settings - Overview 280

Generation from the Topological Model - Overview 281

Generation from the Physical Model - Overview 287

Generated PLC Configuration 294

Generated Variables 295

Generated Code: Equipment Modules, Control Modules and Interlocks 297

Generated Code: Communication 300

Generated Code: Initialization 302

Generated Code: Scaling of Analog Values (Quantum only) 303

Generated Code: Hot Standby 303
278

Generated Code
What is generated?

What is
generated?

For each PLC on the Topological Model, Unity Application Generator creates one
Concept project.
For all elements of the Physical Model, Unity Application Generator creates special
objects.
Generated objects from the Physical Model:

Generated objects from the Topological Model:

Element Object

Area Group in project browser

Process Cell Group in project browser

Unit Group in project browser

Equipment
Module

FBD section with Function Blocks for all Control Modules

Control Module Function Block with all inputs and outputs connected correctly with
variables, literal values, or links
Note: For type-less Control Modules nothing is generated!

Variables Depending on the variables type, Unity Application Generator generates
the respective Concept variables and an initialization section for the
variables.

Element Object

Channel Section with logic for communication, Peer Cop or I/O scanner
configuration

PLC Concept project with the PLC configuration and the IO map.
 279

Generated Code
Generation from General Project Settings - Overview

Introduction The following tables gives an overview about the general settings in Unity
Application Generator and the resulting settings in Concept.

Generation from
General Project
Settings

Generation from General Project Settings

Attribute Concept Comment

View →
Options →
PLC → PLC
project path

Directory where
Concept project is
generated

Concept project is generated as
PLCProjectPath\PLCProjectName\PLCProje

ctName.PRJ

Example:
� PLCProjectPath = c:\PLCPrjs

� PLCProjectName = PLC1

generated project will be
� c:\PLCPrjs\PLC1\PLC1.PRJ

View →
Options →
PLC →
Generate
completely
new

Concept project will be generated completely new.
280

Generated Code
Generation from the Topological Model - Overview

Introduction The following tables gives an overview about the settings in Unity Application
Generator for the Topological Model and the resulting settings in Concept.

Generation for
PLC

Generation for PLC

Attribute Concept Comment

Concept Project
Name

Directory and name of
Concept project

See Generation from General Project Settings -
Overview, p. 280

CPU Type PLC configuration
→ CPU

-

Address ranges Addresses for
� Special registers
� I/O modules
� Variables
� Peer Cop
� I/O Scanner

Changing the addresses for HW modules will
result in recalculation of the memory layout for the
modules and thus all I/O variables.
Changing the addresses for HMI will result in
recalculation of the addresses of PLC_HMI
variables.
The Memory Mapper keeps the addresses, which
are not affected by the change and recalculates
only those addresses which are outside the old
range.
To view the different HMI communication frames,
use the menu command Open HMI
Communication for communication channels
from type Data Server. If more than 100 % of a
HMI communication frame is used, increase the
number of HMI variables in the PLC properties, to
prevent a recalculation of this HMI communication
frame.

Greatest
Address 0x

PLC configuration
→ Memory range
Coils

-

Greatest
Address 1x

PLC configuration →
Memory range
Discrete Inputs

-

Greatest
Address 3x

PLC configuration →
Memory range Input
Registers

-

Greatest
Address 4x

PLC configuration →
Memory range
Holding Registers

-

 281

Generated Code
Generation for a
Rack

Generation for a rack

Generation for rack attributes

BatteryCoil PLC configuration →
Special: Battery Coil

-

TimerRegister PLC configuration →
Special: Timer
Register

-

TimeOfDayStart PLC configuration →
Special:Time of Day

-

Comment Project Comment -

Attribute Concept Comment

Object Concept Comment

Rack PLC configuration →
I/O map → Remote or
Distributed Drops

Exception: For racks of the following link types no
racks in the I/O map are generated.
� Momentum Modbus Plus I/O
� Momentum Ethernet I/O
� Generic

Attribute Concept Comment

Number Number of drop -
282

Generated Code
Generation for a
HW Module

Generation for a HW module

Generation for the attributes of a HW module

Object Concept Comment

Quantum HW
Module

PLC configuration →
I/O map → Module

The module is entered to the I/O map.

Momentum HW
Module (Local
Rack)

PLC configuration →
I/O map → Module

The module is entered to the I/O map.

Momentum I/O
Bus Module

PLC configuration →
I/O map → Module

The module is entered to the I/O map.

Momentum
Ethernet I/O
Module

PLC configuration →
I/O Scanner

For this type of modules no entry to the I/O map is
made.The module is set up in the I/O Scanner.

Momentum
Modbus Plus
I/O Module

PLC configuration →
Peer Cop

For this type of modules no entry to the I/O map is
made.The module is set up in the Peer Cop.

Generic I/O
Module

- For this type of modules no entry to the I/O map is
made.

Attribute Concept Comment

Rack PLC configuration →
I/O map → Drop of
HW Module

HW modules can be moved between racks by
drag and drop in the Unity Application Generator
HW modules table within the same PLC, except
Modbus Plus I/O, Ethernet I/O and IO Bus.

Slot Number PLC configuration →
I/O map → Slot of HW
Module

HW modules can be moved within a rack by drag
and drop in the Unity Application Generator HW
modules table

Timeout state PLC configuration →
I/O map → HW
Module Parameter →
Timeout state

Applies only to digital ouput modules. Timeout
state of the HW module must be same as the
timeout state of the variables mapped to the
module.

Timeout value PLC configuration →
I/O map → HW
Module → Parameter
→ Timeout value

Applies only to digital ouput modules with timeout
state = User defined. The timeout value of the
module is calculate by the timeout states of the
variable mapped to that module.

Adresses PLC configuration →
I/O map → HW
Module →
Addresses

The State RAM addresses of the I/O modules are
calculated from the information entered in PLC →
Addresses in Unity Application Generator.
 283

Generated Code
Generation for a
PLC - PLC
Channel

Generation for a PLC - PLC Channel

Note: For generic modules no entries are generated in the I/O map!

Object Concept Comment

PLC Channel PLC configuration →
Peer Cop entry/ I/O
Scanner

One or two entries (depending on the number of
communication paths specified in Unity
Application Generator) are generated in the Peer
Cop/ I/O Scanner table according to the network
addresses of the PLCs involved in the
communcation.
The 4x addresses used by the communication are
calculated from the information entered in PLC →
Addresses for PLC communication in Unity
Application Generator.

FBD logic for Peer
Cop

A FBD section with the name of the Channel is
generated in a group called Communcation.
The logic takes care to pack and unpack the
communcated variables into the 4x memory range
used for the Peer Cop/ I/O Scanner. It also takes
care to switch to the second communication path
if the first fails (if a second path is specified) and to
use the failure values for the variables if the
communication fails completely.

Variables All variables specified in the PLC communcation
table are generated in receiving PLC (Concept
project) with the same name as in the sending
PLC (the scope of the variable names is the
complete plant with all PLCs).
The generated FBD logic takes care to set the
variables to the correct values communicated by
Peer Cop/ I/O Scanner or to predefined failure
values.
284

Generated Code
Generation for the attributes of a PLC - PLC Channel

Attribute Concept Comment

Name Name of the section
with the
communication logic

With Ethernet communication for the receiving
PLC 2 sections will be generated, called
Channelname and Channelname_2.

Comment Comment of the
section with the
communication logic

-

Communication
partner

Either
� all (Global, broad

cast - only Modbus
Plus) or

� another PLC
(Specific, peer-to-
peer
communication)

The communication partner cannot be changed
after the Channel has been created in Unity
Application Generator.

Communication
path(s)

Peer Cop nodes or I/O
Scanner entries

The network address of the communication
partner specifies the possible communication
paths and therefore also the link and the node
addresses in the Peer Cop/ I/O Scanner.

Timeout(s) The duration literals
connected to special
send and receive
Function Blocks in the
Peer Cop logic

The timeout(s) specifies the supervision time of
the communication before the communication
logic switches to the second commnucation path
or failure values.
If there is no timeout specified the generated logic
has a default timeout of 2 seconds.
 285

Generated Code
Generation for a
PLC-PLC
Channel - Other
Objects/
Attributes that
influence a PLC-
PLC Channel

Generation for a PLC-PLC Channel, other objects/attributes that influence a PLC-
PLC Channel

Attribute Concept Comment

PLC
communication
table → Variables

Variables that will be
generated in the
receiving PLC(s) and
communicated via
Peer Cop or I/O
Scanner

Variables of data type BOOL are packed into
Words (max. 16),
Variables of other data types are expanded in
one or two words.

PLC
communication
table → Variables
→ Failure state

Specifies how the
communication logic
will handle
communication
failures

Last Value:
� in case of communcation failure the variable

will hold its last value.
User defined:
� in case of communication failure the

variable will be set to value specified as
failure value.

Not_Assigned:
� in case of communcation failure the variable

will be set to 0.

PLC
communication
table → Variables
→ Failure value

The value to which
variables are set in
case of
communication failure

Applies only if failure state = User defined.

Network address of
CPU, NOM, NOE,
PNN

Node addresses in
Peer Cop or I/O
Scanner

The Modbus Plus network address of the
module specifies the node addresses used in
the Peer Cop.
The Ethernet network address of the module
specifies the node addresses used in the I/O
Scanner.

PLC → Addresses
→ PLC
communication

4x addresses used by
Peer Cop/ I/O
Scanner

The 4x addresses used by the communication
are calculated from the information entered in
PLC → Addresses for PLC communication in
Unity Application Generator.
286

Generated Code
Generation from the Physical Model - Overview

Introduction The following tables gives an overview about the settings in Unity Application
Generator for the Physical Model and the resulting settings in Concept.

Generation for an
Area

Generation for the Area

Generation for the attributes of an Area

Generation for a
ProcessCell

Generation for a Process Cell

Generation for the attributes of a Process Cell

Object Concept Comment

Area Concept Project
Browser → Group

An Area group is a top level group in the Concept
Project Browser. The group is generated in those
Concept projects where there is an Equipment
Module or a Control Module in the Physical Model
hierarchy of Unity Application Generator which
belongs to this PLC. The group can therefore exist
in several PLCs.

Attribute Concept Comment

Name Group name

Object Concept Comment

Process Cell Concept Project
Browser → Group

A Process Cell group is a group within the parent
Area group. The group is generated in those
Concept projects where there is an Equipment
Module or a Control Module in the Physical Model
hierarchy of Unity Application Generator which
belongs to this PLC. The group can therefore exist
in several PLCs.

Attribute Concept Comment

Name Group

Area Parent Group A Process Cell can be moved to another Area by
drag and drop in the Physical Model of Unity
Application Generator.
 287

Generated Code
Generation for a
Unit

Generation for a Unit

Generation for the attributes of a Unit

Object Concept Comment

Unit Group A Unit group is a group within the parent Process
Cell group. The group is generated in those
Concept projects where there is an Equipment
Module or a Control Module in the Physical Model
hierarchy of Unity Application Generator which
belongs to this PLC. The group can therefore exist
in several PLCs.

Attribute Concept Comment

Name Group

Process Cell Parent Group A Unit can be moved to another Process Cell by
drag and drop in the Physical Model of Unity
Application Generator.
288

Generated Code
Generation for an
Equipment
Module

Generation for an Equipment Module

Generation for the attributes of an Equipment Module

Object Concept Comment

Equipment
Module

Concept FBD section An Equipment Module is a section within the
parent Unit group in the Concept Project Browser.
Always the complete group hierarchy Unit -
Process Cell - Area is generated.

Attribute Concept Comment

Name The name of the
Equipment Module is
part of:
� Function block

instance names
� Equipment

variable names
� Control Module

variable names

Changing the name of an Equipment Module
result in changing the name of
� all Function Block instance names of its Control

Modules
� all names of the variables of the Equipment

Module
� all names of the variables of the Control

Modules of the Equipment Module.

Section name Concept section name

Unit Parent Unit group of
section

An Equipment Module can be moved to another
Unit by drag and drop in the Physical Model of
Unity Application Generator.

PLC Concept project to
which the equipment
belongs

The PLC to which the Equipment Module is
assigned cannot be changed if the Equipment
Module has been generated once.

Description,
Comment

Concept section
comment

The Concept section comment is the
concatenation of the Equipment Module
description and Equipment Module comment.

Description The description of the
Equipment Module is
part of the comment of
all variables of the
Equipment Module
 289

Generated Code
Generation for a
Control Module

Generation for a Control Module

Generation for the attributes of a Control Module

Object Concept Comment

Control Module Concept Function
Block instance
Note: For type-less
Control Modules
nothing is generated.
Analyzer prints a
warning.

The Concept Function Block instance name is
generated as
'EquipmentModuleName_ControlModuleName'. If
a Control Module is assigned to a different PLC
than the parent Equipment Module, the Equipment
Module section will also be generated in the
Concept project (PLC) to which the Control
Module is assigned.

Attribute Concept Comment

Parent
Equipment
Module

� Section in which
the Function Block
instance will be
generated.

� Name of Function
Block instance

� Names of the
variables of the
Control Module

A Control Module can be moved to another
Equipment Module by drag and drop in the
Physical Model of Unity Application Generator.

PLC in which project The PLC to which the Control Module is assigned
cannot be changed if Control Module has been
generated once.

Name Name for FB instance
and
ControlModuleVar

Description,
Comment

Comment of Function
Block instance

The Function Block instance comment is the
concatenation of the Control Module description
and Control Module comment.

Description The description of the
Control Module is part
of the comment of all
variables of the
Control Module
290

Generated Code
Generation for a
Variable

Generation for a variable

Interlock
definition

� Function Block
network connected
to the Control
Module’s Function
Block

� The textual
description of the
interlock definition
as a comment in
the Control
Modules’s
corresponding
Function Block.

The interlock definition has to be syntactically and
semantically correct. This means:
� It has to be a valid logical expression.
� The variables used have to be existing locally.
Otherwise only a comment is generated to the
Control Module’s Function Block.
Note:
Existing interlock definitions from older versions of
Unity Application Generator (<V1.5) will stay as
comments.

Attribute Concept Comment

Object Concept Comment

Variable Concept variable The variable name is generated as
'EquipmentModuleName_ControlModuleName_V
ariableName' (Control Module variable) or
'EquipmentModuleName_VariableName'
(Equipment Module).
The variable comment is generated as
'VariableDescription - ControlModuleDescription -
Equipment ModuleDescription' (Control Module
variable) or 'VariableDescription -
EquipmentModuleDescription' (Equipment
Module variable).
 291

Generated Code
Generation for the attributes of a variable

Attribute Concept Comment

Name Variable Name The name can only be changed for free variables.

Description Part of variable
comment

See above

InitialValue Initial value of variable Intitial values can be specified for:
� unlocated variables (PLC or PLC_NET).
� located 0x variables (PLC_HMI), since

Concept does not accept initial values for 0x
located variables, special sections are
generate to assign a value of 1 to 0x variables
as part of the startup of the PLC (Concept
sections 'InitControl', 'InitCoils1', 'InitCoils2',
etc in the group 'Initialization'.

Timeout state Used for setting the
Timeout state of the
I/O module, to which
the variable is
mapped. Timeout
state of the I/O module
must be same as the
Timeout state of the
variables mapped to
the module.

Applies only to IO_PLC digital output variables.

Timeout value Used for calculating
the Timeout value of
the I/O module, to
which the variable is
mapped

Applies only to IO_PLC digital output variables
with timeout state = User defined.
292

Generated Code
Command Defines how the
variable is connected
to the Function Block
instance

Applies only to PLC_HMI variables.
Free variables are always IN/OUT, see below.
IN variables: Always connected to input of
Function Block instance
� Operator/Parameter

The variable can be changed by the HMI.
� Logic/Constant

The variable cannot be changed by the HMI.
� OUT variables

Always connected to output of Function Block
instance always View only.

IN/OUT variables
� Operator/Parameter: The variable is

connected to the input and the output of the
Function Block instance.

� Constant: The input of the Function Block
instance is connected with the initial value of
the variable, the output is connected with
variable.

� Logic: The input of the Function Block instance
is not connected, the output is connected with
variable.

Variable used Specifies if a variables
is generated and
connected to the
Function Block
instance.

Applies only to IO_PLC variables. Other variables
and free variables are always used.

Invert Creates invert
functionality of pin or
creates literal if an
additional pin is used
to invert this IO point.

Applies only to IO_PLC variables of data type
BOOL.
Depending on the Control Module type the input/
output of Function Block instance is either inverted
or if the Control Module Type has a special input
to specify the inverted logic, a literal 0 or 1
(inverted) is connected to this input.

State RAM
address

Variable addresses � IO_PLC variables: The addresses are
calculated from addresses of the I/O modules
to which the variables are assigned.

� PLC variables: Generated as unlocated
variables.

� PLC_NET variables: The address are
calculated from the information entered in PLC
→ Addresses for HMI in Unity Application
Generator.

Attribute Concept Comment
 293

Generated Code
Generated PLC Configuration

What is
Generated?

Unity Application Generator will generate all configuration information which is in the
scope of Unity Application Generator and what is necessary to describe the high
level process design. It will not generate e. g.:
� ASCII setup information
� Segment scheduler information
� Specific module parameters

PLC
Configuration

In the Concept configurator, Unity Application Generator will take care for the
following aspects:
� PLC type
� Memory partitions
� I/O map
� Peer Cop and I/O Scanner
� Battery coils
� Timer register
� Time of day register

I/O Map Unity Application Generator will generate for Quantum PLCs the local rack and
remote racks or distributed racks, SY/MAX and 800 I/O racks. For Momentum PLCs
the Unity Application Generator will generate the local rack and the I/O Bus rack.
The HW modules will be generated in the correct racks and slots and the PLC
adresses will be assigned.

Note:
� For the following racks and modules no entries are generated in the I/O map:

� Modbus Plus racks and I/O modules
� Ethernet racks and I/O modules
� generic racks and generic modules

� ModConnect partner modules are generated in the I/O map. They have to be
imported into Concept with ModConnect Tool and created in the Unity
Application customization editor as user defined module.

� Not all parameter options which are possible for hardware Modules will be set
up by Unity Application Generator. These alternative options have to be defined
manually in Concept. These options will not be overwritten in an incremental
generation.
294

Generated Code
Generated Variables

What is
Generated?

Most variables in Unity Application Generator will generate variables in Concept.
Only variables of the type HMI will not generate a variable in Concept but a tag in
the HMI data base.

Variables Each variable in Unity Application Generator of the connection types listed in the
following table will result in a variable in Concept.

Connection types and related variables in Concept:

Note: IO_PLC variables which are declared not used will not be generated in
Concept.

Connection
Type

Variable type in
Concept

Comment

IO_PLC Located variable The address will be the I/O point to which the variable
is mapped. In the Concept logic the variable will be
connected to the input/output of the FB. Free
variables will not be connected.

PLC Unlocated variable In the Concept logic the variable will be connected to
the input/output of the FB of the Control Module. Free
variables will not be connected.

PLC_HMI Located variable In the Concept logic the variable will be connected to
the input/output of the FB of the Control Module, for
details see table below.

PLC_NET Located variable In Concept located variables will ge generated.

Note: Free variables will be generated in Concept without any logic.
 295

Generated Code
Relation of In/Out definition, command type and generated connection of the
variable to the FB for PLC_HMI Control Module type variables (the variable is
named "var"):

In/Out Command Generated

In Operator
Parameter

Out View only

InOut Logic

Operator
Parameter

Constant

FBvar

FB var

FB var

FBvar var

FB1.1 var

Initial valve of var
296

Generated Code
Generated Code: Equipment Modules, Control Modules and Interlocks

What is
Generated?

For each Equipment Module Unity Application Generator generates a section in
Concept. This section will contain a Function Block for each Control Module of the
Equipment Module. Each Control Module has its own specific Function Block. For
details on the Function Blocks refer to the Control Module Type (SCoD)
documentation.
All variables required by the Concept project will also be created.
For an interlock definition the following is generated:

For ... Unity Application Generator generates ...

A syntactically and semantically correct
interlock definition

A Function Block network realizing the
interlock definition connected to the
corresponding SCoD

An incorrect interlock definition A comment for the corresponding SCoD

Note: Please note the following information on interlocks:
� Syntactically correct interlock definition means: It is a valid logical expression.
� Semantically correct interlock definition means: All used variables are existing

on the PLC where the SCoD is generated.
� The generated Concept Function Block networks in some cases have to be

rearranged manually.
� Existing interlock definitions from older versions of Unity Application Generator

(<V1.5) will stay as comments.
� For interlock definitions as comments the control engineer has to add the PLC

code manually.
 297

Generated Code
Example Section Section generated for an Equipment Module containing 2 Control Modules:

VASD01

EQ211X_Valve1_OPNCLSOPNCLSRDYEQ211X_Valve1_RDY

EQ211X Valve1 (1)

LSOEQ211X_Valve1_LSO

LSOINV0

LSCEQ211X_Valve1_LSC

LSCINV0

LCMD0

POREQ211X_Valve1_POR

PCREQ211X_Valve1_PCR

PINLCK

MOPENEQ211X_Valve1_MOPEN

CMODEEQ211X_Valve1_MODE

OVRDOEQ211X_Valve1_OVRDO

OVRDCEQ211X_Valve1_OVRDC

TMROVRD0

TMRO100

TMRC100

ETC0

CYCEN0

CYCTHREQ211X_Valve1_CYCTHR

RCYCEQ211X_Valve1_RCYC

FTEN0

FTTHREQ211X_Valve1_FTTHR

RFTEQ211X_Valve1_RFT

FCEN0

FCTHREQ211X_Valve1_FCTHR

CMODEEQ211X_Valve1_MODE

RFCEQ211X_Valve1_RFC

RSTEQ211X_Valve1_RST

MRSTEQ211X_Valve1_MRST

EQ211X_Valve1_OPNDOPND

EQ211X_Valve1_CLSDCLSD

EQ211X_Valve1_FTOFTO

EQ211X_Valve1_FTCFTC

EQ211X_Valve1_FLDONFLDON

EQ211X_Valve1_FLDOFFFLDOFF

EQ211X_Valve1_TRVLTRVL

EQ211X_Valve1_NRDYNRDY

EQ211X_Valve1_INLCKINLCK

EQ211X_Valve1_HEALTHYHEALTHY

EQ211X_Valve1_MOPENIMOPEN

EQ211X_Valve1_MODEMODE

EQ211X_Valve1_OVRDOIOVRDO

EQ211X_Valve1_OVRDCIOVRDC

EQ211X_Valve1_NCYCNCYC

EQ211X_Valve1_CYCACYCA

EQ211X_Valve1_RCYCIRCYC

EQ211X_Valve1_FTFT

EQ211X_Valve1_FTAFTA

EQ211X_Valve1_RFTIRFT

EQ211X_Valve1_RCYCIRCYC

EQ211X_Valve1_FCFC

EQ211X_Valve1_FCAFCA

EQ211X_Valve1_RFCIRFC

EQ211X_Valve1_IMRSTIMRST

PSS01

EQ211X_Pump1_STRSTPSTRSTPRDYEQ211X_Pump1_RDY

EQ211X Pump1 (2)

MSEQ211X_Pum1_MS

LREQ211X_Pump1_LR

LRINV0

IP1EQ211X_Pump1_IP1

IP3EQ211X_Pump1_IP3

IPINV0

LCMD1

PSREQ211X_Pump1_PSR

PINLCK

MSTRTEQ211X_Pump1_MSTRT

CMODEEQ211X_Pump1_MODE

OVRMSEQ211X_Pump1_OVRMS

OVRIP1EQ211X_Pump1_OVRIP1

OVRIP2EQ211X_Pump1_OVRIP2

OVRIP3EQ211X_Pump1_OVRIP3

TMROVR0

TMRSTR200

TMRSTP200

COF1

RTEN0

RTTHREQ211X_Pump1_RTTHR

RRTEQ211X_Pump1_RRT

RSTEQ211X_Pump1_RST

MRSTEQ211X_Pump1_MRST

EQ211X_Pump1_RNNGRNNG

EQ211X_Pump1_STPPDSTPPD

EQ211X_Pump1_FTRFTR

EQ211X_Pump1_FTSFTS

EQ211X_Pump1_TRVLTRVL

EQ211X_Pump1_LOCALLOCAL

EQ211X_Pump1_AIP1AIP1

EQ211X_Pump1_AIP2AIP2

EQ211X_Pump1_AIP3AIP3

EQ211X_Pump1_NRDYNRDY

EQ211X_Pump1_INLCKINLCK

EQ211X_Pump1_HEALTHYHEALTHY

EQ211X_Pump1_MSTRTIMSTRT

EQ211X_Pump1_MODEMODE

EQ211X_Pump1_OVRIP3IOVRIP3

EQ211X_Pump1_RTRT

EQ211X_Pump1_RTARTA

EQ211X_Pump1_RRTIRRT

EQ211X_Pump1_MRSTIMRST

IP2EQ211X_Pump1_IP2

PRREQ211X_Pump1_PRR

EQ211X_Pump1_OVRMSIOVRMS

EQ211X_Pump1_OVRIP1IOVRIP1

EQ211X_Pump1_OVRIP2IOVRIP2
298

Generated Code
Example:
Interlock

Function Block generated for a Control Module connected to a Function Block
network generated for an interlock definition:

GE_REAL

EQ211X_aia1_SP

.4.6 (2)

50.5

Interlook ’EQ211X_msr1’ - PINLCK

MSR01

EQ211X_msr1_FWDFWDRDYEQ211X_msr1_RDY

EQ211X msr1 (7)

MSFEQ211X_msr1_MSF

LE_REAL

EQ211X_aia1_TH

.4.7 (3)

EQ211X_aia1_TL

AND_BOOL

.4.5 (4)

XOR_BOOL

EQ211X_msr2_FTR

.4.8 (5)

EQ211X_msr2_FTS

OR_BOOL

.4.4 (6)

EQ211X_msr2_RDY
EQ211X_aia1_DAHH

EQ211X_msr1_REVREV
EQ211X_msr1_RNNGRNNGMSREQ211X_msr1_MSR

LREQ211X_msr1_LR EQ211X_msr1_STPPDSTPPD
EQ211X_msr1_RUNFRUNFLRINV0

IP1EQ211X_msr1_IP1 EQ211X_msr1_RUNRRUNR
EQ211X_msr1_FTRFTRIP2EQ211X_msr1_IP2

IP3EQ211X_msr1_IP3 EQ211X_msr1_FTSFTS

EQ211X_msr1_FTRFFTRFIPINV0
LCMD0 EQ211X_msr1_FTRRFTRR

EQ211X_msr1_FLDFLDPRREQ211X_msr1_PRR
PSREQ211X_msr1_PSR EQ211X_msr1_TRVLTRVL

EQ211X_msr1_LOCALLOCALPINLCK
PDIREQ211X_msr1_PDIR EQ211X_msr1_AIP1AIP1

EQ211X_msr1_AIP2AIP2MSTRTEQ211X_msr1_MSTRT

MDIREQ211X_msr1_MDIR EQ211X_msr1_AIP3AIP3
EQ211X_msr1_NRDYNRDYCMODEEQ211X_msr1_MODE

OVRMSFEQ211X_msr1_OVRMSF EQ211X_msr1_INLCKINLCK
EQ211X_msr1_HEALTHYHEALTHYOVRMSREQ211X_msr1_OVRMSR

OVRIP1EQ211X_msr1_OVRIP1 EQ211X_msr1_MSTRTIMSTRT

EQ211X_msr1_MDIRIMDIROVRIP2EQ211X_msr1_OVRIP2

OVRIP3EQ211X_msr1_OVRIP3 EQ211X_msr1_MODEMODE
EQ211X_msr1_OVRMSFIOVRMSFTMROVR0

TMRSTR200 EQ211X_msr1_OVRMSRIOVRMSR
EQ211X_msr1_OVRIP1IOVRIP1TMRSTP200

COF1 EQ211X_msr1_OVRIP2IOVRIP2
EQ211X_msr1_OVRIP3IOVRIP3RTEN0

RTTHREQ211X_msr1_RTTHR EQ211X_msr1_RTRT
RRTEQ211X_msr1_RRT EQ211X_msr1_RTARTA

EQ211X_msr1_RRTIRRTRSTEQ211X_msr1_RST

MRSTEQ211X_msr1_MRST EQ211X_msr1_MRSTIMRST

Note: See the corresponding interlock definition in Unity Application Generator in
Example: Interlock Definition, p. 150
 299

Generated Code
Generated Code: Communication

What is
Generated?

What is generated depends of the type of communication.
PLC <-> PLC communication is performed as Peer Cop or I/O Scanner
communication.

Code for Peer
Cop
Communication

Peer Cop communication is restricted to 32 words. Unity Application Generator uses
1 word for a watchdog counter, thus 31 words remain for the communication.
Unity Application Generator builds up logic to
� assemble in a data table all PLC variables to be communicated into one

structured variable and to
� disassemble for the receiving PLC the structured variable.
Unity Application Generator will configure the Peer Cop tables with memory and
network addresses.

Code for I/O
Scanner
Communication

I/O Scanner communication is very similar to Peer Cop communication.
The differences are the following:
� I/O Scanner communication is restricted to 100 words.
� I/O Scanner tables need only an entry in the sending PLC:

Example of
Generated
Function Blocks

The following figures show examples of the Function Blocks generated for Peer Cop
communication.
Function block to send Peer Cop table to another PLC

Function Block to receive Peer Cop table from another PLC

PEER_SND

Spec_PLC1_PLC2_TSTSTableSpec_PLC1_PLC2_Table

Spec_PLC1_PLC2_SND (6)

PEER_RCV

Spec_PLC1_PLC2_TableTableTR1Spec_PLC1_PLC2_TR1

Spec_PLC1_PLC2_RCV (6)

TIMEOUT1T#1s0ms

TR2Spec_PLC1_PLC2_TR2
TIMEOUT2T#2s0ms

Spec_PLC1_PLC2_Err1ERR1

Spec_PLC1_PLC2_Err2ERR2TFLDSpec_PLC1_PLC2_Failure
300

Generated Code
Convert datatype INT to WORD

Convert datatype WORD to INT

Convert REAL as WORD (2 words)

Convert WORD as REAL

Convert TIME as WORD (2 words)

Convert WORD as TIME (2 words)

INT_TO_WORD

Spec_PLC1_PLC2EQP113_motor1_RT

.5.6 (6)

WORD_TO_INT

EQP113_Netl1Spec_PLC1_PLC2_Table.table[24]

.11.30 (30)

REAL_AS_WORD

Spec_PLC1_PLC2LOWINEQP113_NetR2

FBI 5 12 (12)

Spec_PLC1_PLC2HIGH

WORD_AS_REAL

EQP113_NetR2LOWSpec_PLC1_PLC2_Table.table[22]

.11.29 (29)

HIGHSpec_PLC1_PLC2_Table.table[23]

TIME_AS_WORD

Spec_PLC1_PLC2LOWINEQP113_VTime

FBI 5 14 (14)

Spec_PLC1_PLC2HIGH

WORD_AS_TIME

EQP113_VTimeLOWSpec_PLC1_PLC2_Table.table[25]

.11.31 (31)

HIGHSpec_PLC1_PLC2_Table.table[26]
 301

Generated Code
Generated Code: Initialization

What is
Generated?

The initialization sections takes care to set all the 0x variables to the initial values
defined by Unity Application Generator. Additionally there is an FBD section with
logic that ensures that the initialization is only executed if the PLC has to perform
cold start-up or warm start-up.

Example Code Initialization control code

Initialization of Coils

SYSSTATE

COLD

SystemGlobals (1)

MOVE

InitCoils1.disable_InitCoilSectionDisable

.1.3 (3)

WARM

ERROR

OR_BOOL

.1.4 (4)

_InitCoilSectionDisable

OR_BOOL

.1.2 (2)

_AnalogConfigurationSectionDisable

MOVE

AnalogConfig_Local.disable_AnalogConfigurationSectionDisable

.1.5 (5)

MOVE

EQ701Q_Motor1_OVRMSF1

.2.1 (1)

MOVE

EQ701Q_Motor1_OVRMSR1

.2.2 (2)DO NOT MODIFY THIS SECTION!
302

Generated Code
Generated Code: Scaling of Analog Values (Quantum only)

What is
Generated?

With Quantum PLCs for the scaling of analog values the following is generated:
� A group called AnalogConfiguration
� In this group further groups for the different I/O types (local, remote, distributed)
� Within these groups a section for each Rack
Examples: Section AnalogConfig_Remote_Drop6 or
AnalogConfig_DIO1_Drop16

Within these sections a DROP Function Block, (a XBP Function Block if a backplane
expander is used) and the Function Blocks for the analog modules are generated
and connected appropriately. The variables mapped to analog modules are
connected to the respective EFBs (only for data types ANL_IN and ANL_OUT).

Generated Code: Hot Standby

What is
Generated?

For a Hot Standby system the following is generated:
� A group called Hot Standby (always the first group in the Concept project).
� In this group a section called HotStandby-Section.
� In this section Function Blocks for monitoring and manipulating the HSBY

system. Variables are generated and connected to these Function Blocks.

Note: All generated names are independent of the installed language version of
Unity Application Generator. Thus the Concept projects can be used with all Unity
Application Generator language versions.
 303

Generated Code
B.3 Generation for Unity Pro

Overview

Introduction This section describes the generation of Unity Application Generator for Unity Pro.

What's in this
Section?

This section contains the following topics:

Topic Page

What is generated? 305

Generation from General Project Settings - Overview 306

Generation from the Topological Model - Overview 307

Generation from the Physical Model - Overview 313

Generated PLC Configuration 320

Generated Variables 320

Generated Code: Equipment Modules, Control Modules and Interlocks 323

Generated Code: Communication 326

Generated Code: Initialization (Quantum only) 328

Generated Code: Scaling of Analog Values (Quantum only) 328

Generated Code: Discrete Configuration (Premium only) 329
304

Generated Code
What is generated?

What is
generated?

For each PLC on the Topological Model, Unity Application Generator creates one
Unity Pro project.
For all elements of the Physical Model, Unity Application Generator creates special
objects.
Generated objects from the Physical Model:

Generated objects from the Topological Model:

Element Object

Area Functional Module in project browser

Process Cell Functional Module in project browser

Unit Functional Module in project browser

Equipment
Module

FBD section with Function Blocks for all Control Modules

Control Module Function Block with all inputs and outputs connected correctly with
variables, literal values, or links
Note: For type-less Control Modules nothing is generated!

Variables Depending on the variables type, Unity Application Generator generates
the respective Unity Pro variables and if necessary an initialization section
for the variables.

Element Object

Channel Section with logic for communication, Peer Cop or I/O scanner
configuration

PLC Unity Pro project with the PLC configuration.
 305

Generated Code
Generation from General Project Settings - Overview

Introduction The following tables gives an overview about the general settings in Unity
Application Generator and the resulting settings in Unity Pro.

Generation from
General Project
Settings

Generation from General Project Settings

Attribute Unity Pro Comment

View →
Options →
PLC → PLC
project path

Directory where Unity
Pro project is
generated

Unity Pro project is generated as
PLCProjectPath\PLCProjectName\PLCProje

ctName.STU

Example:
� PLCProjectPath = c:\PLCPrjs

� PLCProjectName = PLC1

generated project will be
� c:\PLCPrjs\PLC1\PLC1.STU

View →
Options →
PLC →
Generate
completely
new

Unity Pro project will be generated completely new.

Note: In the Unity Pro under Tools → Project Settings... → Laguage extensions
the options Allow leading digits and Allow extended character set will be set.
306

Generated Code
Generation from the Topological Model - Overview

Introduction The following tables gives an overview about the settings in Unity Application
Generator for the Topological Model and the resulting settings in Unity Pro.

Generation for
PLC

Generation for PLC

Attribute Unity Pro Comment

PLC Project
Name

Directory and name of
PLC project

See Generation from General Project Settings -
Overview, p. 306

CPU Type Project Browser
(Structural View) →
Station →
Configuration

-

Address ranges Addresses for
� Special registers
� I/O modules
� Variables
� Peer Cop
� I/O Scanner

IO_PLC variables are mapped in Unity Pro to
topological addresses of type EBOOL. (In Unity
Application Generator they are displayed with type
BOOL.)
PLC_HMI variables are mapped in Unity Pro to
StateRAM addresses of type %MW.
Changing the addresses for Quantum HW
modules will result in recalculation of the memory
layout for the modules and thus all I/O variables.
Changing the addresses for HMI will result in
recalculation of the addresses of PLC_HMI
variables.
The Memory Mapper keeps the addresses, which
are not affected by the change and recalculates
only those addresses which are outside the old
range.
To view the different HMI communication frames,
use the menu command Open HMI
Communication for communication channels
from type Data Server. If more than 100 % of a
HMI communication frame is used, increase the
number of HMI variables in the PLC properties, to
prevent a recalculation of this HMI communication
frame.

Greatest
Address %M
(0x)

Select CPU Open
Module →
Configuration

-

 307

Generated Code
Greatest
Address %I (1x)

Select CPU Open
Module →
Configuration

-

Greatest
Address %IW
(3x)

Select CPU Open
Module →
Configuration

-

Greatest
Address %MW
(4x)

Select CPU Open
Module →
Configuration

-

Comment Project Browser
(Structural View) →
Station → Properties
→ Comment

-

Attribute Unity Pro Comment
308

Generated Code
Generation for a
HW Module

Generation for a HW module

Generation for the attributes of a HW module

Object Unity Pro Comment

Quantum/
Premium HW
Module

- The modules are entered in Unity Pro.

Momentum
Ethernet I/O
Module

Project Browser
(Structural View) →
Station →
Communication →
Networks → Network
→ Open → I/O
Scanner

For this type of modules no entry to the I/O map is
made.The module is set up in the I/O Scanner.

Momentum
Modbus Plus I/
O Module

Project Browser
(Structural View) →
Station →
Communication →
Networks → Network
→ Open

For this type of modules no entry to the I/O map is
made.The module is set up in the Peer Cop.

Generic I/O
Module

- For this type of modules no I/O mapping is made.

Attribute Unity Pro Comment

Timeout state Select module Open
Module → Config →
TIMEOUT STATE

Applies only to digital ouput modules. Timeout
state of the HW module must be same as the
timeout state of the variables mapped to the
module.

Timeout value Select module Open
Module → Config →
TIMEOUT STATE →
VALUE

Applies only to digital ouput modules with timeout
state = User defined. The timeout value of the
module is calculate by the timeout states of the
variable mapped to that module.

Adresses Select module Open
Module → Config →
ADRESSES

The State RAM addresses of the I/O modules are
calculated from the information entered in PLC →
Addresses in Unity Application Generator.

Note: For generic modules no entries are generated in the I/O map!
 309

Generated Code
Generation for a
PLC - PLC
Channel

Generation for a PLC - PLC Channel

Object Unity Pro Comment

PLC Channel Project Browser
(Structural View) →
Station →
Communication →
Networks → Network
→ Open → Peer Cop/
I/O Scanner

One or two entries (depending on the number of
communication paths specified in Unity
Application Generator) are generated in the Peer
Cop / I/O Scanner table according to the network
addresses of the PLCs involved in the
communcation.
The %MW addresses used by the communication
are calculated from the information entered in PLC
→ Addresses for PLC communication in Unity
Application Generator.

FBD logic for Peer
Cop

A FBD section with the name of the Channel is
generated in a group called Communcation.
The logic takes care to pack and unpack the
communcated variables into the %MW memory
range used for the Peer Cop I/O Scanner. It also
takes care to switch to the second communication
path if the first fails (if a second path is specified)
and to use the failure values for the variables if the
communication fails completely.

Variables All variables specified in the PLC communcation
table are generated in receiving PLC (Unity Pro
project) with the same name as in the sending
PLC (the scope of the variable names is the
complete plant with all PLCs).
The generated FBD logic takes care to set the
variables to the correct values communicated by
Peer Cop / I/O Scanner or to predefined failure
values.
310

Generated Code
Generation for the attributes of a PLC - PLC Channel

Attribute Unity Pro Comment

Name Name of the section
with the
communication logic

With Ethernet communication for the receiving
PLC 2 sections will be generated, called
Channelname and Channelname_2.

Comment Comment of the
section with the
communication logic

-

Communication
partner

Either
� all (Global, broad

cast - only
Quantum) or

� another PLC
(Specific, peer-to-
peer
communication)

The communication partner cannot be changed
after the Channel has been created in Unity
Application Generator.

Communication
path(s)

Peer Cop nodes or I/O
Scanner entries

The network address of the communication
partner specifies the possible communication
paths and therefore also the link and the node
addresses in the Peer Cop/ I/O Scanner.

Timeout(s) The duration literals
connected to special
send and receive
Function Blocks in the
Peer Cop logic

The timeout(s) specifies the supervision time of
the communication before the communication
logic switches to the second commnucation path
or failure values.
If there is no timeout specified the generated logic
has a default timeout of 2 seconds.
 311

Generated Code
Generation for a
PLC-PLC
Channel - Other
Objects/
Attributes that
influence a PLC-
PLC Channel

Generation for a PLC-PLC Channel, other objects/attributes that influence a PLC-
PLC Channel

Attribute Unity Pro Comment

PLC
communication
table → Variables

Variables that will be
generated in the
receiving PLC(s) and
communicated via
Peer Cop or I/O
Scanner

Variables of data type BOOL are packed into
Words (max. 16),
Variables of other data types are expanded in
one or two words.

PLC
communication
table → Variables
→ Failure state

Specifies how the
communication logic
will handle
communication
failures

Last Value:
� in case of communcation failure the variable

will hold its last value.
User defined:
� in case of communication failure the

variable will be set to value specified as
failure value.

Not_Assigned:
� in case of communcation failure the variable

will be set to 0.

PLC
communication
table → Variables
→ Failure value

The value to which
variables are set in
case of
communication failure

Applies only if failure state = User defined.

Network address of
CPU, NOM, NOE,
M1, ETY, etc.

Node addresses in
Peer Cop or I/O
Scanner

The Modbus Plus network address of the
module specifies the node addresses used in
the Peer Cop.
The Ethernet network address of the module
specifies the node addresses used in the I/O
Scanner.

PLC → Addresses
→ PLC
communication

%MW addresses used
by Peer Cop/ I/O
Scanner

The %MW addresses used by the
communication are calculated from the
information entered in PLC → Addresses for
PLC communication in Unity Application
Generator.
312

Generated Code
Generation from the Physical Model - Overview

Introduction The following tables gives an overview about the settings in Unity Application
Generator for the Physical Model and the resulting settings in Unity Pro.

Generation for
Unity Application
Generator

Generation for the Unity Application Generator

Generation for an
Area

Generation for the Area

Generation for the attributes of an Area

Object Unity Pro Comment

UAG Site Project Browser UAG Site is a top level folder in the Unity Pro
Project Browser in the Functional view.

Object Unity Pro Comment

Area Project Browser →
UAG Site → Area
Functional module

An Area Functional module is a folder within the
parent UAG Site folder. The folder is generated in
those Unity Pro projects where there is an
Equipment Module or a Control Module in the
Physical Model hierarchy of Unity Application
Generator which belongs to this PLC. The group
can therefore exist in several PLCs.

Attribute Unity Pro Comment

Name Functional module
name

-

 313

Generated Code
Generation for a
ProcessCell

Generation for a Process Cell

Generation for the attributes of a Process Cell

Generation for a
Unit

Generation for a Unit

Generation for the attributes of a Unit

Object Unity Pro Comment

Process Cell Project Browser →
UAG Site → Area
Functional module
→ Process Cell
Functional module

A Process Cell Functional module is a folder within
the parent Area folder. The folder is generated in
those Unity Pro projects where there is an
Equipment Module or a Control Module in the
Physical Model hierarchy of Unity Application
Generator which belongs to this PLC. The group
can therefore exist in several PLCs.

Attribute Unity Pro Comment

Name Functional module
name

-

Area Parent Functional
module

A Process Cell can be moved to another Area by
drag and drop in the Physical Model of Unity
Application Generator.

Object Unity Pro Comment

Unit Project Browser →
UAG Site → Area
Functional module
→ Process Cell
Functional module
→ Unit Functional
module

A Unit Functional module is a folder within the
parent Process Cell foder. The folder is generated
in those Unity Pro projects where there is an
Equipment Module or a Control Module in the
Physical Model hierarchy of Unity Application
Generator which belongs to this PLC. The group
can therefore exist in several PLCs.

Attribute Unity Pro Comment

Name Functional module
name

-

Process Cell Parent Functional
module

A Unit can be moved to another Process Cell by
drag and drop in the Physical Model of Unity
Application Generator.
314

Generated Code
Generation for an
Equipment
Module

Generation for an Equipment Module

Generation for the attributes of an Equipment Module

Object Unity Pro Comment

Equipment
Module

Unity Pro FBD section An Equipment Module is a section within the
parent Unit folder in the Unity Pro Project Browser
in the functional view. Always the complete folder
hierarchy Unit - Process Cell - Area is generated.

Attribute Unity Pro Comment

Name The name of the
Equipment Module is
part of:
� Function block

instance names
� Equipment

variable names
� Control Module

variable names

Changing the name of an Equipment Module
result in changing the name of
� all Function Block instance names of its Control

Modules
� all names of the variables of the Equipment

Module
� all names of the variables of the Control

Modules of the Equipment Module.

Section name Unity Pro section
name

Unit Parent Unit folder of
section

An Equipment Module can be moved to another
Unit by drag and drop in the Physical Model of
Unity Application Generator.

PLC Unity Pro project to
which the equipment
belongs

The PLC to which the Equipment Module is
assigned cannot be changed if the Equipment
Module has been generated once.

Description,
Comment

Unity Pro section
comment

The Unity Pro section comment is the
concatenation of the Equipment Module
description and Equipment Module comment.

Description The description of the
Equipment Module is
part of the comment of
all variables of the
Equipment Module
 315

Generated Code
Generation for a
Control Module

Generation for a Control Module

Generation for the attributes of a Control Module

Object Unity Pro Comment

Control Module Unity Pro Function
Block instance
Note: For type-less
Control Modules
nothing is generated.
Analyzer prints a
warning.

The Unity Pro Function Block instance name is
generated as
'EquipmentModuleName_ControlModuleName'. If
a Control Module is assigned to a different PLC
than the parent Equipment Module, the Equipment
Module section will also be generated in the Unity
Pro project (PLC) to which the Control Module is
assigned.

Attribute Unity Pro Comment

Parent
Equipment
Module

� Section in which
the Function Block
instance will be
generated.

� Name of Function
Block instance

� Names of the
variables of the
Control Module

A Control Module can be moved to another
Equipment Module by drag and drop in the
Physical Model of Unity Application Generator.

PLC in which project The PLC to which the Control Module is assigned
cannot be changed if Control Module has been
generated once.

Name Name for FB instance
and
ControlModuleVar

Description,
Comment

Comment of Function
Block instance

The Function Block instance comment is the
concatenation of the Control Module description
and Control Module comment.

Description The description of the
Control Module is part
of the comment of all
variables of the
Control Module
316

Generated Code
Generation for a
Variable

Generation for a variable

Interlock
definition

� Function Block
network connected
to the Control
Module’s Function
Block

� The textual
description of the
interlock definition
as a comment in
the Control
Modules’s
corresponding
Function Block.

The interlock definition has to be syntactically and
semantically correct. This means:
� It has to be a valid logical expression.
� The variables used have to be existing locally.
Otherwise only a comment is generated to the
Control Module’s Function Block.
Note:
Existing interlock definitions from older versions of
Unity Application Generator (<V1.5) will stay as
comments.

Attribute Unity Pro Comment

Object Unity Pro Comment

Variable Unity Pro variable The variable name is generated as
'EquipmentModuleName_ControlModuleName_V
ariableName' (Control Module variable) or
'EquipmentModuleName_VariableName'
(Equipment Module).
The variable comment is generated as
'VariableDescription - ControlModuleDescription -
Equipment ModuleDescription' (Control Module
variable) or 'VariableDescription -
EquipmentModuleDescription' (Equipment
Module variable).
 317

Generated Code
Generation for the attributes of a variable

Attribute Unity Pro Comment

Name Variable Name The name can only be changed for free variables.

Description Part of variable
comment

See above

InitialValue Initial value of variable Intitial values can be specified for:
� unlocated variables (PLC or PLC_NET).
� located %MW variables (PLC_HMI or

PLC_NET).

Timeout state Used for setting the
Timeout state of the I/
O module, to which
the variable is
mapped. Timeout
state of the I/O module
must be same as the
Timeout state of the
variables mapped to
the module.

Applies only to IO_PLC digital output variables.

Timeout value Used for calculating
the Timeout value of
the I/O module, to
which the variable is
mapped

Applies only to IO_PLC digital output variables
with timeout state = User defined.
318

Generated Code
Command Defines how the
variable is connected
to the Function Block
instance

Applies only to PLC_HMI variables.
Free variables are always IN/OUT, see below.
IN variables: Always connected to input of
Function Block instance
� Operator/Parameter

The variable can be changed by the HMI.
� Logic/Constant

The variable cannot be changed by the HMI.
� OUT variables

Always connected to output of Function Block
instance always View only.

IN/OUT variables
� Operator/Parameter: The variable is

connected to the input and the output of the
Function Block instance.

� Constant: The input of the Function Block
instance is connected with the initial value of
the variable, the output is connected with
variable.

� Logic: The input of the Function Block instance
is not connected, the output is connected with
variable.

Variable used Specifies if a variables
is generated and
connected to the
Function Block
instance.

Applies only to IO_PLC variables. Other variables
and free variables are always used.

Invert Creates invert
functionality of pin or
creates literal if an
additional pin is used
to invert this IO point.

Applies only to IO_PLC variables of data type
BOOL.
Depending on the Control Module type the input/
output of Function Block instance is either inverted
or if the Control Module Type has a special input
to specify the inverted logic, a literal 0 or 1
(inverted) is connected to this input.

State RAM
address

Variable addresses � IO_PLC variables: The addresses are
calculated from addresses of the I/O modules
to which the variables are assigned.

� PLC variables: Generated as unlocated
variables.

� PLC_NET variables: The address are
calculated from the information entered in PLC
→ Addresses for HMI in Unity Application
Generator.

Attribute Unity Pro Comment
 319

Generated Code
Generated PLC Configuration

What is
Generated?

Unity Application Generator will generate all configuration information which is in the
scope of Unity Application Generator and what is necessary to describe the high
level process design. It will not generate e. g.:
� ASCII setup information
� Specific module parameters

PLC
Configuration

In the Unity Pro configurator, Unity Application Generator will take care for the
following aspects:
� PLC type
� Memory partitions
� Peer Cop and I/O Scanner

Generated Variables

What is
Generated?

Most variables in Unity Application Generator will generate variables in Unity Pro.
Only variables of the type HMI will not generate a variable in Unity Pro but a tag in
the HMI data base.

Variables Each variable in Unity Application Generator of the connection types listed in the
following table will result in a variable in Unity Pro.

Note: IO_PLC variables which are declared not used will not be generated in
Unity Pro.
320

Generated Code
Connection types and related variables in Unity Pro:

Connection
Type

Variable type in Unity
Pro

Comment

IO_PLC Located variable The variables will be mapped to topological
addresses of type EBOOL. In the Unity Pro logic the
variables will be connected to the inputs/outputs of
the FB. Free variables will not be connected.

PLC Unlocated variable In the Unity Pro logic the variables will be connected
to the inputs/outputs of the FB of the Control Module.
Free variables will not be connected.

PLC_HMI Located variable The variables will be mapped to %M and %MW
variables in the State RAM. In the Unity Pro logic the
variables will be connected to the inputs/outputs of
the FB of the Control Module, for details see table
below.

PLC_NET Located variable In Unity Pro located variables will ge generated.

Note: Free variables will be generated in Unity Pro without any logic.
 321

Generated Code
Relation of In/Out definition, command type and generated connection of the
variable to the FB for PLC_HMI Control Module type variables (the variable is
named "var"):

In/Out Command Generated

In Operator
Parameter

Out View only

InOut Logic

Operator
Parameter

Constant

FBvar

FB var

FB var

FBvar var

FB1.1 var

Initial valve of var
322

Generated Code
Generated Code: Equipment Modules, Control Modules and Interlocks

What is
Generated?

For each Equipment Module Unity Application Generator generates a section in
Unity Pro. This section will contain a Function Block for each Control Module of the
Equipment Module. Each Control Module has its own specific Function Block. For
details on the Function Blocks refer to the Control Module Type (SCoD)
documentation.
All variables required by the Unity Pro project will also be created.
For an interlock definition the following is generated:

For ... Unity Application Generator generates ...

A syntactically and semantically correct
interlock definition

A Function Block network realizing the
interlock definition connected to the
corresponding SCoD

An incorrect interlock definition A comment for the corresponding SCoD

Note: Please note the following information on interlocks:
� Syntactically correct interlock definition means: It is a valid logical expression.
� Semantically correct interlock definition means: All used variables are existing

on the PLC where the SCoD is generated.
� The generated Unity Pro Function Block networks in some cases have to be

rearranged manually.
� Existing interlock definitions from older versions of Unity Application Generator

(<V1.5) will stay as comments.
� For interlock definitions as comments the control engineer has to add the PLC

code manually.
 323

Generated Code
Example Section Section generated for an Equipment Module containing 2 Control Modules:

VASD01

EQ211X_Valve1_OPNCLSOPNCLSRDYEQ211X_Valve1_RDY

EQ211X Valve1 (1)

LSOEQ211X_Valve1_LSO

LSOINV0

LSCEQ211X_Valve1_LSC

LSCINV0

LCMD0

POREQ211X_Valve1_POR

PCREQ211X_Valve1_PCR

PINLCK

MOPENEQ211X_Valve1_MOPEN

CMODEEQ211X_Valve1_MODE

OVRDOEQ211X_Valve1_OVRDO

OVRDCEQ211X_Valve1_OVRDC

TMROVRD0

TMRO100

TMRC100

ETC0

CYCEN0

CYCTHREQ211X_Valve1_CYCTHR

RCYCEQ211X_Valve1_RCYC

FTEN0

FTTHREQ211X_Valve1_FTTHR

RFTEQ211X_Valve1_RFT

FCEN0

FCTHREQ211X_Valve1_FCTHR

CMODEEQ211X_Valve1_MODE

RFCEQ211X_Valve1_RFC

RSTEQ211X_Valve1_RST

MRSTEQ211X_Valve1_MRST

EQ211X_Valve1_OPNDOPND

EQ211X_Valve1_CLSDCLSD

EQ211X_Valve1_FTOFTO

EQ211X_Valve1_FTCFTC

EQ211X_Valve1_FLDONFLDON

EQ211X_Valve1_FLDOFFFLDOFF

EQ211X_Valve1_TRVLTRVL

EQ211X_Valve1_NRDYNRDY

EQ211X_Valve1_INLCKINLCK

EQ211X_Valve1_HEALTHYHEALTHY

EQ211X_Valve1_MOPENIMOPEN

EQ211X_Valve1_MODEMODE

EQ211X_Valve1_OVRDOIOVRDO

EQ211X_Valve1_OVRDCIOVRDC

EQ211X_Valve1_NCYCNCYC

EQ211X_Valve1_CYCACYCA

EQ211X_Valve1_RCYCIRCYC

EQ211X_Valve1_FTFT

EQ211X_Valve1_FTAFTA

EQ211X_Valve1_RFTIRFT

EQ211X_Valve1_RCYCIRCYC

EQ211X_Valve1_FCFC

EQ211X_Valve1_FCAFCA

EQ211X_Valve1_RFCIRFC

EQ211X_Valve1_IMRSTIMRST

PSS01

EQ211X_Pump1_STRSTPSTRSTPRDYEQ211X_Pump1_RDY

EQ211X Pump1 (2)

MSEQ211X_Pum1_MS

LREQ211X_Pump1_LR

LRINV0

IP1EQ211X_Pump1_IP1

IP3EQ211X_Pump1_IP3

IPINV0

LCMD1

PSREQ211X_Pump1_PSR

PINLCK

MSTRTEQ211X_Pump1_MSTRT

CMODEEQ211X_Pump1_MODE

OVRMSEQ211X_Pump1_OVRMS

OVRIP1EQ211X_Pump1_OVRIP1

OVRIP2EQ211X_Pump1_OVRIP2

OVRIP3EQ211X_Pump1_OVRIP3

TMROVR0

TMRSTR200

TMRSTP200

COF1

RTEN0

RTTHREQ211X_Pump1_RTTHR

RRTEQ211X_Pump1_RRT

RSTEQ211X_Pump1_RST

MRSTEQ211X_Pump1_MRST

EQ211X_Pump1_RNNGRNNG

EQ211X_Pump1_STPPDSTPPD

EQ211X_Pump1_FTRFTR

EQ211X_Pump1_FTSFTS

EQ211X_Pump1_TRVLTRVL

EQ211X_Pump1_LOCALLOCAL

EQ211X_Pump1_AIP1AIP1

EQ211X_Pump1_AIP2AIP2

EQ211X_Pump1_AIP3AIP3

EQ211X_Pump1_NRDYNRDY

EQ211X_Pump1_INLCKINLCK

EQ211X_Pump1_HEALTHYHEALTHY

EQ211X_Pump1_MSTRTIMSTRT

EQ211X_Pump1_MODEMODE

EQ211X_Pump1_OVRIP3IOVRIP3

EQ211X_Pump1_RTRT

EQ211X_Pump1_RTARTA

EQ211X_Pump1_RRTIRRT

EQ211X_Pump1_MRSTIMRST

IP2EQ211X_Pump1_IP2

PRREQ211X_Pump1_PRR

EQ211X_Pump1_OVRMSIOVRMS

EQ211X_Pump1_OVRIP1IOVRIP1

EQ211X_Pump1_OVRIP2IOVRIP2
324

Generated Code
Example:
Interlock

Function Block generated for a Control Module connected to a Function Block
network generated for an interlock definition:

GE_REAL

EQ211X_aia1_SP

.4.6 (2)

50.5

Interlook ’EQ211X_msr1’ - PINLCK

MSR01

EQ211X_msr1_FWDFWDRDYEQ211X_msr1_RDY

EQ211X msr1 (7)

MSFEQ211X_msr1_MSF

LE_REAL

EQ211X_aia1_TH

.4.7 (3)

EQ211X_aia1_TL

AND_BOOL

.4.5 (4)

XOR_BOOL

EQ211X_msr2_FTR

.4.8 (5)

EQ211X_msr2_FTS

OR_BOOL

.4.4 (6)

EQ211X_msr2_RDY
EQ211X_aia1_DAHH

EQ211X_msr1_REVREV
EQ211X_msr1_RNNGRNNGMSREQ211X_msr1_MSR

LREQ211X_msr1_LR EQ211X_msr1_STPPDSTPPD
EQ211X_msr1_RUNFRUNFLRINV0

IP1EQ211X_msr1_IP1 EQ211X_msr1_RUNRRUNR
EQ211X_msr1_FTRFTRIP2EQ211X_msr1_IP2

IP3EQ211X_msr1_IP3 EQ211X_msr1_FTSFTS

EQ211X_msr1_FTRFFTRFIPINV0
LCMD0 EQ211X_msr1_FTRRFTRR

EQ211X_msr1_FLDFLDPRREQ211X_msr1_PRR
PSREQ211X_msr1_PSR EQ211X_msr1_TRVLTRVL

EQ211X_msr1_LOCALLOCALPINLCK
PDIREQ211X_msr1_PDIR EQ211X_msr1_AIP1AIP1

EQ211X_msr1_AIP2AIP2MSTRTEQ211X_msr1_MSTRT

MDIREQ211X_msr1_MDIR EQ211X_msr1_AIP3AIP3
EQ211X_msr1_NRDYNRDYCMODEEQ211X_msr1_MODE

OVRMSFEQ211X_msr1_OVRMSF EQ211X_msr1_INLCKINLCK
EQ211X_msr1_HEALTHYHEALTHYOVRMSREQ211X_msr1_OVRMSR

OVRIP1EQ211X_msr1_OVRIP1 EQ211X_msr1_MSTRTIMSTRT

EQ211X_msr1_MDIRIMDIROVRIP2EQ211X_msr1_OVRIP2

OVRIP3EQ211X_msr1_OVRIP3 EQ211X_msr1_MODEMODE
EQ211X_msr1_OVRMSFIOVRMSFTMROVR0

TMRSTR200 EQ211X_msr1_OVRMSRIOVRMSR
EQ211X_msr1_OVRIP1IOVRIP1TMRSTP200

COF1 EQ211X_msr1_OVRIP2IOVRIP2
EQ211X_msr1_OVRIP3IOVRIP3RTEN0

RTTHREQ211X_msr1_RTTHR EQ211X_msr1_RTRT
RRTEQ211X_msr1_RRT EQ211X_msr1_RTARTA

EQ211X_msr1_RRTIRRTRSTEQ211X_msr1_RST

MRSTEQ211X_msr1_MRST EQ211X_msr1_MRSTIMRST

Note: See the corresponding interlock definition in Unity Application Generator in
Example: Interlock Definition, p. 150
 325

Generated Code
Generated Code: Communication

What is
Generated?

What is generated depends of the type of communication.
PLC <-> PLC communication is performed as Peer Cop or I/O Scanner
communication.

Code for Peer
Cop
Communication

Peer Cop communication is restricted to 32 words. Unity Application Generator uses
1 word for a watchdog counter, thus 31 words remain for the communication.
Unity Application Generator builds up logic to
� assemble in a data table all PLC variables to be communicated into one

structured variable and to
� disassemble for the receiving PLC the structured variable.

Unity Application Generator will configure the Peer Cop tables with memory and
network addresses.

Code for I/O
Scanner
Communication

I/O Scanner communication is very similar to Peer Cop communication.
The differences are the following:
� I/O Scanner communication is restricted to 100 words.
� I/O Scanner tables need only an entry in the sending PLC:

Example of
Generated
Function Blocks

The following figures show examples of the Function Blocks generated for Peer Cop
communication.
Function block to send Peer Cop table to another PLC

Function Block to receive Peer Cop table from another PLC

PEER_SND

Spec_PLC1_PLC2_TSTSTableSpec_PLC1_PLC2_Table

Spec_PLC1_PLC2_SND (6)

PEER_RCV

Spec_PLC1_PLC2_TableTableTR1Spec_PLC1_PLC2_TR1

Spec_PLC1_PLC2_RCV (6)

TIMEOUT1T#1s0ms

TR2Spec_PLC1_PLC2_TR2

TIMEOUT2T#2s0ms

Spec_PLC1_PLC2_Err1ERR1

Spec_PLC1_PLC2_Err2ERR2TFLDSpec_PLC1_PLC2_Failure
326

Generated Code
Convert datatype INT to WORD

Convert datatype WORD to INT

Convert REAL as WORD (2 words)

Convert WORD as REAL

Convert TIME as WORD (2 words)

Convert WORD as TIME (2 words)

INT_TO_WORD

Spec_PLC1_PLC2EQP113_motor1_RT

.5.6 (6)

WORD_TO_INT

EQP113_Netl1Spec_PLC1_PLC2_Table.table[24]

.11.30 (30)

REAL_AS_WORD

Spec_PLC1_PLC2LOWINEQP113_NetR2

FBI 5 12 (12)

Spec_PLC1_PLC2HIGH

WORD_AS_REAL

EQP113_NetR2LOWSpec_PLC1_PLC2_Table.table[22]

.11.29 (29)

HIGHSpec_PLC1_PLC2_Table.table[23]

TIME_AS_WORD

Spec_PLC1_PLC2LOWINEQP113_VTime

FBI 5 14 (14)

Spec_PLC1_PLC2HIGH

WORD_AS_TIME

EQP113_VTimeLOWSpec_PLC1_PLC2_Table.table[25]

.11.31 (31)

HIGHSpec_PLC1_PLC2_Table.table[26]
 327

Generated Code
Generated Code: Initialization (Quantum only)

What is
Generated?

The initialization section ensures that the initialization is only executed if the PLC
has to perform cold start-up and warm start-up.

Example Code Initialization control code

Generated Code: Scaling of Analog Values (Quantum only)

What is
Generated?

With Quantum PLCs for the scaling of analog values the following is generated:
� A group called AnalogConfiguration
� In this group further groups for the different I/O types (local, remote, distributed)
� Within these groups a section for each Rack
Examples: Section AnalogConfig_Remote_Drop6 or
AnalogConfig_DIO1_Drop16

Within these sections a DROP Function Block, (a XBE Function Block if a backplane
expander is used) and the Function Blocks for the analog modules are generated
and connected appropriately. The variables mapped to analog modules are
connected to the respective EFBs (only for data types ANL_IN and ANL_OUT).

SystemGlobals
1

SYSSTATE

COLD
WARM
ERROR

.1
2

OR_BOOL

OUTIN1 _AnalogConfigSectionDisable
IN2

.2
3

MOVE

OUTIN_AnalogConfigSelectionDisable _AnalogConfig_Local_dis

Note: All generated names are independent of the installed language version of
Unity Application Generator. Thus the Unity Pro projects can be used with all Unity
Application Generator language versions.
328

Generated Code
Generated Code: Discrete Configuration (Premium only)

What is
Generated?

With Premium PLCs for discrete configuration the following is generated:
� A group called DiscreteConfiguration.
� Within this group a Program group.

� Within this group a section for IO Scanner management if Ethernet I/O is used.
The section contains 1 or more INT_TO_BIT and/or BIT_TO_INT function
blocks for each Rack and Modul.
It is needed to make the single I/O points available in Unity Application
Generator.

� Within this group a section for Peer Cop management if Modbus Plus I/O is
used.
The section contains 1 or more INT_TO_BIT and/or BIT_TO_INT function
blocks for each Rack and Modul.
It is needed to make the single I/O points available in Unity Application
Generator.

Note: All generated names are independent of the installed language version of
Unity Application Generator. Thus the Unity Pro projects can be used with all Unity
Application Generator language versions.
 329

Generated Code
Example for IO
Scanner

Example for IO Scanner

INT_TO_BIT

BIT0

BIT1

BIT2

BIT3

BIT4

BIT5

BIT6

BIT7

BIT8

BIT9

IN%MW3201

BIT10

Motor1_VA_DI

Motor1_VB_LSO

Motor1_VB_LSC

EthlO Drop1 Slott_1
1

BIT11

BIT12

BIT13

BIT14

BIT15

DO NOT MODIFY THIS SECTION

INT_TO_BIT

BIT0

BIT1

BIT2

BIT3

BIT4

BIT5

BIT6

BIT7

BIT8

BIT9

IN%MW3202

BIT10

EthlO Drop1 Slott_2
2

BIT11

BIT12

BIT13

BIT14

BIT15
330

Generated Code
Example for Peer
Cop

Example for Peer Cop

INT_TO_BIT

BIT0

BIT1

BIT2

BIT3

BIT4

BIT5

BIT6

BIT7

BIT8

BIT9

IN%MW3201

BIT10

Motor2_VA_DI

Motor2_VB_LSO

Motor2_VB_LSC

MBPIOLink0 Drop1_Slot2_1
1

BIT11

BIT12

BIT13

BIT14

BIT15

DO NOT MODIFY THIS SECTION

BIT_TO_INT

OUTBIT0 %MW3239

MBPIOLink0 Drop1_Slot5_1
2

BIT1

BIT2Motor2_VB_OPNCLS

BIT3

BIT4

BIT5

BIT6

BIT7

BIT8

BIT9

BIT10

BIT11
BIT12

BIT13

BIT14

BIT15
 331

Generated Code
B.4 Generation for Monitor Pro

Overview

Introduction This section describes the generation of Unity Application Generator for Monitor Pro.

What's in this
Section?

This section contains the following topics:

Topic Page

Introduction 333

Generated Variables and their Graphical Representation in the HMI 333

Generated Screens 335

Generated Monitor Pro Database Objects 336

Generated Monitor Pro Pictures 340
332

Generated Code
Introduction

Introduction If you are using Monitor Pro, the communication with the HMI is performed through
standard Ethernet drivers. Unity Application Generator will create all required
variables in the Data Servers so that they can be used within the PLC and HMI.
To display the information at the HMI, Unity Application Generator generates the
following:
� One screen for each Equipment Module
� One animated symbol for each Control Module
� All required variables for the Control Module
� A graphical symbol for each free variable (optional for PLC_HMI variables)

Control Module variables are part of the animated symbols of the Control Module.
Free variables will be shown as a graphical symbol which shows the value of the
variable and allows the user to change that value depending on the access rights of
the operator and command settings. They will be displayed on the Equipment
Module screen they belong to.

Generated Variables and their Graphical Representation in the HMI

What is
Generated?

Unity Application Generator will generate tags for all variables of the connection type
HMI and PLC_HMI.

Variables Each variable in Unity Application Generator of the following connection types will
create a variable in the HMI.
Connection types and related variables in the HMI:

Connection
Type

Variable in the HMI Comment

PLC_HMI Variable with
communication
parameters

If the variable is a Control Module Type variable, it
will be connected to the appropriate Control Module
to animate the graphic of the Control Module.
If it is a free variable, the control engineer has to
plan for appropriate usage. Nevertheless a
graphical symbol will be created.

HMI Variable without
communication
parameters

These variables will be generated in the HMI only.
 333

Generated Code
Example of
Variables
Database in
Monitor Pro

Variables database in Monitor Pro:

Graphic
Representation
of Free Variables

For each free variable of communication type PLC_HMI an animated graphical
symbol will be generated if the Graphical Symbol is checked and the
Graphical Symbol Name is entered within the variable property window.

SG-EICHE/DS2

All Shared All User Analog Digital Float Long Analog Mailbox Message

Name Description Type
TANK11_Motor1_OVRIP1 DIGITAL
TANK11_Motor1_OVRIP2 DIGITAL
TANK11_Motor1_OVRIP3 DIGITAL
TANK11_Motor1_OVRMSF DIGITAL
TANK11_Motor1_OVRMSR DIGITAL

DIGITAL

TANK11_Motor1_RTA DIGITAL
TANK11_Motor1_RTTHR ANALOG
TANK11_Motor1_RUNF DIGITAL
TANK11_Motor1_RUNR DIGITAL
TANK11_Motor1_STPPD DIGITAL
TANK11_Motor1_TRVL DIGITAL
TANK11_Motor1_marion FLOAT
TANK11_VAS1_CLSD DIGITAL

DIGITAL
ANALOG

TANK11_Motor1_RNNG
TANK11_Motor1_RRT
TANK11_Motor1_RT

1.0
334

Generated Code
Generated Screens

What is
Generated?

Screens are created for:
� each Equipment Module.
Control Modules are displayed on the Equipment Module screen they belong to.

Example Configuration screen of Monitor Pro.

Client Builder

File Edit Display Insert Draw Arrange Animate Mode Tools Window ?

EQ2222

NRDY
 335

Generated Code
Generated Monitor Pro Database Objects

Introduction A Monitor Pro Server node corresponds to a Unity Application Generator Data
Server. Several Data Servers can be defined. Each Data Server must be deployed
on a different Monitor Pro Server node.
There will be defined one Data Server for each Monitor Pro Server system in the
Unity Application Generator project. Unity Application Generator will create all tags
corresponding to the variables of type HMI or PLC_HMI defined in the project.

Modifications of
Tag Names

If Unity Application Generator detects a modification of a tag during the generation,
all its properties will be set with the actual values from the Unity Application
Generator database. The Monitor Pro database tags are updated through drivers
with the actual values of PLC variables.

Generation for a
Data Server

The following table gives an overview of the Monitor Pro database objects generated
by the Unity Application Generator from objects and their attributes.
Generation for a Data Server

Generation for a
Channel

The path in the channel will be generated as IP network address for the TCP/IP
driver
Generation for a channel

Generation for a
PLC

Generation for a PLC

Object Monitor Pro
Database

Comment

Data Server Monitor Pro tag
database

The user has the possibility to set the database
path (View → Options → Monitor Pro).

Object Monitor Pro
Database

Comment

Channel Represents the link
between Data Server
and PLC

Nothing can be generated if a Channel does not
exist. Deleting a Channel deletes all generated
variables of the corresponding PLC in the Monitor
Pro database.

Object Monitor Pro
Database

Comment

PLC No corresponding object in Data Server
336

Generated Code
Generation for an
Area, Process
Cell, Unit

Generation for an Area, Process Cell, Unit

Generation for an
Equipment
Module

Generation for an Equipment Module

Generation for the attributes of an Equipment Module

Object Monitor Pro
Database

Comment

Area Nothing done in Data Server

Process Cell Nothing done in Data Server

Unit Nothing done in Data Server

Object Monitor Pro
Database

Comment

Equipment
Module

No corresponding object in the Data Server

Attribute Monitor Pro
Database

Comment

Name The name of the
Equipment Module is
part of Equipment
Module variable
names and Control
Module variable
names

Variables will be renamed in this Equipment
Module.

PLC A PLC is connected to
one Data Server, thus
the PLC defines the
Data Server in which
the tags will be
generated.

The PLC to which the Equipment Module is
assigned cannot be changed if Equipment Module
has been generated once.

Description Tag description Changing the description of an Equipment Module
results in modifying the alarm text of all variables
of the Equipment Module and all variables of the
Control Modules of the Equipment Module of type
digital, if default alarm text is used.
 337

Generated Code
Generation for a
Control Module

Generation for a Control Module

Generation for the attributes of a Control Module

Generation for a
Variable

Generation for a variable

Object Monitor Pro
Database

Comment

Control Module No corresponding object in Data Server, but all PLC_HMI or HMI variables
of the Control Module will be generated as tags.

Attribute Monitor Pro
Database

Comment

Parent
Equipment
Module

The name of the
Equipment Module is
part of the Control
Module variable
names.

PLC A PLC is connected to
one Data Server, thus
the PLC defines the
Data Server in which
the tags will be
generated.

The PLC to which the Control Module is assigned
cannot be changed if Control Module has been
generated once.

Name The name of the
Control Module is part
of the Control Module
variable names.

Variables will be renamed in this Control Module.

Description Used for alarm text
(tag description)

Changing the description of a Control Module
results in modifying the alarm text of all variables
of the Control Module of type digital, if default
alarm text is used.

Object Monitor Pro
Database

Comment

Variable Tag in Monitor Pro
database

The variable name is generated as
EquipmentModuleName_ControlModuleNam

e_VariableName (Control Module variable) or
EquipmentModuleName_VariableName
(Equipment Module variable).
338

Generated Code
Generation for attributes of a variable

Attribute Monitor Pro
Database

Comment

Name The name of the
variable is part of tag
name.

The name can only be changed for free variables.

Description Tag description Max. 80 characters

Communication
Frame

I/O Translator Dataset
Definition

Name of the communication frame the variable is
assigned to. Corresponds to the name of one of
the hmi_communication elements in the
channel element. The value can be empty.

Alarm Alarm Options /Enable
Alarming

Alarm Priority
1..8

Alarm Priority 1 to 8 alarm priorities can be possible for non-
boolean variables. For boolean variables just 1
alarm can be possible.
Possible value can be set up in customization
(1..9999). Example values are:
� 1 - low
� 2 - medium
� 3 - high
� 4 - urgent

Alarm Limit 1..8 Alarm Limit:
Depending on data
type

1 to 8 alarm limits can be possible for non-boolean
variables. For boolean variables just 1 alarm can
be possible.

Alarm Text 1..8 Alarm Text Alarm text for the specific alarm limit.
1 to 8 alarm texts can be possible for non-boolean
variables. For boolean variables just 1 alarm can
be possible.

Alarm Group Alarm For grouping the alarm variables. All alarms of a
variable can be in the same alarm group.

Archive Archive The variable can be in three different states for
archiving: Not_Assigned, No or Historic.

Archive Name Archive If the variable is marked for archiving, the user has
to define the archive name. The user can choose
between Not_Assigned or the name of the
archive.
 339

Generated Code
Generated Monitor Pro Pictures

Introduction The following table gives an overview of the Monitor Pro pictures generated by the
Unity Application Generator from objects and their attributes.

Generation for an
HMI

Generation for an HMI

Generation for attributes of an HMI

Generation for a
Control Domain

Generation for a Control Domain

Generation for a
PLC

Generation for a PLC

Object Monitor Pro Pictures Comment

HMI Set of Monitor Pro
pictures

HMI pictures are located in the path which the user
has entered (View → Options → Monitor Pro).
Under this path the user will find a mimic files
directory where the pictures will be stored.

Attribute Monitor Pro Pictures Comment

Name Name of generation
file

When the Monitor Pro HMI project is generated a
file is created: The name of the file is
HMINAME.UAG. The user will find the file within the
mimics directory. Changing the path will result in
renaming generation file.

Object Monitor Pro Pictures Comment

Control Domain Represents the link
between HMI and
Equipment Module
and Control Modules

Nothing can be generated for HMI if the Control
Domain does not exist.Deleting of a Control
Domain, deletes all generated Control Module
symbols in Monitor Pro pictures.

Object Monitor Pro Pictures Comment

PLC No corresponding object in HMI
340

Generated Code
Generation for
Area, Process
Cell and Unit

Generation for Areas, Process Cells and Units

Generation for an
Equipment
Module

Generation for an Equipment Module

Generation for attributes of an Equipment Module

Object Monitor Pro Pictures Comment

Area Nothing done in HMI

Process Cell Nothing done in HMI

Unit Nothing done in HMI

Object Monitor Pro Pictures Comment

Equipment
Module

An Monitor Pro picture
for each Equipment
Module

Attribute Monitor Pro Pictures Comment

Name Name of the
associated Monitor
Pro picture is part of
Equipment Module
variable Monitor Pro
symbol names,
Control Module
Monitor Pro symbol
names and Control
Module variable
Monitor Pro symbol
names.

Changing the name of an Equipment Module
results in renaming the Monitor Pro picture and all
contained Monitor Pro symbols.

PLC The PLC to which the Equipment Module is
assigned cannot be changed if the Equipment
Module has been generated once.

Control Domain Define HMI in which
Equipment Module
picture is generated.

If the HMI is different, the Monitor Pro symbol´s
controls will be removed from the Equipment
Module picture in the current HMI and a new
picture will be created in the new HMI.
 341

Generated Code
Generation for a
Control Module

Generation for a Control Module

Generation for attributes of a Control Module

Object Monitor Pro Pictures Comment

Control Module Monitor Pro symbol in
the Equipment Module
Monitor Pro picture

Attribute Monitor Pro Pictures Comment

Parent
Equipment
Module

Defines Monitor Pro
pictures

A Control Module can be moved to another
Equipment Module by drag and drop in the
Physical Model of Unity Application Generator.
Changing Control Module Parent Equipment
Module results in moving all free variable Monitor
Pro symbol controls and Control Module Monitor
Pro symbol´s from old picture to new one.

PLC No picture generation if no PLC is assigned to the
equipment

Name The name of the
Control Module is part
of Control Module
Monitor Pro symbol
name and free Control
Module variable
Monitor Pro symbol
names.

Changing the name of a Control Module results in
renaming all free variables Monitor Pro symbol of
the Control Module, and Control Module Monitor
Pro symbol.
342

Generated Code
Generation for a
Variable

Generation for a variable

Generation for attributes of a variable

Object Monitor Pro Pictures Comment

Variable Property of Control
Module or Free
variable Monitor Pro
symbol.

Attribute Monitor Pro Pictures Comment

Graphical
symbol

Graphical symbol An animated graphical symbol will be generated if
Graphical symbol is checked in the variable
property window (in the General tab).
Changing the check box for Graphical symbol
results in creating or deleting a free variable
Monitor Pro symbol on corresponding Monitor Pro
picture.

Graphical
symbol name

Graphical symbol
name

Name of the symbol for the free variable.

Name Variable name The name can only be changed for free variables.
 343

Generated Code
B.5 Generation for iFIX

Overview

Introduction This section describes the generation of Unity Application Generator for iFIX.

What's in this
Section?

This section contains the following topics:

Topic Page

Characterization 345

Generated Variables and their Graphical Representation in the HMI 346

Generated Screens 347

Generated iFIX Database Objects 348

Generated iFIX Pictures 354

Generated iFIX Driver Configuration from Unity Application Generator Point of
View

359

Generated iFIX Driver Configuration from the Driver Point of View 361
344

Generated Code
Characterization

Characterization If you are using iFIX the communication with the HMI is performed through iFIX
drivers. Unity Application Generator will create all required variables in the Data
Servers so that they can be communicated between PLC and HMI.
To display the information at the HMI, Unity Application Generator generates the
following:
� One screen for each Equipment Module
� One animated symbol for each Control Module
� All required variables for the Control Module
� A graphical symbol for each free variable (optional for PLC_HMI variables)

Control Module variables are part of the animated symbols of the Control Module.
Free variables will be shown as a graphical symbol which shows the value of the
variable and allows the user to change that value depending on the access rights of
the operator and command settings. They will be displayed on the Equipment
Module screen they belong to.
 345

Generated Code
Generated Variables and their Graphical Representation in the HMI

What is
Generated?

Unity Application Generator will generate tags for all variables of the connection type
HMI and PLC_HMI.

Variables Each variable in Unity Application Generator of the following connection types will
create a variable in the HMI.
Connection types and related variables in the HMI:

Example of
Variables
Database in iFIX

Variables database in iFIX:

Graphic
Representation
of Free Variables

For each free variable of communication type PLC_HMI an animated graphical
symbol will be generated if Graphical symbol is checked in the variable property
window (in the General tab).

Connection
Type

Variable in the HMI Comment

PLC_HMI Variable with
communication
parameters

If the variable is a Control Module Type variable, it
will be connected to the appropriate Control Module
to animate the graphic of the Control Module.
If it is a free variable, the control engineer has to plan
for appropriate usage. Nevertheless a graphical
symbol will be created.

HMI Variable without
communication
parameters

These variables will be generated in the HMI only.

Tag Name Type Description Scan Time I/O Dev I/O Addr
1 EQ001A_AIA1_DB AI Deadband 1 MBT CH10:401746
2 EQ001A_AIA1_ERR AI Error 1 MBT CH10:401750
3 EQ001A_AIA1_PVR AI Process var. real value 1 MBT CH10:401770
4 EQ001A_AIA1_SP AI Setpoint 1 MBT CH10:401748
5 EQ001A_AIA1_TH AI Thresh. High alarm 1 MBT CH10:401732
6 EQ001A_AIA1_THD AI Thresh. H & L deviation alarm 1 MBT CH10:401738
7 EQ001A_AIA1_THH AI Thresh. HH alarm 1 MBT CH10:401740
8 EQ001A_AIA1_THH AI Threshold HH & LL deviation 1 MBT CH10:401736
9 EQ001A_AIA1_TL AI Threshold low alarm 1 MBT CH10:401734
10 EQ001A_AIA1_TLL AI Thresh. LL alarm 1 MBT CH10:401742
11 EQ001A_AIA1_TRC AI Thresh. Rate of change alarm 1 MBT CH10:401744
12 EQ001A_AIA1_Y AI Analog Output Y 1 MBT CH10:401754
13 EQ001A_AIA1_YMA AI Manual Value 1 MBT CH10:401730
14 EQ001A_AIA1_DF AI Register of active faults #1 1 MBT CH10:401752
15 EQ001A_AIA1_DF AI Register of active faults #2 1 MBT CH10:401753
16 EQ001A_AIA1_FR AI Drive Frequency Reference 1 MBT CH10:401744
346

Generated Code
Generated Screens

What is
Generated?

Screens are created for:
� each Equipment Module.
Control Modules are displayed on the Equipment Module screen they belong to.

Example Configuration screen of Intellution´s iFIX

Intellution Dynamics WorkSpace (Configure)

File Edit WorkSpace Object View Insert Format Window Help

FIX
Alarm History
Database Manager
Documents
Dynamo Sets
FIX Recipes

Help & Information
Historical Assignment

Globals

EQ211X.grf

Frequency HZ

Frequency SP HZ

t

%

Mission Control
Pictures

I/O Drivers

LocalAsBackup

NetworkStatusDisplay
NetworkStatusRedundancyDisplay
EQ211X

LocalAsPrimary

EQ211X_Altivar1
EQ211X_Analn1
EQ211X_AnaOut1
EQ211X_Pump1
EQ211X_Valve1

EQ701Q
Reports
Schedules
Security
System Configuration

? i ?
 347

Generated Code
Generated iFIX Database Objects

Introduction A SCADA node corresponds to a Unity Application Generator Data Server. Several
Data Servers can be defined. Each Data Server must be deployed on a different iFIX
SCADA node.
The generation for SCADAs consists of creating an iFIX database (PDB file in the
...\DYNAMICS\PDB directory) for each Data Server defined in the Unity Application
Generator project. Unity Application Generator will create all tags corresponding to
the variables of type HMI or PLC_HMI defined in the project.

Modifications of
Tag Names

iFIX does not allow to change tag names. Thus, changing a tag name will be
handled by Unity Application Generator as deleting the old tag and creating a new
one with a new name.
If Unity Application Generator detects a modification of a tag during the generation,
all its properties will be set with the actual values from the Unity Application
Generator database. The iFIX database tags are updated through drivers with the
actual values of PLC variables.

Generation for a
Data Server

The following table gives an overview of the iFIX database objects generated by the
Unity Application Generator from objects and their attributes.
Generation for a Data Server

Generation for attributes of a Data Server

Object iFIX Database Comment

Data Server iFIX tag database The database is located in <iFIX
path>\PDB\DataServerName.pdb

Attribute iFIX Database Comment

Name Name of iFIX
database
Name of generation
file

Changing the name of a Data Server will results in
renaming the PDB file and the generation file.
348

Generated Code
Generation for a
Channel

Generation for a channel

Generation for a
PLC

Generation for a PLC

Generation for a
Control Domain

Generation for a Control Domain

Generation for the attributes of a Control Domain

Generation for an
Area, Process
Cell, Unit

Generation for an Area, Process Cell, Unit

Object iFIX Database Comment

Channel Represents the link
between Data Server
and PLC

Nothing can be generated if a Channel does not
exist. Deleting a Channel deletes all generated
variables of the corresponding PLC in the iFIX
database.

Object iFIX Database Comment

PLC No corresponding object in Data Server

Object iFIX Database Comment

Control Domain No corresponding object in the Data Server

Attribute iFIX Database Comment

Name Name of iFIX Alarm
Area. Part of Security
Area name of iFIX tag

Changing the Control Domain name results in
changing the Alarm Area and Security Area for all
tags of that Control Domain.The names of the
Alarm Area and Security Areas have to be
changed manually in iFIX SCU.

Object iFIX Database Comment

Area Nothing done in Data Server

Process Cell Nothing done in Data Server

Unit Nothing done in Data Server
 349

Generated Code
Generation for an
Equipment
Module

Generation for an Equipment Module

Generation for the attributes of an Equipment Module

Object iFIX Database Comment

Equipment
Module

No corresponding object in the Data Server

Attribute iFIX Database Comment

Name The name of the
Equipment Module is
part of Equipment
Module variable
names and Control
Module variable
names

Since iFIX tag names cannot be changed,
changing the name of an Equipment Module
results in deleting all variables of the Equipment
Module and all variables of the Control Modules of
the Equipment Module, and re-creating them with
new names.

PLC A PLC is connected to
one Data Server, thus
the PLC defines the
Data Server in which
the tags will be
generated.

The PLC to which the Equipment Module is
assigned cannot be changed if Equipment Module
has been generated once.

Control Domain Used for Alarm Areas
and Security Areas of
Variables

Changing the Control Domain of an Equipment
Module results in modifying Alarm Area and
Security Area of all variables of the Equipment
Module and all variables of the Control Modules of
the Equipment Module.
Note: If you change the name of a Control Domain
you have to change the name of the Alarm Area
(=ControlDomainName) and the names of all
Security Areas
(=ControlDomainName_AccessLevel) in iFIX
SCU.

Description Used for alarm text
(tag description)

Changing the description of an Equipment Module
results in modifying the alarm text of all variables
of the Equipment Module and all variables of the
Control Modules of the Equipment Module of type
digital, if default alarm text is used.
350

Generated Code
Generation for a
Control Module

Generation for a Control Module

Generation for the attributes of a Control Module

Generation for an
Interlock

Interlocks have no counter part in the HMI application’s logic. But the ActiveX control
which represents the Control Module in the HMI displays the current interlock state
of the Control Module. This is outside of the scope the Unity Application Generator
implementation, but is implemented for each individual SCoD.

Object iFIX Database Comment

Control Module No corresponding object in Data Server, but all PLC_HMI or HMI variables
of the Control Module will be generated as tags.

Attribute iFIX Database Comment

Parent
Equipment
Module

The name of the
Equipment Module is
part of the Control
Module variable
names.

A Control Module can be moved to another
Equipment Module by drag and drop in the
physical Model of Unity Application Generator.
Since iFIX tag names cannot be changed,
changing Control Module Parent Equipment
Module results in deleting all variables of the
Control Module in the Data Server where they
have been generated.

PLC A PLC is connected to
one Data Server, thus
the PLC defines the
Data Server in which
the tags will be
generated.

The PLC to which the Control Module is assigned
cannot be changed if Control Module has been
generated once.

Name The name of the
Control Module is part
of the Control Module
variable names.

Since iFIX tag names cannot be changed,
changing the name of a Control Module results in
deleting all variables of the Control Module, and
recreating them with new names.

Description Used for alarm text
(tag description)

Changing the description of a Control Module
results in modifying the alarm text of all variables
of the Control Module of type digital, if default
alarm text is used.
 351

Generated Code
Generation for a
Variable

Generation for a variable

Generation for attributes of a variable

Object iFIX Database Comment

Variable Tag in iFIX database The variable name is generated as
EquipmentModuleName_ControlModuleNam

e_VariableName (Control Module variable) or
EquipmentModuleName_VariableName
(Equipment Module variable).

Attribute iFIX Database Comment

Name The name of the
variable is part of tag
name.

The name can only be changed for free variables.

Description Tag description Max. 40 characters

Command Defines how the tags
can be controlled by
the HMI

Applies only to PLC_HMI variables. Free variables
are always IN/OUT.
IN or IN/OUT variables:
� Operator/Parameter: The variable can be

changed by the HMI: Advanced Options →
Enable Output = Yes.

� Logic/Constant: The variable cannot be
changed by the HMI: Advanced Options →
Enable Output = No.

Alarm Alarms/Alarm
Options/Enable
Alarming

Only BOOL variables can be alarms, generated as
DI alarm tags.In Advanced → Alarm Extension
Fields → Alarm Field1 Unity Application
Generator generates the name of the picture. With
a small script one can implement a jump to the
picture which contains the variable with the alarm.

State0Text Basic/Labels Open Only DI tags.Label associated with 0 State.

State1Text Basic/Labels Close Only DI tags.Label associated with 1 State.

Alarm Priority Alarms/Alarm Priority Only DI alarm tags. Possible values: L as Low, M
as Medium, H as High

Alarm State Alarms/Alarm Type: 1
= Close, 0 = Open

Only DI alarm tags.Value 0 or 1 for which Alarm
occurs

Alarm Text Advanced/Alarm
Extension Fields/
Alarm Field 1

Only DI alarm tags.Replace Tag Description for
Alarm Tags

Scaling Min Basic/Engineering
Units/Low Limit

Only AI tags.
352

Generated Code
Scaling Max Basic/Engineering
Units/High Limit

Only AI tags.

Measurement
Unit

Basic/Engineering
Units/Units

Only AI tags.

Access Level Advanced/Security
Areas

The access level is used with the Control Domain
to define the Security Area of this variable. See
above.

Attribute iFIX Database Comment
 353

Generated Code
Generated iFIX Pictures

Introduction The following table gives an overview of the iFIX pictures generated by the Unity
Application Generator from objects and their attributes.

Generation for an
HMI

Generation for an HMI

Generation for attributes of an HMI

Generation for a
Control Domain

Generation for a Control Domain

Generation for attributes of a Control Domain

Object iFIX Pictures Comment

HMI Set of iFIX pictures HMI pictures are located in IFIX
PATH\PIC\PICTURENAME.GRF

Attribute iFIX Pictures Comment

Name Name of generation
file

When iFIX HMI project is generated a file is
created: <IFIX
PATH>\PIC\HMINAME.GILChanging the path will
result in renaming generation File.

Object iFIX Pictures Comment

Control Domain Represents the link
between HMI and
Equipment Module
and Control Modules

Nothing can be generated for HMI if the Control
Domain does not exist.Deleting a Control Domain,
delete all generated Control Module ActiveX in
iFIX pictures.

Attribute iFIX Pictures Comment

Name Property of each
Control Module or
Free Variable ActiveX

Changing the Control Domain name results in
changing property for all ActiveX of that Control
Domain.If the new Control Domain belongs to
another HMI, all generated Control Module
ActiveX in iFIX pictures are deleted from the old
HMI and created in the new HMI.
354

Generated Code
Generation for a
PLC

Generation for a PLC

Generation for attributes of a PLC

Generation for
Area, Process
Cell and Unit

Generation for Areas, Process Cells and Units

Object iFIX Pictures Comment

PLC No corresponding object in HMI

Attribute iFIX Pictures Comment

Name Used in alias for each ActiveX

Object iFIX Pictures Comment

Area Nothing done in HMI

Process Cell Nothing done in HMI

Unit Nothing done in HMI
 355

Generated Code
Generation for an
Equipment
Module

Generation for an Equipment Module

Generation for attributes of an Equipment Module

Object iFIX Pictures Comment

Equipment
Module

An iFIX picture for
each Equipment
Module

Note: iFIX picture names must not start with a
digit!

Attribute iFIX Pictures Comment

Name Name of the
associated iFIX
picture is part of
Equipment Module
variable ActiveX
names, Control
Module ActiveX
names and Control
Module variable
ActiveX names.

Changing the name of an Equipment Module
results in renaming the iFIX picture and all
contained ActiveX’s.

PLC The PLC to which the Equipment Module is
assigned cannot be changed if the Equipment
Module has been generated once.

Control Domain Define HMI in which
Equipment Module
picture is generated.

Changing the Control Domain of an Equipment
Module results in modifying the Control Domain
property for all ActiveX's of the iFIX Equipment
Module picture. If the HMI is different, the ActiveX
controls will be removed from the Equipment
Module picture in the current HMI and a new
picture will be created in the new HMI.

Description Description property
of iFIX picture

Changing the description of an Equipment Module
results in modifying description property of iFIX
Equipment Module picture.
356

Generated Code
Generation for a
Control Module

Generation for a Control Module

Generation for attributes of a Control Module

Generation for an
Interlock

Interlocks have no counter part in the HMI applications logic. But the ActiveX control
which represents the Control Module in the HMI displays the current interlock state
of the Control Module. This is outside of the scope the Unity Application Generator
implementation, but is implemented for each individual SCoD.

Generation for a
Variable

Generation for a variable

Object iFIX Pictures Comment

Control Module ActiveX in the
Equipment Module
iFIX picture

Attribute iFIX Pictures Comment

Parent
Equipment
Module

Defines iFIX pictures A Control Module can be moved to another
Equipment Module by drag and drop in the
Physical Model of Unity Application Generator.
Changing Control Module Parent Equipment
Module results in moving all free variable ActiveX
controls and Control Module ActiveX's from old
picture to new one.

PLC The PLC to which the Control Module is assigned
cannot be changed if Control Module has been
generated once.

Name The name of the
Control Module is part
of Control Module
ActiveX name and
free Control Module
variable ActiveX
names.

Changing the name of a Control Module results in
renaming all free variables ActiveX of the Control
Module, and Control Module ActiveX.

Description Description of the
Control Module

Changing the description of a Control Module
results in changing that property of Control Module
ActiveX.

Object iFIX Pictures Comment

Variable Property of Control
Module or Free
variable ActiveX.

The property name is:
IAT_VariableName_VariableProperty
(Control Module variable) or
IAT_VariableProperty (Free variable).
 357

Generated Code
Generation for attributes of a variable

Attribute iFIX Pictures Comment

Graphical
symbol

Graphical symbol An animated graphical symbol will be generated if
Graphical symbol is checked in the variable
property window (in the General tab).
Changing the check box for Graphical symbol
results in creating or deleting a free variable
ActiveX on corresponding iFIX picture.

Name Variable name The name can only be changed for free variables.

Description Description in ActiveX Only for free variables

Command Defines how the
variable is connected
to the Function Block
instance

Applies only to PLC_HMI variables. Other
variables and free variables are always IN/OUT.
IN or IN/OUT variables:
� Operator/Parameter: The variable can be

changed by the ActiveX.
� Logic/Constant: The variable cannot be

changed by the ActiveX

Alarm Alarm True or False Only BOOL variables can be alarms, generated as
DI alarm tags

State0Text Label associated with
0 State

Only DI tags.

State1Text For DI variable Only DI tags

Alarm State Value 0 or 1 for which
Alarm occurs

Only DI alarm tags

Alarm Text Alarm text Only DI alarm tags

Boundary Min Lower boundary to
which the operator
can set the value

Only AI tags

Boundary Max Upper boundary to
which the operator
can set the value

Only AI tags

Display Format Format how to display
the value

Only AI tags

Measurement
Unit

Engineering unit Only AI tags

Access Level Security area The access level is used with the Control Domain
to define the Security Area of this variable.
358

Generated Code
Generated iFIX Driver Configuration from Unity Application Generator Point of
View

Introduction The following tables give an overview of the iFIX driver configuration generated by
Unity Application Generator from the point of view of Unity Application Generator.

Driver
Configuration for
a Data Server

Generated driver configuration for a Data Server

Generated driver configuration for the attributes of a Data Server

Object iFIX Driver Comment

Data Server A driver configuration file for each
Data Server

Attribute iFIX Driver Comment

Name Used to define configuration file name Changing Data Server name results
in changing the configuration file
name.
 359

Generated Code
Driver
Configuration for
a Channel

Generated driver configuration for a Channel

Generated driver configuration for the attributes of a Channel

Object iFIX Driver Comment

Channel A channel and a Control Module for
each Channel between PLC and Data
Server

Deleting a Channel results in
deleting channel, Control Module
and corresponding DataBlocks in
the driver configuration.

Attribute iFIX Driver Comment

ID Used to define a driver channel as
Channel_<ID>

Used to define a driver device as
CH<ID>

In iFIX a channel name is limited
to maximum 12 characters.
Therefore the Channel name
specified in Unity Application
Generator is not used. A name
composed of the word CHANNEL
and a serial number is created
instead.

HMI
Communication

Used to define Datablocks driver
configuration

I/O Addresses are updated by
Memory Mapper.
Datablock Name:
<ID>_<BlockType>_<n>
<ID> Channel ID

<n> Block index: Number of
DataBlocks depends on
maximum length for each data
type
360

Generated Code
Generated iFIX Driver Configuration from the Driver Point of View

Introduction The following tables give an overview of the generated values for the iFIX driver
objects from the point of view of the driver.

Values for a
Channel

Values generated for the attributes of a Channel:

Values for a
Device

Values generated for the attributes of a Channel

Attribute Value Comment

Name Channel_<ID> <ID> : Channel ID in Unity
Application Generator

Description Channel_<ID> <ID> : Channel ID in Unity
Application Generator

Attribute Value Comment

Name Channel_<ID> <ID> : Channel ID in Unity
Application Generator

Description Channel_<ID> <ID> : Channel ID in Unity
Application Generator

Addressing
type

6 Digit

Bit base 0-15
 361

Generated Code
Values for a
DataBlock

Values generated for the attributes of a DataBlock

Attribute Value Comment

Name Corresponding names will be:
� For Synoptic:

� <ID>_SBOOL_<n>
� <ID>_SWORD_<n>
� <ID>_SDINT_<n>
� <ID>_SREAL_<n>

� For Event:
� <ID>_EBOOL_<n>
� <ID>_EWORD_<n>
� <ID>_EDINT_<n>
� <ID>_EREAL_<n>

� For Parameter:
� <ID>_PBOOL_<n>
� <ID>_PWORD_<n>
� <ID>_PDINT_<n>
� <ID>_PREAL_<n>

<ID> Channel ID in Unity
Application Generator

<n> Block index: Number of
DataBlocks depends on
maximum length for each data
type

Description Same as Name

Starting
address

Unity Application Generator value

Ending
address

Unity Application Generator value Block length = 512 for BOOL and
125 for Other DataType

Data type Driver types
362

Generated Code
B.6 Generation for a Generic HMI

Generation for a Generic HMI

Introduction If you are using an HMI other than iFIX (generic HMI), Unity Application Generator
provides all tag data necessary for a further importing into your HMI.

What is
Generated?

For the use of a generic HMI Unity Application Generator generates a XML file and
a customziable text file for each DataServer containing all tag information necessary
for the process visualisation.
Customization of the text file is done with a user provided stylesheet file (XSL file).
XML (Extensible Markup Language) and XSL (Extensible Stylesheet Language) are
specifications by the W3C (World Wide Web Consortium), see http://www.W3.org
for details.

The XML and
XSL File

The XML files are generated in the directories specified for each Data Server as
application path with the name DATASERVERNAME.XML
The XML file generated for the use of a generic HMI contains all data necessary for
process visualization like PLC names, network addresses , variable names,
addresses, data types, comments as configured with Unity Application Generator.
The XML file is a text file that contains the data in a hierachical structure and can be
viewed with tools like text editors or Microsoft Internet Explorer.
The XSL (rather XSLT file, Extensible Stylesheet Language Transformation) file is
specified in Customization editor and defines how the content of the XML file has to
be reformatted so that the individual HMI can read the data. This reformatting is
done automatically during generation and results in one or more files as specified in
Customization editor.
Unity Application Generator installs the stylesheet file GenericHMICSV.xls with
which the generated XML file is transformed to a CSV file as it was generated in
previous versions of Unity Application Generator. Other stylesheets have to be
provided by the user.
The XSL file is a text file that can be created with simple text editors. Links to tutorials
and specialized tools can be found in the internet on www.w3.org.
 363

Generated Code
B.7 Generation for Net Partners

Overview

What is
Generated?

This section describes the generation of Unity Application Generator for Net
Partners.

What's in this
Section?

This section contains the following topics:

Topic Page

Generation for Net Partners 365

Net Partner Variables: CSV File Format 366
364

Generated Code
Generation for Net Partners

Introduction Net Partners are devices which cannot be programmed directly by Unity Application
Generator. Nevertheless the variables which are related to a Net Partner can be
exported in a CSV file to be imported into the Net Partner device.

What is
Generated?

Unity Application Generator generates a CSV file which containes all variables
which have been put into the communication table of the Channel for the Net Partner
by drag and drop.

The CSV File The CSV file contains all of the parameters of the variable necessary for the Net
Partner to access the variables in the PLC, for example name, PLC addresses, data
type, and so on.
The CSV file can for example be opened by Microsoft Excel and adjusted in a simple
way to fit order and format which the programming software of the Net Partner can
import.

Note: The generation of the CSV file for the Net Partners is done by the menu path
Net Partner → Properties → Export.
 365

Generated Code
Net Partner Variables: CSV File Format

Note The numbers in the following tables are only for your overview, they are hot
contained in the CSV file!

CSV File Format For each variable of a Net Partner the CSV file contains a line. The line contains the
following elements, separated by a separator (comma or semicolon).

� plc_name: Name of PLC to which variable belongs.
� network_type: Valid strings are: ModbusPlus and Ethernet.
� network_address: Network address of PLC, either a ModbusPlus or Ethernet

address depending on network_type.
� variable_name: Full variable name, for example

EquipmentModuleName_ControlModuleName_VariableName.
� data_type: Data type of the variable (for example BOOL, WORD, REAL and so on).
� variable_address: The state ram address of the variable. The format is Sxxxxx,

that is the segment 0,1,3 or 4 and the offset with five digits and leading zeros, for
example 000010 or 400001.

� initial_value: Initial value of the variable. The format corresponds to the data
type of the variable (for example for BOOL it is 0 or 1, for REAL 1.23 and so on).

� description: The description of the variable. It is composed as: description
of variable - description of Control Module - description of
Equipment Module .

1 plc_name 2 network_type 3 network_address

4 variable_name 5 data_type 6 variable_address

7 initial_value 8 description
366

C

Format of the CSV Files for Import
and Export
Overview

Introduction The CSV files are used for importing and exporting data to and from other tools
outside Unity Application Generator. This chapter provides the exact format of the
CSV files for all possible import and export processes.

Restrictions for
Unity Pro

Only objects which are created in Unity Application Generator can be imported e.g.:
� Instruments
� Initial values of existing variables
� Hardware modules in Modbus Plus, Ethernet or Generic racks.

Objects which are NOT created in Unity Application Generator CANNOT be
imported e.g.:
� Unity Pro PLCs
� Unity Pro racks

The export of objects is not restricted. All objects can be exported.

What's in this
Chapter?

This chapter contains the following topics:

Note: Import / Export between different product versions of UAG is not supported.

Topic Page

General Format 368

Physical Model Elements: CSV File Format 370

Topological Model Elements: CSV File Format 376

Instruments: CSV File Format 385

Initial Values: CSV File Format 386
367

CSV File Format
General Format

General
Structure of CSV
File

The following figure shows the general structure of a CSV file used by Unity
Application Generator for import or export:

Separator The separator character can be a tab, or a comma or semicolon or any other
character. The separator character is set in the View → Options dialog in Unity
Application Generator.

Analyzer Options
for Import

The options for analyzing the project are also used for import to show warnings or
stop after a certain number of errors or warnings:
� Show warnings
� Stop after n errors
� Stop after n warnings

Line 1 KEYWORD ; value ; value ; value ; value
Line 2 KEYWORD ; value ; value ; value ; value
Line 3 KEYWORD ; value ; value ; value ; value
Line 4 KEYWORD ; value ; value ; value ; value
Line 5 KEYWORD ; value ; value ; value ; value
Line 6 KEYWORD ; value ; value ; value ; value

1 2 3 4 5

Note: Do not use a separator character that may be used in the fields.
368

CSV File Format
Keyword The keyword is always the first entry in a line. It defines what kind of object will be
described in the rest of the line. It must be spelled exactly as given in the following
table:

Line Feeds or
Tabs in Free Text

Fields that contain free text, for example the comment of a Control Module may
contain line feeds or tabs.
� A line feed has to be specified as \n in the CSV file.
� A tab has to be specified as \t in the CSV file.

Comment Line Comment lines can be inserted in the CSV file.
A comment line has to be specified with # as the first character in the line.

Order in Export
Files

The order of elements in the export file corresponds to the trees of the Physical and
Topological Models. The lines are generated subsequently, that is after the line for
the parent object the lines for all contained child objects will follow.

Keyword Meaning

INSTRUMENT Import of Instruments and/or objects of the Physical Model

INITIALVALUE Import of initial values for variables (for tuning purposes)

AREA Import/Export an Area

PROCESSCELL Import/Export a Process Cell

UNIT Import/Export a Unit

EQUIPMENTMODULE Import/Export an Equipment Module

CONTROLMODULE Import/Export a Control Module

VARIABLE Import/Export a variable

PLC Import/Export a PLC

RACK Import/Export a Rack

HWMODULE Import/Export a hardware Module

IOPOINT Import/Export an IO point

HMI Import/Export an HMI

CONTROLDOMAIN Import/Export a Control Domain

DATASERVER Import/Export a Data Server

NETWORKNODE Import/Export a Net Partner or Other Node

NETWORKSEGMENT Import/Export a Network Segment

ROUTINGPATH Import/Export a Routing Path
 369

CSV File Format
Physical Model Elements: CSV File Format

General Remarks Note the following:
� The first element is the keyword for the identification of the object. It must be

exactly the string given in the table written in uppercase letters. The keywords are
the same for all national languages of Unity Application Generator.

� The field names are in English for all language versions of Unity Application
Generator.

� Document references, if they exist in the object, lie at the end of the line. Each
document reference consists of two fields: the specific file and parameters of the
specific tool. The number of document references is not restricted.

� Fields with free text, for example a comment, may contain line feeds and tabs.
A line feed has to be specified by \n a tab by \t.

� The numbers in this table are only for your overview, they are not contained in
the CSV file!

� *: The required fields are marked with a star. The optional fields, when not filled,
must remain empty (;;).

� The separator can be choosen in the Options. Do not use the separator
character anywhere, for example in free text, otherwise the fields will not be
identified correctly.

Area The line in a CSV file for importing/exporting an area contains the following
elements, separated by a separator (* = required fields).

1 * AREA 2 * name 3 comment

4 document_ref_1 5 document_
parameters_1

... document_ref_i

... document_
parameters_i

... document_ref_n ... document_
parameters_n
370

CSV File Format
Process Cell The line in a CSV file for importing/exporting a Process Cell contains the following
elements, separated by a separator (* = required fields).

area_name: Name of the parent Area.

Unit The line in a CSV file for importing/exporting a Unit contains the following elements,
separated by a separator (* = required fields).

processcell_name: Name of the parent Process Cell.

Equipment
Module

The line in a CSV file for importing/exporting Equipment Modules contains the
following elements, separated by a separator (* = required fields).

� unit_name: Name of the parent Unit.
� plc_name and controldomain_name fields can be left empty. In this case they

will be set to Not_assigned by Unity Application Generator.
� section_name: Name of the programming section of the Equipment Module

1 * PROCESSCELL 2 * name 3 * area_name

4 comment 5 document_ref_1 6 document_
parameters_1

... document_ref_i ... document_
parameters_i

... document_ref_n

... document_
parameters_n

1 * UNIT 2 * name 3 * processcell_name

4 comment 5 document_ref_1 6 document_
parameters_1

... document_ref_i ... document_
parameters_i

... document_ref_n

... document_
parameters_n

1 * EQUIPMENTMODULE 2 * name 3 * unit_name

4 * description 5 plc_name 6 control_domain_name

7 * section_name 8 comment 9 document_ref_1

10 parameters_1 ... document_ref_i ... parameters_i

... document_ref_n ... parameters_n
 371

CSV File Format
Control Module The line in a CSV file for importing/exporting a Control Module contains the following
elements, separated by a separator (* = required fields).

� equipmentmodule_name: Name of the parent Equipment Module.
� controlmodule_type: Control Module Type defined in the Control Module

library. In the case of a type-less Control Module this field is empty.
� library_name: name of the library containing the Contol Module Type. In the

case of a type-less Control Module this field is empty.
� plc_name: This field can be empty. Then it will we set as Not_assigned within the

Unity Application Generator project.
� controlmodule_master: Name of the Control Module defined as a Control

Module master as full name, for example
EquipmentModuleName_ControlModuleName. The field can be empty. (This
field is only used if the SCoD library defines master Control Modules.)

1 * CONTROLMODULE 2 * name 3 * equipmentmodule_
name

4 * controlmodule_type 5 library_name 6 * description

7 plc_name 8 controlmodule_
master

9 comment

10 document_ref_1 11 document_
parameters_1

... document_ref_i

... document_
parameters_i

... document_ref_n ... document_
parameters_n
372

CSV File Format
Variable The line in a CSV file for importing/exporting a variable contains the following
elements, separated by a separator (* = required fields).

1 * VARIABLE 2 * name 3 * parent_type

4 * equipmentmodule_
name

5 * controlmodule_name 6 * description

7 * data_type 8 * connection_type 9 * in_out_type

10 address_segment 11 address_offset 12 initial_value

13 timeout_behavior 14 timeout_value 15 command

16 inverse 17 variable_used 18 graphical_symbol

19 graphical_symbol_
name

20 measurement_unit 21 scaling_min

22 scaling_max 23 value_boundary_min 24 value_boundary_max

25 access_level 26 state0_text 27 state1_text

28 alarm 29 alarm_1_priority 30 alarm_1_operator

31 alarm_1_limit 32 alarm_1_text 33 alarm_2_priority

34 alarm_2_operator 35 alarm_2_limit 36 alarm_2_text

37 alarm_3_priority 38 alarm_3_operator 39 alarm_3_limit

40 alarm_3_text 41 alarm_4_priority 42 alarm_4_operator

43 alarm_4_limit 44 alarm_4_text 45 alarm_5_priority

46 alarm_5_operator 47 alarm_5_limit 48 alarm_5_text

49 alarm_6_priority 50 alarm_6_operator 51 alarm_6_limit

52 alarm_6_text 53 alarm_7_priority 54 alarm_7_operator

55 alarm_7_limit 56 alarm_7_text 57 alarm_8_priority

58 alarm_8_operator 59 alarm_8_limit 60 alarm_8_text

61 archive 62 archive_name 63 communication_fram
e

64 free_property_1 65 free_property_2 66 free_property_3

67 free_property_4 68 free_property_5 69 free_property_6

70 free_property_7 71 free_property_8 72 free_property_9

73 free_property_10 74 free_property_11 75 free_property_12

76 free_property_13 77 free_property_14 78 free_property_15

79 free_property_16 80 free_property_17 81 free_property_18

82 free_property_19 83 free_property_20
 373

CSV File Format
Description of the entries:
� parent_type: Two keywords are allowed: EQUIPMENTMODULE or

CONTROLMODULE. They describe the type of parent object of the variable.
� equipmentmodule_name: In the case of a free Equipment Module variable it is

the name of the parent object. In the case of a Control Module variable it is the
parent Equipment Module of the Control Module.

� controlmodule_name: In the case of a Control Module variable it is the name of
the parent Control Module. In the case of a free Equipment Module variable the
field remains empty.

� data_type: Data type of the variable defined in the customization (for example
BOOL, ANL_IN, ANL_OUT and so on)

� connection: Connection type of the variable; one of the following strings
IO_PLC, PLC, PLC_HMI, PLC_NET, HMI

� in_out_type: One of the following strings IN, INOUT, OUT
� address_segment : Address segment, a digit 0,1,3 or 4. The field can be empty.
� address_offset: Address in the scope of the specific address segment. The field

can be empty.
Note: The address of a variable is exported, but ignored during import (will be
recalculated by Unity Application Generator).

� initial_value: The format has to correspond to the data type of the variable (for
example for BOOL it is 0 or 1, for REAL 1.23 and so on).

� timeout_behavior: One of the following strings: Disabled, LastValue,
UserDefined. The field can be empty.

� timeout_value: Only 0 or 1 are allowed. The field can be empty.
� command: One of the following strings: ViewOnly, Logic, Operator,

Parameter, SetValue. The field can be empty.
� inverse: Two strings are valid: True and False. If inverse is True, the variable

value will be inverted in Concept. Valid only for Boolean variables of type
IO_PLC.

� variable_used: Two strings are valid: True and False. If variable_used is
True, the variable will be connected to the Function Block in Concept. Valid only
for IO_PLC variables.

� graphical_symbol: Two strings are valid: True and False. If
graphical_symbol is True, a graphical symbol for the variable will be generated
for the HMI. Valid only for PLC_HMI type variables.

� display_format: A string defined in the customization for example 9999.9 or
99.9. The field can be empty.

� measurement_unit: A string defined in the customization for example %, m, Hz
or 1/min. The field can be empty.

� scaling_min: The field value must correspond to the variable data type. Valid for
HMI and PLC_HMI variables. The field can be empty.

� scaling_max: The field value must correspond to the variable data type. Valid for
HMI and PLC_HMI variables. The field can be empty.

� value_boundary_min: The field value must correspond to the variable data type.
Valid for HMI and PLC_HMI variables. The field can be empty.
374

CSV File Format
� value_boundary_max: The field value must correspond to the variable data
type. Valid for HMI and PLC_HMI variables. The field can be empty.

� access_level: One of the access levels defined in the customization editor for
example Operator, Production, Technical and so on. The field can be
empty.

� state0_text: Text to be displayed in HMI if the value of the variable is 0 - only for
Boolean variables. The field can be empty.

� state1_text: Text to be displayed in HMI if the value of the variable is 1 - only for
Boolean variables. The field can be empty.

� alarm: One of the following strings: True or False.
� alarm_1_priority ... alarm_8_priority: Each time one of the strings defined in

the customization, for example low, medium, high, and so on. The fields can be
empty.

� alarm_1_operator ... alarm_8_operator: Comparison operator for comparing
the variable value against the respective alarm limit. The fields can be empty.

� alarm_1_limit ... alarm_8_limit: Values to be compared with the variable value.
The fields can be empty.

� alarm_1_text ... alarm_8_text: Texts shown to the HMI operator in case of the
respective alarms. The fields can be empty. A default alarm text is specified by $.

� archive: One of the following strings: Historic or No. The field can be empty.
� archive_name: A string specifying the name of a database table in Monitor Pro.

The field can be empty.
� communication_frame: A string specifying the name of the communication

frame used to exchange the variable data with the HMI. The field can be empty.
� free_property_1 ... free_property_20: Values of the user definable free

properties. The field can be empty.

Note:
� In case of a Control Module Type variable, the variable object will not be created

in the database; only some of the properties will be set. When a property cannot
be set because of the variable type, it will be ignored.

� If a variable is not defined in the library Control Module Type, it is treated as a
free variable. All properties that are valid for a specific type of the variable are
set, all others are ignored.
 375

CSV File Format
Topological Model Elements: CSV File Format

General Remarks Note the following:
� The first element is the keyword for the identification of the object. It must be

exactly the string given in the table written in uppercase letters. The keywords are
the same for all national languages of Unity Application Generator.

� The field names are in English for all language versions of Unity Application
Generator.

� Document references, if they exist in the object, lie at the end of the line. Each
document reference consists of two fields: the specific file and parameters of the
specific tool. The number of document references is not restricted.

� Fields with free text, for example a comment, may contain line feeds and tabs.
A line feed has to be specified by \n a tab by \t.

� The numbers in this table are only for your overview, they are not contained in
the CSV file!

� *: The required fields are marked with a star. The optional fields, when not filled,
must remain empty (;;).

� The separator can be choosen in the Options. Do not use the separator
character anywhere, for example in free text, otherwise the fields will not be
identified correctly.
376

CSV File Format
PLC The line in a CSV file for importing/exporting a PLC contains the following elements,
separated by a separator (* = required field).

1 * PLC 2 * plc_name 3 description

4 * plc_project_name 5 * plc_family 6 * local_rack_part_
number

7 comment 8 battery_coil 9 timer_register

10 time_of_day 11 hwmodules_0x_start 12 hwmodules_0x_end

13 hwmodules_1x_start 14 hwmodules_1x_end 15 hwmodules_3x_start

16 hwmodules_3x_end 17 hwmodules_4x_start 18 hwmodules_4x_end

19 plc_communication_
4x_start

20 plc_communication_
4x_end

21 hmi_0x_start

22 hmi_0x_end 23 hmi_4x_start 24 hmi_4x_end

25 netpartner_0x_start 26 netpartner_0x_end 27 netpartner_4x_start

28 netpartner_4x_end 29 reserve_0x_start 30 reserve_0x_end

31 reserve_1x_start 32 reserve_1x_end 33 reserve_3x_start

34 reserve_3x_end 35 reserve_4x_start 36 reserve_4x_end

37 document_ref_1 38 document_
parameters_1t

39 document_ref_i

40 document_
parameters_i

41 document_ref_nt 42 document_
parameters_n
 377

CSV File Format
Description of entries:
� plc_family: Concept/Quantum, Concept/Momentum, Unity/Quantum or

Unity/Premium.
� local_rack_part_number: refer to table below.
� battery_coil: State ram address of battery coil. (Empty for Unity Pro)
� timer_register: State ram address of timer register. (Empty for Unity Pro)
� time_of_day: State ram address of time of day clock (first register). (Empty for

Unity Pro)
� hwmodule_nx_start ...hwmodule_nx_end:

Quantum, Momentum: State ram address ranges (0x=%M, 1x=%I, 3x=%IW,
4x=%MW) for Modules.
Premium: Empty, because topological addresses are used.

� plc_communication_4x_start ... plc_communication_4x_end: State ram
address range (4x=%MW) for PLC-PLC communication.

� hmi_nx_start ... hmi_nx_end: State ram address range (0x=%M, 4x=%MW) for
HMI variables.

� netpartner_nx_start ... netpartner_nx_end: State ram address range (0x=%M,
4x=%MW) for netpartner variables.

� reserve_nx_start ... reserve_nx_end:
Reserved state ram address ranges (0x=%M, 1x=%I, 3x=%IW, 4x=%MW).
Premium: reserve_1x_start , reserve_1x_end, reserve_3x_start and
reserve_4x_end are empty.

Table of local_rack_part_number:

local_rack_part_number Size Description

140 XBP 002 00 2 2 Slot Quantum Rack

140 XBP 003 00 3 3 Slot Quantum Rack

140 XBP 004 00 4 4 Slot Quantum Rack

140 XBP 006 00 6 6 Slot Quantum Rack

140 XBP 010 00 10 10 Slot Quantum Rack

140 XBP 016 00 16 16 Slot Quantum Rack

TSX RKY 6 6 Nonextendable 6 Position Rack

TSX RKY 8 8 Nonextendable 8 Position Rack

TSX RKY 12 12 Nonextendable 12 Position Rack

TSX RKY 6E 6 Extendable 6 Position Rack

TSX RKY 8E 8 Extendable 8 Position Rack

TSX RKY 12E 12 Extendable 12 Position Rack

TSX RKY 4EX 4 Extendable 4 Position Rack

TSX RKY 6EX 6 Extendable 6 Position Rack

TSX RKY 8EX 8 Extendable 8 Position Rack

TSX RKY 12EX 12 Extendable 12 Position Rack
378

CSV File Format
Rack The line in a CSV file for importing/exporting a Rack contains the following elements,
separated by a separator (* = required field).

Description of entries:
� part_number: refer to table below
� drop_number: Number of the rack (integer). For a local rack it is 1.

Ranges: Remote 2...32, SYMAX: 2...32, 800I/O: 2...32, Distributed:
2...64 (=Modbus Plus address), Generic: 1...9999, IOBus: always 2,
Modbus Plus I/O: no drop number necessary, Ethernet I/O: 1...16 (= slot
number of the NOE or M1E (in case of M1E always 0).

� plc_name: Name of the parent PLC.
� link_type: Type of the connection with the PLC. Valid values are: Local, Local

Momentum, XBus, Remote, DIO0, DIO1, DIO2, SYMAX, 800IO, Generic,
IOBUS, MBPIOLink0, MBPIOLink1, MBPIOLink2, ETHIO.

� extension_rack_number: Number of the extension rack. Empty string for Local
Rack and number for Extension Racks.

Table of part_number:

1 * RACK 2 * part_number 3 description

4 * drop_number 5 * plc_name 6 * link_type

7 * extension_rack_
number

part_number Size Description

140 XBP 002 00 2 2 Slot Quantum Rack

140 XBP 003 00 3 3 Slot Quantum Rack

140 XBP 004 00 4 4 Slot Quantum Rack

140 XBP 006 00 6 6 Slot Quantum Rack

140 XBP 010 00 10 10 Slot Quantum Rack

140 XBP 016 00 16 16 Slot Quantum Rack

TSX RKY 6 6 Nonextendable 6 Position Rack

TSX RKY 8 8 Nonextendable 8 Position Rack

TSX RKY 12 12 Nonextendable 12 Position Rack

TSX RKY 6E 6 Extendable 6 Position Rack

TSX RKY 8E 8 Extendable 8 Position Rack

TSX RKY 12E 12 Extendable 12 Position Rack

TSX RKY 4EX 4 Extendable 4 Position Rack

TSX RKY 6EX 6 Extendable 6 Position Rack

TSX RKY 8EX 8 Extendable 8 Position Rack

TSX RKY 12EX 12 Extendable 12 Position Rack
 379

CSV File Format
8030-RRK-100 5 5 Slot SY/MAX Rack

8030-RRK-200 9 9 Slot SY/MAX Rack

8030-RRK-300 18 18 Slot SY/MAX Rack

AS-H810-100 4 4 Slot 800 I/O Rack

AS-H810-208 4 4 Slot 800 I/O Rack

AS-H810-209 4 4 Slot 800 I/O Rack

AS-H819-100 7 7 Slot 800 I/O Rack

AS-H819-103 7 7 Slot 800 I/O Rack

AS-H819-209 7 7 Slot 800 I/O Rack

AS-H827-100 11 11 Slot 800 I/O Rack

AS-H827-103 11 11 Slot 800 I/O Rack

AS-H827-209 11 11 Slot 800 I/O Rack

800 I/O (55) 55 55 Slot 800 I/O Rack

Local Momentum 2 Momentum Local Rack

I/O Bus (128) 128 128 Slot I/O Bus Rack

I/O Bus (44) 44 44 Slot I/O Bus Rack

Ethernet I/O (128) 128 Ethernet I/O Rack (Quantum)

Ethernet I/O (64) 64 Ethernet I/O Rack (Momentum)

MBP I/O 64 ModbusPlus I/O Rack

Generic 255 Generic Rack

part_number Size Description
380

CSV File Format
HW Module The line in a CSV file for importing/exporting a HW module contains the following
elements, separated by a separator (* = required field).

Description of entries:
� hwmodule_name: Name of a valid Quantum HW module for example CPS-

111-00 (power supply module) or CPU-113-03 and so on.
� plc_name: PLC in which the HW module exists.
� link_type: Type of the Rack. Valid field values are: Local, Local Momentum,

XBus, Remote, DIO0, DIO1, DIO2, SYMAX, 800IO, Generic, IOBUS,
MBPIOLink0, MBPIOLink1, MBPIOLink2, ETHIO.

� drop_number: Drop number of the corresponding Rack.
� slot_number: Number of the slot of the HW module.
� mbp_link: Link type of the Modbus Plus module. Only used for NOM-2xx-00,

else empty. Valid values are 1 and 2.
� network_segment_1/_2: Name of the Network Segment. The field is valid only

for CPU or Communication modules, otherwise it must be empty
� network_address_1/_2: Network address of the HW module. The field is valid

only for CPU or Communication modules, otherwise it must be empty
� 0x_address: 0x start state RAM address of the Module. The field can be empty.

The address is exported, but ignored during import (recalculated by Unity
Application Generator).

� 1x_address: 1x start state RAM address of the Module. The field can be empty.
The address is exported, but ignored during import (recalculated by Unity
Application Generator).

� 3x_address: 3x start state RAM address of the Module. The field can be empty.
The address is exported, but ignored during import (recalculated by Unity
Application Generator).

� 4x_address: 4x start state RAM address of the Module. The field can be empty.
The address is exported, but ignored during import (recalculated by Unity
Application Generator).

� timeout_behavior: One of three strings: Disabled, LastValue,
UserDefined. The field is valid only for digital output modules, otherwise it must
be empty.

� bus_children: only for Momentum module 170-BNO-6x1-00, number of Local/
Remote Bus Children; otherwise it must be empty.

1 * HWMODULE 2 * hwmodule_name 3 * plc_name

4 * link_type 5 * drop_number 6 extension_rack_
number

7 *slot_number 8 mbp_link 9 network_segment_1

10 network_address_1 11 network_segment_
2

12 network_address_2

10 0x_address 11 1x_address 12 3x_address

13 4x_address 14 timeout_behavior 15 bus_children
 381

CSV File Format
I/O Point The line in a CSV file for importing/exporting an I/O point contains the following
elements, separated by a separator (* = required field).

Description of entries:
� variable_full_name: Full (generated) name of the variable mapped to the IO

point; for example EquipmentName_DeviceName_VariableName.
� plc_name: PLC containing the HW module.
� link_type: Type of the Rack. Valid values are: Local, Remote, DIO0, DIO1,

DIO2, SYMAX,800IO und Generic. Corresponds to the rack containing the
I/O Point.

� drop_number: Drop number of the Rack; integer value.
� slot_number: Number of the slot of the HW module; integer value.
� io_point: Position in the I/O module; integer value. In a mixed module with IN and

OUT connections, the IN connections are counted first, for example in a module
with 4 IN connections, the first OUT connection is 5.

HMI The line in a CSV file for importing/exporting an HMI contains the following
elements, separated by a separator (* = required field).

type: Type of HMI. The valid values are iFIX or Generic HMI.

Control Domain The line in a CSV file for importing/exporting a Control Domain contains the following
elements, separated by a separator (* = required field).

Description of entries:
� hmi_name: Name of the parent HMI.

1 * IOPOINT 2 * variable_full_name 3 * plc_name

4 * link_type 5 * drop_number 6 extension_rack_
number

7 * slot_number * io_point

1 * HMI 2 name 3 * hmi_type

4 comment 5 document_ref_1 6 document_
parameters_1

... document_ref_i ... document_
parameters_i

... document_ref_n

... document_
parameters_n

1 * CONTROLDOMAIN 2 * name 3 * hmi_name

4 * description 5 comment
382

CSV File Format
Data Server The line in a CSV file for importing/exporting a Data Server contains the following
elements, separated by a separator (* = required field).

Description of entries:
� redundant_network_segment: segment for optional redundant network card in

data server PC.
� redundant_network_address: address for optional redundant network card in

data server PC.
� export_format_name: Name of export format. Only for generic HMI.

Network Node The line in a CSV file for importing/exporting a Network Node contains the following
elements, separated by a separator (* = required field).

Description of entries:
� network_node_type: Valid strings are NetPartner and OtherNode.

1 * DATASERVER 2 * name 3 network_segment

4 network_address 5 timeout_min 6 timeout_sec

7 timeout_ms 8 redundant_network_
segment

9 redundant_network_
address

10 comment 11 export_format_name 12 document_ref_1

13 document_
parameters_1

... document_ref_i ... document_
parameters_i

... document_ref_n ... document_
parameters_n

1 * NETWORKNODE 2 * name 3 * network_node_type

4 description 5 network_segment 6 network_address

7 timeout_min 8 timeout_sec 9 timeout_ms

10 export_file 11 bitmap_file 12 comment

13 document_ref_1 14 document_
parameters_1

... document_ref_i

... document_
parameters_i

... document_ref_n ... document_
parameters_n
 383

CSV File Format
Network
Segment

The line in a CSV file for importing/exporting a Network Segment contains the
following elements, separated by a separator (* = required field).

Description of entries:
� network_type: Valid strings are ModbusPlus and Ethernet.
� subnetmask: Correct IP address. Only for Ethernet network type, otherwise this

entry is empty.
� default_gateway: Correct IP address. Only for Ethernet network type, otherwise

this entry is empty.

Routing Path The line in a CSV file for importing/exporting a Routing Path contains the following
elements, separated by a separator (* = required field).

network_path: One to four Modbus+ addresses separated by a dot, for example:
2.12.11.3 or 3.4 or 1.

1 * NETWORKSEGMENT 2 * name 3 * network_type

4 subnetmask 5 default_gateway

1 * ROUTINGPATH 2 * senders_segment_
name

3 * receivers_segment_
name

4 * network_path

Note: The line starting with ROUTINGPATH is only valid for Modbus Plus Network
Segments.
384

CSV File Format
Instruments: CSV File Format

General Remarks Note the following:
� The first element is the keyword for the identification of the object. It must be

exactly the string given in the table written in uppercase letters. The keywords are
the same for all national languages of Unity Application Generator.

� The field names are in English for all language versions of Unity Application
Generator.

� Document references, if they exist in the object, lie at the end of the line. Each
document reference consists of two fields: the specific file and parameters of the
specific tool. The number of document references is not restricted.

� Fields with free text, for example a comment, may contain line feeds and tabs.
A line feed has to be specified by \n a tab by \t.

� The numbers in this table are only for your overview, they are not contained in
the CSV file!

� *: The required fields are marked with a star. The optional fields, when not filled,
must remain empty (;;).

� The separator can be choosen in the Options. Do not use the separator
character anywhere, for example in free text, otherwise the fields will not be
identified correctly.

Order of Data in a
Line

Each line in the CSV file for importing Instruments represents one Instrument.
The line contains the following elements, separated by a separator (* = required
field).

The star * marks required fields. The not required fields when not filled must remain
empty (;;).

1 * INSTRUMENT 2 *
controlmodule_name

3 * controlmodule_type

4 * library_name 5 * controlmodule_
description

6 controlmodule_
comment

7 equipmentmodule_
name

8 unit_name 9 processcell_name

10 area_name

Note:
� The first element must be exactly the string INSTRUMENT written in uppercase

letters to identify the contents of the line. This keyword is the same for all
languages of Unity Application Generator.

� The numbers in this table are only for your overview, they are not contained in
the CSV file!
 385

CSV File Format
Options You have the options to either import Instruments without the hierarchy in the
Physical Model or with the complete hierarchy up to the Area level:

Example for a
Line

INSTRUMENT;motor1;MSR01;IATBasic10;Motor for conveyer No 1;The
motor can be operated in manual or auto
mode;EquipmentModule1;Unit1;ProcessCell1;Area1

Initial Values: CSV File Format

Order of Data in a
Line

Each line in the CSV file for importing intial values represents one initial value for
one variable.
The line contains the following elements, separated by a separator (* = required
fields).

Description of the entries.
� variable_full_name: This entry contains the full name of the variable for which

the initial value shall be changed, for example
EquipmentModuleName_ControlModuleName_VariableName. The name
is checked to be the name of an existing variable in the Unity Application
Generator project.

� initial_value: This entry contains the initial value for the variable. The value is
checked to be valid according to the data type of the variable.

If you want to... Then...

Import only Instruments (without hierarchy
in the physical odel)

Omit the last four entries
equipmentmodule_name;
unit_name;processcell_name;
area_name.

Import Instruments as Control Modules with
complete hierarchy in the Physical Model

Specify all the four entries
equipmentmodule_name;
unit_name;processcell_name;
area_name.

1 * INITIALVALUE 2 * variable_full_name 3 * initial_value

Note:
� The first element must be exactly the string INITIALVALUE written in

uppercase letters to identify the contents of the line. This keyword is the same
for all languages of Unity Application Generator.

� The numbers in this table are only for your overview, they are not contained in
the CSV file!
386

CSV File Format
Example for a
Line

INITIALVALUE;Boiler1_Motor1_FTR;0
 387

CSV File Format
388

D

Format of the XML File for Generic
HMI
XML File Format for Generic HMI

Introduction The data in the XML file is contained in a hierarchical structure formed by named
elements. Elements may have named attributes and child elements as shown in the
following table.

Note: A plus sign (+) appended to an element name in the child elements column
means there is one or more element, an asterisk sign (*) means there are zero or
more elements, otherwise there is exactly one element.
389

XML File Format
Elements XML file format

Element Name Attribute Name Description of Attribute
Value

Child Elements

generic_hmi_file version Version of the file format file_header, content_header,
physical_model,
topological_model,
control_module_type_libraries

file_header company The string "Schneider
Electric"

product The string "Unity
Application Generator"
followed by a version string

date_time Date and time of
generation.

content The string "Generic HMI
data".

content_header uag_project_file Path and file name of the
UAG project.

physical_model areas

areas area*

area name Name of the Area. process_cells

process_cells process_cell*

process_cell name Name of the ProcessCell. units

units unit*

unit name Name of the Unit. equipment_modules

equipment_modules equipment_module*
390

XML File Format
equipment_module name Name of the Equipment
Module.

variables, control_modules

description Description of the
Equipment Module.

plc Name of the associated
PLC.

section Name of the PLC program
section.

hmi Name of the associated
HMI.

controldomain Name of the HMI's Control
Domain.

picture Name of the HMI picture
for the Equipment Module.

variables variable *

Element Name Attribute Name Description of Attribute
Value

Child Elements
 391

XML File Format
variable name Full variable name, for
example
EquipmentModuleName_
ControlModuleName_
VariableName.

data_type Data type of the variable
(for example BOOL,
ANL_IN, ANL_OUT and so
on).

address_segment The segment part of the
state ram address of the
variable, that is, 0, 1, 3 or
4.

address_offset The offset part of the state
ram address of the
variable.

initial_value Initial value of the variable.
The format corresponds to
the data type of the
variable (for example for
BOOL it is 0 or 1, for REAL
1.23 and so on).

description The description of the
variable is composed as
follows: description of
variable - description of
Control Module -
description of equipment
Module.

graphical_symbol One of the following
strings: True or False

graphical_symbol_name Name of the graphical
symbol to be used for the
variable, if the attribute
graphical_symbol is True.
The value can be empty.

Element Name Attribute Name Description of Attribute
Value

Child Elements
392

XML File Format
variable communication_frame Name of the
communication frame the
variable is assigned to.
Corresponds to the name
of one of the
hmi_communication
elements in the channel
element. The value can be
empty.

parent_type The type of the variable's
parent, that is, one of the
following strings:
equipment_module or
control_module.

command One of the following
strings: ViewOnly, Logic,
Operator, Parameter,
SetValue. The value can
be empty.

access_level One of the strings defined
in the customization, for
example 1, 2, 3 and so on.
The value can be empty.

scaling_min The value corresponds to
the variable's data type.
The value can be empty.

scaling_max The value corresponds to
the variable's data type.
The value can be empty.

value_boundary_min The value corresponds to
the variable's data type.
The value can be empty.

value_boundary_max The value corresponds to
the variable's data type.
The value can be empty.

measurement_unit A string defined in the
customization for example
%, m, Hz or 1/min. The
value can be empty.

Element Name Attribute Name Description of Attribute
Value

Child Elements
 393

XML File Format
variable display_format A string defined in the
customization for example
9999.9 or 99.9 and so on.
The value can be empty.

state0_text Text to be displayed in HMI
if the value of the variable
is 0 - only for Boolean
variables. The value can
be empty.

state1_text Text to be displayed in HMI
if the value of the variable
is 1 - only for Boolean
variables. The value can
be empty.

archive One of the following
strings: No or Historic. The
value can be empty.

archive_name One of the strings defined
in the customization for
archives. The value can be
empty.

archive_location One of the strings defined
in the customization for
archive locations. The
value can be empty.

alarm One of the following
strings: True or False.

alarm_group One of the strings defined
in the customization for
alarm groups. The value
can be empty.

alarm_operator1 ...
alarm_operator8

For Boolean variables the
string EQ, otherwise one of
the following strings: EQ,
NE, LT, GT, LE, GE. The
value can be empty.

Element Name Attribute Name Description of Attribute
Value

Child Elements
394

XML File Format
variable alarm_limit1 ...
alarm_limit8

For Boolean variables one
of the following integer
values: 0 or 1; otherwise a
number according to the
variable's data type. The
value can be empty.

alarm_priority1 ...
alarm_priority8

One of the strings defined
in the customization, for
example low, medium,
high and so on. The value
can be empty.

alarm_text1 ...
alarm_text8

Text shown to the HMI
operator in case of alarm.
The value can be empty.

userdefined_value1 ...
userdefined_value18

Any string specified by the
user. The value can be
empty.

control_modules control_module*

control_module name Full name of the Control
Module, for example
EquipmentModuleName_
ControlModuleName.

variables

description Description of the Control
Module.

type Type of the Control Module
as defined in the Control
Module Type library.

library_name Control Module Type
library in which the Control
Module is defined.

plc Name of the associated
PLC.

topological_model network_segments,
data_servers, hmis, plcs

network_segments network_segment*

Element Name Attribute Name Description of Attribute
Value

Child Elements
 395

XML File Format
network_segment name Name of the network
segment

network_type Network type. Valid strings
are ModbusPlus and
Ethernet.

subnetmask Subnet mask of the
network segment.

default_gateway Default gateway of the
network segment.

data_servers data_server*

data_server name Name of the Data Server

hmis hmi*

hmi name Name of the HMI. controldomains

type The string "Generic HMI"

controldomains controldomain*

controldomain name The name of the
Controldomain.

description The description of the
Controldomain.

plcs plc*

plc name Name of the PLC. channels, plc_variables

description Description of the PLC.

project_name Name of the generated
PLC project.

project_path Path of the generated PLC
project.

plc_family One of the following
strings: Concept/Quantum,
Concept/Momentum,
Unity/Quantum or Unity/
Premium.

channels channel*

Element Name Attribute Name Description of Attribute
Value

Child Elements
396

XML File Format
channel name Name of the Channel. communication_paths

communication_type One of the following
strings: data_server, plc,
net_partner.

communication_partner Name of the
communication partner.

communication_paths communication_path+

communication_path ordinal_number The number 1 or 2.

plc_network_segment The network segment to
which the PLC is
connected.

plc_network_address The network address of
the PLC.

partner_network_
segment

The network segment to
which the communcation
partner is connected.

partner_network_
address

The network address of
the communication
partner.

global_path Bridge path between
communication partner
and PLC. Only for
ModbusPlus. The value
can be empty.

hmi_communication_
frames

hmi_communication_frames*

Element Name Attribute Name Description of Attribute
Value

Child Elements
 397

XML File Format
hmi_communication_
frames

Name Name of the
communication frame as
specified in customization

data_type One of the following
strings: BOOL, WORD,
DINT, REAL.

frame_type One of the following
strings: RD, EW, BW, UR,
RD+EW.

address_segment The segment part of the
state ram addresses of the
variables, that is, 0, 1, 3 or
4.

start_address The offset part of the start
address.

length Length of the
communication frame,
specified in bits for data
type BOOL and in words
otherwise.

plc_variables plc_variable*

plc_variable name Full variable name, for
example
EquipmentModuleName_
ControlModuleName_
VariableName.

control_module_type_
libraries

control_module_type_library*

control_module_type_
library

name The name of the library control_module_types

control_module_types control_module_type*

Element Name Attribute Name Description of Attribute
Value

Child Elements
398

XML File Format
control_module_type name The name of the Control
Module Type

hmi_symbol_type One of the following
strings: ActiveX, Dynamo.
The value can be empty.

hmi_symbol The name of an HMI
symbol for the Control
Module Type. The value
can be empty.

hmi_symbol_classid The class ID of an ActiveX
HMI symbol. The value can
be empty.

Element Name Attribute Name Description of Attribute
Value

Child Elements
 399

XML File Format
400

Glossary
ActiveX ActiveX is an open specification designed to govern how software components
interact. ActiveX objects are pre-built, reusable software components that have
interactive capabilities. An ActiveX is a programming construct that combines data
(properties) with functions (methods) for using the data. Graphic objects in the HMI
representing the Control Modules of Unity Application Generator are built as ActiveX
controls.

Administrator Person or persons responsible to customize Unity Application Generator according
to the companies requirements, e. g. naming conventions, documentation tools. The
administrator is responsible for the user/user group administration.

Alarm View Overview mimic, which can be accessed via all alarm messages assigned to the
alarm view.

Analyzer Part of Unity Application Generator that checks the formal validity of the total design.

Area A component of manufacturing site that is identified by physical, geographical, or
logical segmentation within the site.

A

 401

Glossary
Batch � The material that is being produced or that has been produced by a single
execution of a batch process.

� An entity that represents the production of a material at any point in the process.

Batch means both the material made by and during the process and also an entity
that represents the production of that material. Batch is used as an abstract
contraction of the words "the production of a batch"

Channel A Channel describes the following:
� To which objects of the control system the PLC communicates
� Via which communication path the communication takes place
� Via which alternative path the communication takes place
� Which variables have to be exchanged

The communication is always done through a PLC. This means, one communication
partner in a Channel is always a PLC.

Control (Process control) The control activity that includes the control functions needed to
provide sequential, regulatory, and discrete control and to gather and display data
(defined in S88).

Control Domain Logical group of process elements which are controlled by an operator.
Assigned to a Control Domain are
� Operator screens
� Access rights
� Alarms

Control Engineer Specialist in all aspects of a control system like PLC, HMI and networking rather
than the process itself.

Control Module Individual or collections of sensors and actuators and associated processing
equipment that from a control view point is operated as a single entity, e.g. motor,
valve, level switch, alarm light.
A Control Module is derived from a Control Module Type (SCoD).

B

C

402

Glossary
Control Module
Type

Control Module Types are generic types of Control Modules, which are tested and
validated and can be re-used as often as needed.

Control Module
Type Variable

Control Module Type variables are related to a Control Module Type. They are
automatically generates for each instance of a Control Module Type.

CSV File A CSV (comma separated value) file is an ASCII file containing a number of lines.
Each line of a CSV file contains a number of entries, separated by a separator, for
example a comma or a semicolon or a tab. CSV files can be used for exchanging
data between different software programmes. Unity Application Generator allow
import and export of CSV files.

Data Server Server for all for all HMI related data (e.g. variables).

Equipment
Module

A functional group of Control Modules that can carry out a finite number of specific
minor processing activities.
An Equipment Module is typically centered around a piece of process equipment (a
weigh tank, a process heater, a scrubber, etc.) or process activities e. g. dosing and
weighing.

FBD Function Block diagram (FBD)
One or several sections containing graphically represented networks consisting of
functions, Function Blocks, and links.

Free Control
Module

A Free Control Module is a Control Module which is not a generic Control Module
Type. It does not define any logic for the PLC nor any predefined functionality for the
HMI. Free Control Modules can have free variables assigned to it. They are typically
used for process hardware for which no appropriate Control Module Type is
available.

D

E

F

 403

Glossary
Free Variable Free variables are variables which are manually defined for
� Equipment Modules
� Control Modules

Function Block
(instance) (FB)

A Function Block is a program organization unit which provides values for its outputs
and internal variable(s) according to the algorithms defined in its Function Block type
description, when executed as a specific instance. All values of the outputs and
internal variables of a specific Function Block instance are maintained from one
invocation of the Function Block to the next. Therefore, multiple calls of the same
Function Block instance with the same arguments (values of input parameters) do
not necessarily yield the same output value(s).
Each Function Block instance is graphically displayed by a rectangular block
symbol. The name of the Function Block type is centered on top, inside the
rectangle. The name of the Function Block instance is also on top, but outside the
rectangle. It is automatically generated when building an instance, and should never
be changed by the user (if the FB was generated by Unity Application Generator).
Inputs are shown to the left, outputs to the right of the block. The names of the formal
input/output parameters are shown inside the rectangle at the corresponding input/
output points.

Generic Module Generic modules are user defined hardware modules which are not known by name
in Concept. The administrator adds them to the list of modules in the customization.
He must specify the number of inputs and outputs, the number of 0x (%M), 1x (%I),
3x (%IW) and 4x (%MW) registers consumed and the possible rack type = Generic.
Generic modules can only be configured in generic racks and are NOT generated.
They can not be configured in Quantum/Premium racks and are not entered in the
Concept/Unity Pro I/O mapping. The specifications made are only used for the
reservation of state RAM addresses and for the addresses of the I/O variables.

Global Network
Paths

Earlier term for Routing Paths (See , p. 407)

HMI HMI = Human Machine Interface. Also called supervisory system. Through the HMI
the operator controls the production process.

G

H

404

Glossary
Instrument List List of all Instruments used in a control project.

Instruments The sensors and actuators used by the PLC to measure and modify the physical and
chemical characteristics of the process.

Memory Mapper Part of Unity Application Generator. Generates all addresses of variables, IO
definitions, communication parameters etc. for both, PLC and HMI consistently. The
Memory Mapper can be run during the design procedure for checking the
addressing. It is run automatically, when Unity Application Generator generates for
Concept.

ModConnect ModConnect is an initiative to integrate third party modules into Concept.
ModConnect partner modules are modules that are known by name in Concept,
specified in the Concept ModConnect Tool. The administrator adds them to the list
of modules in the customization. They have to be imported in Concept with
ModConnect Tool. He must specify the exact name as in the Concept ModConnect
Tool, the number of inputs and outputs, the number of 0x, 1x, 3x and 4x registers
consumed and the possible rack type(s). ModConnect partner modules can be
configured in Quantum racks and are generated in the Concept I/O map.

Net Partner A Net Partner is a node on the network that communicates with the PLC but is
neither a Schneider PLC, an HMI or a Data Server. Examples are Magelis hand held
panels, PLCs of different make, an intelligent sensor or actuator. It can communicate
via Modbus Plus or Ethernet with other devices therefore the communication with
the Net Partner is defined in Unity Application Generator.

Network A network is the interconnection of units along a shared data path that are
communicating with each other via a common protocol.

I

M

N

 405

Glossary
Network Node A Network Node is an object in the Topological Model and consists of Net Partners
and Other Nodes.

Network
Segment

Networks are divided in segments. This reduces the data transfer load per segment
because only the data relevant for devices of the respective segment are transmitted
on a Network Segment.

OLE Object linking and embedding

Operator Person or persons responsible for using the run-time process control system in
order to control the process.

Other Node An Other Node is a node on the network that communicates with the PLC but is
neither a Schneider PLC, an HMI, a Data Server nor a Net Partner. Examples are
Operator PCs or intelligent drivers. It can communicate via Modbus Plus or Ethernet
with other devices, but the communication with the node is not defined in Unity
Application Generator. It is used for reservating a network address and displaying
the node in the Topological Viewer, only.

P&ID Pipework and Instrument Drawing

Physical Model Defines the hierarchy of the Equipment Modules used in the process.

PLC Programmable Logic Controller is used to automate and control a process

Procedure The strategy for carrying out a process.

Process A sequence of chemical, physical, or biological activities for the conversion,
transport, or storage of material or energy (defined in S88).

Process Cell A logical grouping of Equipment Modules that includes the Equipment Modules
required for production of one or more batches. It defines the span of logical control
of one set of process Equipment Modules within an Area.

O

P

406

Glossary
Process control The control activity that includes the control functions needed to provide sequential,
regulatory, and discrete control and to gather and display data (defined in S88).

Process
Engineer

Specialist in all aspects of process which has to be controlled rather than the control
system.

Process Objects An element of processing equipment which is represented in the PLC and
supervisory control (HMI) with all of its attributes.

Routing Path Routing Paths define the bridges and their addresses which interconnect different
Network Segments. (In earlier versions a Routing Path was called global network
path.)

SCADA Supervisory Control and Data Aquisition.
In iFIX an HMI system is called SCADA system, a Data Server is called SCADA
host.

Site Logical unit to structure the process. Highest level element of the Physical Model of
Unity Application Generator.

Supervisory
Control (HMI)

Allows an operator to manage the running of the process via the process control
system

System
Administrator

Person or persons responsible for customizing Unity Application Generator
according to the project needs.

Topological
Model

In Unity Application Generator the Topological Model defines the architecture of the
control system. It comprises the definition of the PLC hardware, HMIs and networks.

R

S

T

 407

Glossary
Topological
Viewer

Graphical representation of the Topological Model in a separate screen on Unity
Application Generator.

Type-less
Control Module

A type-less Control Module is a Control Module with no type assigned. It is neither
a Control Module Type nor a Free Control Module.
With type-less Control Modules the process engineer has the possibility to configure
a Control Module in the Physical Model tree even, if he is not sure yet about the
specific implementation.
The control engineer can assign a type-less Control Module to a PLC. As long as
the type stays undefined, nothing is generated, but the Analyzer prints a warning
message. A type can be assigned at any time throughout the development process
of the project. Once the type is defined, the properties and variables of this Control
Module can be defined. It is not possible to change back to a type-less Control
Module once the type has been assigned.

Unit A collection of associated Control Modules and/or Equipment Modules and other
process equipment in which one or more major processing activities can be
conducted.

Variable In general a variable is a free definable parameter.
Unity Application Generator distinguishes two major variable types
� Control Module Type variables
� Free variables

View Node The term View node is used in iFIX for an HMI. It corresponds to the term HMI in
Unity Application Generator.

U

V

408

CBAIndex
Numerics
21CFR11, 19

A
access level

default values for access levels, 231
Acrobat Reader

Software requirements, 267
ActiveX

duplicates of SCoD ActiveX, 232
Additional Racks, 97
Address ranges, 88
Addressing

Addressing in a hot standby system, 76
Ethernet addressing rules, 71

Administrator
Role, 22

Alarm
Alarm related variable properties, 54

Alarm Area
Alarm Areas configuration, 230

Alarm Group, 205
Alarming, 210
Analysis options

Setting of, 259
Analyzer options for import, 368
And/Or

In a search condition, Find feature, 140
Application

Building an application, 22
Steps to deploy the generated

application to the iFIX nodes, 236
Steps to document the application, 167
Workflow to build an application, 155

Archive
Configuration, 216

Archive Configuration, 220
Archive Name, 205
Archiving, 215
Area

CSV file format, 370
Description and properties, 29
Generation for an Area, 287, 313
Position in the Physical Model hierarchy,
19
Short definition, 28

Attribute
In a search condition, Find feature, 140

B
Backup node, 238
Benefits of Unity Application Generator, 16
Block Write, 202
Branching, 223
Bridge, 69

Defining a bridge between Ethernet
segments, 70
Defining a bridge between Modbus
segments, 70

BW, 202
409

Index
C
CANOpen, 66
Change tracking, 260
Channel

Definition, 70, 90
Global Channel, 93
Specific Channel, 93
Steps to define the communication
Channels, 162

Client Builder
Mimics, 222

Client.zip, 221
Steps for Client.zip, 221

Coil, 202
Command

Command related variable properties, 55
Command register

Hot Standby command register, 77
Comment line

Specify a comment line in a CSV file, 369
Communication

Communication definition, 90
Communication failure (Ethernet), 96
Communication failure (Modbus Plus),
94
Communication methods, 91
Communication via Modbus Plus and
Ethernet, 69
Generated code, 300, 326
How to define the communication, 70
PLC-PLC communication via Ethernet,
95
PLC-PLC communication via Modbus
Plus, 93

Communication Channel
Steps to define the communication
channels, 162

Communication Frame, 205
Communication Parameters

Additional racks, 98
Concept

Generation, 278
Rules concerning the PLC and Concept,
128
Software requirements, 267
410
Steps to generate PLC and HMI
applications, 164

Concept PLC configuration
Generated code, 294

Concept variables
Generated code, 295

Condition variable, 44
Configuration

Rules for project configuration and
generation, 126

Connection type
List of connection types of a variable, 51
Of variables, 49

Context menu, 137
Control Domain, 211

Definition, 111
Properties, 113

Control engineer, 16
Role, 22

Control Module, 126
CSV file format, 372
Definition, 36
Features, 37
Free Control Module, definition, 40
Free variables, 37
Generated code, 297, 323
Generation for a Control Module, 290,
316
Interlocks for Control Modules, 43
Position in the Physical Model hierarchy,
19
Properties, 41
Representation in an HMI, 37
Representation in Concept, 37
Representation in Unity, 37
Seleted Control Module, 232
Short definition, 28

Control Module Type, 38
Definition, 36
Libraries, 36
Properties of Control Module Type
variables, 51
What is defined in a Control Module
Type, 39

Index
Control system, 62
Elements of a control system supported
by UAG, 64

Control topology, 61
Figure showing a typical control
topology, 63

Controller
Primary and standby controller, 75

Copy and paste
Copy and paste between projects, 145
Copy and paste in the Physical and
Topological Model, 145

Copy and Paste of PLCs, 92
Criterion

In a search condition, Find feature, 140
CSV file

Comment line, 369
Definition, 184
For import into a Net Partner, 91
Format, 185
Format of CSV file for a Control Module,
372
Format of CSV file for a Process Cell,
371
Format of CSV file for a Unit, 371
Format of CSV file for a variable, 373
Format of CSV file for an Area, 370
Format of CSV file for an Equipment
Module, 371
Format of CSV file for initial values, 386
Format of CSV file for Instruments, 385
Format of CSV file for Physical Model
elements, 370
Format of the CSV file for the topological
model, 376
General format, 368
Line feed in a free text field, 369
List of keywords, 369
Net Partner variables, 366
Order of objects in an export CSV file,
369
Steps to import/export CSV files, 186
Tab in a free text field, 369

Customization, 241
Access levels, 248
Alarm priority, 248
Changing of, 257
Defining the customization, 158
Generic HMI, 239
Display formats, 248
General options, 247
Measurement units and groups, 248
Naming conventions, 247, 249
Of Unity Application Generator, 243
PLC, 248
Properties of user defined modules, field
descriptions, 253
Task of the administrator, 22
User defined modules - overview, 251
Valid data types, 248

Customization Editor, 127
Read-only, 127
Working with, 245

D
Data Files, 270
Data Point Logger, 215

Configuration, 219
Data Server, 114

Description and properties, 114
Relation to other elements, 114
Steps to define the Data Servers, 161
The data server group in the Topological
Model, 68

Data type
Data type conversion for iFIX driver, 235
Data types for PLC-HMI communication,
92
Data types for PLC-PLC communication,
92
List of data types of a variable, 51
Of variables, 49

Database
Single process database, 20

Database Logger, 215
Configuration, 217

Database Logging Information table, 218
DBLCHISTMBX, 218
411

Index
Default gateway, 79
Default Server Application, 197
Default values, 135
Directories

Specific, 270
Display

Display related variable properties, 57
Refresh by user, 136

Distributed project development, 171
Workflow of distributed project
development, 174

Document
Steps to document the application or
individual objects, 167

DPLOGHISTMBX, 219
Driver

Unity Application Generator and iFIX
drivers, 235

E
Enhanced Ethernet Module, 97, 107
Enhanced Ethernet Rack, 97
Equipment Modul, 126
Equipment Module

CSV file format, 371
Definition, 30
Features, 32
Generation for an Equipment Module,
289, 315
In relation to PLC, HMI, variables, 32
Position in the Physical Model hierarchy,
19
Properties, 33
Short definition, 28

Equipment Modules
Generated code, 297, 323

Ethernet, 69, 71
Communication method, 91
PLC-PLC communication via Ethernet,
95
Properties for Ethernet Network
Segments, 79

Event, 91
EW, 202
Exception Write, 202
412
Export
Examples for export, 184
Interfaces with other tools (import and
export features), 183

Export Format
Generic HMI, 239

Export/import
Steps to import/export CSV files, 186

F
Finalization

Steps to finalize the project, 162
Find

Find objects with search criteria, 140
Fipio, 66
Format of CSV files, 368
Frame Type Name, 206
Free Control Module

Definition, 40
Free text field in a CSV file

Line feeds and tabs, 369
Free variable

Create free variables, 138
Of a Control Module, 37
Properties of free variables, 51
Symbol, 222

Function
Complex functions like SIN, COS in an
interlock definition, 149

G
Generate

Steps to generate a new iFIX application,
233
Steps to generate an iFIX application
incrementally, 234
Steps to generate import files for Net
Partners, 166
Steps to generate PLC and HMI
applications, 164

Discrete Configuration (Premium only)
, 329

Index
Generated code
Communication, 300, 326
Concept PLC configuration, 294
Concept variables, 295
Control Modules, 297, 323
Equipment Modules, 297, 323
Generation principles, 277
Hot Standby, 303
iFIX database objects, 348
iFIX driver configuration from driver point
of view, 361
iFIX driver configuration from Unity
Application Generator point of view, 359
iFIX pictures, 354
iFIX screens, 347
Initialization, 302
Initialization (Quantum only), 328
Interlocks, 297, 323
Monitor Pro database objects, 336
Monitor Pro pictures, 340
Monitor Pro screens, 335
Net Partner variables, 366
Overview, 276
Scaling of analog values (Quantum only),
328
Scaling og analog values, 303
Unity Pro PLC configuration, 320
Unity Pro variables, 320
Variables for Monitor Pro, 333, 329
Variables for iFIX, 346

Generated logic
Rules concerted generated logic, 128,
130

Generated objects
Generated I/O scanner configuration, 96

Generation
code generation for individual PLCs, 173
Concept, 278
iFIX, 344
Generic HMI, 363
manual configurations before generation
for iFIX, 230
Monitor Pro, 332
net partner, 365
New or incremental generation, 126
Rules for project configuration and

generation, 126
Unity Pro, 304

Generation for Concept
Results from general project settings,
280
Results from settings for Physical Model,
287
Results from settings for Topological
Model, 281

Generation for Unity Pro
Results from general project settings,
306
Results from settings for Physical Model,
313
Results from settings for Topological
Model, 307

Generation options
Setting of, 259

Generation principles
Generated code, 277

Generation status
Viewing the generation status, 154

Generic HMI
Customization, 239
Export Format, 239
Generation, 363
Using Unity Application Generator with a
generic HMI, 239
XML file format, 389

Generic module
Definition, 251
How to define a generic module with the
Unity Application customization editor,
255

Global Channel, 93
Set up a Global Channel, 94

Guideline
Rules for working with Unity Application
Generator, 125
413

Index
H
Handling

Handling of Unity Application Generator,
133

Hardware Module
Moving hardware Modules, 139

Hardware requirements], 266
Health check

Of PLC-PLC communication via
Ethernet, 95
Of PLC-PLC communication via Modbus
Plus, 93

Hierarchy
Of the Physical Model, 19

HMI
Communication method, 91
Definition, 111
HMI related variable properties, 53
Properties, 112
Rules concerning HMI, 131
Steps to define the HMI(s), 161
Steps to generate PLC and HMI
applications, 164
Supported HMIs and their setup, 193
The HMI Group, 110
The HMI group in the Topological Model,
68
Using Unity Application Generator with a
generic HMI, 239

HMI related variable properties, 53
Hot Standby, 74

Allocation of registers in a Hot Standby
system, 76
Command register, 77
Definition and example, 74
Functioning, 75
Generated code, 303
Hot Standby and addressing, 76
Limitations, 75

HREG, 202
HSBY, 74
414
I
I/O map, 294
I/O scanner

Generated I/O scanner configuration, 96
I/O Scanner table, 109
I/O Translator Dataset Definition, 208
I/O Translator Protocol Driver Definition, 207
iFIX

Configuring iFIX redundancy, 238
Generation, 344
iFIX and Unity Application Generator,
226
Manual configurations before generation
for iFIX, 230
Rules for iFIX, 131
Software requirements, 267
Steps to configure iFIX for the use with
Unity Application Generator, 228
Steps to deploy the generated
application to the iFIX nodes, 236
Steps to generate a new iFIX application,
233
Steps to generate an iFIX application
incrementally, 234
Steps to run an existing Unity Application
Generator project, 237
Unity Application Generator and iFIX
drivers, 235

iFIX database objects
Generated code for iFIX database
objects, 348

iFIX driver configuration
Generated values for a channel, 361
Generated values for a datablock, 362
Generated values for a device, 361
Generation for a Channel, 360
Generation for a Data Server, 359

iFIX driver configuration from driver point of
view

Generated code, 361
iFIX driver configuration from Unity
Application Generator point of view

Generated code, 359
iFIX node

Terminology in iFIX, 236

Index
iFIX pictures
Generated code for iFIX pictures, 354
Generation for a control domain, 354
Generation for a Control Module, 357
Generation for a PLC, 355
Generation for a process cell, 355
Generation for a unit, 355
Generation for a variable, 357
Generation for an area, 355
Generation for an Equipment Module,
356
Generation for an HMI, 354
Generation for an Interlock, 357

iFIX screens
Generated code for iFIX screens, 347

iFIX variables
Generated code for iFIX variables, 346

Import
Analyzer options for import, 368
Example

Import Instruments/Physical Model
Import initial values for variables, 191
Hierarchy, 188

Examples for import, 184
Interfaces with other tools (import and
export features), 183
Steps to generate import files for Net
Partners, 166

Import/export
Steps to import/export CSV files, 186

Incremental generation
New or incremental generation, 126

initial value
example

import initial values for variables, 191
Of Concept variables, 49
Of Unity Pro variables, 50
Format of CSV file for initial values, 386

initialization
Generated code, 302

Initialization (Quantum only)
Generated code, 328

Input
Checking all inputs, 135

Installation
Information for new users, 268

Instrument, 42
Definition, 42
Format of CSV file for Instruments, 385
Import Instruments, 188
Properties, 42
Purpose, 42

Instrument List
Working with the Instrument List, 142

Interface
Concept of open interfaces for import
and export, 184
Concepts of the user interface, 134
Interfaces with other tools (import and
export features), 183

Interlock, 43
Characterization, 43
Copy, 45
Generated code, 297, 323
How to build an interlock definition, 147

Interlock condition, 44
Interlock definition, 43

Complex functions like SIN, COS in an
interlock definition, 149
Generation for an interlock definition,
290, 316

Interlock input, 43
Interlock list

Working with tables (lists), 137
Interlock variable, 44
Introduction of UAG, 15
IO scanner, 91

PLC-PLC communication method, 95
IO statistics, 89
Ioxlator Tag Definition, 209
ISA S88.01

Differences to ISA S88.01 naming
conventions, 28
Physical Model according to, 19

K
Keyword

List of keywords in CSV files for import
and export, 369
415

Index
L
LAN redundancy, 238
Libraries

Control Module Type libraries, 36
LIKE

LIKE operator in a search condition, 140
Line feed

Specify a line feed in a free text field in a
CSV file, 369

Link number, 152
Links between SCoDs, 46
List

Working with tables (lists), 137
Logging, 215

M
M1E

Communication capabilities, 95
Supported Momentum Ethernet
processor adapters, 72

Magelis Export, 118
Mailbox, 215

Monitor Pro, 197
Management

Of versions, 260
Merge, 171

Merging of Physical Models, 178
Merging of Topological Models, 180
Preconditions for project merge, 177
Workflow of distributed project
development, 174

Message window
Result of a Find action in the message
window, 141

Modbus Plus, 69
Communication method, 91
PLC-PLC communication via Modbus
Plus, 93

Modbus TCP/IP
Modbus TCP I/P I/O driver, 231

Modbus TCP/IP Driver Dataset Definition,
207
Modbus TCP/IP Driver Device Definition,
206
416
ModConnect partner module
definition, 251
How to define a ModConnect partner
module with Unity Application
customization editor, 256

MODTIOMbx, 207
Module, 98

Drag & Drop of objects, modules and
variables, 139
Hot Standby module 140 CHS 110 00, 75
Supported Momentum Ethernet
processor adapters, 72
Supported Premium Ethernet modules,
73
Supported Quantum Ethernet modules,
72

Momentum
Supported Ethernet processor adapters,
72

Monitor Pro, 266
Alarming, 210
Archiving, 215
Client Application, 221
Configuration Explorer, 201
Data conversion, 202
Data Server, 197
Data types, 202
Generation, 332
Generation Mode, 200
Incremental Generation, 200
Logging, 215
Mailbox, 197
Monitor Pro and Unity Application
Generator, 195
New Generation, 200
Rules for generation, 201
Rules for Monitor Pro, 131
Setup, 197
Software requirements, 267
Tag, 197

Monitor Pro database objects
Generated code for Monitor Pro
database objects, 336

Index
Monitor Pro pictures
Generated code for Monitor Pro pictures,
340
Generation for a control domain, 340
Generation for a Control Module, 342
Generation for a PLC, 340
Generation for a process cell, 341
Generation for a unit, 341
Generation for a variable, 343
Generation for an area, 341
Generation for an Equipment Module,
341
Generation for an HMI, 340

Monitor Pro screens
Generated code for Monitor Pro screens,
335

Monitor Pro variables
Generated code for Monitor Pro
variables, 333

MS Word
Software requirements, 267

MSTR, 93, 95
Multiple users, 134

N
Name

Rules concerning names, 129, 130
Naming convention

For variables, 48
Navigation, 134

Use the topological view for navigation to
proporty dialogs, 151

Net Partner, 117
Communication method, 91
Definition and description, 118
Generation, 365
Properties, 119
Steps to generate import files for Net
Partners, 166

Net Partner variables
CSV file, 366

Network
How to define the network, 70
Networks supported by UAG, 65
Steps to define the network, 160
The network group in the Topological
Model, 68

Network Nodes, 80, 117
Steps to define the Network Node(s), 161
The Network Nodes group in the
Topological Model, 68

Network Segment
Definition, 69, 79
Description and properties, 79
Local Ethernet Network Segments, 71
What kind of Network Segments are
supported, 69

Network Segments
Group in the Topological Model tree, 78

New
Item in context menu of lists, 137

New generation
New or incremental generation, 126

New Variable dialog, 138
Node

Ethernet nodes and rules for IP
addressing, 72

Nodes
Network, 80

NOE
Communication capabilities, 95
Supported Quantum Ethernet
Communication modules, 72

NOM, 93
Number

Creating several free variables, 138
Creating several Instruments, 143

O
Object

Drag & Drop of objects, modules and
variables, 139

Office Ethernet, 69
Offset

Input/Output, 107
Older versions of UAG, 270
417

Index
Operating system
Software requirements, 267

Operator
In a search condition, Find feature, 140

Other Node, 117
Definition and description, 120
Properties, 121

Output of UAG, 18

P
P&ID

Import Instruments from the P&ID, 188
Parameter, 91
Peer Cop, 91

PLC-PLC communication method, 93
Physical Model, 25

According to ISA S88.01, 19
Copy and paste in the Physical and
Topological Model, 145
Format of CSV file for Physical Model
elements, 370
Hierarchy, 19, 27
Import Physical Model hierarchy, 188
Merging of Physical Models, 178
Overview, 27
Short definition of elements, 28
Steps how to define the Physical Model,
159
Steps to complete the Physical Model,
163
Structure, 27

Physical Model tree, 17
Drag & Drop in the Physical Model tree,
139

Plant Ethernet, 69
PLC

Channels, 90
Code generation for individual PLCs, 173
Communication method, 91
Copy and paste, 92
Properties, 87
Rules concerning the PLC and Concept,
128
418
Rules concerning the PLC and Unity Pro,
130
Steps to define PLCs, 160
steps to generate PLC and HMI
applications, 164
The PLC group in the Topological Model,
68

PLC configuration, 294, 320
Rules concerning PLC configuration, 128

PLC generation
Steps to generate the PLCs, 162

PLC group, 84
Introduction, 85
Structure and screen shot, 86

PLC project path, 158
PLC-PLC communication

Via Ethernet, 95
Via Modbus Plus, 93

PNN
Communication capabilities, 95

Premium
Supported Ethernet modules, 73

Priciples, 15
Primary controller, 75
Primary node, 238
Process Cell

CSV file format, 371
Description and properties, 29
Generation for a Process Cell, 287, 314
Position in the Physical Model hierarchy,
19
Short definition, 28

Process designe
Task of the process engineer, 22

Process engineer
Role, 22

Process engineer, 16
Processor adapter

Supported Momentum Ethernet
processor adapters, 72

Project
Maintenance, 258
Steps to run an existing Unity Application
Generator project, 237

Index
Project configuration
Rules for project configuration and
generation, 126

Project documentation
Report generator, 262

Project Maintenance, 241
Project upgrade to UAG 2.0 and Concept
V2.6, 271
Properties, 53

Area, Process Cell and Unit properties,
29
Alarm related variable properties, 54
Command related variable properties, 55
Control Domain properties, 113
Control Module, 41
Data Server properties, 114
Display related variable properties, 57
Equipment Module properties, 33
HMI properties, 112
Instrument properties, 42
Net Partner properties, 119
Network Segment properties, 79
Other Node properties, 121
PLC properties, 87
Routing Path properties, 82
Variable properties, 51

Q
Quantum

Supported Ethernet modules, 72

R
Rack, 98
RD, 202
Read Data, 202
Redundancy

Hot Standby configuration, 74
Possibilities for setting up redundancy
with UAG, 66

Redundancy
Channel redundancy for PLC-PLC
communication via Ethernet, 96

Channel redundancy for PLC-PLC
communication via Modbus Plus, 93
Configuring iFIX redundancy, 238
LAN redundancy, 238
Protection against NOE module failure,
235

Refresh, 136
Refresh rate for reading PLC values, 91
Register

Allocation of registers in a Hot Standby
system, 76
Hot Standby command register, 77
Reserve registers, 88

Release Notes Version 2.1, 265
New features, 266
Software requirements, 267, 266
Upgrade of projects, 271

Remote nodes, 231
Repair of project database

Trouble shooting, 262
Report

Include the topological view into a Word
report file, 151
Steps to document the application or
individual objects, 167

Report generator
Project documentation, 262

Reser ve registers, 88
Restrictions

Fipio and CANOpen, 66
Results from general project settings

Generation for Concept, 280
Generation for Unity Pro, 306

Results from settings for Physical Model
Generation for Concept, 287
Generation for Unity Pro, 313

Results from settings for Topological Model
Generation for a HW module, 283, 309
Generation for a PLC - PLC Channel,
284, 310
Generation for a PLC - PLC Channel -
other objects, 286, 312
Generation for a rack, 282
Generation for Concept, 281
Generation for PLC, 281, 307
Generation for Unity Pro, 307
419

Index
Reverse transfer register (Hot Standby), 77
Router, 69
Routing Path

Description and properties, 82
Example path definition, 83
Group in the Topological Model tree, 78

Rule
Rules for project configuration and
generation, 126
Rules concerning HMI, 131
Rules concerning the PLC and Concept,
128
Rules concerning the PLC and Unity Pro,
130
Rules for working with Unity Application
Generator, 125

Run
Steps to run an existing Unity Application
Generator project, 237

S
Save command, 135
Save line, 138
SCADA node

Terminology in iFIX, 236
Scaling of analog values (Quantum only)

Generated code, 303, 328
SCoD, 38

Definition, 36
Links between SCoDs, 46

SCoD (Smart Control Device)
Definition, 21

SCoD Editor, 127
Read-only, 127

Search
Find objects with search criteria, 140

Search condition
Components of a search condition, 140

Security Area
Security Area configuration, 230

Segment
Local Ethernet Network Segments, 71
Requirements for Ethernet segment, 71

Select from existing global input, 94
Separator character in CSV files, 368
420
Site
Position in the Physical Model hierarchy,
19
Short definition, 28

Smart Control Device SCoD, 36
Software requirements, 267
SPANG Power Electronics, 107
Specific Channel, 93

Set up an Ethernet Channel, 96
Set up a Specific Channel (Modbus
Plus), 94

Standby controller, 75
Startnumber

Creating several free variables, 138
Creating several Instruments, 143

Status register (Hot Standby), 77
Subnet mask, 79
Symbol

Free variable, 222
Synoptic, 91
System architecture

Task of the control engineer, 23

T
Tab

Specify a tab in a free text field in a CSV
file, 369

Table
Working with tables (lists), 137

Tag
Monitor Pro, 197

TAGDATA, 219
The Data Server group, 114
Topological Model, 59

Copy and paste in the Physical and
Topological Model, 145
Graphical representation of the
Topological Model with the Topological
Viewer, 151
Format of the CSV file for the topological
model, 376
Merging of Topological Models, 180
Overview of the elements of the
Topological Model, 67

Index
Screen shot of an example Topological
Model, 67
Steps how to define the Topological
Model, 160
Structure of the Topological Model, 67

Topological Model tree, 17
Topological Viewer, 151

Screen shot, 152
Topology

Control topology, 61
Figure showing a typical control
topology, 63
Topology of a control system, 62

Topology of a control system, 62
Trouble shooting

Repair of project database, 262

U
Unit

CSV file format, 371
Description and properties, 29
Generation for a Unit, 288, 314
Position in the Physical Model hierarchy,
19
Short definition, 28

Unity Pro
Generation, 304
Rules concerning the PLC and Unity Pro,
130
Software requirements, 267
Steps to generate PLC and HMI
applications, 164

Unity Pro PLC configuration
Generated code, 320

Unity Pro variables
Generated code, 320

Unsolicited Read, 202
Update

Steps to update PLC and HMI
application, 165

Upgrade of projects, 271
UR, 202
User defined module

Overview, 251
Properties, 253

User interface
Concepts of the user interface, 134

V
Variable, 47

Assigning variables, 139
Create free variables, 138
CSV file format, 373
Connection types, Data types, Initial
values, 49
Drag & Drop of objects, modules and
variables, 139
Example

Import initial values for variables, 191
General properties, 51
Generation for a variable, 291, 317
HMI related variable properties, 53
Naming conventions, 48
Properties of Control Module Type
variables, 51
Properties of free variables, 51
Rules concerning variables, 128, 130
Significance of variables, 48

Version management, 260
View node

Terminology in iFIX, 236

W
Wildcard character

Wildcard characters in a search
condition, 141

Workflow
Workflow of distributed project
development, 174
Workflow to build an application, 155

X
XML file

File format, 389
421

Index
422

	Table of Contents
	About the Book
	Understanding Unity Application Generator
	Introduction to Unity Application Generator
	The Physical Model
	Overview of the Physical Model
	The Elements Area, Process Cell and Unit
	The Element Equipment Module
	The Element Control Module and Control Module Types (Smart Control Devices)
	Variables

	The Topological Model
	Control System Topology and Topological Model
	The Groups Network Segments and Routing Paths
	The PLC Group
	The HMI Group
	The Data Server Group
	The Network Nodes Group

	Working with Unity Application Generator
	Rules for Working with Unity Application Generator
	Tool Handling and Features for Effective Work
	Workflow to Build an Application
	Project Management
	Managing Distributed Project Development - Project Merge
	Interfaces with other Tools (Import and Export Features)
	Supported HMIs and their Setup
	Monitor Pro and Unity Application Generator
	iFIX and Unity Application Generator
	Generic HMI and Unity Application Generator

	Customization and Project Maintenance
	Customizing Unity Application Generator
	Project Maintenance

	Appendices
	Release Notes Version 2.1
	Generated Code
	Overview of Generated Code and Generation Principles
	Generation for Concept
	Generation for Unity Pro
	Generation for Monitor Pro
	Generation for iFIX
	Generation for a Generic HMI
	Generation for Net Partners

	Format of the CSV Files for Import and Export
	Format of the XML File for Generic HMI
	Glossary
	Index

