Quantum Liquid Turbine/Positive Displacement (PD) Programmable Controller Flow Computer (PCFC) Loadable Function Block User Guide

890 USE 140 00 Version 1.0

This page is intentionally blank.

Table of Contents

	Safety Information	7
	About the Book	9
Part I	Introduction to Liquid Flow Principles and Hardware .	11
Chapter 1	Overview of the Programmable Controller Flow Computer	.13
Chapter 2	Turbine Meter Flow Module At a Glance Flow Measurement Cards—Quantum Meter Proving Card—Quantum 140 MPM 204 00sc.	. 19 19 20 24
Part II	Standard Metering and Meter Proving	29
Chapter 3	TMCI Function Block	.31
3.1	TMCI Representation and Operation	. 33 . 33 . 34 . 35
3.2	TMCI Operation. TMCI Configuration. At a Glance . TMCI Register Summary. TMCI Setup and Diagnostic Data (4x + 0; +1, Revision Number and Command 1) Registers. TMCI Setup and Diagnostic Data (4x + 2, Fault Word 1) Register . TMCI Meter Card Registers . TMCI and Quantum Functionality Chart .	. 35 . 36 . 37 Word . 39 . 42 . 45 . 46
Chapter 4	PCFC Function Block	.47

4.1	PCFC Representation and Operation At a Glance PCFC Function Block Structure PCFC Operation	49 49 50 51
4.2	PCFC Configuration. At a Glance PCFC Register Summary PCFC Setup and Diagnostic Data (4x + 0; +1, Revision Number and Comma	52 52 53 Ind
	Word 1) Registers PCFC Setup and Diagnostic Data (4x + 2, Command Word 2) Register PCFC Setup and Diagnostic Data (4x + 3, Fault Word 1) Register PCFC Setup and Diagnostic Data (4x + 4, Fault Word 2) Register PCFC Setup and Diagnostic Data (4x + 4, Fault Word 2) Register PCFC Setup and Diagnostic Data (4x + 5, Status Word) Register PCFC Setup and Diagnostic Data (4x + 5, Status Word) Register Product Data Registers Product Data Registers Real-Time Correction Factor Registers Real-Time Metering Data Registers Report Setup Registers SCADA Data in Implied Decimal Format Registers Prover Data Registers Real-Time Process Variables Registers Pulse Fidelity Registers Program Diagnostic Data Registers	61 66 71 75 78 81 82 85 86 88 88 90 91 94 98 99
Chapter 5	T23E Function Block At a Glance T23E Function Block Structure T23E Operation T23E Function Block Configuration	101 . 101 . 102 . 104 . 105
Chapter 6	T24E Function Block At a Glance T24E Function Block Structure T24E Operation T24E Function Block Configuration	107 . 107 . 108 . 110 . 111
Part III	Data Logging and Report Generation At a Glance	113 . 113
Chapter 7	Data Logging and Report Generation At a Glance Overview of Data Logging and Reports Batch Reports Timed Reports Meter Proving Reports Overview	115 . 115 . 116 . 120 . 122 . 123

	Meter Proving Report Details (Registers $4x + 0$ through $4x + 19$) Meter Proving Report Details (Registers $4x + 20$ through $4x + 179$) Meter Proving Report Details (Registers $4x + 180$ through $4x + 226$)	124 126 129
	The Last Meter Factor Table.	. 133
	Sample Meter Proving Report	135
	Data Logging Operation	137
	Configuring the Time-of-Day Clock	138
Part IV	API 21.2 Audit Trail Function	. 141
	At a Glance	141
Chapter 8	AUDT Function Block	143
-	At a Glance	143
8.1	AUDT Representation and Operation	145
	At a Glance	145
	AUDT Function Block Structure	146
	AUDT Operation	147
	AUDT Setup	149
	AUDT Security	151
		153
	AUDT Audit Trail Records an Example	155
8.2	AUD I Configuration—Block Registers	160
		160
	AUDI — Summary: Block Registers.	161
	AUDT — Detail: 4x + 0 + 8, Setup and Diagnostic Data Registers	103
	AUDT Detail: $4x + 9$ and $4x + 10$, USE Name and Passcoue Registers	172
83	AUDT Configuration—Boport Bogisters	175
0.5	At a Glance	175
	ALIDT Report Longing—Detail: Report Registers—Configuration Alarm and	d Event
	Logs.	. 176
	AUDT Report Logging—Log Types.	. 180
	AUDT Report Logging—Detail: Index of Configuration Parameters	181
	AUDT Report Logging—Detail: Index of Alarm Log Parameters	185
	AUDT Report Logging—Detail: Index of Event Log Parameters	189
	AUDT Report Logging—Detail: Report Registers—Base Configuration/Curr	ent
	Configuration Logs	191
	AUDT Report Logging—Detail: Report Registers—Batch Logs	194
	AUDT Report Logging—Detail: Report Registers—Prover Logs	196
	AUDT Report Logging—Detail: Report Registers—Last Meter Factor Table	200
Part V	Function Block Installation	. 201
	At a Glance	201

Chapter 9	Installing the PCFC Loadables Using Concept Panel Software
	At a Glance 203 Setting Parameters and Unpacking Loadables Using Concept 204 Loading the Loadables Using Concept 209 Selecting the Quantum Hardware Module Using Concept 211 Configuring the I/O Drops Using Concept 213 Setting the Module's Personality Using Concept 215
Chapter 10	Installing the PCFC Loadables Using ProWORX NxT or ProWORX32 Panel Software
	Installing the Loadables Using ProWORX
Appendices	
Appendix A	Flow Equations and Algorithms
Appendix B	Integer-to-Integer (ITOI) Function Block
B.1	At a Glance 243 Representation of the ITOI Function Block 245 At a Glance 245
B.2	ITOI Block Structure Representation246ITOI Block Operational Representation249ITOI Function Block Configuration Overview250At a Glance250ITOI Configuration251
Appendix C	Analog Input Conversion Ranges 253 Analog Input Conversion Ranges 253
Appendix D	User Security Access Levels 255 At a Glance 255 User Security Access Levels Parameters and Functions PCFC 256 User Security Access Levels Parameters and Functions TMCI 260
Glossary	
Index	067

Safety Information

Important Information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a Danger or Warning safety label indicates that an electrical hazard exists, which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

DANGER

DANGER indicates an imminently hazardous situation, which, if not avoided, will result in death, serious injury, or equipment damage.

<u> WARNING</u>

WARNING indicates a potentially hazardous situation, which, if not avoided, **can result** in death, serious injury, or equipment damage.

CAUTION indicates a potentially hazardous situation, which, if not avoided, **can result** in injury or equipment damage.

PLEASE NOTE Electrical equipment should be serviced only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material. This document is not intended as an instruction manual for untrained persons.

© 2003 Schneider Electric All Rights Reserved.

About the Book

At a Glance

Document Seens	As a user's reference guide, this manual is far an advanced audience with
Document Scope	As a user's reference guide, this manual is for an advanced addience with
	knowledge of liquid flow measurement technology. Different levels of user
	knowledge are considered in this manual to make it available for all users. Neither
	knowledge of flow measurement nor expertise in PLC programming is needed to
	use the PCFC block. However, there are certain features that require some level of
	advanced knowledge of liquid flow measurement or PLC programming.

Validity Note The data and illustrations found in this book are not binding. We reserve the right to modify our products in line with our policy of continuous product development. The information in this document is subject to change without notice and should not be construed as a commitment by Schneider Electric.

Software License The loadable is a single-use software license.

Related Documents

Title of Documentation	Reference Number
Quantum Automation Series Hardware Reference Guide	840USE10000
Concept User Manual Version 2.5 - SR2	840USE49311
Modicon A120 Series I/O Modules User Guide	890USE10900
ProWORX NxT User's Guide, Version 2.10	372SPU68001
ProWORX32 Programming Software for PLCs User Guide	372SPU78001
Spectrum Controls Counter/Flow Meter Input Module Installation Instructions	0300185-01 Rev. A

Product Related Warnings	Schneider Electric assumes no responsibility for any errors that may appear in this document. If you have any suggestions for improvements or have found errors in this publication, please notify us.			
	No part of this document may be reproduced in any form or by any means, electronic or mechanical, including photocopying, without express written permission of Schneider Electric.			
	All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to assure compliance with documented system data, only the manufacturer should perform repairs to components.			
	When controllers are used for applications with technical safety requirements, please follow the relevant instructions.			
	Failure to use Schneider Electric software or approved software with our hardware products may result in improper operating results.			
	Failure to observe this product related warning can result in injury or equipment damage.			
User Comments	We welcome your comments about this document. You can reach us by e-mail at TECHCOMM@modicon.com			

Part I Introduction to Liquid Flow Principles and Hardware

Purpose	This unit presents an overview of liquid flow principles and details the Quantum hardware designed for use where the API 21.2 Audit Trail formatting standard is needed.				
What's in this	This part co	ontains the following chapters:			
What's in this Part?	This part co Chapter	ontains the following chapters: Chapter Name	Page		
What's in this Part?	This part co Chapter 1	Ontains the following chapters: Chapter Name Overview of the Programmable Controller Flow Computer	Page 13		

This page is intentionally blank.

1. Overview of the Programmable Controller Flow Computer

1

1.1. Overview

1.1.1. PLC-Based Flow Computer Extend a PLC's functionality by adding Loadable Function Blocks to the 984 Ladder Logic instruction set. Loadables cannot be modified, but they can be configured for specific applications. The PCFC loadable function block ("PCFC") embeds a virtual Liquid Flow Computer (designed to the API 2540 standard) into the PLC environment, creating a PLCbased Liquid Flow Computer. The PCFC meters hydrocarbon liquids by using software (Loadable) and hardware (PLC and special I/O). Use the PCFC for volume corrections, meter proving and data logging/reporting. The hardware provides an interface to devices such as positive displacement meters, turbine meters, densitometers, temperature transducers, and pressure transducers.

1.1.2. Product Volume	The PCFC can be used to measure the volume for the following types of hydrocarbon products:			
Measurement	Table 5A, 23A, 53A and	6A, 24A, 54A Generalized Crude Oil		
Capabilities	Table 5B, 23B, 53B and	6B, 24B, 54B Generalized Products:		
	0 API and 37 API	#6 fuel oil		
	RD 1.7600 to .8398	heating fuel		
		premium diesel		
		fuel oil PA		
		fuel oils LLS		
		LT fuels oil		
		fuel oil		
		low sulphur fuel		
		#2 furnace oil		
		furnace oil		
		auto diesel		
		diesel fuel		
		gas oil		
		#2 burner fuel		
	37 API and 50 API	jet fuel A		
	RD .8399 to .7796	jet kerosene aviation jet A		
		kerosene		
		aviation turbine fuel		
		stoddard solvent		
		white kerosene		
	50 API to 85 API	premium gas		
	RD .7797 to .6536	gasoline		
		unleaded gasoline		
		motor spirit		
		clear gasoline		
		low lead gas		
		motor gasoline		
		catalyst gas		
		alkylate		
		catalytic cracked gasoline		
	Table 5D, 23D, 53D and 6D, 24D, 54D Lubrication Products			
	Table 23E and Table 24E	E for NGLs/LPGs Imperial		
	Table 53 and Table 54 for NGLs/LPGs Metric			

1.1.3. Flow Measurement Application: Single Run The following diagram shows a "single run" flow measurement application.

FT101 Flow Transducer (primary element)

TT101 Temperature Transducer

PT101 Pressure Transducer

DENS Densitometer

In the preceding diagram, the Flow Transducer (FT101) produces a signal, which feeds directly to the turbine meter card (AC/VCR) or is converted by a signal conditioner (pre-amp).

The turbine meter card accumulates the pulses both for real-time process of the flow and for system analysis (events and alarms). Process variables (temperature, pressure, and density) are collected in real-time and made available to the PLC Flow Computer. The system provides both the pulses and process variables to the PLC Flow Computer, which uses the data for real-time flow and volume corrections for both pressure and temperature compensation.

Enter the data from any one of these process variables either manually through a human-machine interface (HMI), communication port, or analog signal. Produce reports (batch end and timed) using a communications protocol (Modbus, ASCII, or another). Reports may be stored and then retrieved.

Configure (program) the PCFC with user selections, either SCADA host, HMI/ graphics display, Web pages in the 140 NOE 771 10, or PLC programming software.

1.1.4. Flow Measurement Application: Single Run with Meter Proving

The following diagram shows a simple flow measurement application with meter proving.

- FT Flow Transducer (primary element)
- **PT** Pressure Transducer
- TT Temperature Transducer

In the preceding diagram, the Flow Transducer (FT) produces a signal, which feeds directly to the turbine meter card (AC/VCR) or is converted by a signal conditioner (pre-amp).

The turbine meter card accumulates the pulses both for real-time process of the flow and for system analysis (events and alarms).

The turbine meter card has prover switches (unidirectional and bidirectional). The prover switches wait for the proving run to be armed with a detector switch. Once armed, the prover accumulator counts the pulses to the next detector switch. (The pulse interpolation method for pulse fidelity is available on select cards only.) Process variables (temperature, pressure, and density) are collected in real-time and made available to the PLC Flow Computer. The system provides pulses and process variables for real-time flow and volume corrections (pressure and temperature compensation).

1.1.5. PLC Liquid Flow Features Table	The following table describes the PLC's liquid flow functions.			
	To perform	Use		
	Feature	Function Block	PLC Hardware	I/O Hardware
	 Simple Flow Measurement (16 Runs total) Reports and Data Logging 	PCFC and TMCI (Minimum 16k PLC memory)	Quantum 140 CPU 113 0X 140 CPU 434 12A 140 CPU 534 14A	Quantum 140 EHC 204 00sc (4 CH) 140 EHC 208 00sc (8 CH) (VRC, 5, 12, 24 VDC)
	 Flow Measurement with Meter Proving (16 Runs Total No Pulse Fidelity) Large and Small volume proving (Double Chronometry) Pulse Fidelity Reports and Data Logging 	PCFC and TMCI (Minimum 16k PLC memory)	Quantum 140 CPU 113 0X 140 CPU 434 12A 140 CPU 534 14A	Quantum 140 MPM 204 00sc (4 CH)

Note: Number of runs and the choice of proving or reporting may impact the total number of runs that a system can support.

This page is intentionally blank.

2. Turbine Meter Flow Module

At a Glance Purpose This material provides a description of the turbine meter flow card that can be used with the Quantum PLC. This information is provided to help a user or programmer select, configure, and install the turbine meter flow modules. Wiring diagrams of the applicable Quantum modules are included. What's in this Chapter? This chapter contains the following topics: Topic Page 2.1. Flow Measurement Cards—Quantum 20 2.2. Meter Proving Card—Quantum 140 MPM 204 00sc 24

2.1. Flow Measurement Cards—Quantum

2.1.1. Overview	 The Quantum flow measurement cards include: 140 EHC 204 00sc 140 EHC 208 00sc These Quantum cards are obtained from Spectrum Controls, a Schneider alliance partner. 		
2.1.2. Quantum Configuration	Configure these Quantum See the Spectrum SCIOC configuration documents f modules. The Spectrum ut with each module. The following default settin 208 00sc modules.	cards with the Spectrum Controls SCIOCFG.EXE utility. FG installation documentation and other applicable or information about installing and using Spectrum tility and documentation is included on a floppy and ships ngs are for the Quantum 140 EHC 204 00sc and 140 EHC	
	Configuration Variable	Value	
	Input Range	Select valid range for application. For instance, AC for direct to turbine; and 5, 12, and 24 VDC for pre-amp (all channels)	
	Counter Mode*	Uni-Directional (All channels)	
	Counter Size*	24 bit 16M (All channels)	
	Rate Scale*	0.1Hz (All channels)	
	Filters	Select valid range for application. For instance, 30Khz Digital filter for noisy DC input voltages and 15Khz Analog for AC inputs.	

*These values must be set to the default values shown.

Autocycle Delay Time*

Note: The values listed for Input Range, Counter Mode, Counter Size, and Rate Scale must be set for all channels.

0 (must be set to zero)

For more detailed information on Spectrum Controls' modules, check the URL: http://www.spectrumcontrols.com/schneider.html

2.1.3. Specifications

The following table provides the specifications for the 140 EHC 204 00sc and 140 EHC 208 00sc cards.

Characteristic	4 channel/8 channel	
Number of Channels	4/8 channels of counter inputs	
	4/8 input enable and gate control lines	
Input Registers Required	9/9	
Output Registers Required	6/10	
LEDs	7/11: one each for Ready, Active, Fault,	
	Channel	
Input Modes	DC counter, AC flow meter	
Counter Speed	• 50 kHz maximum	
Input Frequency	• 50 kHz maximum	
Minimum Pulse Time		
DC Mode	• 10 microseconds	
External Enable/DIsable and Gate Input	• Enable and disable setup time = 10	
(Meter Proving)	microseconds	
Accuracy		
Counter Mode	• +/-1 count	
Frequency Instantaneous Mode	• 0.8% @ 50 kHz 0.1 Hz resolution	
Count Value Range	Low range 64K. Extended range 16M.	
Nominal Input Impedance	15K ohms	
Counter Voltage Input	Programmable: AC; and 5, 12, 24 VDC	
Channel Update Time		
Without scaling	• <1 ms per channel	
	< 1.5 ms per channel	
Power Dissipation	4.1/6.6 watts (maximum)	
Backplane Current Draw	470 mA/670 mA @ 5V (maximum)	
Isolation Voltage	1000 VDC wiring to backplane/chassis to ground	
Environmental Conditions		
Operational Conditions	• 0 to 60 degrees C (32 to 140 degrees F)	
Storage Temperature	 -40 to +85 degrees C (-40 to 185 degrees F) 	
Relative Humidity	• 5 to 95% (non-condensing)	
Certifications	UL/cUL (Class I, Div. 2, Groups A, B, C, D) CE per Council Directive 89/336/EEC for EMC	

2.1.4. Flow

890USE14000 May 2003

The following illustration provides the wiring diagram for the flow measurement card 140 EHC 208 00sc.

F2.1.5. low

2.2. Meter Proving Card—Quantum 140 MPM 204 00sc

2.2.1. Overview The Quantum meter proving card is

• 140 MPM 204 00sc

The card is a 4-channel meter-proving/flow-meter module. The card can be used to perform chronometry calculations. This module is one of the optional modules that can be used on a Quantum PLC system, comprised of a Quantum module and loadable software. This module will perform functions traditionally performed by standalone flow computers, but with all the advantages of a PLC. The module has four signal inputs and four detector switch inputs for ball detectors. It supports:

- pulse interpolation method double chronometry per API 2540 specifications (*Manual of Petroleum Measurement Standards*, Chapter 4, Section 6)
- pulse fidelity per API 2540 specifications (*Manual of Petroleum Measurement Standards*, Chapter 5, Section 5, to level B).

2.2.2. Quantum Meter Proving Card Required Configuration Settings The following values can be used for the 140 MPM 204 00sc.

Configuration Variable	Value
Input Voltage Ranges	Select valid range for application. For instance, AC for direct to turbine and 5, 12, and 24 VDC for pre-amp. A value must be selected for each channel.
Gate Voltage Range	Select valid range for the prover detector switches. A value must be selected for each channel where meter proving will be used.
Filters	Select valid range for application. For instance, 30Khz Digital filter for noisy DC input voltages and 15Khz analog for AC inputs.
Counter Size*	24 bit 16M. Must set for all channels.
Signal Timeout	Select valid range for the frequency readout zeroing. This is for the slower meter frequencies when the frequency range of the meter is known. A reading time-out in seconds is applied and the meter frequency reading (<i>Contents:</i> $4x + 34 \dots 35$ <i>Field</i> (<i>RD</i> , <i>FLOAT</i>), p. 87) is zeroed out (set to zero) so the pipeline will not appear to be flowing when it has already stopped and is waiting for the Max Frequency Timeout. For instance, with a meter frequency of 1 pulse every 1 minute set value to 61 to 65 seconds.
Autocycle Delay Time*	0 (must be zero)
*These values must be set to defau	lt values shown.

Note: The values listed for Autocycle Delay Time and Counter Size must be set for all channels. Also, the value for Gate Voltage Rating must be set in channels where meter proving will be used.

2.2.3.	The following table provides the specificat	ions of the 140 MPM 204 00sc:
Specifications	Characteristic	Value

Characteristic	Value
Number of Input Channels	4
Number of External Counter Enable Inputs	4
Input Registers Required	11
Output Registers Required	6
LEDs	11: Ready, Active, Fault, and Channel Status (8 LEDs)
Input modes	DC Counter, AC Flow Meter
Input Voltage Ranges	AC (50mVP – 75VP); 5, 12, 24 VDC
Enable Input	5 VDC (will also work with 12 and 24 VDC inputs)
Input Frequency	50 Khz maximum
Minimum Pulse Time	
DC Mode	• 10 microseconds
 External Enable/Disable and Gate Input (Meter Proving) 	 Enable and disable setup time in 10 microseconds
Accuracy	
Counter Mode	• +/-1 count
Frequency Instantaneous Mode	• 0.8% @ 50 kHz (0.1 Hz resolution)
Count Value Range	Low range 64k, Extended range 16 M
Programmable Scaling	K, M, and R factor
Channel Update Time	
• without scaling	1 ms per channel
• with scaling	• < 1.5 ms per channel
Output modes	frequency, counter
Programmable Counter Functions	start/stop/preset
Alarm and Zero Flags	Programmable counter alarm flags and zero flags in counter and frequency modes
Software-selectable filters	30 Khz digital, 15 Khz analog
Channel-to-backplane isolation	1000 VDC
Channel-to-channel isolation	0 V
Power Dissipation	6.6 Watts (maximum)
Backplane Current Draw	670 mA @ 5 V (maximum
Environmental Conditions	
Operational Conditions	• 0 to 60 degrees C (32 to 140 degrees F

_

Characteristic	Value
Storage Temperature	 -40 to +85 degrees C (-40 to 185 degrees F
Relative Humidity	• 5 to 95% (non condensing)
Certifications	UL/cUL (Class I, Div. 2, Groups A, B, C, D) CE per council Directive 89/336/EEC for EMC

The following illustration provides the wiring diagram for the 140 MPM 204 00sc:

Part II Standard Metering and Meter Proving

II

This unit de proving.	scribes the function blocks used for stand	lard metering and standard
This part co	ntains the following chapters:	
Chapter	Chapter Name	Page
3	TMCI Function Block	31
4	PCFC Function Block	47
5	T23E Function Block	101
6	T24E Function Block	107
	This unit de proving. This part co Chapter 3 4 5 6	This unit describes the function blocks used for stand proving. This part contains the following chapters: Chapter Chapter Name 3 TMCI Function Block 4 PCFC Function Block 5 T23E Function Block 6 T24E Function Block

This page is intentionally blank.

3. TMCI Function Block

3

At a Glance

This chapter describes the structure representation, operation, and configuration of the TMCI function block.			
This chapter contains the following sections:			
Section	Торіс	Page	
3.1	TMCI Representation and Operation	33	
3.2	TMCI Configuration	36	
	the TMCI fu This chapte Section 3.1 3.2	Section Topic 3.1 TMCI Representation and Operation 3.2 TMCI Configuration	

This page is intentionally blank.

3.1 TMCI Representation and Operation

At a Glance

Purpose	This section describes the block structure representation and operation of the turbine meter card interface (TMCI) loadable.		
What's in this Section?	This section contains the following topics:		
	Торіс	Page	
	3.1.1. TMCI Function Block Structure	34	
	3.1.2. TMCI Operation	35	

3.1.1. TMCI Function Block Structure

3.1.1.1. Overview	The TMCI is a 984 Ladder Logic loadable that manages communication between PCFC and the turbine meter module. The block requires 165 registers. Only one needed for communicating with the 16 PCFC blocks that can be configured.	the e is
3.1.1.2. Block Structure	The block structure is illustrated below.	
Diagram	Enable #0 Block Active	
	Not Used — Control Block Block Fault	
	ТМСІ	
	Not Used #0166 Not Used	
3.1.1.4. Outputs	 Top input node enables the function block. Middle is not used. Bottom is not used. The TMCI has three possible outputs. Top output is a copy of the top node input. Middle output turns ON when the function block has detected an error. Bottom is not used. 	
3.1.1.5. Top Node Content	The top node must contain a constant value of #0.	
3.1.1.6. Middle Node Content	The 4x register entered in the middle node is the first of 166 contiguous holding registers that comprise the control block.	
3.1.1.7. Bottom Node Content	The bottom node must contain a constant (#0166) representing the length of the control block in registers.	е

3.1.2. TMCI Operation

3.1.2.1. TMCIThe PLC program can have only one TMCI block. Place the TMCI block to be
scanned before all the PCFC blocks that occur in logic.

Note: If there is NO TMCI "0" block, or more than one TMCI block, either the blocks will not be scanned or they will not operate.

3.2 TMCI Configuration

At a Glance

Vhat's in this	This section contains the following topics:		
Section?	Торіс	Page	
	3.2.1. TMCI Register Summary	37	
	3.2.2. TMCI Setup and Diagnostic Data (4x + 0; +1, Revision Number and Command Word 1) Registers	39	
	3.2.3. TMCI Setup and Diagnostic Data (4x + 2, Fault Word 1) Register	42	
	3.2.4. TMCI Meter Card Registers	45	
	3.2.5. TMCI and Quantum Functionality Chart	46	
3.2.1. TMCI Register Summary

4x + 2

3.2.1.1. Overview The following material provides a summary of the TMCI function block registers. For a description of the abbreviations and terms used in register descriptions, see the *Glossary, p. 265.*

Note: Writing to read (RD) registers can cause inaccurate results or one of the following behaviors: (1) the controller does not work, (2) the controller locks up, or (3) a function block will not work. To prevent this situation, do NOT write to read (RD) registers. Writable registers (**WR**) are marked in **bold**.

3212 The following table summarizes the set of TMCI registers that contain setup and Summary: TMCI diagnostic data. Setup and Register Comment Access Data Diagnostic Data Type Registers 4x + 0RD HFX Revision (X.XX) WR BIN 4x + 1 Command Word 1

RIN

RD

For more information about the setup and diagnostic registers 4x + 0, +1, see *TMCI* Setup and Diagnostic Data (4x + 0; +1, Revision Number and Command Word 1) Registers, p. 39.

The following table summarizes the set of TMCI registers that contain meter card one data.

Fault Word 1

Register	Access	Data Type	Comment
4x +3	WR	UINT	Meter card type
4x +4	WR	UINT	Meter card starting 3x input register For 300123 enter "123"
4x +5	WR	UINT	Meter card starting 4x output register For 400123 enter "123"

3.2.1.3. Summary: TMCI Meter Card One Registers

Register	Access	Data Type	Comment
4x +6	WR	UINT	Meter card type
4x +7	WR	UINT	Meter card starting 3x input register For 300123 enter "123"
4x +8	WR	UINT	Meter card starting 4x output register For 400123 enter "123"

The following table summarizes the set of TMCI registers that contain meter card

3.2.1.4. Summary: TMCI Meter Card Two Registers

3.2.1.5. Summary: TMCI Meter Card Three Registers The following table summarizes the set of TMCI registers that contain meter card three data.

Register	Access	Data Type	Comment
4x +9	WR	UINT	Meter card type
4x +10	WR	UINT	Meter card starting 3x input register For 300123 enter "123"
4x +11	WR	UINT	Meter card starting 4x output register For 400123 enter "123"

3.2.1.6.

Summary: TMCI Meter Card Four Registers The following table summarizes the set of TMCI registers that contain meter card four data.

Register	Access	Data Type	Comment
4x +12	WR	UINT	Meter card type
4x +13	WR	UINT	Meter card starting 3x input register For 300123 enter "123"
4x +14	WR	UINT	Meter card starting 4x output register For 400123 enter "123"
4x +15	WR	UINT	Zero Flow Reading Timer

Note: Registers 4x + 16 through 4x + 165 are reserved for system use.

3.2.2. TMCI Setup and Diagnostic Data (4x + 0; +1, Revision Number and Command Word 1) Registers

3.2.2.1. Overview	The following material provides a detailed description of the content for each TMCI function block register.						
3.2.2.2. Contents: 4x + 0 Register (RD, HEX)	TMCI Revision Number (X.XX) Displays current function block revision number. Format is (X.XX). For example, hex 0100 indicates revision 1.0.						
3.2.2.3. Bit Summary: 4x + 1	Command Word 1 This register contains specific user-entered commands						
Register (WR,	Bit	Description	Bit	Description			
Bitt)	1 MSB	Card One Select	9	Reserved for system use			
	2	Card Two Select	10	Reserved for system use			
	3	Card Three Select	11	Reserved for system use			
	4	Card Four Select	12	Reserved for system use			
	5	API Audit Trail	13	Reserved for system use			
	6	Reserved for system use	14	Reserved for system use			
	7	Reserved for system use	15	Reserved for system use			
	8	Reserved for system use	16	Reserved for system use			

3.2.2.4. Bit	Detailed bit descriptions of command word 1:				
Contents: 4x + 1 Begister (WB	Bit(s)	Description			
BIN)	Bit 1	Card One Select If Bit 1 is ON, there is a physical card to be scanned. If Bit 1 is OFF, the block is disabled. Note: There must be at least one card configured; if there is only one card, it must be the first card.			
	Bit 2	Card Two Select If Bit 2 is ON, and Bit 1 (Card One Select) is also on, then there is a physical card to be scanned. If Bit 2 is OFF, then no card is scanned for logical card two.			
	Bit 3	Card Three Select If Bit 3 is ON, and Bit 2 (Card Two Select) is also on, then there is a physical card to be scanned. If Bit 3 is OFF, then no card is scanned for logical card three.			
	Bit 4	Card Four Select If Bit 4 is ON, and Bit 3 (Card Three Select) is also on, then there is a physical card to be scanned. If Bit 4 is OFF, then no card is scanned for logical card four.			
	Bit 5	API Audit Trail This bit is used for the API 21.2 Audit Trail. If ON and the AUDT block is configured, the TMCI block will be locked down immediately. No changes can be made to the configuration. If there is no AUDT block or AUDT is not configured, this bit will reset. Note: Schneider Electric recommends that you set up all configurations before turning this bit ON. See the AUDT Function Block , p. 143 for further explanation of API 21.2 Audit functions.			
	Bit 6	Reserved for system use			
	Bit 7	Reserved for system use			
	Bit 8	Reserved for system use			
	Bit 9	Reserved for system use			
	Bit 10	Reserved for system use			
	Bit 11	Reserved for system use			
	Bit 12	Reserved for system use			
	Bit 13	Reserved for system use			
	Bit 14	Reserved for system use			
	Bit 15	Reserved for system use			
	Bit 16 (LSB)	Reserved for system use			

Note: Reminder

- Card one must always be configured, even if no other cards are configured.
- Each configured card must immediately follow the previous configured card
- There can be no unconfigured cards between configured cards.
- Unconfigured cards can occur only after all configured cards.

3.2.3. TMCI Setup and Diagnostic Data (4x + 2, Fault Word 1) Register

3.2.3.1. Bit Summary: 4x + 2 Register (RD,	Fault Word 1 Each bit in this word represents a particular fault that the function block has detected. The following table summarizes the bits in the fault word (details follow):						
BIN)	Bit	Description	Bit	Description			
	1 MSB	Card One Invalid	9	Bottom Node Invalid			
	2	Card Two Invalid	10	Invalid Card Configuration			
	3	Card Three Invalid	11	Reserved for system use			
	4	Card Four Invalid	12	Reserved for system use			
	5	Invalid Card Type	13	Reserved for system use			
	6	Invalid Card 3x Register	14	Reserved for system use			
	7	Invalid Card 4x Register	15	Reserved for system use			
	8	Top Node Invalid	16	Reserved for system use			

Register (RD	Bit(s)	Description
BIN)	Bit 1	Card One Invalid Bit 1 is turned ON when the configuration for Card One is invalid. When this bit is set, a corresponding error flag will denote the specific error.
	Bit 2	Card Two Invalid Bit 2 is turned ON when the configuration for Card Two is invalid. When this bit is set, a corresponding error flag will denote the specific error.
	Bit 3	Card Three Invalid Bit 3 is turned ON when the configuration for Card Three is invalid. When this bit is set, a corresponding error flag will denote the specific error.
	Bit 4	Card Four Invalid Bit 4 is turned ON when the configuration for Card Four is invalid. When this bit is set, a corresponding error flag will denote the specific error.
	Bit 5	Invalid Card Type Bit 5 is turned ON when an invalid card type has been entered into the "card type" field. An error flag will be set that denotes the card in which the fault occurred.
	Bit 6	Invalid Card 3x Register Bit 6 is turned ON when an invalid pointer to the Traffic Cop 3x register for the Card has been entered. An error flag will be set that denotes the card in which the fault occurred.
	Bit 7	Invalid Card 4x Register Bit 7 is turned ON when an invalid pointer to the Traffic Cop 4x register for the Card has been entered. An error flag will be set that denotes the card in which the fault occurred.
	Bit 8	Top Node InvalidBit 8 is turned ON when the value in the top node of the block is not "0".Note:Only one instance of the block is allowed in logic.
	Bit 9	Bottom Node Invalid Bit 9 is turned ON when the value in the bottom node of the block is not valid (See Number of Block Register Required). Note: Only one instance of the block is allowed in logic.
	Bit 10	 Invalid Card Configuration Bit 10 is turned ON when: Meter Card One is not configured, or There is an unconfigured meter card in between configured cards. For instance, when Card One and Card Three are configured but Card Two is not configured. See the reminder note following this table.
	Bit 11	Reserved for system use
	Bit 12	Reserved for system use

Bit(s)	Description
Bit 13	Reserved for system use
Bit 14	Reserved for system use
Bit 15	Reserved for system use
Bit 16 (LSB)	Reserved for system use

Note: Reminder

- Card one must always be configured, even if no other cards are configured.
- Each configured card must immediately follow the previous configured card
- There can be no unconfigured cards between configured cards.
- Unconfigured cards can occur only after all configured cards.

3.2.4. TMCI Meter Card Registers

3.2.4.1. Contents: 4x + 3.	Meter Card Type
6, 9, 12 Registers	These multiple register fields contain data about the meter cards used.
(WR, UINT)	functionality.

Valid choices for the Quantum platform are

Module	Number of Channels	TMCI Meter Card Type Register Contents
140 EHC 204 00	4 channel	204
140 EHC 208 00	8 channel	208
140 MPM 204 00	4 channel	2041

3.2.4.2. Possible Card Combinations

The system can handle a maximum of four cards with four channels each, or two cards with eight channels each. Any combination is allowed. Combinations are not to exceed 16 channels.

	Logical Card				
	1	2	3	4	
					Examples of Module Combinations
Possible Card	4	4	4	4	*
Channel	8	8	-	-	(2) 140EHC20800
Combinations	4	8	4	-	*
	8	4	4	-	*
	4	4	8	-	 Four possible combinations exist 1. (1) 140MPM20400; (1) 140EHC20400; (1) 140EHC20800; or 2. (1) 140EHC20400; (1) 140MPM20400; (1) 140EHC20800; or 3. (2) 140MPM20400; (1) 140EHC20800; or 4. (2) 140EHC20400; (1) 140EHC20800
*Example not p	rovide	d			

3.2.5. TMCI and Quantum Functionality Chart

3.2.5.1. Meter Modules Functionality Chart: Quantum	The following Quantum modules are available for performing metering tasks using the TMCI loadable function block. TMCI functions on the Quantum platform:				
Platform	Part Number	Part Number Description of Module Function			
	140 EHC 204 00	Four channel inputs allow for direct input from turbine meter/PD meter (mV "VRC", 5 VDC, 12 VDC, and 24 VDC). Inputs are field-selectable per channel pairs. Frequency ranges from 50 Khz to .8 Hz. Module can reside in local or remote drops.			
	140 EHC 208 00	Eight channel inputs allow for direct input from turbine meter/PD meter (mV "VRC", 5 VDC, 12 VDC, and 24 VDC). Inputs are field-selectable per channel pairs. Frequency ranges from 50 Khz to .8Hz. Module can reside in local or remote drops			
	140 MPM 204 00	Four channel inputs allow for direct input from turbine meter (mV "VRC", 5 VDC, 12 VDC, and 24 VDC). Inputs are field-selectable per channel pair. Frequency ranges from 50 Khz to 1 pulse every two minutes. Module can reside in local or remote drops. Zero-flow timer allows an adjustable time-out based on frequency. Pulse fidelity is field-selectable per channel pair (API 2540, Chapter 5, Section 5, Level B). The module supports pulse-interpolation method: Double Chronometry as a standard during proving cycle (API 2540 Chapter 4, Section 6). Prover switches are integrated into the turbine meter card and are available to ladder logic. Prover switch voltages are field-selectable 5 VDC, 12 VDC, and 24 VDC and are configured per channel.			

890USE14000 May 2003

4. PCFC Function Block

4

At a Glance

This chapter describes the representation, operation, and configuration of the PCFC function block.					
This chapter contains the following sections:					
Section	Торіс	Page			
4.1	PCFC Representation and Operation	49			
4.2 PCFC Configuration 52					
	This chapter function blo This chapter Section 4.1 4.2	Section Topic 4.1 PCFC Representation and Operation 4.2 PCFC Configuration			

This page is intentionally blank.

4.1 PCFC Representation and Operation

At a Glance

Purpose	This section describes the representation and operation of the PCFC function b				
What's in this Section?	This section contains the following topics:				
	Торіс	Page			
	4.1.1. PCFC Function Block Structure	50			
	4.1.2. PCFC Operation	51			

4.1.1. PCFC Function Block Structure

4.1.1.1. Block Structure	The block structure is illustrated below.					
Diagram	Enable	#constant	Block Active			
	Enable Data	Control Block PCFC	Block Fault			
	Initiate Batch Report	#0132	Not Used			
4.1.1.2. Inputs	 The PCFC has three control inputs: Top input node enables the function block. Middle input node enables data logging and reports generation. Bottom input node initiates a new batch report and must be a positive transition contact. See <i>Data Logging and Report Generation, p. 115</i> for a detailed explanation on data logging and report generation. 					
4.1.1.3. Outputs	 The PCFC has three outputs. Top output is a copy of the top node input. Middle output turns ON when the function block has detected an error. Bottom is not used. 					
4.1.1.4. Top Node Content	The top node must contain a constant value from 0 to 15. Each number represents a unique PCFC block in the PLC ladder logic program. There can be a maximum of 16 PCFC blocks in the PLC program with each one having a unique number for the top node.					
4.1.1.5. Middle Node Content	The 4x register entered in the middle node is the first of 132 contiguous holding registers that comprise the control block.					
4.1.1.6. Bottom Node Content	The bottom node must contain a constant (#0132) representing the length of the control block in registers.					

4.1.2. PCFC Operation

4.1.2.1. Master PCFC Block The PLC program can have up to 16 PCFC blocks. One of the PCFC blocks must be a "MASTER" with the top node being 0. The master PCFC block allows for one PCFC block to be executed per PLC scan, to reduce PLC scan time. Place the master PCFC block to be the first of the PCFC blocks to occur in logic.

Note: If there is NO Master "0" block, the blocks will not be scanned nor function.

4.2 PCFC Configuration

At a Glance

Purpose	This section provides a detailed description of the configuration for the 4x register of the PCFC function block.							
What's in this	This section contains the following topics:							
Section?	Торіс	Page						
	4.2.1. PCFC Register Summary	53						
	4.2.2. PCFC Setup and Diagnostic Data (4x + 0; +1, Revision Number and Command Word 1) Registers	61						
	4.2.3. PCFC Setup and Diagnostic Data (4x + 2, Command Word 2) Register	66						
	4.2.4. PCFC Setup and Diagnostic Data (4x + 3, Fault Word 1) Register	71						
	4.2.5. PCFC Setup and Diagnostic Data (4x + 4, Fault Word 2) Register							
	4.2.6. PCFC Setup and Diagnostic Data (4x + 5, Status Word) Register	78						
	4.2.7. Flow Card Setup Registers	81						
	4.2.8. Product Data Registers	82						
	4.2.9. Real-Time Correction Factor Registers	85						
	4.2.10. Meter Setup / Real-Time Data Registers	86						
	4.2.11. Real-Time Metering Data Registers	88						
	4.2.12. Report Setup Registers	89						
	4.2.13. SCADA Data in Implied Decimal Format Registers	90						
	4.2.14. Prover Data Registers	91						
	4.2.15. Real-Time Process Variables Registers	94						
	4.2.16. Pulse Fidelity Registers	98						
	4.2.17. Program Diagnostic Data Registers	99						

4.2.1. PCFC Register Summary

4.2.1.1. Overview The following material provides an overview of the 4x register content for the PCFC function block. For a description of the abbreviations and terms used in register descriptions, see the glossary.

Note: Writing to read (RD) registers in can cause inaccurate results or one of the following behaviors (1) the controller does not work, (2) the controller locks up, or (3) a function block will not work. To prevent this situation, do NOT write to read (RD) registers. Writable registers (**WR**) are marked in **bold**.

Register	Access	Data Type	Comment
4x + 0	RD	HEX	PCFC Revision Number (X.XX) For setup and diagnostic information, see PCFC Setup and Diagnostic Data (4x + 0; +1, Revision Number and Command Word 1) Registers, p. 61.
4x + 1	WR	BIN	Command Word 1 For setup and diagnostic information, see <i>PCFC Setup and Diagnostic Data (4x + 0; +1,</i> <i>Revision Number and Command Word 1)</i> <i>Registers, p. 61.</i>
4x + 2	WR	BIN	Command Word 2 For setup and diagnostic information, see PCFC Setup and Diagnostic Data (4x + 2, Command Word 2) Register, p. 66.
4x + 3	RD	BIN	Fault Word 1 For setup and diagnostic information, see PCFC Setup and Diagnostic Data (4x + 3, Fault Word 1) Register, p. 71.
4x + 4	RD	BIN	Fault Word 2 For setup and diagnostic information, see PCFC Setup and Diagnostic Data (4x + 4, Fault Word 2) Register, p. 75.
4x + 5	RD	BIN	Status Word For setup and diagnostic information, see <i>PCFC Setup and Diagnostic Data (4x + 5,</i> <i>Status Word) Register, p. 78.</i>

4.2.1.2. Summary: PCFC Setup and Diagnostic Data Registers

The following table summarizes the set of PCFC registers that contain setup and diagnostic information.

4.2.1.3. Summary: PCFC Flow Card Setup Registers

The following table summarizes the set of PCFC block registers that represent flow card setup.

Register	Access	Data Type	Comment
4x +6	WR	UINT	Meter Run Number For example: Runs 1 to 16
4x +7	WR	UINT	TMCI Block Starting 4x Registers For example: 400123 enter "123"

For more information, see Flow Card Setup Registers, p. 81.

The following table summarizes the set of PCFC block registers that represent product data.

Register	Access	Data	Comment
		Туре	
4x + 8	WR	UINT	Product Type
4x + 9	WR	UINT	Product Name
4x + 10	RD	HEX	First API Table Used
4x + 11	RD	HEX	Second API Table Used
4x + 12 + 13	WR	FLOAT	Sediment and Water % CSW Meter

For more information, see Product Data Registers, p. 82.

The following table summarizes the set of PCFC block registers that represent realtime correction factor data.

Register	Access	Data Type	Comment
4x + 14 + 15	RD	FLOAT	Calculated CTL
4x + 16 + 17	RD	FLOAT	Calculated CPL
4x + 18 + 19	RD	FLOAT	Calculated Meter Factor (After proving run)

For more information, see Real-Time Correction Factor Registers, p. 85.

4.2.1.4. Summary: PCFC Product Data Registers

4.2.1.5. Summary: PCFC Real-Time Correction Factor Registers

Register	Access	Data Type	Comment
4x + 20 + 23	WR	ASCII (8)	Serial Number of Meter
4x + 24 + 27	WR	ASCII (8)	Meter ID
4x + 28	WR	UINT	Meter Size
4x + 29	WR	UINT	Meter Type
4x + 30 + 31	RD	UDINT	Meter Raw Counts Channel A
4x + 32 + 33	RD	UDINT	Meter Raw Counts Channel B (Pulse fidelity only)
4x + 34 + 35	RD	FLOAT	Meter Frequency
4x + 36 + 37	WR	FLOAT	Meter Factor
4x + 38 + 39	WR	FLOAT	Meter K Factor (1.0 – 65535.0)
4x + 40 + 41	RD	FLOAT	Meter Composite C Factor

The following table summarizes the set of PCFC block registers that represent meter

4.2.1.6. Summary: PCFC Meter Setup / Real-Time Data Registers

For more information, see Meter Setup / Real-Time Data Registers, p. 86.

Register	Access	Data Type	Comment
4x + 42 + 43	RD	FLOAT	Indicated Standard Volume "Gross Volume" (Barrels or Cubic inches / Hour)
4x + 44 + 45	RD	FLOAT	Gross Standard Volume "Net Volume" (Barrels or Cubic inches / Hour)
4x + 46 + 47	RD	FLOAT	Net Standard Volume (Barrels or Cubic inches / Hour)
4x + 48 + 49	RD	FLOAT	Sediment & Water Volume (Barrels or Cubic inches / Hour)
4x + 50 + 51	RD	UDINT	Indicated Standard Volume Accumulator (Barrels or Cubic inches) Channel A
4x + 52 + 53	RD	UDINT	Indicated Standard Volume Accumulator (Barrels or Cubic inches) Channel B
4x + 54 + 55	RD	UDINT	Gross Standard Volume Accumulator (Barrels or Cubic inches)
4x + 56 + 57	RD	FLOAT	Corrected Product Density API 60 or API 15 if Metric

The following table summarizes the set of PCFC block registers that represent realtime metering data.

For more information, see Real-Time Metering Data Registers, p. 88.

4.2.1.8. Summary: PCFC Report Setup Data Registers The following table summarizes the set of PCFC block registers that represent report setup data.

Register	Access	Data	Comment
		Туре	
4x + 58	WR	UINT	Reserved for system use
4x + 59	WR	UINT	Start of Day 'Hour' (0-23 military)
4x + 60	WR	UINT	Start of Day 'Minute' (0-59)
4x + 61	WR	UINT	Report Address Modulo 10000 High Word (00XX)
4x + 62	WR	UINT	Report Address Modulo 10000 Low Word (XXXX)

For more information, see Report Setup Registers, p. 89.

4.2.1.7.

Real-Time Metering Data Registers

Summary: PCFC

4.2.1.9. Summary: PCFC SCADA Data in Implied Decimal Format Registers

The following table summarizes the set of PCFC block registers that represent SCADA data in implied decimal format.

Register	Access	Data Type	Comment
4x + 63	RD	INT	Temperature (XXX.XX)
4x + 64	RD	INT	Pressure (XXX)
4x + 65	RD	INT	Gravity / Density (.XXXXX) or (XXX.X)

For more information, see SCADA Data in Implied Decimal Format Registers, p. 90.

4.2.1.10. Prover Data Registers The following table summarizes the set of PCFC block registers that represent prover data.

Register	Access	Data Type	Comment
4x + 66	WR	UINT	Internal Diameter of the Pipe
4x + 67	WR	UINT	Wall Thickness of the Pipe
4x + 68	WR	UINT	Modulus of Elasticity for the Pipe Material x 10 ⁵
4x + 69	WR	UINT	Coefficient of Cubic Expansion per ° F or °C of the pipe material
4x + 70 + 71	WR	UDINT	Base Volume of Prover @ 60°F 0 PSI (Barrels or Cubic inches)
4x + 72	WR	UINT	Number of Consecutive Proving Runs
4x + 73	RD	UINT	Current Number of the Consecutive Proving Runs
4x + 74 + 75	RD	UDINT	Prover Raw Counts
4x + 76 + 77	RD	FLOAT	Calculated CTS
4x + 78 + 79	RD	FLOAT	Calculated CPS

For more information, see Prover Data Registers, p. 91.

4.2.1.11. Summary: PCFC Real-Time Process Variables Registers

The following table summarizes the set of PCFC block registers that represent realtime process variables.

Register	Access	Data	Comment	
		Туре		
4x + 80	WR	UINT	Specific Gravity / Density Raw Counts (Meter)	
4x + 81	WR	UINT	Specific Gravity / Density Conversion Range (Meter)	
4x + 82 + 83	WR	FLOAT	Specific Gravity / Density High Engineering Units (Meter)	
4x + 84 + 85	WR	FLOAT	Specific Gravity / Density Low Engineering Units (Meter)	
4x + 86 + 87	WR	FLOAT	Specific Gravity / Density Scaled Output (Meter)	
4x + 88	WR	UINT	Temperature Raw Counts (Meter)	
4x + 89	WR	UINT	Temperature Conversion Range (Meter)	
4x + 90 + 91	WR	FLOAT	Temperature High Engineering Units (Meter)	
4x + 92 + 93	WR	FLOAT	Temperature Low Engineering Units (Meter)	
4x + 94 + 95	WR	FLOAT	Temperature Scaled Output (Meter)	
4x + 96	WR	UINT	Pressure Raw Counts (Meter)	
4x + 97	WR	UINT	Pressure Conversion Range (Meter)	
4x + 98 + 99	WR	FLOAT	Pressure High Engineering Units (Meter)	
4x + 100 + 101	WR	FLOAT	Pressure Low Engineering Units (Meter)	
4x + 102 + 103	WR	FLOAT	Pressure Scaled Output (Meter)	
4x + 104	WR	UINT	Temperature Raw Counts (Prover)	
4x + 105	WR	UINT	Temperature Conversion Range (Prover)	
4x + 106 + 107	WR	FLOAT	Temperature High Engineering Units (Prover)	
4x + 108 + 109	WR	FLOAT	Temperature Low Engineering Units (Prover)	
4x + 110 + 111	WR	FLOAT	Temperature Scaled Output (Prover)	
4x + 112	WR	UINT	Pressure Raw Counts (Prover)	
4x + 113	WR	UINT	Pressure Conversion Range (Prover)	
4x + 114 + 115	WR	FLOAT	Pressure High Engineering Units (Prover)	
4x + 116 + 117	WR	FLOAT	Pressure Low Engineering Units (Prover)	
4x + 118 + 119	WR	FLOAT	Pressure Scaled Output (Prover)	

For more information, see Real-Time Process Variables Registers, p. 94.

4.2.1.12.

4.2.1.13.

Program Diagnostics Registers

Pulse Fidelity Reaisters

Register	Access	Data Type	Comment
4x + 120			Reserved for system use
4x + 121			Reserved for system use
4x + 122			Reserved for system use
4x + 123	WR	UINT	Pulse Fidelity Frequency Threshold (Pulse Fidelity only)
4x + 124	WR	UINT	Number of Count Errors in a Batch (Pulse Fidelity only)
4x + 125	RD	UINT	Common Mode Errors (Pulse Fidelity only)

The following table summarizes the set of PCFC block registers that represent pulse Summary: PCFC fidelity data

For more information, see Pulse Fidelity Registers, p. 98.

The following table summarizes the set of PCFC block registers that represent Summary: PCFC program diagnostics data.

Register Offset	Access	Data Type	Comment
4x + 126	WR	UINT	Number of Filter Samples
4x + 127	WR	UINT	Base Temperature
4x + 128	RD	UINT	Program Step
4x + 129	RD	UINT	Error Code
4x + 130			Reserved for system use
4x + 131			Reserved for system use

For more information, see Program Diagnostic Data Registers, p. 99.

890USE14000 May 2003

4.2.2. PCFC Setup and Diagnostic Data (4x + 0; +1, Revision Number and Command Word 1) Registers

4.2.2.1. Overview	The follo (Revisio block.	The following material provides a detailed description of the content of the $4x + 0$ (Revision Number) and $4x + 1$ (Command Word 1) registers of the PCFC function block.				
4.2.2.2. Contents: 4x + 0 Register (RD, HEX)	PCFC Revision Number (X.XX) Displays the current function block's revision number. Format is (X.XX). For example, hex 100 indicates revision 1.00.					
4.2.2.3. Bit Summary: 4x + 1 Register (WR,	Command Word 1 This register contains user defined commands for the block. The following table provides a summary of the bits in the Command Word 1:					
BIN)	Bit	Description	Bit	Description		
	1 MSB	M Factor Retroactive on Batch Ticket	9	Meter Proving Used		
	2	CPL Forced to 1.0	10	Previous Batch Report		
	3	API 21.2 Audit Trail	11	Previous Batch Report		
	4	Corrected Density	12	Previous Batch Report		
	5	Hydrometer Correction	13	Specific Gravity/API Gravity		
	6	Specific Gravity/Density Input Mode	14	Measurement method		
	7	Pressure Input Mode (Meter)	15	Pressure Conversion Units		
	8	Temperature Input Mode (Meter)	16	Temperature Conversion Units		

4.2.2.4. Bit Contents: 4x + 1	The following table provides a detailed description of the bits that are used in Command Word 1:			
Register (WR,	Bit(s)	Description		
	Bit 1 MSB	 M Factor Retroactive on Batch Ticket If this bit is ON and the M Factor has changed, then the new M Factor will be used to recalculate the batch ticket. (The new M Factor will take effect immediately and will update GSV and NSV values.) If this bit is OFF, then it is assumed that the user will trigger batch change on the event of a new M Factor. Note: M Factor needs to be updated manually by user after prove. 		
	Bit 2	CPL Forced to 1.0 If this bit is ON, then the CPL is set to 1.0 regardless of product or API table selected. When this bit is used, the bit immediately forces a value of 1.0 into the CPL register. Use this bit carefully. See <i>Real-Time Correction Factor Registers, p. 85.</i> Note: For products not supported by tables.		
	Bit 3	API 21.2 Audit Trail If this bit is ON, then the block will log data per the API 21.2 audit trail. Note: To use this feature, see <i>AUDT—Summary: Block Registers, p. 161</i> .		
	Bit 4	Corrected Density If this bit is ON, then the value entered into $4x + 80$ (Raw) or $4x + 86$ (Scaled) is corrected density. If this bit is OFF, then the value entered into $4x + 80$ (Raw) or $4x + 86$ (Scaled) is an uncorrected density in either Relative Density/SG or API.		
	Bit 5	Hydrometer CorrectionIf this bit is ON, then no Hydrometer correction is used.If this bit is OFF, then Hydrometer correction is used. The hydrometer correctionis used only if the density entered was obtained by using a glass hydrometer.Normally, if a densiometer is used, no hydrometer correction is needed.Note: See densiometer manufacturer's specifications for hydrometer corrections.		
	Bit 6	Specific Gravity/Density Input ModeIf this bit is ON, then the SG/Density is entered as a scaled floating-point value in $4x + 86$.If this bit is OFF, then the Specific Gravity/Density is entered as raw counts into $4x$ $+ 80$ and the block calculates the SG/Density scaled output and places the resultin $4x + 86$ as floating point.Note: If Bit 3 of Command Word 1 is on, then Bit 6 of Command Word 1 will be setto OFF. However, the value may be forced, For more information, see the AUDTblock chapter, Force a Process Variable, p. 158.		

Bit(s)	Description
Bit 7	Pressure Input Mode (Meter)If this bit is ON, then the pressure is entered as a scaled floating-point value in $4x + 102$.If this bit is OFF, then the pressure is entered as raw counts into $4x + 96$ and the block calculates the pressure scaled output and places the result in $4x + 102$ as floating point.Note: If Bit 3 of Command Word 1 is on, then Bit 6 of Command Word 1 will be set to OFF. However, the value may be forced, For more information, see the AUDT block chapter, <i>Force a Process Variable, p. 158</i> .
Bit 8	Temperature Input Mode (Meter)If this bit is ON, then the temperature is entered as a scaled floating-point value in $4x + 94$.If this bit is OFF, then the temperature is entered as raw counts into $4x + 88$ andthe block calculates the temperature scaled output and places the result in $4x + 94$ as floating point.Note: If Bit 3 of Command Word 1 is on, then Bit 6 of Command Word 1 will be setto OFF. However, the value may be forced, For more information, see the AUDTblock chapter, Force a Process Variable, p. 158.
Bit 9	Meter Proving Used If this bit is ON, then this block uses all functions and variables associated with meter proving. If this bit is OFF, then the block only performs standard metering. Note: If Bit 3 of Command Word 1 is on, then Bit 6 of Command Word 1 will be set to OFF. However, the value may be forced, For more information, see the AUDT block chapter, <i>Force a Process Variable, p. 158</i> .

Bit(s)	Description				
Bit 10 – 12	Previous Batch Report The bit pattern (0 to 7) represents the number of previous batch reports to include in the ticket area. A binary value of 0 represents zero previous batch reports and a value of 7 will allow for seven previous batch reports to be logged. Command Word 1: Number of batches to log in ticket block.				
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16				
	001 = Log up to 1, previous batch 1 010 = Log up to 1, previous batch 2 011 = Log up to 1, previous batch 3 100 = Log up to 1, previous batch 4 101 = Log up to 1, previous batch 5 110 = Log up to 1, previous batch 6 111 = Log up to 1, previous batch 7 Note: The Real Time Clock must be enabled and set to a valid time before Report Generation will log data.				
Bit 13	Specific Gravity/API Gravity If this bit is ON, then API Gravity is entered into the SG_Density fields (4x + 86) under the "Real Time Process Variables" group. If this bit is OFF, then Specific Gravity is entered into the SG_Density fields (4x + 86) under the "Real Time Process Variables" group. Note 1: If the PCFC function block is configured in metric mode, this bit has no effect. Note 2: If Bit 6 is OFF, the SG/Density data is entered into the (4x + 80) field.				
Bit 14	Measurement Method Select CTL, CPL Calculation Method (OFF = Imperial, ON = Metric). If this bit is ON, use API Tables: 53 and 54. If this bit is OFF, use API tables: 5, 6, 23, and 24. Note: This bit selects the general measurement method used for all calculations in the block.				

Bit(s)	Description
Bit 15	Pressure Conversion Units
	If this bit is ON and Bit 14 of Command Word 1 is ON (Metric), then pressure is in PSIG and will be converted KPA.
	If this bit is OFF and Bit 14 of Command Word 1 is ON (Metric), then the pressure is in KPA.
	If this bit is ON and Bit 14 of Command Word 1 is OFF (Imperial), then pressure is in KPA and will be converted to PSIG.
	If this bit is OFF and Bit 14 of Command Word 1 is OFF (Imperial), then the pressure is in PSIG.
	Note: Bit 15 affects all pressures in the block. For example, if this bit is set to PSIG then all pressures are assumed to be in PSIG.
	Bit 14 = 1 (Metric), Bit 15 = 0 "KPA"
	Bit 14 = 1 (Metric), Bit 15 = 1 "PSIG" converted to "KPA"
	Bit 14 = 0 (Imperial), Bit 15 = 0 "PSIG"
	Bit 14 = 0 (Imperial), Bit 15 = 1 "KPA" converted to "PSIG"
Bit 16	Temperature Conversion Units
(LSB)	Select Temperature Units (OFF is °F, ON is °C).
	If this bit is ON and Bit 14 of Command Word 1 is ON (Metric), then temperature is in Fahrenheit and will be converted Celsius.
	If this bit is OFF and Bit 14 of Command Word 1 is ON (Metric), then the
	temperature is in Degrees C°.
	If this bit is ON and Bit 14 of Command Word 1 is OFF (Imperial), then temperature
	is in Degrees °C and will be converted to Fahrenheit.
	If this bit is OFF and Bit 14 of Command Word 1 is OFF (Imperial), then the
	Note: Bit 16 affects all temperatures in the block. For example, if this bit is set to
	Exprendeit then all temperatures are assumed to be in Exprendeit
	Bit 14 – 1 (Metric) Bit 16 – 0 "°C"
	Bit $14 = 1$ (Metric), Bit $16 = 1$ "°F" converted to "°C"
	Bit $14 = 0$ (Imperial) Bit $16 = 0$ "°F"
	Bit $14 = 0$ (Imperial), Bit $16 = 1$ "°C" converted to "°F"

4.2.3. PCFC Setup and Diagnostic Data (4x + 2, Command Word 2) Register

4.2.3.1. Overview	The following material provides a detailed description of the content of the $4x + 2$ (Command Word 2) register of the PCFC function block.						
4.2.3.2. Bit Summary: 4x + 2 Register (WR,	Command Word 2 This register contains a continuation of user defined commands for the block. The following table provides a summary of the bits in the Command Word 2:						
BIN)	Bit	Description	Bit	Description			
	1 MSB	Automatic Proving	9	Flow Rate Filter			
	2	Force CPS to 1.0	10	Previous Prove Report			
	3	Prove Flow ISV/GSV	11	Previous Prove Report			
	4	Pulse Fidelity	12	Previous Prove Report			
	5	Meter Phasing	13	User Base Temperature			
	6	Bidirectional Prover	14	GSV Calc/GSV Accumulator			
	7	Pressure Input Mode (Prover)	15	Abort Prove Report			
	8	Temperature Input Mode (Prover)	16	Start Proving Run			

4.2.3.3. Bit Contents: 4x +2	The following table provides a detailed description of the bits that are used in Command Word 2:					
Register (WR, BIN)	Bit(s)	Description				
	Bit 1 (MSB)	Automatic Proving If this bit is ON, the value in the Calculated Meter Factor (4x + 18) register is automatically transferred to the M Factor register (4x + 36). If this bit is OFF, the Calculated Meter Factor is displayed only and must be transferred manually. Note: While this bit is ON, the value is transferred continuously from Calculated to Meter Factor (use a positive transition contact). If there is no previous calculated M Factor and the value is zero, nothing will be transferred. However, if the Calculated Meter Factor becomes a non-zero value, then that value will be transferred to the Meter Factor field.				
	Bit 2	Force CPS to 1.0 If this bit is ON, then the CPS value will be forced to 1.0. This is used for provers with a double wall to equalize the pressure inside and outside the calibrated chamber. In this case the inner measuring section of the prover is not subjected to a net internal pressure, and the walls of this inner chamber do not stretch elastically. Therefore, CPS = 1.0000				
	Bit 3	Prove Flow ISV/GSV If this bit is OFF, then the Prove Report flow rate (+ 190 Average ISV / GSV Flow Rate) will be in ISV. If this bit is ON, then in GSV.				

Bit(s)	Description					
Bit 4	Pulse Fidelity If this bit is ON, then pulse fidelity is performed (Per API 2540 Chapter 5 Section 5 Level B). Only channels 1 and 3 (on the four channel cards) are to be used for this function (for channel 1 the following channel is used "channel 2"). A maximum of four pulse fidelity cards can be placed in a system.					
	Channel (Logical Channel (Logical Channel (Logical Channel (Logical Run) Run) Run)					
	$ \begin{vmatrix} 1 \\ 2 \end{vmatrix} \begin{pmatrix} (1) \\ 2 \end{vmatrix} \begin{pmatrix} (1) \\ 2 \end{vmatrix} \begin{pmatrix} (5) \\ 2 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 2 \\ 2 \end{pmatrix} \begin{pmatrix} (9) \\ 2 \\ 2 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 2 \\ 2 \end{pmatrix} \begin{pmatrix} (13) \\ 2 \\ 2 \\ 2 \end{pmatrix} $					
	$\begin{bmatrix} 3 \\ 4 \end{bmatrix} (3) \\ \begin{bmatrix} 3 \\ 4 \end{bmatrix} (7) \\ \begin{bmatrix} 3 \\ 4 \end{bmatrix} (11) \\ \begin{bmatrix} 3 \\ 4 \end{bmatrix} (15) \\ \begin{bmatrix} 4 \\ 4 \end{bmatrix} (15)$					
	Example: In card two of a system, if the logical run number is Logical Run 7, then the next logical run number that can be used is Logical Run 9, because Run Logical Run 8 is used with Logical Run 7. Note: There are 16 logical runs in a system. When Pulse Fidelity is used, the first run selected must be an odd number. This fact applies to the physical module channels (signal and gate). Furthermore, if pulse fidelity is enabled for every channel, there are only 8 physical runs possible in a system. Pulse Fidelity errors can only be reset on a batch change.					
Bit 5	Meter Phasing If this bit is OFF, Bit 5 indicates that the phase relationship between the applicable channel pair is 90 degrees. When Bit 5 is set to 1, the phase relationship is 180 degrees. This information is important when pulse fidelity is being monitored, because the phase relationship is continuously monitored.					
Bit 6	Bidirectional Prover If this bit is ON, the prover is Bidirectional having a forward pass with two detector switches and a Reverse pass across the same two switches for a total of four pulses of the detector switch. If this bit is OFF, then the prover is a Uni-directional prover with one pass and two detector switches for a total of two pulses of the detector switches.					
Bit 7	Pressure Input Mode (Prover) If this bit is ON, then the pressure is entered as a scaled floating-point value in $4x + 118$. If this bit is OFF, then the pressure is entered as raw counts into the $4x + 112$ register. The block calculates the pressure scaled output and places the result in the $4x + 118$ register as floating point.					

Bit(s)	Description				
Bit 8	Temperature Input Mode (Prover) If this bit is ON, then the temperature is entered as a scaled floating-point value in $4x + 110$. If this bit is OFF, then the temperature is entered as raw counts into the $4x + 110$ register. The block calculates the temperature scaled output and places the result in to the $4x + 104$ register as floating point.				
Bit 9	Flow Rate Filter If this bit is ON, then the all flow rates are sampled at 500ms and the number of samples is 20. This flow rate data is used in a "weighted" average to determine the flow rate. Note: If a Fidelity error occurs while Pulse Fidelity is being used, the filter will be bypassed until the error is corrected.				
Bit 10 -	Previous Prove Reports				
12	The bit pattern (0 to 4) represents the number of previous proving reports to include in the ticket area. A binary value of 0 represents zero previous proving reports and a value of 4 will allow for four previous proving reports to be logged. Command Word 2: Number of batches to log in ticket block.				
	001 = Log up to 1, previous prove report 1 010 = Log up to 2, previous prove report 2 011 = Log up to 3, previous prove report 3 100 = Log up to 4, previous prove report 4 Note: The Real Time Clock must be enabled and set to a valid time before Report Generation will log data.				
Bit 13	User Base Temperature If this bit is ON, then a user defined temperature is entered in the $4x + 127$ register. If this bit is OFF, then a standard reference temperature of 15° is used.				
	Note: Bit 13 is only valid for the following API tables: 53A 53B 53D 54A 54B 54D These factors affect metric pressures only. 				

Bit(s)	Description		
Bit 14	GSV Calc/GSV AccumulatorIf this bit is ON, then there is a separate accumulator for the GSV and it is totaindependent of the ISV accumulator.If this bit is OFF, then the GSV is calculated based on the ISV accumulator.Note: If a separate accumulator is used, then the ISV and GSV will not track eaother based on product change or rollover.For example: Given that ISV = 1 and GSV = 9,999,207. After ISV rolls over, GSwill not roll over until it reaches 10,000,000 because GSV has an independentaccumulator.		
Bit 15	Abort Prove Report If this bit is ON, then the current Prove Report is aborted. When Bit 15 is used, it discards the report information and does not transfer it to the previous prove report area. Note: This bit must be set with a single positive transition. The bit will reset itself to zero. The report will not clear until a new report is generated by setting "Start Proving Run" bit 16 Command Word 2 to 1.		
Bit 16 (LSB)	Start Proving RunIf this bit is ON, then the proving cycle has started and the system will look for the prover detector switches. This also starts the report generation; it is triggered for every proving run in a cycle until the number of runs entered into "Number of consecutive proving runs" is equal.Note:This bit must be set with a single positive transition. The bit will reset itself 		

4.2.4. PCFC Setup and Diagnostic Data (4x + 3, Fault Word 1) Register

4.2.4.1. Overview The following material provides a detailed description of the content of the 4x + 3 (Fault Word 1) register of the PCFC function block.

Fault Word 1

Summary: 4x + 3 Register (RD, BIN)

4.2.4.2. Bit

Each bit in this word represents a particular fault that the function block has detected. The following table provides a summary of the bits in Fault Word 1:

Bit	Description	Bit	Description
1 MSB	Invalid Constant in Top Node	9	Invalid Pressure Input (Meter)
2	Address to Report Area Invalid	10	Invalid Temperature Input (Meter)
3	Time of Day Clock Invalid/Not Set	Pressure Under Range	
4	Min. Density Exceeded	12	Pressure Over Range
5	Max. Density Exceeded	13	Temperature Under Range
6	Invalid Pressure Conversion Range (Meter)	14	Temperature Over Range
7	Invalid Temperature Conversion 15 Invalid CPL Calculation Range (Meter)		Invalid CPL Calculation
8	Invalid Constant in Bottom Node	16	Invalid CTL Calculation

4.2.4.3. Bit	The follo	e following table provides a detailed description of the bits in Fault Word 1:			
Contents: 4x + 3 Register (RD, BIN)	Bit 1 (MSB)	Ivalid Constant in Top Node he correct constant has not been entered in the top node of the function block. he function block will not perform any calculations. Value must be between 0 and 5. o duplicate values allowed.			
	Bit 2	Address to Report Area Invalid This fault will only apply if the function block is enabled for reporting (middle input ON). This bit will be set if the user-supplied, 6-digit address to the report storage area in the PLC is invalid. The six digit address is stored in the $4x + 61$ and $4x + 62$ registers. The address will be invalid if it is not configured or overlaps other block addresses. Also, the address will be invalid if the address value plus the report area size exceeds the configured number of registers in the PLC (See <i>Data Logging and</i> <i>Report Generation, p. 115</i>).			
	Bit 3	Time of Day Clock Invalid/Not Set This fault will only apply if the function block is enabled for reporting. This bit will come ON if the user-supplied offset to the time of day clock in the PLC is invalid. The offset will be invalid if a value of 0 is supplied. Also, the offset will be invalid if the offset value plus the 8 holding registers used by the time of day clock exceeds the configured amount of holding registers in the PLC. This Fault will also be generated if the TOD clock is not set for example, Month = 0, Day=0, Day of week=0, etc. The TOD clock can be configured, but it must be set to a valid time/date either by the programming panel, ladder logic, or by a communication link.			
	Bit 4	Min. Density ExceededThe current calculated density has exceeded the minimum density for the currentproduct being monitored.For example, if crude oil or refined products are being monitored, this bit will comeON if the current API density is less than 0.The table in Data Logging and Report Generation, p. 115 lists the ranges ofacceptable densities for each type of product.			
	Bit 5	Max. Density Exceeded The current calculated density has exceeded the maximum density for the current product being monitored. For example, if crude oil is being monitored, this bit will come ON if the current API density is greater than 100. If refined products are being monitored, this bit will come ON if the current API density is greater than 85. The table in <i>Flow Equations and Algorithms, p. 233</i> lists the ranges of acceptable densities for each type of product.			
Bit 6	Invalid Pressure Conversion Range (Meter)				
--------	--				
	An invalid conversion range was entered into the "Pressure Conversion Range"				
	field. See Analog Input Conversion Ranges, p. 253 for possible conversion ranges.				
Bit 7	Invalid Temperature Conversion Range (Meter)				
	An invalid conversion range was entered into the "Temperature Conversion				
	Range" field. See Analog Input Conversion Ranges, p. 253 for possible conversion				
	ranges.				
Bit 8	Invalid Constant in Bottom Node				
	The correct constant has not been entered in the bottom node of the function block.				
	The function block will not perform any calculations.				
Bit 9	Invalid Pressure Input (Meter)				
	The raw counts from the device (analog module) are not in the linear conversion				
	range selected by the user.				
	Note: If raw counts are correct See Analog Input Conversion Ranges, p. 253 for				
	possible conversion ranges.				
Bit 10	Invalid Temperature Input (Meter)				
	The raw counts from the device (analog module) are not in the linear conversion				
	range selected by the user.				
	Note: If raw counts are correct see Analog Input Conversion Ranges, p. 253 for				
	possible conversion ranges.				
Bit 11	Pressure Under Range				
	The scaled pressure output is equal to or less than the value entered for low				
	engineering units (LEU 4x).				
	Note: If both Pressure Over Range and Under Range bits are ON, then the process				
	variable is out of usable or "process range" (Pressure > 50,000 and Pressure < 0).				
Bit 12	Pressure Over Range				
	The scaled pressure output is equal to or greater than the value entered for high				
	engineering units (HEU 4x).				
	Note: If both Pressure Over Range and Under Range bits are ON, then the process				
	variable is out of usable or "process range" (Pressure > 50,000 and Pressure < 0).				
Bit 13	Temperature Under Range				
	The scaled temperature output is equal to or less than the value entered for low				
	engineering units (LEU 4x).				
	Note: If both Temperature Over Range and Under Range bits are ON, then the				
	process variable is out of usable or "process range" (Temperature > 500 and				
L	i emperature < -200).				
Bit 14	Temperature Over Range				
	The scaled temperature output is equal to or greater than the value entered for high				
	engineering units (HEU 4x).				
	Note: It both Temperature Over Range and Under Range bits are ON, then the				
	process variable is out of usable or "process range" (Temperature > 500 and				
	remperature < -200).				

Bit 15	Invalid CPL Calculation There is invalid data in the CPL calculation. This bit will also be set if there is an invalid temperature or pressure reading. Note: CPL will use the last known valid value until the error is cleared.
Bit 16	Invalid CTL Calculation There is invalid data in the CTL calculation. The Gravity/Density or Temperature entered is out of range for the API tables. If the value is in range for the selected table when this error occurs, the error occurs because the API table does not define the range. See <i>Flow Equations and Algorithms, p. 233</i> for ranges on specific tables and the API 2540 for the specific values defined in tables. Note: CTL will use the last known valid value until the error is cleared.

4.2.5. PCFC Setup and Diagnostic Data (4x + 4, Fault Word 2) Register

4.2.5.1. Overview The following material provides a detailed description of the content of the 4x + 4 (Fault Word 2) register of the PCFC function block.

Fault Word 2

4.2.5.2. Bit

BIN)

Summary: 4x + 4

Register (RD,

Each bit in this word represents a particular fault that the function block has detected. The following table provides a summary of the bits that are used in Fault Word 2:

Bit	Description	Bit	Description
1 MSB	Pulse Fidelity Error	9	Specific Gravity/Density Under Range
2	Min./Max. Prove Runs Exceeded	10	Specific Gravity/Density Over Range
3	Pipe Wall Thickness Exceeded	11	Not Used
4	Pipe Inside Diameter Exceeded	12	Function Not Available with Hardware
5	Pipe Elasticity Invalid	13	Invalid IEEE Floating Point Number
6	Pipe Coefficient of Thermal Expansion Invalid	14	Invalid 4x TMCI Pointer
7	Invalid Specific Gravity/Density Conversion Range	15	Invalid Base Volume of Prover
8	Invalid Specific Gravity/Density Input	16	Invalid Meter Run Number

4.2.5.3. Bit Contents: 4x + 4	The following table provides a detailed description of the bits that are used in Fault Word 2:		
Register (RD, BIN)	Bit 1 (MSB)	Pulse Fidelity Error There is a pulse fidelity error (for example, count, sequence, frequency, or phase).	
	Bit 2	Min./Max. Prove Runs Exceeded	
		An invalid range was selected for the number of consecutive proving runs. The range is 2 to 10. Any number outside that range will generate this fault.	
	Bit 3	Pipe Wall Thickness Exceeded An invalid value was entered in (4x + 67). (See <i>Prover Data Registers, p. 91</i>)	
	Bit 4	Pipe Inside Diameter Exceeded An invalid value was entered in (4x + 66). (See <i>Prover Data Registers, p. 91</i>)	
	Bit 5	Pipe Elasticity Invalid	
		An invalid value was entered in $(4x + 68)$. (See Prover Data Registers, p. 91)	
	Bit 6	Pipe Coefficient of Thermal Expansion Invalid	
		An invalid value was entered in (4x + 69). (See Prover Data Registers, p. 91)	
	Bit 7	Invalid Specific Gravity/Density Conversion Range An invalid conversion range was entered into the "Gravity / Density Conversion Range" field. See <i>Analog Input Conversion Ranges, p. 253</i> for possible conversion ranges.	
	Bit 8	Invalid Specific Gravity/Density Input The raw Specific Gravity/Density value 4x + 80 is outside the linear conversion range. See table for valid ranges. Note: If a raw value goes out of range, the scaled value will hold the last current (Valid) value until a valid value is entered.	
	Bit 9	Specific Gravity/Density Under Range The scaled Specific Gravity/Density output is equal to or less than the value entered for low engineering units (LEU) (4x + 84).	
	Bit 10	Specific Gravity/Density Over Range The scaled temperature output is equal to or greater than the value entered for high engineering units (HEU) $(4x + 82)$.	
	Bit 11	Not Used	
	Bit 12	Function Not Available with Hardware If Bit 12 is ON, the option selected in the Command Words is not available with the Turbine/Counter card selected. For instance, if meter proving is selected and the 140 EHC 204 00sc is selected, this error will be generated. Note: See <i>TMCI and Quantum Functionality Chart, p. 46</i> for card functionality. Not all cards support all the options in the PCFC block.	

Bit 13	Invalid IEEE Floating Point Number		
	An invalid floating point number (wrong data type) has been entered into a register.		
	Note : The register where the first error occurred is stored in $4x + 129$. An invalid		
	floating point number error may also trigger other errors, for example, an invalid		
	CTL Calculation error occurs if the Scaled Temperature Out was in error.		
Bit 14	Invalid 4x TMCI Pointer		
	The 4x register pointer is either invalid or out of range for the PLC's configured 4x		
	register. The PLC configuration must have 165 contiguous registers after the		
	pointer.		
Bit 15	Invalid Base Volume of Prover		
Bit 15	Invalid Base Volume of Prover If 0, then Prover Volume is invalid.		
Bit 15	Invalid Base Volume of Prover If 0, then Prover Volume is invalid. Note: A zero in either one of these registers will generate a fault.		
Bit 15 Bit 16	Invalid Base Volume of Prover If 0, then Prover Volume is invalid. Note: A zero in either one of these registers will generate a fault. Invalid Meter Run Number		
Bit 15 Bit 16 (LSB)	Invalid Base Volume of Prover If 0, then Prover Volume is invalid. Note: A zero in either one of these registers will generate a fault. Invalid Meter Run Number An invalid meter run 4x + 6 number has been entered.		
Bit 15 Bit 16 (LSB)	Invalid Base Volume of Prover If 0, then Prover Volume is invalid. Note: A zero in either one of these registers will generate a fault. Invalid Meter Run Number An invalid meter run 4x + 6 number has been entered. Valid ranges are 1 to 16.		
Bit 15 Bit 16 (LSB)	Invalid Base Volume of Prover If 0, then Prover Volume is invalid. Note: A zero in either one of these registers will generate a fault. Invalid Meter Run Number An invalid meter run 4x + 6 number has been entered. Valid ranges are 1 to 16. If Pulse Fidelity is ON and the Meter Run Number is Even, an attempt has been		
Bit 15 Bit 16 (LSB)	Invalid Base Volume of Prover If 0, then Prover Volume is invalid. Note: A zero in either one of these registers will generate a fault. Invalid Meter Run Number An invalid meter run 4x + 6 number has been entered. Valid ranges are 1 to 16. If Pulse Fidelity is ON and the Meter Run Number is Even, an attempt has been made to use a reserved Meter Run Number. Pulse Fidelity is only valid on Odd run		

4.2.6.2. Bit

4.2.6. PCFC Setup and Diagnostic Data (4x + 5, Status Word) Register

4.2.6.1. Overview The following material provides a detailed description of the content of the 4x + 5 (Status Word) register of the PCFC function block.

Status Word

Summary: 4x + 5
 Register (RD, BIN)
 This register contains information on process and Turbine Meter Card status. Note setting bits in this register is not considered indication of a fault and does not trigger a fault on the block. However, users may want to alarm these points based on their standard practices. The following table provides a summary of the bits that are used in the Status Word:

Bit	Description	Bit	Description
1 MSB	Pulse Fidelity Channel A/B	9	Reserved for system use
2	CPL Forced to 1.0	10	Meter Proving Gate Status
3	Prove Counter Not Zero	11	Meter Proving Gate Status
4	CPS Forced to 1.0	12	Meter Proving Gate Status
5	Pulse Fidelity Sequence Error	13	Reserved for system use
6	Pulse Fidelity Phase Error	14	Reserved for system use
7	Pulse Fidelity Frequency Error	15	Proving Report Done
8	Pulse Fidelity Count Error	16	Proving Run in Process

4.2.6.3. Bit Contents: 4x + 5	The following table provides a detailed description of the bits that are used in the Status Word:			
Register (RD, BIN)	Bit 1	 Pulse Fidelity Channel A/B This bit indicates which channel is currently being used as the reference channel: 1 = A, 0 = B. If an error occurs, then the flowing logic applies to the status bit. If ON, then channel A is being used as the primary channel for data and channel B has failed. If OFF, then channel B is the primary channel and channel A has failed. During normal operating conditions, "No Errors," this bit will be ON. 		
	Bit 2	CPL Forced to 1.0 If ON, then bit 2 of Command Word 1 has been set to 1. This bit acknowledges the fact that the product selected does not have a true CPL of 1.0, but that the CPL has been manually set to 1.0.		
	Bit 3	Prove Counter Not Zero If the "Start Prove Run" bit 16 Command Word 2 is ON and the prover counter has not reset to zero, this bit will be ON. When the Block has successfully reset, the counter the bit will be OFF.		
	Bit 4	CPS Forced to 1.0 The CPS value has been forced to 1.0. This setting is used for provers with a double wall, which equalizes the pressure inside and outside the calibrated chamber. In this case, the inner measuring section of the prover is not subjected to a net internal pressure, and the walls of this inner chamber do not stretch elastically. Therefore, CPS = 1.0000		
	Bit 5	Pulse Fidelity Sequence Error When pulse fidelity checking is enabled, Bit 5 indicates a sequence error. The error detector continuously samples the inputs. If three sequence errors are detected in one minute, a sequence error occurs, and Blt 5 is turned ON. This result is a real- time error flag to be used by the user. Note: Bit 5 does not generate an error and is not latched.		
	Bit 6	Pulse Fidelity Phase Error When pulse fidelity checking is enabled, Bit 6 indicates a phase error. The error detector continuously samples the inputs. If Bit 6 is ON, a Sequence error has occurred. This is a real-time error flag to be used by the user. Note: This bit does not generate an error and is not latched.		
	Bit 7	Pulse Fidelity Frequency Error When pulse fidelity checking is enabled, Bit 7 indicates a frequency error. The error detector continuously samples the inputs. If Bit 7 is ON a Sequence error has occurred. This is a real-time error flag to be used by the user. Note: This bit does not generate an error and is not latched.		

Bit 8	Pulse Fidelity Count Error When pulse fidelity checking is enabled, Bit 8 indicates a count error. The error detector continuously samples the inputs. The system generates a Pulse Fidelity Count error if the count difference between the two channels is greater than the preset value in $(4x + 124)$. If Bit 8 is ON, a count error has occurred. This result is a real-time error flag for the user. Note: This bit does not generate an error and is not latched.				
Bit 9	Reserved for system use				
Bits 10- 12	Meter Proving Gate Status Previous Prove Reports The bit pattern (0 to 4) represents the status of each detector switch as it occurs.				
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 000 = Waiting for First Detector Switch 001 = First Detector Switch Occurred 010 = <td< td=""></td<>				
Bit 13	Reserved for system use				
Bit 14	Reserved for system use				
Bit 15	Proving Report Done If ON, then the Proving report is complete. Note: This bit can be used to signal either a SCADA, HMI, or Operator that the report is complete.				
Bit 16 (LSB)	Proving Run in Process When ON, this bit signifies that a proving run is in progress (for example, Uni- Directional Prover the first detector switch has been made and the counter is counting). When the last switch (#2 for unidirectional, #4 for bidirectional) is made, the Proving Run in Process bit will turn OFF. If OFF, there is no proving being performed.				

4.2.7. Flow Card Setup Registers

4.2.7.1. Contents: 4x + 6 Register (WR, UINT)	Meter Run Number This number represents the meter run in the PLC system. The block only needs to have a unique number from 1 to 16. Meter Run Numbers are indirectly associated with the channel of the hardware card. There are 16 logical channels in memory that can be configured. The logical channels and the hardware channels are associated based on the combination of cards used in the system.	
	 That is, if you have four 140MPM20400sc cards (four channels), then channel 1 of the second card is Meter Run Number 5 channel 1 of the third card is Meter Run Number 9 channel 1 of the fourth card is Meter Run Number 13 	
	When using Pulse Fidelity, only odd-numbered runs can be selected. Furthermore, Pulse Fidelity uses two channels (this Meter Run Number and the next Meter Run Number) because pulse fidelity is indirectly associated with a channel that is not available for use. That is, if run 1 is selected, a block cannot be configured as run 2. However, if 3 is not configured as Pulse Fidelity, 4 can be used as a standard channel. If an invalid number is entered, a fault is generated and the block will not be scanned until corrected.	
4.2.7.2. Contents: 4x + 7 (WR, UINT)	TMCI Block Starting 4x Registers The contents of this register point to the registers that are in the TMCI register table for the cards controlled by this block. If an invalid number is entered, a fault is generated and the block will not be scanned until corrected. For example: 400123 enter "123"	

4.2.8. Product Data Registers

4.2.8.1. Contents: 4x + 8 Register (WR, UINT)	 Product Type 8 This register monitors the type of product flowing through the pipe. Enter the nuccorresponding to the type of product monitored: 0 = Crude Oil 1 = Refined (Fuel Oil, Jet, Jet - Gas, Gas) 2 = Lubricating Oil 3 = LPGs/NGLs (Requires the use of function blocks T23E and T24E.) If product type is less than 0, product type will be set to 0. If product type is greater than 3, product type will be set to 3. For further information on product type selections, see the table following (the Product Type Information table). 	
4.2.8.2. Contents: 4x + 9 Register (WR, UINT)	Product Name This register contains a number from 0 to 15 that represents a product name that the user determines (e.g. 1 = Crude Oil, 2= Premium, etc.). This number is just a label and is used to retrieve the previous Meter Factor for that product that was stored. The product type value is assigned by the user. Note: If the Product Name is a number greater than 15, the Product Name will be set to 15. Note: The product data is stored in a table. See <i>The Last Meter Factor Table</i> , <i>p. 133</i> .	
4.2.8.3. Contents: 4x + 10 Register (RD, HEX)	First API Table Used This register displays the first API table in the CTL calculation or a zero if not required.	
4.2.8.4. Contents: 4x + 11 Register (RD, HEX)	Second API Table Used This register displays the second API table in the CTL calculation or the only table used depending on the table, for example, entering a corrected gravity/density will cause this to occur.	
4.2.8.5. Contents: 4x + 12 + 13 Field (WR, FLOAT)	Sediment and Water % CSW Meter Enter the percentage of sediment and water determined by a representative sample of liquid being measured. It represents the non-hydrocarbon portion of the liquid in whole percents e.g. $100\% = 1.0$, $3\% = .03$. Note: If a value larger that 1 is entered, then the value will be set to 1. Zero is a valid number and will be treated as no sediment and water content in the crude. If a number entered is less than zero, the number will be set to zero.	

4.2.8.6. Product

API Gravity (Imperial).

l ype information	Гуре	nformation
-------------------	------	------------

API Gravity (Imperial)			
0=Crude	1=Products	2=Lubricating Oil	
Input	Input	Input	
Temperature Range 0 to 300 °F all Tables			
API Gravity 0 to 100	API Gravity 0 to 85	API Gravity -10 to 45	
Table 5A	Table 5B	Table 5D	
Output Ref. to 60 °F	Output Ref. to 60 °F	Output Ref. to 60 °F	
Corrected API 0 to 100	Corrected API Gravity 0 to 85	Corrected API Gravity -10 to 45	
Table 6A	Table 6B	Table 6D	
CTL	CTL	CTL	

Specific Gravity (Imperial).

Specific Gravity (Imperial)			
0=Crude	1=Products	2=Lubricating Oil	3=NGLs
Input	Input	Input	Input
Temperature Range 0 to 300 °F all Tables			
Specific Gravity .611	Specific Gravity	Specific Gravity .800	Specific Gravity
to 1.076	0.653 to 1.076	to 1.164	.2100 to .7400
Table 23A	Table 23B	Table 23D	Table 23E
Output Ref. to 60 °F	Output Ref. to 60 °F	Output Ref. to 60 °F	Output Ref. to 60 °F
Specific Gravity .611	Specific Gravity	Specific Gravity .800	Specific Gravity
to 1.076	0.653 to 1.076	to 1.164	.2100 to .7400
Table 24A	Table 24B	Table 24D	Table 24E
CTL	CTL	CTL	CTL

Density (Metric Gravity).

Density (Metric Gravity)		
0=Crude	1=Products	2=Lubricating Oil
Input	Input	Input
Temperature Range -18 to 150 $^\circ\text{C}$ all Tables except 53D and 54D, which are -20 to 150 $^\circ\text{C}$		
Density 610 to 1075 kg/m ³	Density 653 to 1075 kg/m ³	Density 800 to 1164 kg/m ³
Table 53A	Table 53B	Table 53D
Output Ref. to 15 °C	Output Ref. to 15 °C	Output Ref. to 15 °C
Density 610 to 1075 kg/m ³	Density 653 to 1075 kg/m ³	Density 800 to 1164 kg/m ³

Table 54A	Table 54B	Table 54D
CTL	CTL	CTL

4.2.9. Real-Time Correction Factor Registers

4.2.9.1. Contents: 4x + 14 + 15 Field (RD, FLOAT)	Calculated CTL Calculated correction factor for temperature of liquid. The equation is listed in <i>Flow</i> <i>Equations and Algorithms, p. 233.</i>
4.2.9.2. Contents: 4x + 16 + 17 Field (RD, FLOAT)	Calculated CPL Calculated correction factor for pressure of liquid. The equation is listed in <i>Flow</i> <i>Equations and Algorithms, p. 233.</i>
4.2.9.3. Contents: 4x + 18 + 19 Field (RD, FLOAT)	Calculated Meter Factor (After proving run) Provides the calculated meter factor for the last proving run. This factor then is manually entered in to the Meter M Factor field 4x + 36 +37 under the "Meter Setup Data" group (see <i>Meter Setup / Real-Time Data Registers, p. 86</i>). Note: Meter Factor is only transferred if the Automatic Prove bit is set to 1.

4.2.10. Meter Setup / Real-Time Data Registers

4.2.10.1. Contents: 4x + 20 23 Field (WR, ASCII (8))	Serial Number of Meter (Optional) The meter serial number may be stored in these four registers. Enter alphanumeric data in ASCII format (for instance, PF11741G).
4.2.10.2. Contents: 4x + 24 27 Field (WR, ASCII (8))	Meter ID (Optional) The meter ID may be stored in these four registers. Enter alphanumeric data in ASCII format (for instance, AXF11201).
4.2.10.3. Contents: 4x + 28 Register (WR, UINT)	Meter Size The size of the meter is stored and displayed in integer format. For example: A meter that is 10.000 is displayed as $10.000 \times 1,000 = 10,000$.
4.2.10.4. Contents: 4x + 29 Register (WR, UINT)	Meter Type The type of the meter is stored and displayed in integer format. This field is user defined and can be any value between 0 and 65535. 1 = Turbine 2 = Positive Displacement
4.2.10.5. Contents: 4x + 30 31 Field (RD, UDINT)	Meter Raw Counts Channel A This register displays the contents of the flow card channel indicated by the card setup registers. The counts are stored in a unsigned double integer format (two registers). Note: This multiple register field is a double unsigned integer using two consecutive registers (for example, 400100 and 400101). If the value of the register is viewed as a single unsigned register, the value would be represented as: 400100 = 42638 and 400101 = 53134. However, if 400100 is looked at as a 32-bit unsigned integer, the value 5219982 will be displayed.
4.2.10.6. Contents: 4x + 32 33 Field (RD, UDINT)	Meter Raw Counts Channel B (Pulse Fidelity only) This multiple register field displays the contents of the flow card channel that is indicated by the card setup registers. The counts are stored in a unsigned double integer format (two registers).

	Note: This multiple register field is a double unsigned integer using two consecutive registers (for example, 400100 and 400101). If the value of the register is viewed as a single unsigned register, the value would be represented as: 400100 = 42638 and 400101 = 53134. However, if 400100 is looked at as a 32-bit unsigned integer, the value 5219982 will be displayed.
4.2.10.7. Contents: 4x + 34 35 Field (RD, FLOAT)	Meter Frequency This is the frequency of the Meter and it is displayed in floating point.
4.2.10.8. Contents: 4x + 36 37 Field (WR, FLOAT)	Meter Factor Enter the M factor of the meter. The meter M factor is used to apply a corrective offset or calibration value against a K factor. The meter M factor range is 0.5000 to 1.9999 with 1.0000, meaning no error exists, and thus no correction made. If the value entered is below .5000 then it is set to .5000. If the value is above 1.9999 then the value will be set to 1.9999.
4.2.10.9. Contents: 4x + 38 39 Field (WR, FLOAT)	Meter K Factor (1.0-65355.0) Enter the K factor of the meter. The meter K factor is typically located on the meter housing. The K factor informs the function block on how many pulses to count before incrementing an internal counter. The meter K factor range is 1.0 to 65535.0. If the value is 0, then it will be set to 1. Note: K factors larger than 65535.0 may be entered, but those values are NOT supported.
4.2.10.10. Contents: 4x + 40 41 Field (RD, FLOAT)	Meter Composite C Factor The C factor of the meter is simply (K * M).

4.2.11. Real-Time Metering Data Registers

4.2.11.1. Contents: 4x + 42 + 43 Field (RD, FLOAT)	Indicated Standard Volume "Gross Volume" (Barrels or Cubic Inches / Hour) The calculated ISV flow rate in barrels or cubic inches per hour. The ISV flow rate is calculated from the equations in <i>Flow Equations and Algorithms, p. 233</i> .
4.2.11.2. Contents: 4x + 44 + 45 Field (RD, FLOAT)	Gross Standard Volume "Net Volume" (Barrels or Cubic Inches / Hour) The calculated GSV flow rate in barrels or cubic inches per hour. The GSV flow rate is calculated from the equations in <i>Flow Equations and Algorithms, p. 233.</i>
4.2.11.3. Contents: 4x + 46 + 47 Field (RD, FLOAT)	Net Standard Volume (Barrels or Cubic Inches / Hour) The calculated net flow rate in barrels or cubic inches per hour. The net flow rate is calculated from the equations in <i>Flow Equations and Algorithms, p. 233.</i>
4.2.11.4. Contents: 4x + 48 + 49 Field (RD, FLOAT)	Sediment & Water Volume (Barrels or Cubic Inches / Hour) The calculated S&W flow rate in barrels or cubic inches per hour. The S&W flow rate is calculated from the equations in <i>Flow Equations and Algorithms, p. 233.</i>
4.2.11.5. Contents: 4x + 50 + 51 Field (RD, UDINT)	Indicated Standard Volume Accumulator (Barrels or Cubes) Channel A Accumulates the ISV barrels or cubic inches. Range is 9,999,999 unsigned double integer. The accumulator rolls over at 9,999,999.
4.2.11.6. Contents: 4x + 52 + 53 Field (RD, UDINT)	Indicated Standard Volume Accumulator (Barrels or Cubes) Channel B (Pulse Fidelity only) Accumulates the ISV barrels or cubic inches. Range is 9,999,999 unsigned double integer. The accumulator rolls over at 9,999,999.
4.2.11.7. Contents: 4x + 54 + 55 Field (RD, UDINT)	Gross Standard Volume Accumulator (Barrels or Cubes) Accumulates the GSV barrels or cubic inches. Range is 9,999,999 unsigned double integer. The accumulator rolls over at 9,999,999.
4.2.11.8. 4x + 56 + 57 Field (RD, FLOAT)	Corrected Product Density API 60 or API 15 if Metric Corrected Gravity or Density depending upon which table has been selected.

4.2.12. Report Setup Registers

4.2.12.1. Contents: 4x + 58 Register	Reserved for system use
4.2.12.2. Contents: 4x + 59 Register (WR, UINT)	Start of Day 'Hour' (0 - 23 military) This register is used only if reporting is enabled. This field is the hour at which a new day is determined to start. The value is entered in military time (0 - 23).
4.2.12.3. Contents: 4x + 60 Register (WR, UINT)	Start of Day 'Minute' (0 - 59) This register is used only if reporting is enabled. This field is the minute at which a new day is determined to start. The value entered is in the range (0 - 59).
4.2.12.4. Contents: 4x + 61 Register (WR, UINT)	Report Address Modulo 10000 High Word (XX0000) Registers $4x + 61$ and $4x + 62$ contain the $4x$ or $6x$ register address, in Modulo 10000 format, signifying the beginning of the report logging area. This field contains the two most significant digits of that 6-digit address. For example, if the report logging area begins at 401000, then enter 40 into this register. If report area begins at 412000, enter 41 into this register. If the report logging area begins at 623000, then enter 62 into this register.
4.2.12.5. Contents 4x + 62 Register (WR, UINT)	Report Address Modulo 10000 Low Word (40XXXX) Registers $4x + 61$ and $4x + 62$ contain the $4x$ or $6x$ register address, in Modulo 10000 format, signifying the beginning of the report logging area. This field contains the four least significant digits of that 6-digit address. For example, if the report logging area begins at 401000, enter 1000 into this register. If report area begins at 412000, enter 2000 in this register. If the report logging area begins at 623000, enter 3000 into this register.

4.2.13. SCADA Data in Implied Decimal Format Registers

4.2.13.1. Contents: 4x + 63 Register (RD, INT)	Temperature (XXX.XX) The temperature scaled in engineering units in implied decimal format For example: 100 x 175.3° = 17530)
4.2.13.2. Contents: 4x + 64 Register (RD, INT)	Pressure (XXX) The pressure scaled in engineering units in implied decimal format For example: 150 = 150)
4.2.13.3. Contents: 4x + 65 Register (RD, INT)	Gravity / Density (.XXXXX) or (XXX.X) The Gravity / Density scaled in engineering units in implied decimal format For example: For all tables 10,000 x 0.6578 = 6578 or for API 79.3 x 10 = 793).

4.2.14. Prover Data Registers

4.2.14.1. Contents: 4x + 66 Register (WR, UINT)	Internal Diameter of the Pipe Internal diameter of the pipe is stored and displayed in integer format. For example: A pipe with a ID of 10.000 is displayed / entered as 10.000 x 1,000 = 10,000. (Metric: 311.1 mm x 10 = 3111) Min. = 5.000 (1270 mm) Max. = 30.000 (7620 mm)
4.2.14.2.	Wall Thickness of the Pipe
Contents: 4x + 67 Register (WR, UINT)	The wall thickness of the pipe is stored and displayed in integer format. For example: A pipe with a wall thickness of .3650 is displayed / entered as .3650 x 10,000 = 3650. (Metric: 12.45 mm x 100 = 1245) Min. = .2500 (6.00 mm) Max. = 1.000 (25.40 mm)
4.2.14.3. Contents: 4x + 68 Register (WR, UINT)	Modulus of Elasticity for the pipe material x 10 ⁵ The Modulus of elasticity for pipe material. This value is displayed in millions. For example: Mild Carbon Steel has modulus of elasticity value of 30,000,000 and it is displayed / entered as 30,000,000 / 100,000 = 300. (Per PSI) (Metric: 193,000,000/100,000. = 1930 (Per KpA)) Min. = 200 (1500) Max. = 320 (2100)
4.2.14.4. Contents: 4x + 69 Register (WR, UINT)	Coefficient of Cubic Expansion per ° F or ° C of the Pipe Material The mean coefficient of cubical expansion per degree of the pipe material. This value is entered in integer format. For example: Mild Carbon Steel has a coefficient of cubic expansion value of .0000186 /F and is entered as 10,000,000 x .0000186 = 186. (Metric: .0000518/c x 10,000,000 = 518) Min. = 150 (300) Max. = 300 (520)

4.2.14.5. Contents: 4x + 70 + 71 Field (WR, UDINT)	Base Volume of Prover @ 60°F 0 PSI (Barrels, Cubes) This is the Base Volume of the Prover provided from the last water draw calibration run. The counts are stored in a double integer format (two registers) and an implied decimal point is used. For example: A count of 12.462801 would be displayed as 12.462801 x 1,000,000 = 12462801. Note: This multiple register field is a double unsigned integer using two consecutive registers such as 400100 and 400101. If the value of the register is viewed as a single unsigned register, the value would be represented as: 400100 = 11218 and 400101 = 10681. However, if 400100 is viewed as a 32-bit unsigned integer the value 700001234 will be displayed. To convert this value for display, use the ITOI block. (See <i>Integer-to-Integer (ITOI) Function Block, p. 243</i>) +71: Max. = 4, 294,967, 265
4.2.14.6. Contents: 4x + 72 Register (WR, UINT)	Number of consecutive proving runs This is the number of consecutive proving runs that a proving report will use to calculate the new meter factor. The minimum number of consecutive proves is 2 and the maximum is 10. Any number outside that range will generate a fault.
4.2.14.7. Contents: 4x + 73 Register (RD, UINT)	Current Number of the Consecutive Proving Runs This displays the current proving run in the proving report.
4.2.14.8. Contents: 4x + 74 + 75 Field (RD, UDINT)	Prover Raw Counts This is a display of the contents of the flow card prover channel indicated by the card setup registers (This is a read-only register and is for display only). The counts are stored in a unsigned double integer format (two registers) and an implied decimal point is used. For example: A count of 70000.1234 would be displayed as 70000.1234 x 10,000 = 700001234. Note: This multiple register field is a double unsigned integer using two consecutive registers such as 400100 and 400101. If the value of the register is viewed as a single unsigned register, the value would be represented as: 400100 = 11218 and 400101 = 10681. However, if 400100 is viewed as a 32-bit unsigned integer the value 700001234 will be displayed.
4.2.14.9. 4x + 76 + 77 Field (RD, FLOAT)	Calculated CTS The correction for the effect of temperature on steel (CTS) is stored in floating point format. For example: 1.00028 CTS See <i>Flow Equations and Algorithms, p. 233</i> for equation.

 4.2.14.10. 4x + 78
 Calculated CPS

 ... + 79 Field (RD,
 The correction for the effect of pressure on steel (CPS) is stored in floating point format.

 FLOAT)
 For example: 1.00023 CTS

4.2.15. Real-Time Process Variables Registers

4.2.15.1. Contents: 4x + 80 Register (WR, UINT)	Specific Gravity / Density Raw Counts (Meter) The raw value coming from the analog input card.
4.2.15.2. Contents: 4x + 81 Register (WR, UINT)	Specific Gravity / Density Conversion Range (Meter) Enter the value representing the conversion range supported by the analog input card being used. See <i>Analog Input Conversion Ranges, p. 253</i> for valid analog input conversion ranges.
4.2.15.3. Contents: 4x + 82 +83 Field (WR, FLOAT)	Specific Gravity / Density High Engineering Units (Meter) Enter the maximum Density in engineering units the function block can calculate from the raw value.
4.2.15.4. Contents: 4x + 84 +85 Field (WR, FLOAT)	Specific Gravity / Density Low Engineering Units (Meter) Enter the minimum Density in engineering units the function block can calculate from the raw value.
4.2.15.5. Contents: 4x + 86 +87 Field (WR, FLOAT)	Specific Gravity / Density Scaled Output (Meter) The Specific Gravity / Density scaled in engineering units. If Bit 6 of Command Word 1, PCFC is ON, then the value is manually entered. If Bit 6 of Command Word 1, PCFC is OFF, the scaled temperature is calculated from the raw value and the conversion range used. Bit 4 of Command Word 1, PCFC determines if the value entered is Specific Gravity (bit 4 = 0) or API 60 (bit 4 = 1).
4.2.15.6. Contents: 4x + 88 Register (WR, UINT)	Temperature Raw Counts (Meter) The raw value coming from the analog input card.
4.2.15.7. Contents: 4x + 89 Register (WR, UINT)	Temperature Conversion Range (Meter) Enter the value representing the conversion range supported by the analog input card being used. See <i>Analog Input Conversion Ranges, p. 253</i> for valid analog input conversion ranges.

4.2.15.8. Contents: 4x + 90 + 91 Field (WR, FLOAT)	Temperature High Engineering Units (Meter) Enter the maximum temperature in engineering units the function block can calculate from the raw value.
4.2.15.9. Contents: 4x + 92 + 93 Field (WR, FLOAT)	Temperature Low Engineering Units (Meter) Enter the minimum temperature in engineering units the function block can calculate from the raw value.
4.2.15.10. Contents: 4x + 94 + 95 Field (WR, FLOAT)	Temperature Scaled Output (Meter) The temperature scaled in engineering units. The scaled temperature is calculated from the raw value and the conversion range used.
4.2.15.11. Contents: 4x + 96 Register (WR, UINT)	Pressure Raw Counts (Meter) The raw value coming from the analog input card.
4.2.15.12. Contents: 4x + 97 Register (WR, UINT)	Pressure Conversion Range (Meter) Enter the value representing the conversion range supported by the analog input card being used. See <i>Analog Input Conversion Ranges, p. 253</i> for valid analog input conversion ranges.
4.2.15.13. Contents: 4x + 98 + 99 Field (WR, FLOAT)	Pressure High Engineering Units (Meter) Enter the maximum pressure in engineering units the function block can calculate from the raw value.
4.2.15.14. Contents: 4x + 100 + 101 Field (WR, FLOAT	Pressure Low Engineering Units (Meter) Enter the minimum pressure in engineering units the function block can calculate from the raw value.
4.2.15.15. Contents: 4x + 102 + 103 Field (RD, FLOAT)	Pressure Scaled Output (Meter) The pressure scaled in engineering units. The scaled pressure is calculated from the raw value and the conversion range used.

4.2.15.16. Contents: 4x + 104 Register (WR, UINT)	Temperature Raw Counts (Prover) The raw value coming from the analog input card.
4.2.15.17. Contents: 4x + 105 Register (WR, UINT)	Temperature Conversion Range (Prover) Enter the value representing the conversion range supported by the analog input card being used. See <i>Analog Input Conversion Ranges, p. 253</i> for valid analog input conversion ranges.
4.2.15.18. Contents: 4x + 106 + 107 Field (WR, FLOAT)	Temperature High Engineering Units (Prover) Enter the maximum temperature in engineering units the function block can calculate from the raw value.
4.2.15.19. Contents: 4x + 108 + 109 Field (WR, FLOAT)	Temperature Low Engineering Units (Prover) Enter the minimum temperature in engineering units the function block can calculate from the raw value.
4.2.15.20. Contents: 4x + 110 + 111 Field (WR, FLOAT)	Temperature Scaled Output (Prover) The temperature scaled in engineering units. The scaled temperature is calculated from the raw value and the conversion range used.
4.2.15.21. Contents: 4x + 112 Register (WR, UINT)	Pressure Raw Counts (Prover) The raw value coming from the analog input card.
4.2.15.22. Contents: 4x + 113 Register (WR, UINT)	Pressure Conversion Range (Prover) Enter the value representing the conversion range supported by the analog input card being used. See <i>Analog Input Conversion Ranges, p. 253</i> for valid analog input conversion ranges.
4.2.15.23. Contents: 4x + 114 + 115 Field (WR, FLOAT)	Pressure High Engineering Units (Prover) Enter the maximum pressure in engineering units the function block can calculate from the raw value.

4.2.15.24. Contents: 4x + 116 + 117 Field (WR, FLOAT	Pressure Low Engineering Units (Prover) Enter the minimum pressure in engineering units the function block can calculate from the raw value.		
4.2.15.25. Contents: 4x + 118 + 119 Field	Pressure Scaled Output (Prover) The pressure scaled in engineering units. The scaled pressure is calculated from the raw value and the conversion range used.		

(WR, FLOAT)

4.2.16. Pulse Fidelity Registers

4.2.16.1. Contents: 4x + 120 Register	Reserved for System Use
4.2.16.2. Contents: 4x + 121 Register	Reserved for System Use
4.2.16.3. Contents: 4x + 122 Register	Reserved for System Use
4.2.16.4. Contents: 4x + 123 Register (WR, UINT)	Pulse Fidelity Frequency Threshold (Pulse Fidelity Only) Sets the minimum frequency at which pulse fidelity will operate. Note: When pipeline flow is starting or stopping, the turbine will oscillate while it is not operating above optimal rating (the flow range the meter was designed for). This information is provided with your meter and some flow information is stamped on the meter itself.
4.2.16.5. Contents: 4x + 124 Register (WR, UINT)	Number of Count Errors in a Batch (Pulse Fidelity Only) Enter the acceptable number of count errors during a batch run.
4.2.16.6. Contents: 4x + 125 Register (RD, UINT)	Common Mode Errors (Pulse Fidelity Only) This is an eight-bit counter used to count common errors. These errors are caused when both input signals transition at the same time (in pulse fidelity).

4.2.17. Program Diagnostic Data Registers

4.2.17.1. Contents: 4x + 126 Register (WR, UINT	Filter Sample Rate Enter a number between 0 and 1200 for the sample rate at which the frequency of the meter is calculated. Note: The value in this field is x 10 ms.
.4.2.17.2. Contents: 4x + 127 Register (WR, UINT)	Base Temperature This register is used to change the base temperature at which the liquid is corrected to K. For example, $30.0C^{\circ} = (30.0 \times 100) = 3000$; enter into the register field.
4.2.17.3. Contents: 4x + 128 (RD, UINT)	Program Step The equations in the block are broken up into steps. This register can be used as a heart beat to determine if the block is functioning properly.
4.2.17.4. Contents: 4x + 129 (RD, UINT)	Error Code This displays the first error code for the block. Code 9999 is normal. Codes 0 to 118 represent the implied 4x register number that is in fault. For example: 65 would be calculated CTL $4x + 14 \dots + 15$. Codes 0 to 118 imply that the register has had an invalid IEEE floating point number entered into the block.
4.2.17.5. Contents: 4x + 130 Register	Reserved for System Use
4.2.17.6. Contents: 4x + 131	Reserved for System Use

This page is intentionally blank.

5. T23E Function Block

5

At a Glance Purpose This material describes the block structure representation, operation, and configuration of the T23E function block. What's in this Chapter? This chapter contains the following topics: Topic Page 5.1. T23E Function Block Structure 102 5.2. T23E Operation 104 5.3. T23E Function Block Configuration 105

5.1. T23E Function Block Structure

- Block pointers are invalid. These pointer must point to configured 4x registers.
- Block pointers overlap PCFC registers.
- Temperature / Density is outside of GPA TP-25 Table 23E range.
- Bottom Node has incorrect number of use registers for the block.
- Top Node has invalid node number.
- Bottom output is NOT used.

nique number between 0 and 15 (there must be no unused numbers or gaps on numbers; otherwise, the block will NOT function). Thus, there are only 16 maximum allowed in a system.
Note the instance number must match the top node numbering of the PCFC 24E blocks.
register entered in the middle node is the first of 6 contiguous holding rs that comprise the control block.
ttom node must contain a constant #0006 representing the length of the block in 4x registers.

5.2. T23E Operation

5.2.1. T23E Block Operation	This block was designed to convert an uncorrected density to a corrected density of 60F (15°C). This block is used in conjunction with the T24E and PCFC blocks to create a complete system for calculating NGLs / LPGs volume correction factors. This block is designed to communicate directly with the PCFC and T24E blocks and is not intended to be used without either. If a density is already corrected and a CTL is desired, the T23E block must still be used.		
	Note: The T23E block does not support metric NGLs/LPGs. If metric support is needed, use T23E and T24E in imperial mode and select the process values to be converted from Celsius to Fahrenheit and Kpa to PSIG. The CTL and CPL should be a very close approximation to the existing standard.		
5.2.2. Using the API 21.2 Audit Trail Formatting Standard	When using the API 21.2 Audit Trail formatting standard, the first four blocks must be used (for example 0, 1,2, and 3, Top node address). Blocks that do not require the API 21.2 Audit Trail formatting standard may use any number between 0 to 3. If the API 21.2 Audit Trail formatting standard is not used, then there are no special requirements and any number can be used as long as it follows the Top node address of the corresponding PCFC and T24E blocks. Once the API 21.2 Audit Trail formatting standard has been enabled, the values in the T23E are not accessible for the user to change. A password must be entered into the AUDT block to allow variable access. Therefore, Schneider Electric recommends that all parameters be entered before the API 21.2 Audit Trail bit has been enabled in Command Word 1, Bit 3 in the PCFC block and also set in Command Word 1, Bit 5 of the TMCI block.		

5.3. T23E Function Block Configuration

5.3.1. Overview The following material provides an overview of the T23E function block's register contents. A table that summarizes the register's contents and a detailed description of each register is provided. 5.3.2. Summary: The following data summarizes the contents of the registers. Setup and Register Access Data Type Comment Diagnostic Data ВD 4x + 0HFX T23E Revision Number (X.XX) Registers WR UINT 4x + 1Pointer to table in the T24F block 4x + 2WR UINT Pointer to table in the PCEC block 4x + 3RD HFX T23F Status RD INT 4x + 4T23E Program Counter 4x + 5RD INT T24E Program Counter 4x + 6 RD Reserved for System Use 5.3.3. Contents: T23E Revision Number (X.XX) 4x + 0 Register Displays current function block revision number. Format is (X.XX). For example, hex (RD. HEX) 0100 indicates revision 1.00. 5.3.4. Contents: **T24E Block Pointer** 4x + 1 Register This is a pointer to the middle node of the corresponding T24E block in the system. (WR. UINT) which will interface with the current T23E. The number is entered without the preceding data type 4 e.g. 401256 is entered as 1256.

5.3.5. Contents: PCFC Block Pointer

4x + 2 Register
(WR, UINT)This is a pointer to the middle node of the PCFC block where NGL / LPG calculations
are required. The number is entered without the preceding data type 4 e.g. 401256
is entered as 1256.

5.3.6. Contents: 4x + 3 Register (RD, HEX)	T23E Program Status This register contains communication status information and processing status of the block.			
	Bit	Description	Bit	Description
	1 MSB	Calculation done (If = 1)	9	Reserved for system use
	2	Control returned from T24E (If = 1)	10	Reserved for system use
	3	Reserved for system use	11	Reserved for system use
	4	Indicates first scan through main block loop (If = 1)	12	Reserved for system use
	5	Calculation error occurred. Notifies T24E block (If = 1)	13	Pass control to T24E (If = 1)
	6	Reserved for system use	14	Reserved for system use
	7	Reserved for system use	15	T24E calculating (If = 1)
	8	Reserved for system use	16 LSB	Error in calculation (If = 1) Bit 1, Fault Word 1 in PCFC tracks this bit or with T24E register $4x + 7$, Bit 16

5.3.7. Contents: 4x + 4 Register (RD, INT)	T23E Program Counter
5.3.8. Contents:	T24E Program Counter
4x + 5 Register	Either 10 (calculating) or 90 (resetting).
(RD, INT)	This register has no connection with $4x + 8$ register in T24E.
5.3.9. Contents: 4x + 6 Register	Reserved for System Use

6. T24E Function Block

6

At a Glance Purpose The material describes the block structure presentation, operation, and configuration of the T24E Function Block. What's in this Chapter ? This chapter contains the following topics: Topic Page 6.1. T24E Function Block Structure 108 6.2. T24E Operation 110 6.3. T24E Function Block Configuration 111

6.1. T24E Function Block Structure

The top node is the instance number of the block in the system. This must be a unique number between 0 and 15 (there must be no unused numbers or gaps between numbers otherwise the block will not function). Thus there are only 16 blocks maximum allowed in a system.
Note: The instance number must match the top node numbering of the PCFC and T23E blocks.
The 4x register entered in the middle node is the first of 11 contiguous holding registers that comprise the control block.
The bottom node must contain a constant #0011 representing the length of the control block in 4x registers.

6.2. T24E Operation

6.2.1. T24E Block This block was designed to convert a corrected density to a CTL value. T is used in conjunction with the T23E and PCFC blocks to create a complet for calculating NGLs / LPGs volume correction factors. This block is design communicate directly with the PCFC and T23E blocks and is not intended t without either. If a density is already corrected and a CTL is desired, the T2 must still be used.	
6.2.2. Using the API 21.2 Audit Trail	When using the API 21.2 Audit Trail formatting standard, the first four blocks must be used (for example 0,1,2, and 3 Top node address). Blocks that do not require the API 21.2 Audit Trail formatting standard may use any number after 0 to 3. If the API 21.2 Audit Trail formatting standard is not used, then there are no special requirements, and any number can be used as long as it follows the Top node address of the corresponding PCFC and T23E. Once the API 21.2 Audit Trail formatting standard has been enabled, the values in the T24E are not accessible for the user to change. A password must be entered into the AUDT block to allow variable access. Therefore, it is recommend that all parameters be entered before the Audit Trail has been enabled.

6.3. T24E Function Block Configuration

6.3.1. Overview The following material provides an overview of the T24E function block's register contents. The section begins with a table that summarizes the register's contents. Following the table is a detailed description of each register.

6.3.2. Summary:	The following data summarizes the contents of the registers.			
Setup and	Register	Access	Data Type	Content
Registers	4x + 0	RD	HEX	T24E Revision Number (X.XX)
-	4x + 1	RD		Reserved for System Use
	4x + 2	RD		Reserved for System Use
	4x + 3	RD		Reserved for System Use
	4x + 4	RD		Reserved for System Use
	4x + 5	RD		Reserved for System Use
	4x + 6	RD		Reserved for System Use
	4x + 7	RD	HEX	T24E Status
	4x + 8	RD	INT	T24E Program Step
	4x + 9	RD	UINT	PCFC Middle Node Address Modulo 10000 Low Word
	4x + 10	RD		Reserved for System Use
		I		
6.3.3. Contents: 4x + 0 Register (RD, HEX) 6.3.4. Contents:	T24E Revision Number (X.XX) Displays current function block revision number. Format is (X.XX).For example, hex 0100 indicates revision 1.00.			
4x + 1 Register			036	
	Deeewood	f O t	11	

6.3.3. Contents: 4x + 0 Register (RD, HEX)	T24E Revision Number (X.XX) Displays current function block revision number. Format is (X.XX).For example, hex 0100 indicates revision 1.00.
6.3.4. Contents: 4x + 1 Register	Reserved for System Use
6.3.5. Contents: 4x + 2 Register	Reserved for System Use
6.3.6. Contents: 4x + 3 Register	Reserved for System Use
6.3.7. Contents: 4x + 4 Register	Reserved for System Use

6.3.8. Contents: 4x + 5 Register	Reserved for System Use
6.3.9. Contents: 4x + 6 Register	Reserved for System Use
6.3.10. Contents: 4x + 7 Register (RD, HEX)	T24E Status This register contains communication status of the block with respect to T23E and also indicates processing status.

Bit	Description	Bit	Description
1 MSB	Calculation done (If = 1)	9	Reserved for system use
2	Reserved for system use	10	Reserved for system use
3	Reserved for system use	11	Reserved for system use
4	Reserved for system use	12	Reserved for system use
5	Error status from T23E block (error if = 1)	13	Reserved for system use
6	Reserved for system use	14	Reserved for system use
7	Reserved for system use	15	Indicates block working to T23E (If = 1)
8	Reserved for system use	16 LSB	Indicates calculation error. Bit 1, Fault Word 1 in PCFC tracks this bit or with T23E register $4x + 3$, Bit 16.

6.3.11. Contents: 4x + 8 Register (RD, INT)	T24E Program Step The equations in the block are broken up into steps. This register can be used as a heart beat to determine if the block is function properly.
6.3.12. Contents: 4x + 9 Register (RD, UINT)	PCFC Middle Node Address Modulo 10000 Low Word This register should be the lower digits of the PCFC middle node. For example, if the middle node is 400300, this value will be 300.
6.3.13. Contents: 4x + 10 Register	Reserved for System Use

Part III Data Logging and Report Generation

Purpose This part explains how to configure reporting and, in detail, the information available from the reports generated by the PCFC "virtual flow computer." The data logging in the PCFC was designed to meet the requirements of the API 2540. Chapter 21. Section 2, Part 10 Auditing and Reporting Requirements and industry acceptable practices. Reports are generated in the PLC's memory and can be accessed or printed by a number of methods, for example HMI, serial printer, or SCADA. The data can be viewed in real time from any of the previously mentioned devices. However, if the API 2540 21.2 Audit Trail Option is being used, only those PCFC blocks that are not protected by the AUDT block will be visible. For more information see the AUDT block in this manual What's in this This part contains the following chapters: Part? Chapter Chapter Name Page 7 Data Logging and Report Generation 115

At a Glance

This page is intentionally blank.

7. Data Logging and Report Generation

7

129

133

135

137

138

At a Glance

Purpose This chapter describes the data logging and report generation features of the PCFC. What's in this This chapter contains the following topics: Chapter? Topic Page 7.1. Overview of Data Logging and Reports 116 120 7.2. Batch Reports 122 7.3. Timed Reports 7.4. Meter Proving Reports Overview 123 7.5. Meter Proving Report Details (Registers 4x + 0 through 4x + 19)7.5. 124 7.6. Meter Proving Report Details (Registers 4x + 20 through 4x + 179) 126

7.7. Meter Proving Report Details (Registers 4x + 180 through 4x + 226)

7.8. The Last Meter Factor Table

7.9. Sample Meter Proving Report

7.11. Configuring the Time-of-Day Clock

7.10. Data Logging Operation

Generation

7.1. Overview of Data Logging and Reports

7.1.1. Data Logging For historical analysis, the PCFC function block has the ability to log data to a PLC's holding registers. When this option is selected, 492 registers are allocated to log the data to in either 4x or 6x registers.

Discussed later but presented here for convenience, there are four control table registers that must be configured for proper data logging to occur. Also, the time of day clock in the PLC must be configured.

Register	Content		
4x + 59	WR	UINT	Start of Day 'Hour' (0 - 23 military)
4x + 60	WR	UINT	Start of Day 'Minute' (0 - 59)
4x + 61	WR	UINT	Report Address Modulo 10000 High Word (00XX)
4x + 62	WR	UINT	Report Address Modulo 10000 Low Word (XXXX)

7.1.2. Types of Reports • batch end

The data storage area consists of three types of reports:

- - (triggered by a positive transition on the bottom input of the PCFCC block)
 - timed
 - daily
 - monthly
 - meter proving

These reports are triggered based on the report type such as batch (event triggered) or daily (time triggered).

The following table shows how the data storage area is subdivided by report type. Using bits 10 – 12 in the Command Word 1, PCFC the user can configure the number of previous batch reports. The address in the table below starts at the value in the 4x + 61 and 4x + 62 register.

For example: If 4x + 61 contains 40 and 4x + 62 contains 18000, 4x + 0 in the table is located at 418000. (See Report Setup Registers, p. 89)

Report Register	Report Type
4x +0 + 40	Current Batch
4x +41 + 81	Previous Batch
4x +82 + 122	Previous Batch - 1
4x +123 + 163	Previous Batch - 2
4x +164 + 204	Previous Batch - 3
4x +205 + 245	Previous Batch - 4
4x +246 + 286	Previous Batch - 5
4x +287 + 327	Previous Batch - 6
4x +328 + 368	Current Day
4x +369 + 409	Previous Day
4x +410 + 450	Current Month
4x +451 + 491	Previous Month

7.1.3. Report
RegisterEach report consumes 41 registers. The function block stores the following data into
each report. The following table provides a description of each register used to
configure the parameters for the report. The address starts at the 4x + 61 and 4x + 62 register.

Register Usage	Data Type	Data Description
4x +0	UINT	The Month when Report Started
4x +1	UINT	The Day when Report Started
4x +2	UINT	The Hour when Report Started
4x +3	UINT	The Minute when Report Started
4x +4	UINT	The Month when Report Ended
4x +5	UINT	The Day when Report Ended
4x +6	UINT	The Hour when Report Ended
4x +7	UINT	The Minute when Report Ended
4x +8 + 9	FLOAT	Average Temperature
4x +10 + 11	FLOAT	Average Pressure
4x +12 + 13	FLOAT	Average Density Corrected
4x +14 + 15	FLOAT	Average CTL
4x +16 + 17	FLOAT	Average CPL
4x +18 + 19	FLOAT	Average Meter Factor
4x +20	UINT	Average Temperature INT
4x +21	UINT	Average Pressure INT
4x +22	UINT	Average Density INT Corrected
4x +23	UINT	Average CTL Integer Portion
4x +24	UINT	Average CTL Decimal Portion
4x +25	UINT	Average CPL Integer Portion
4x +26	UINT	Average CPL Decimal Portion
4x +27	UINT	Average Meter Factor INT
4x +28	UINT	ISV Barrels or Cubes Modulo High
4x +29	UINT	ISV Barrels or Cubes Modulo Low
4x +30 + 31	UDINT	ISV Accumulator Channel A ISV accumulator will roll over at 9,999,999

Register Usage	Data Type	Data Description
4x +32 + 33	UDINT	ISV Accumulator Channel B ISV accumulator will roll over at 9,999,999
4x +34 + 35	UDINT	GSV Accumulator Channel GSV accumulator will roll over at 9,999,999
4x +36	UINT	GSV Barrels or Cubes Modulo High
4x +37	UINT	GSV Barrels or Cubes Modulo Low
4x +38	UINT	Average S W
4x +39	UINT	NSV Barrels or Cubes Modulo High
4x +40	UINT	NSV Barrels or Cubes Modulo Low

7.2. Batch Reports

7.2.1. Batch Report Sequence

The batch reports only use the following reports:

Current Batch

- Previous Batch –1
- Previous Batch –2
- Previous Batch –3
- Previous Batch –4
- Previous Batch –5
- Previous Batch -6
- Previous Batch -7

The batch reports are event-triggered by the third input of the block (Initiate Batch Report). The function block has the ability to manage batches. A batch's time frame can be different from batch to batch unlike daily and monthly reports. Batch reports are completed and subsequently started when input #3 is activated (positive transition). For historical analysis the function block will maintain a maximum of 7 previous batch reports. The number of batch reports is selectable by modifying bits 10 - 12 in Command Word 1 of the PCFC block. (See *Bit Summary: 4x + 1 Register (WR, BIN), p. 61*) Upon a new batch report, all older reports are shifted down until the oldest batch report gets deleted from the storage area.

7.2.2. Current Batch

The Current Batch displays the batch in progress. All values are being constantly updated until timed report (Daily or Monthly report) or "Batch" report is triggered by Input three of the function block. The Current Batch information is then moved to the Previous Batch Report for historical data.

7.2.3. PreviousThe Previous Batch holds historical data from the current batch prior to the "Initiate**Batch**Batch Report" (Third Input) being triggered.
If bit 1 of Command Word 1 of the PCFC block (M Factor Retroactive on Batch
Ticket) is ON, then the last value in the Meter Factor field will be used to recalculate
the entire batch using the new Meter Factor. (See *Bit Summary: 4x + 1 Register*
(*WR, BIN), p. 61*) The last meter factor will then be moved to the Average Meter
Factor Field in the report (if bit 1 of Command Word 2 of the PCFC block (Automatic
Prove) bit is set to 1 (See *Bit Summary: 4x + 2 Register (WR, BIN), p. 66*)).

7.2.4. Sample	Here is a sample Batch End report.
Batch End	
Report	

BATCH END REPORT					
Date: 09/26/01		Time: 14:07		Ticket#: 1211	
Product #: 12		API Table Sele	ected: 23B/24B		
Meter Run ID	101	102	105	109	
Batch Start Date	9/25/01	9/25/01	9/25/01	9/25/01	
Batch Start Time	9:00	3:00	6:00	6:30	
Batch End Date	09/26/01	9/25/01	09/26/01	09/26/01	
Batch End TIme	14:27	10:05	12:01	16:12	
Batch ISV Barrels	150123	120089	170891	200123	
Batch GSV Values	140001	100999	160912	190050	
Batch Flow Weighted Averages					
Temperature Deg. F	85.1	85.1	85.5	85.2	85.2
Pressure PSIG	150	151	150	149	152
Flowing Density API	64.1	64.1	63.7	63.9	63.9
Density Temp Deg. F	85.1	85.1	85.5	85.2	85.2
CTL	1.00251	1.00251	1.00257	.987341	.987341
CPL	1.0051	1.0051	1.0051	1.0051	1.0051
Meter Factor	1.0009	.9876	1.0001	1.2041	1.0023
K Factor	1000	987	1011	1055.5	1000

7.3. Timed Reports

7.3.1. Types of Timed Reports	The time-driven reports include daily and monthly reports. The Current Batch, Current Day, Current Month will all initially display the same data until the Current Day, Current Month has expired.			
7.3.2. Daily Reports	The function block will complete and then start a new daily report at the hour and minute supplied by the user. The function block will maintain information for the current day and the previous day.			
7.3.3. Monthly Reports	The function block will complete and then start a new monthly report at the hour and minute supplied by the user on the first of every month. The function block will maintain information for the current month and the previous month.			
7.3.4. Timed Report Sequence	The sequence is shown here.			
	Current Current Day/Month Day Data Data Not Recorded			

7.3.5. Time-of-
Day ClockThe PLC's Time of Day (TOD) clock determines the end of a Current Day report.
For example: The current time of the PLC is January 25, 2001 14:35 The Start of
Day Hour register is set to 15 hundred hours and the Start of Day Minute register is
set to 00. When the Day register increments to the next day the 26th the report will
not be generated until the hour and minutes are greater than the Start of Day
registers i.e. at time equal January 26, 2001 15:01.

7.4. Meter Proving Reports Overview

7.4.1. Enabling Proving Reports	The PCFC function block has the ability to log Proving data to PLC holding registers for historical analysis. This report is available when standard data logging is enabled. Further, the "Meter Proving Used" bit 9 of Command Word 1, PCFC must be ON and the number of proving runs (set in the $4x + 6$ register of the PCFC) must be greater than zero. When this option is selected, 1263 registers are allocated to log the data to in either 4x or 6x registers regions. The prove ticket size is 227 registers. The last Meter Factor table is 128 registers in length. The report registers start at the address set up in the $4x + 61$ and $4X + 62$ registers.		
	Note: If 16 PCFC blocks are configured with batch and proving reports, the minimum report size area is 28,080 registers.		
7.4.2. Data Storage Layout of Proving Reports	The layout below shows how the data storage area is subdivided by report type. Using bits 10 – 12 in Command Word 2, the user can configure the number of previous prove reports. Proving Report Register Layout Table		
	Report Register	Report Type	
	4x +492 + 718	Current Proving Report	
	4x +719 + 945	Previous Proving Report - 1	
	4x +946 + 1172 Previous Proving Report - 2		
	4x +1173 + 1399 Previous Proving Report - 3		
	4x +1400 + 1626 Previous Proving Report - 4		
	4x +1627 + 1754 Last Meter Factor table		

Note: Selecting Proving Reports Meter Proving Reports automatically include Batch and Timed Reports. The total number of registers used will be 1,755, 4x or 6x. See page *Overview of Data Logging and Reports, p. 116.*

7.5. Meter Proving Report Details (Registers 4x + 0 through 4x + 19)

7.5.1. Overview	This unit describes the meter proving report words for registers $4x + 0$ through $4x + 19$.				
	The registers are referenced with respect to the beginning of each of the Proving Reports listed in the Proving Report Register Layout Table in the section <i>Data Storage Layout of Proving Reports, p. 123.</i> For example, register $4x+1$ displays the Day in a Proving Report. In the first Previous Proving Report, the Day is register $4x + 947$. In the third Previous Proving Report, the Day is register $4x + 1174$. In the fourth Previous Proving Report, the Day is register $4x + 1401$. The system allows only four Previous Proving Reports.				
7.5.2. 4x +0 Register (UINT)	Month The month when the report started, in integer format.				
7.5.3. 4x +1 Register (UINT)	Day The day when the report started, in integer format.				
7.5.4. 4x +2 Register (UINT)	Hour The hour when report started (Military 0 to 23 Hr.), in integer format.				
7.5.5. 4x +3 Register (UINT)	Minute The minute when report started (Military 0 to 59 Min.), in integer format.				
7.5.6. Contents: 4x +4 Register (UINT)	Pipe Internal Diameter Internal diameter of the pipe is stored and displayed in integer format (for instance, a pipe with an internal diameter of 10.000 is displayed as 10.000 x 1,000 = 10,000).				
7.5.7. Contents: 4x +5 Register (UINT)	Pipe Wall Thickness The wall thickness of the pipe is stored and displayed in integer format (for instance, a pipe with a wall thickness of .3650 is displayed as .3650 x 10,000 = 3650).				
7.5.8. Contents: 4x +6 Register (UINT)	Pipe Elasticity The Modulus of elasticity for pipe material. This value is displayed in millions (for instance, Mild Carbon Steel has a pipe elasticity value of 30,000,000 and is displayed as 30,000,000 / 100,000 = 300).				

7.5.9. Contents: 4x +7 Register (UINT)	Cubic Expansion The mean coefficient of cubical expansion per degree of the pipe material. This value is displayed in integer format (for instance, Mild Carbon Steel has a cubic expansion value of .000186/°F and is displayed as 10,000,000 x .0000186 = 186).
7.5.10. Contents: 4x +8 Register (UINT)	API Tables This field stored the API table used to obtain the CTL. If there are two tables used to calculate the CTL only the last table is displayed. For instance, Crude Oil is used and Table 5A and Table 6A are used to calculate CTL. Only Table 6A will appear in the field.
7.5.11. Contents: 4x +9 Register (UINT)	 Product Name A number from 0 to 15 that represents a product name that the user determines (for instance, 1 = Crude Oil, 2= Premium, etc.). This field is used to retrieve the previous Meter Factor for that product that was stored. Note: A zero means product names are not used and no previous meter factor will be stored.
7.5.12. Contents: 4x +10 +13 Register (ASCII)	Meter Serial Number The meter serial number may be stored in these four registers. Enter alphanumeric data in ASCII format (for instance, PF11741G).
7.5.13. Contents: 4x +14 +17 Register (ASCII)	Meter ID The meter serial number may be stored in these four registers. Enter alphanumeric data in ASCII format (for instance, AXF11201).
7.5.14. Contents: 4x +18 Register (UINT)	Meter Size The size of the meter is stored and displayed in integer format (for instance, a meter that is 10.000 is displayed as $10.000 \times 1,000 = 10,000$).
7.5.15. Contents: 4x +19 Register (UINT)	Meter Type The type of the meter is stored and displayed in integer format. This field is user defined and can be any value between 0 and 65535 (for instance, 1= Turbine 2= Positive Displacement).

7.6 Meter Proving Report Details (Registers 4x + 20 through 4x + 179)

7.6.1. OverviewThis unit describes the meter proving report words for registers 4x + 20 through 4x + 179, which are 160 registers allotted for proving runs. A system may have 10 prove runs, and each run has 16 registers.
This unit presents the contents of the registers followed by a table indicating which registers are dedicated to which run and a table displaying the register functions.
The registers are referenced with respect to the registers in the Proving Report Register Layout Table. (See Data Storage Layout of Proving Reports, p. 123)
For example, register 4x + 20 of the Current Proving Report is register 4x + 492 + 20 or register 4x + 512.

7.6.2. Contents of Total Pulses

Registers

Total of pulses for a complete run, regardless of whether or not it is a Bi-directional or Uni-directional prover. The counts are stored in a double integer format (two registers) and an implied decimal point is used. For instance, a count of 70000.1234 is displayed as $70000.1234 \times 10,000 = 700001234$.

Note: This multiple register field is a double unsigned integer using two consecutive registers such as 400100 and 400101.

For example, if the value of the register is viewed as a single unsigned register, the value would be represented as: 400100 = 11218 and 400101 = 10681. However, if 400100 is viewed as a 32-bit unsigned integer the value 700001234 will be displayed.

Temperature Prover

Temperature at the Prover, displayed in floating point (for instance, 53.4 degrees).

Temperature Meter

Temperature at the Meter, displayed in floating point (for instance, 53.4 degrees).

Pressure Prover

Pressure at the Prover, displayed in floating point (for instance, 131.8 PSIG).

Pressure Meter

Pressure at the Meter, displayed in floating point (for instance, 131.8 PSIG).

Flow Rate

Gross Standard Volume flow rate, displayed in floating point (for instance, 1172.4 BBL/Hr).

Corrected Gravity

Corrected API gravity, displayed in floating point (for instance, 64.1 API 60).

Meter Frequency

Frequency of the Meter, displayed in floating point (for instance, 340.1 Hz).

7.6.3.	Register
Detail	Prover
Runs	

Registers assigned to a prover run		
Run Number	Registers Dedicated to the Run	
1	4x + 20 through 4x + 35	
2	4x + 36 through 4x + 51	
3	4x + 52 through 4x + 67	
4	4x + 68 through 4x + 83	
5	4x + 84 through 4x + 99	
6	4x + 100 through 4x + 115	
7	4x + 116 through 4x + 131	
8	4x + 132 through 4x + 147	
9	4x + 148 through 4x + 163	
10	4x + 164 through 4x + 179	

Run	Total Pulses	Temperature Prover	Temperature Meter	Pressure Prover	Pressure Meter	Flow Rate	Corrected Gravity	Meter Frequency
	UDINT	FLOAT	FLOAT	FLOAT	FLOAT	FLOAT	FLOAT	FLOAT
1	4x + 20 21	4x + 22 23	4x + 24 25	4x + 26 27	4x + 28 29	4x + 30 31	4x + 32 32	4x + 34 35
2	4x + 36 37	4x + 38 39	4x + 40 41	4x + 42 43	4x + 44 45	4x + 46 47	4x + 48 49	4x + 50 51
3	4x + 52 53	4x + 54 55	4x + 56 57	4x + 58 59	4x + 60 61	4x + 62 63	4x + 64 65	4x + 66 67
4	4x + 68 69	4x + 70 71	4x + 72 73	4x + 74 75	4x + 76 77	4x + 78 79	4x + 80 81	4x + 82 83
5	4x + 84 85	4x + 86 87	4x + 88 89	4x + 90 91	4x + 92 93	4x + 94 95	4x + 96 97	4x + 98 99
6	4x + 100 101	4x + 102 103	4x + 104 105	4x + 106 107	4x + 108 109	4x + 110 111	4x + 112 113	4x + 114 115
7	4x + 116 117	4x + 118 119	4x + 120 121	4x + 122 123	4x + 124 125	4x + 126 127	4x + 128 129	4x + 130 131
8	4x + 132 133	4x + 134 135	4x + 136 137	4x + 138 139	4x + 140 141	4x + 142 143	4x + 144 145	4x + 146 147
9	4x + 148 149	4x + 150 151	4x + 152 153	4x + 154 155	4x + 156 157	4x + 158 159	4x + 160 161	4x + 162 163
10	4x + 164 165	4x + 166 167	4x + 168 169	4x + 170 171	4x + 172 173	4x + 174 175	4x + 176 177	4x + 178 179

7.6.4. Register Register functions Detail: Functions

7.7. Meter Proving Report Details (Registers 4x + 180 through 4x + 226)

7.7.1. Overview	This section describes the meter proving report words for registers $4x + 180$ through $4x + 226$.
7.7.2. Contents: 4x +180 Register (UDINT)	Average Proving Pulses Average of the total pulses for all runs. The counts are stored in a double integer format (two registers) and an implied decimal point is used. For instance, a count of 70000.1234 is displayed as $70000.1234 \times 10,000 = 700001234$. Note: This multiple register field is a double unsigned integer using two consecutive registers such as 400100 and 400101. For example, if the value of the register is viewed as a single unsigned register, the value would be represented as: $400100 = 11218$ and $400101 = 10681$. However, if 400100 is viewed as a 32-bit unsigned integer the value 700001234 will be displayed.
7.7.3. Contents:	Average Temperature at the Prover
4x +182 +183	Average Temperature at the Prover for all runs, displayed in floating point (for
Field (FLOAT)	instance, 53.4 degrees).
7.7.4. Contents:	Average Temperature at the Meter
4x +184 +185	Average Temperature at the Meter for all runs, displayed in floating point (for
Field (FLOAT)	instance, 53.4 degrees).
7.7.5. Contents:	Average Pressure at the Prover
4x +186 +187	Average Pressure at the Prover for all runs, displayed in floating point (for instance,
Field (FLOAT)	131.8 PSIG).
7.7.6. Contents:	Average Pressure at the Meter
4x +188 +189	Average Pressure at the Meter for all runs, displayed in floating point (for instance,
Field (FLOAT)	131.8 PSIG).
7.7.7. Contents: 4x +190 +191 Field (FLOAT)	Average ISV / GSV Flow Rate Average Indicated Standard Volume / Gross Standard flow rate for all runs. Displayed in floating point (for instance, 1172.4 BBL/Hr). Note: This field will display ISV if Bit 3 of Command Word 2 is OFF and GSV if ON.
7.7.8. Contents:	Average API Corrected Gravity
4x +19 2 +193	Average corrected API gravity for all runs, displayed in floating point (for instance,
Field (FLOAT)	64.1 API 60).

7.7.9. Contents:	Average Meter Freq
4x +194 +195	Average frequency of the Meter for all runs, displayed in floating point (for instance,
Field (FLOAT)	340.4 Hz).
7.7.10. Contents: 4x +196 +197 Field (UDINT)	Base Volume Prover Base Volume of the Prover provided from the last water draw calibration run. The counts are stored in a double integer format (two registers) and an implied decimal point is used (for instance, a count of 12.462801 is displayed as 12.462801 x $1,000,000 = 12462801$). Note: This multiple register field is a double unsigned integer using two consecutive registers such as 400100 and 400101. For example, if the value of the register is viewed as a single unsigned register, the value would be represented as: 400100 = 11218 and 400101 = 10681. However, if 400100 is viewed as a 32-bit unsigned integer the value 700001234 will be displayed.
7.7.11. Contents:	CTS
4x +198 +199	Correction for the effect of temperature on steel (CTS) is stored in floating point
Field (FLOAT)	format (for instance, 1.00028 CTS).
7.7.12. Contents: 4x +200 +201 Field (FLOAT)	CPS Correction for the effect of pressure on steel (CPS) is stored in floating point format (for instance, 1.00023 CTS).
7.7.13. Contents:	CTL
4x +202 +203	Correction for the effect of temperature on liquid (CTL) is stored in floating point (for
Field (FLOAT)	instance, .98162 CTL).
7.7.14. Contents: 4x +204 +205 Field (FLOAT)	CPL Correction for the effect of pressure on liquid (CPL) is stored in floating point (for instance, 1.00071 CPL).
7.7.15. Contents: 4x+206 +207 Field (FLOAT)	Total ISV BBLs The value of the ISV totalizer at the beginning of the batch / prove report in double integer format (0 to 9,999,999 BBLs).
7.7.16. Contents:	Batch ISV BBLs
4x +208 +209	The value of the Batch ISV when the first proving run started. Stored in unsigned
Field (FLOAT)	integer format (0 to 65535 BBLs)

7.7.17. Contents:	Calculated Meter Factor
4x +209 +210	The calculated Meter Factor based on the number of consecutive runs made during
Field (FLOAT)	the prove report. Stored in floating point format (for instance, 1.00230 M Factor)
7.7.18. Contents:	% Change in MF to Prev. MF
4x +211 +212	The percentage of change in the MF from the previous MF. Stored in floating point
Field (FLOAT)	format ($2\% = 0.02$).
7.7.19. Contents:	K Factor
4x +213 +214	This is the K Factor (pulses per unit volume) of the meter during the proving run.
Field (FLOAT)	Stored in floating point format (for instance, 1055.250).
7.7.20. Contents: 4x +215 +216 Field (UINT)	Calculated K Factor This is the K factor that has been calculated based on the new Meter Factor. This number can be used to adjust the Meter Factor to 1.0 if desired. Stored in floating point format (1052.828).
7.7.21. Contents:	CCFP
4x +217 +218	Combined Correction Factor Prover (See <i>Flow Equations and Algorithms, p. 233</i> for
Field (FLOAT)	Prover calculations). Stored in floating point format (1.0057).
7.7.22. Contents:	CCFM
4x +219 +220	Combined Correction Factor Meter (See <i>Flow Equations and Algorithms, p. 233</i> for
Field (FLOAT)	Meter calculations). Stored in floating point format (1.0057).
7.7.23. Contents: 4x +221 +222 Field (UDINT)	Corrected Prover Volume The corrected volume of the prover (See <i>Flow Equations and Algorithms, p. 233</i> for Prover Calculations). This is the calculated Corrected Prover Volume. It is stored in a double integer format (two registers) and an implied decimal point is used (for instance, A count of 12.462801 is displayed as $12.462801 \times 1,000,000 =$ 12462801). Note : This multiple register field is a double unsigned integer using two consecutive registers such as 400100 and 400101. For example, if the value of the register is viewed as a single unsigned register, the value would be represented as: $400100 = 11218$ and $400101 = 10681$. However, if 400100 is viewed as a 32-bit unsigned integer the value 700001234 will be displayed.

7.7.24. Contents: 4x +223 +224 Field (UDINT)	Corrected Meter Volume The corrected volume of the prover (See <i>Flow Equations and Algorithms, p. 233</i> for Prover Calculations). This is the calculated Corrected Prover Volume. It is stored in a double integer format (two registers) and an implied decimal point is used. For instance, a count of 12.462801 is displayed as $12.462801 \times 1,000,000 =$ 12462801). Note : This multiple register field is a double unsigned integer using two consecutive registers such as 400100 and 400101. For example, if the value of the register is viewed as a single unsigned register, the value would be represented as: $400100 = 11218$ and $400101 = 10681$. However, if 400100 is viewed as a 32-bit unsigned integer the value 700001234 will be displayed.
7.7.25. Contents: 4x +225 +226 Field (UDINT)	Metered Volume The Metered volume is the Total Average Counts / K Factor. This is the calculated Metered Volume. It is stored in a double integer format (two registers) and an implied decimal point is used. For instance, a count of 12.434211 is displayed as 12. 434211 x 1,000,000 = 12434211). Note : This multiple register field is a double unsigned integer using two consecutive registers such as 400100 and 400101. For example, if the value of the register is viewed as a single unsigned register, the value would be represented as: 400100 = 11218 and 400101 = 10681. However, if 400100 is viewed as a 32-bit unsigned integer the value 700001234 will be displayed.

7.8. The Last Meter Factor Table

7.8.1. Overview	The Last Meter Factor table stores the Last Meter Factor used for the specific product used. For instance, Premium Gasoline ISV Flow Rate 1201 BBL /HR On 3/ 22/02 with a meter factor of 1.0029. The Last Meter Factor Table can hold up to 16 different products. When a new Meter Factor is calculated, the previous Meter Factor is used. The loadable looks at the product name, finds the previous Meter Factor, and applies it to the new Meter Factor calculation. Data is stored based on its product name (located in the 4x + 9 register in the PCFC block) in the loadable.			
7.8.2. Accessing Values in the Last Meter Factor Table	 To access the values in the table by product name and field, use the following formula: Table Offset + Offset + (Product Name x 8) = Desired Value Table Offset is the combination of the contents of the 4x + 61 and 4x + 62 registers + 1627 			
	$\{4x + 61, 4x + 62\} + 1627$			

For example:

- 4x + 61 = 40
- 4x + 62 = 9000
- Table offset = 410627
- Offset is the field selected from the following list. (See page Meter Proving Report Details (Registers 4x + 0 through 4x + 19), p. 124.)
 - 0 = Meter Factor
 - 2 = Ave ISV
 - 4 = Month
 - 5 = Day
 - 6 = Hour
 - 7 = Min.
- Product Name is the record (row).

7.8.3. Example: Premium Gasoline

- In our example, Premium is the Product Name, which is equivalent to an integer value of 4, and the desired value is Last Meter Factor.
 - 1627 + 0 + (4x8) = 32, and the last meter factor table starts at offset 1627.
 - 1627 + 0 + 32 = 1659, and if your report starting address was 1100, then the actual address would be 2759.

7.8.4. Register Contents by Offset	The following sections describe the last meter factor words, listed in order of offset.
7.8.5. Contents: 4x +0 +1 (Product Name * 8) (FLOAT)	Last Meter Factor (0 to 15) The last Meter Factor Stored for this product. This value is used to compare the new Meter Factor against the old value.
7.8.6. Contents: 4x +2 +3 (Product Name * 8) (FLOAT)	Indicated Standard Volume BBL/HR (0 to 15) Average ISV flow rate at the Last Meter Factor stored.
7.8.7. Contents: 4x +4 (Product Name * 8) (UINT)	Last Month (0 to 15) Date when the Last Meter Factor was calculated.
7.8.8. Contents: 4x +5 (Product Name * 8) (UINT)	Last Day (0 to 15) Date when the Last Meter Factor was calculated.
7.8.9. Contents: 4x +6 (Product Name * 8) (UINT)	Last Hour (0 to 15) Time when the Last Meter Factor was calculated.
7.8.10. Contents: 4x +7 (Product Name * 8) (UINT)	Last Min. (0 to 15) Time when the Last Meter Factor was calculated.

7.9. Sample Meter Proving Report

7.9.1. Report Sample meter proving report. Sample

Meter Proving Report Date: 08-03 Time: 10:11 Prove Data:									
Diameter Inches: 10000			Wall Thick In: 365 E			Elasticity: 30	Elasticity: 30 x 10^6		
Cubic Exp.: .186 x 10 ^-4			Table Selected: 24A Proc			Product Nan	ne: 7		
Meter Data									
Serial Numb	er: PF11741	G	Meter ID: A	XF11201		Meter Size:	50000		
Meter Type:	1		Total BBL:	9,999,999		Batch Net B	Batch Net BBLs: 1619		
Previous M.	F.: 1.0025 @	ISV BBL/H:	1185.9 Date:	07-29 Time:	14:31				
Data From 0	Consecutive F	Prove Runs:							
Counts	Temperat	ure Deg. F	Pressur	e PSIG	Flowrate	Density	Motor From		
Run	Total	Prover	Meter	Prover	Meter	ISV.BBL/H	@60F	Meter Freq	
1	13120.0	53.4	53.4	131.8	131.8	1172.3	64.1	340.0	
2	13121.0	53.4	53.4	131.6	131.6	1172.7	64.1	341.1	
3	13121.0	53.4	53.4	131.3	131.3	1172.0	64.1	342.0	
4	13122.0	53.4	53.4	131.0	131.0	1172.4	64.1	342.0	
5	13122.0	53.4	53.4	131.1	131.1	1172.5	64.1	342.0	
Avg	13121.2	53.4	53.4	131.4	131.4	1175.5	64.1	341.42	
K Factor: 10	55.25	Max. Count	Dev Betweer	n Runs .02%		15. New K F	actor: 1052.	328	
Calculated [Calculated Data for Prover								
1. Base Volume of Prover, Barrels						12.462800			
2. Correction Factor for the Effect of Temperature on Steel (CTSP)						.99990			
3. Correction Factor for the Effect of Pressure on Steel (CPSP)						1.00010			
4. Correction Factor for the Effect of Temperature on a Liquid (CTLP)							1.00470		
5. Correction Factor for the Effect of Pressure on a Liquid (CPLP)						1.00100			
6. Combined Correction Factor (Lines 2 x 3 x 4 x 5)						1.0057			
7. Corrected Prover Volume, Barreis (Line 1 x Line 6) 12.533840									
Calculated Data for Meter									
8 Metered Volume, Barrels 9 Correction Factor for the Effect of Temperature on a Liquid (CTLM)						12.434211			
9. Correction Factor for the Effect of Lemperature on a Liquid (CTLM)						1.00470			
10. Confection Factor for the Effect of Pressure on a Liquid (CPLM)						1.00100			
12. Corrected Meter Volume, Barrels (Line 8 x Line 11)						12.505080			
13. Meter Factor (Line 7 / Line 12)							1.0023		
14. % Change In Meter Factor From Previous Meter Factor						.02			

7.10. Data Logging Operation

7.10.1. Enabling Logging	The function block will log data to the user defined storage area as long as input #2 of the function block is enabled.					
7.10.2. Data Logging Configuration	There are five control table registers that must be configured for proper data logging to occur.					
	Register	Conter	nt			
	4x + 59	WR	UINT	Start of Day 'Hour' (0 - 23 military)		
	4x + 60	WR	UINT	Start of Day 'Minute' (0 - 59)		
	4x + 61	WR	UINT	Report Address Modulo 10000 High Word (00XX)		
	4x + 62	WR	UINT	Report Address Modulo 10000 Low Word (XXXX)		
	L	1	- 1			

7.11. Configuring the Time-of-Day Clock

7.11.1. Time-of-Day Clock: First Register (4x + 0) When a 4x holding register assignment is made in the Concept panel software's configurator for the time of day (TOD) clock, that register and the next seven consecutive registers (4x ... 4x + 7) are set aside in the PLC configuration to store TOD information.

The block of registers is implemented as follows:

7.11.2. Time-of-
Day Clock:
Registers 4x + 1
4x + 7

The next seven consecutive registers represent time-of-day clock values as shown here.

Register	Value
4x + 1	Day of week (Sunday = 1, Monday = 2, etc.)
4x + 2	Month of the year (Jan. = 1, Feb. = 2, etc.)
4x + 3	Day of the month (1 31)
4x + 4	Year (00 99) (01 = 2001, 02 = 2002, etc.)
4x + 5	Hour in military time (0 23)
4x + 6	Minute (0 59)
4x + 7	Second (0 59)

7.11.3. Time-of-
Day ClockFor example, if you configured register 40500 for your TOD clock, set the bits
appropriately as shown above, then read the clock values at 9:25:30 on Tuesday,
July 16, 2001, the register values displayed in Decimal format would read:

Register	Value
40500	24576
40501	3
40502	7
40503	16
40504	1
40505	9
40506	25
40507	30

This page is intentionally blank.

Part IV API 21.2 Audit Trail Function

IV

This unit de using the A	scribes the AUDT function block, which ena PI 21.2 Audit Trail formatting standard.	bles to log and store records
This part co	ontains the following chapters:	
Chapter Chapter Name	Page	
8	AUDT Function Block	143
	This unit de using the A This part co Chapter 8	This unit describes the AUDT function block, which enausing the API 21.2 Audit Trail formatting standard.This part contains the following chapters:ChapterChapterChapter Name8AUDT Function Block

This page is intentionally blank.

8. AUDT Function Block

8

At a Glance

Purpose	This material describes the block structure representation, operation, and configuration of the AUDT Function Block.						
What's in this Chapter?	This chapte	This chapter contains the following sections:					
	Section	Торіс	Page				
	8.1	AUDT Representation and Operation	145				
	8.2	AUDT Configuration—Block Registers	160				
	8.3	AUDT Configuration—Report Registers	175				

This page is intentionally blank.
8.1 AUDT Representation and Operation

At a Glance

Purpose	This section describes the block structure representation and operation of the AUDT function block.		
What's in this	This section contains the following topics:		
Section?	Торіс	Page	
	8.1.1. AUDT Function Block Structure	146	
	8.1.2. AUDT Operation	147	
	8.1.3. AUDT Setup	149	
	8.1.4. AUDT Security	151	
	8.1.5. AUDT Audit Trail Records	153	
	8.1.6. AUDT Audit Trail Records an Example	155	

8.1.1. AUDT Function Block Structure

8.1.2. AUDT Operation

8.1.2.1. AUDT Block Operation The AUDT block provides a system of security and of Audit logging for the liquid flow loadable block suite (per the API 2540 Chapter 21 Flow Measurement Using Electronic Metering Systems Section 2 Part 10 Auditing and Reporting Requirements). In a single PLC, the AUDT block only supports the first four instances of a liquid flow loadable function block. However, an additional 12 virtual flow computers may exist in the system but have no protection or audit trail 21.2 security.

The AUDT block provides three access levels of security: Operator, Technician, and Privileged. Each access level builds on the next level. Without the proper access level, no changes (flow parameters, configuration, or asset information) may be made to the block.

Log	Function
Configuration	Tracks changes made by the user and logs old and new values, time and date, User ID, and Accumulated flow at the time of change
Alarm	Records PCFC alarms in the system, old values, new values, time, date, User ID, and Accumulated flow at the time of change
Event	Records PCFC events in the system, old values, new values, time, date, User ID, and Accumulated flow at the time of change

The block provides several different logging and reporting databases.

The audit trail logs are in a protected memory location that is not accessible either to ladder-logic programming or to communications links into the PLC. The log data can only be viewed through the 4x or 6x registers that are configured to view a copy of the data in the logs.

There can only be one AUDT block in a system. This block was designed to store and process the API 21.2 Audit Trail. When using the API 21.2 Audit Trail the first four blocks of the PCFC are the **only blocks** that can be used with the AUDT block (for example: 0, 1, 2, and 3 Top node address). Blocks that do not require Audit Trail may use any number after 0 to 3. A Passcode must be entered into the AUDT block to allow changing of flow element and parameters. Changes may be made directly to the block.

Note: Complete Downloads Once the AUDT block has been configured and running in a working system, online changes can be made without affecting log contents. However, a complete download will destroy all logged information.

8.1.3. AUDT Setup

8.1.3.1. Platforms The AUDT function block is supported on the following PLCs. Supported Product Family Product Number Quantum 140 CPU 434 12A

Note: If you are not using on of these PLCs, you will be unable to run the AUDT block.

140 CPU 534 12A

8.1.3.2. Initial Setup of the PCFC Block and TMCI Block

Schneider Electric recommends that all parameters in all blocks be entered before enabling the AUDT block. Once the block has been enabled and the TMCI and PCFC audit trail command bits have been set to 1, the TMCI and PCFC blocks will not allow further modification without Passcode permissions.

The block can support up to four API 21.2 Audit Trail formatting standards at a time depending upon the memory that is available in the controller. The memory used for the audit trail formatting standard consumes program logic space. So, only controllers with a minimum 32K of user programming space will be able to use the AUDT block.

The following activities should be performed in the order indicated.

Step	Action
1	Program TMCI and PCFC block parameters.
2	Enable the AUDT block.
3	Set the audit trail command bits in the PCFC (Command Word 1, bit 3) and TMCI (Command Word 1, bit 5) blocks.
4	Logout of the AUDT block.
5	Login to the AUDT block. Once logged in to the AUDT block, you can 1. Make changes to block parameters, and 2. System logs changes.

8.1.3.3. Determining How Much Memory Is	The heap size of the loadable is used to store the audit trail so it must be adjusted to allow for the number of audit trails desired. AUDT Heap Size Table	
Needed	Number of Audit Trails	Heap Size Needed in Paragraphs
	4	2075

1	2975
2	5950
3	8925
4	11900

8.1.3.4. Configuring AUDT Block— First Time

All configuration information for the AUDT block must be filled in first before the AUDT block can be locked down.

Before attempting to log into the AUDT block, the TMCI Audit Trail bit must be ON, and at least the first PCFC block (block zero) Audit Trail bit must be ON. Otherwise, the AUDT block will not allow the user to login.

Minimum configuration requirements:

AUDT Block Registers	Minimum Configuration	Requirements
4x + 1, Bit 1	Command Word	Configured for at least one audit trail ("Audit Trail PCFC 0" set to 1)
4x + 3	First PCFC Block Pointer	Must point to a valid PCFC block This register contains the 4x address without the '4.' For example, 413570 is entered as 13570.
4x + 7	Report Address Modulo 10000 High Word	Set to report area and used to view audit trail logs, for example: 40 or 60
4x + 8	Report Address Modulo 10000 Low Word	Set to report area and used to view audit logs as above, for example, 1000

Log into the AUDT block as a privileged user and then logout.

The block is now initialized and is locked down. No changes can be made until the user access Passcode is entered. (See *Default Passcodes, p. 151*)

8.1.4. AUDT Security

8.1.4.1. Login Procedure

Log into the system using the AUDT block.

To access security level parameters or functions,

Step	Action
1	Enter the User Identification $(4x + 9)$.
2	Enter the User Passcode (4x + 10).
3	Toggle the middle input (Positive Transition) of the AUDT block.

Correct and incorrect login results are described here.

User ID and Passcode	Result
Correct	The block clears the Passcode register and sets to 1 bit 16 of the Fault Word $(4x + 2)$. Note : This action will not generate a fault on the block. An Alarm log entry will be made recording the user ID, time, and data stamp.
Incorrect	Block clears both fields and makes an entry in the Alarm log

Note: Logging in while logged in Attempting to log in to the AUDT block while already logged in, can cause unexpected block operation.

8.1.4.2. Default Passcodes

Passcodes for each user level

User Level	Type of User	Default Passcode
100	Privileged	12345
200	Technician	1234
300	Operator	123

8.1.4.3. Logout Setting bit 12 ("Logout All") of the AUDT Command Word logs the user out. An Alarm Procedure log entry will be created, and bit 16 of the fault word ("User Logged In") will be set to zero.

Note: If you are not logged into the AUDT, then the "Logout All" bit will not reset to zero.

8.1.4.4. Changing a Passcode Passcode you must login as a Privileged user. (See *Contents: 4x + 9 Register (WR, UNIT), p. 172*)

To change a Privileged passcode:

Step	Action
1	Enter the User Identification = 100.
2	Enter the passcode desired in the Passcode field (0 to 65535).
3	Set bit 10 of the Command Word in the AUDT block to 1. Note: If the passcode has been changed successfully, then the User ID and Passcode field will be cleared.

To change a Technician or Operator passcode:

Step	Action
1	Enter the User Identification = 200 or 300.
2	Enter the passcode desired in the Passcode field (0 to 65535).
3	Set bit 11 of the Command Word in the AUDT block to 1. Note: If the passcode has been changed successfully, then the User ID and Passcode field will be cleared.

8.1.4.5. Procedure for Lost Passcode

Note: RECOVERING A PASSCODE

If for some reason the Privileged passcode is changed or lost, there is no way to recover it. The user/programmer must reload the program to unlock the system. Downloading a new program will destroy all log information.

8.1.5. AUDT Audit Trail Records

8.1.5.1. Reading Audit Trail Records The audit trail logs are in a protected memory location, which is not accessible either to ladder logic programming or to communications links into the PLC. The log data can only be viewed through the 4x or 6x registers set up as "memory windows," which view a copy of the data in the logs.

Note: All access levels can read the audit trail logs.

User must log in with at least Operator access to view log data. (See *Login Procedure, p. 151*)

Step	Action
1	Enter the PCFC block number (top node value) containing the audit log data in the Block Select field $(4x+11)$.
2	Enter the type of record in the Record Type field $(4x+12)$. The table below lists valid record types and log parameters for each type.

Log table

Record Type		Range	No Records	View Register Location
0	Configuration	(0 to 499)	500	4x +0
1	Alarm	(0 to 249)	250	4x +0
2	Event	(0 to 249)	250	4x +0
3	Base Configuration	(0 to 0)	1	4x +24
4	Current Configuration	(0 to 0)	1	4x +24
5	Batch Report	(0 to 11)	12	4x +108
6	Prove Report	(0 to 3)	4	4x +150
7	Last Meter Factor Table (read)	(0 to 15)	16	4x +376
8	Last Meter Factor Table (write)	(0 to 15)	16	4x + 376

Step	Action
3	Enter the record number of the record to view in the Record Select field (4x+13).
	See the log table preceding for the number of records in the log.
	If a record type has one record, then 0 should be entered in the Record Select field.
	The log records are stored in a ring buffer.
	The ring buffer fills from record 0 to the end of the buffer. Once the buffer is full, the next record will be record 0 again. This overwrites the previous data in record 0. The next record will be record 1 again and so forth. This implies that the Current Record field $(4x+14)$ does not necessarily indicate the number of records in the log.

Continuing from Step 4,

The record will be visible at the register offset shown in the 'View Register Location' column of the table. See the table in the section *Understanding the Solution to the Example, p. 155.* 4x+0 is the location referenced by the values in the Report Area Type (4x+7) and Report Area Offset (4x+8) registers of the AUDT block. The other offset values are referenced with respect to 4x+7 and 4x+8. See Section 8.3 AUDT Configuration-Report Registers for a detailed explanation of the register layout for each record type.

Note: About record types Certain record types share the same view register locations, for example, Configuration / Alarm / Event (4x+0), Base Configuration / Current Configuration (4x+24). Thus, only one record of one of these types may be viewed at a time.

8.1.6. AUDT Audit Trail Records an Example

8.1.6.1. AnLook at record 202 in the Configuration log of PCFC block 0. The Techr passcode is 1234. The AUDT block is located at 400800. The audit log begins at 611000.			
8.1.6.2.	First, Log in		
Understanding the Solution to	Step Action		
the Example	1	Set 4x+9 to 200. 200 is Technician level.	
	2	Set 4x+10 to 1234. 1234 is the default passcode for a Technician.	
	3	Toggle middle input on AUDT block.	
	4	 Result 1. 4x+10 is set to 0 by the block. 2. Fault word, bit 16 is set (=1). 	
		You are now logged into the block.	

Next, enter PCFC number and record type.

Step	Action
1	Set 4x+11 to 0. 0 is the PCFC block number.
2	Set 4x+12 to 0. 0 is the Configuration record type)
3	Result 1. 4x+14 shows 333 (or some other current record number).

Then, enter record number to view.

Step	Action
1	Set 4x+13 to 202. 202 is the record number to view.
2	Set up RDE to view registers 611000 - 611023 according to data types shown in section Table of Configuration, Alarm, and Event Records. (See <i>Table of Configuration, Alarm, and Event Records, p. 177</i>)
3	Result 1. Parameters for record 202 now visible in RDE as shown in table below.

8.1.6.3. Example	Table generated				
Configuration	Configuration Record	Value	Report Register		
202	Configuration Number	202	4x + 0		
	Record Month	02	4x + 1		
	Record Day	23	4x + 2		
	Record Year	03	4x + 3		
	Record Hour	09	4x + 4		
	Record Minute	35	4x + 5		
	Record Second	32	4x + 6		
	User Identification	200	4x + 7		
	Parameter Index	21	4x + 8		
	Alarm / Event Value	0	4x + 9		
	Old Value Binary Format	0	4x + 10		
	New Value Binary Format	0	4x + 11		
	Old Value UINT Format	0	4x + 12		
	New Value UINT Format	0	4x + 13		
	Old Value UDINT Format	0	4x + 14 15		
	New Value UDINT Format	0	4x + 16 17		
	Old Value FLOAT Format	0.9991	4x + 18 19		
	New Value FLOAT Format	0.9993	4x + 20 21		
	ISV Accumulated	123451	4x + 22 23		

The preceding table is a sample of a Configuration record for the 202nd record.

Note: The sample was recorded on Feb. 23, 2003 at 9:35AM 32 seconds. The user was a Technician. The parameter changed was Meter Factor (21 see Parameter table). Old value was 0.9991, new value, 0.9993. The ISV totalizer was 123451 bbls accumulated.

8.1.6.4. Record Each audit log record contains fields for Old and New Value in several formats for example, UINT, FLOAT. The data will be displayed only in one format. The display format depends on the value in Parameter Index.

Snapshot of the audit log record starting at Parameter Index and ending at New Value FLOAT format

Parameter Index	21
Alarm / Event Value	0
Old Value Binary Format	0
New Value Binary Format	0
Old Value UINT Format	0
New Value UINT Format	0
Old Value UDINT Format	0
New Value UDINT Format	0
Old Value FLOAT Format	0.9991
New Value FLOAT Format	0.9993

From the preceding example, the Record Type is 0 (Configuration), and the Parameter Index is 21. Using the table in (*AUDT Report Logging—Detail: Index of Configuration Parameters, p. 181*), find Parameter Index 21 (Meter Factor).

The table entry for Index 21

Parameter Index	Data Type	Description of the Data	
21	FLOAT	Meter Factor Displays the Old and New Value for the parameter.	

From the table entry, we see the Meter Factor (Parameter Index 21) is Data Type FLOAT. So, the data values appear in the Old Value FLOAT Format and New Value FLOAT Format registers. The Description field gives the name of the parameter described by the Parameter Index.

8.1.6.5. Force a The system allows the forcing of process variables for purposes such as no online densitometer (to enter a gravity) or faulty pressure transducer. Forcing is monitored and logged. When a force has occurred, the force values are not recorded in the configuration log but are recorded in the batch end reports and prove reports

When the AUDT block is used, the system by default makes the process variables' Raw Data fields (PCFC block 4x + 80, 4x + 88, 4x + 96, 4x + 104, 4x + 112) into pointers to input 3x registers. Thus, no forcing of variables is allowed. When the Process Variable Force mode is used, any or all variables can be manually set.

To force a process variable, the user must log in as a Technician or higher and set the appropriate force bit (bits 5-8 depending on which PCFC values will be forced) in the Command Word of the AUDT block. Once this bit is set to 1, the user / programmer can configure from where the process variables will receive their data.

This process is achieved by setting the command words in the PCFC block. For the Meter side, use Command Word 1 bits 6, 7, and 8; and for the Prover side, use Command Word 2, bits 7 and 8 (See PCFC documentation for complete instructions). Once the appropriate bits have been set, log out of the AUDT block.

The user / programmer can now force values in the fields that were set to be forced in the PCFC blocks selected. Use the Scaled Output field of the associated process variable (for example: if Specific Gravity / Density was selected then Specific Gravity / Density Scaled Output 4x + 86 will be used to enter a SG or density manually).

Step	Action
1	Login: as Technician
2	AUDT block: Set Command Word, bit 5 to 1 (indicates PCFC equal to zero).
3	PCFC block (zero): Set Command Word One, bit 6 to 1.
4	In floating point format, manually enter a SG or Density into $4x + 86$, the PCFC block zero (0).
5	Logout.

Example:

8.1.6.6. Change value in Last Meter Factor Table

The last meter factor table stores the last meter factor used for that product, ISV flow rate, and time and date. When starting a system for the first time, the M factor table values need to be initialized.

Perform the following steps.

Step	Action
1	Login to the AUDT block (any access level).
2	Enter the PCFC block desired in the Block Select register $(4x + 11)$. 0 to 3 are valid values
3	Enter "8" in the Record Type register $(4x + 12)$, an entry that allows writing to the Last Meter Factor table. Note : The product names 0 to 15 (PCFC block, register $4x + 9$) are directly correlated to the record numbers 0 to 15 in the Last Meter Factor Table. For example, if Premium Gasoline = 3 in the Product Name field in PCFC, then the Last Meter Factor table record = 3.
4	Enter data in the View Register Location for the Last Meter Factor Table (4x + 376).
5	If additional records will be initialized, go to Step 2 and repeat for the next record(s).
6	Once the data has been entered, enter a 7 in the record type field and review the data entries. This action ends the editing process.

8.2 AUDT Configuration—Block Registers

At a Glance

Purpose	This section describes in detail the block registers of the AUDT function block.			
What's in this	This section contains the following topics:			
Section?	Торіс			
	8.2.1. AUDT—Summary: Block Registers	161		
	8.2.2. AUDT—Detail: 4x + 0 + 8, Setup and Diagnostic Data Registers	163		
	8.2.3. AUDT—Detail: 4x + 9 and 4x + 10, User Name and Passcode Registers			
	8.2.4. AUDT—Detail: 4x + 11 to 4x + 14, the Record Registers	173		

8.2.1. AUDT—Summary: Block Registers

8.2.1.1. Overview This unit provides a table summarizing the AUDT registers: access rights, data type, and contents.

Note: Writing to read (RD) registers can cause inaccurate results or one of the following behaviors: (1) the controller does not work, (2) the controller locks up, or (3) a function block will not work. To prevent this situation, do NOT write to read (RD) registers. Writable registers (**WR**) are marked in **bold**.

8.2.1.2.

Summary: Setup and Diagnostic Data Registers Register Summary: AUDT Function Block.

Block Register	Access	Data Type	Comment
4x + 0	RD	HEX	AUDT Revision Number (X.XX) For more information, see <i>Contents:</i> 4x + 0 <i>Register</i> (<i>RD</i> , <i>HEX</i>), p. 163.
4x + 1	WR	BIN	Command Word For more information, see <i>Bit Summary: 4x + 1</i> <i>Register (WR, BIN), p. 163.</i>
4x + 2	RD	BIN	Fault Word For more information, see <i>Bit Summary:</i> 4 <i>x</i> + 2 <i>Register (WR, BIN), p. 166.</i>
4x + 3	WR	UINT	Pointer to table in the First PCFC block For more information, see <i>Contents: 4x + 3 Register</i> (<i>WR, UINT</i>), <i>p. 169</i> .
4x + 4	WR	UINT	Pointer to table in the Second PCFC block For more information, see <i>Contents: 4x + 4 Register</i> <i>(WR, UINT), p. 170.</i>
4x + 5	WR	UINT	Pointer to table in the Third PCFC block For more information, see <i>Contents: 4x + 5 Register</i> (<i>WR, UINT</i>), <i>p. 170</i> .
4x + 6	WR	UINT	Pointer to table in the Fourth PCFC block For more information, see <i>Contents: 4x + 6 Register</i> (<i>WR, UNIT</i>), <i>p. 171</i> .
4x + 7	WR	UINT	Report Area Type 4x / 6x For more information, see <i>Contents: 4x + 7 Register</i> (<i>WR, UNIT</i>), <i>p. 171</i> .

Block Register	Access	Data Type	Comment
4x + 8	WR	UINT	Report Area Offset For more information, see <i>Contents: 4x + 8 Register</i> <i>(WR, UNIT), p. 171.</i>
4x + 9	WR	UINT	User Identification Number For more information, see <i>Contents: 4x + 9 Register</i> (<i>WR, UNIT</i>), <i>p. 172.</i>
4x + 10	WR	UINT	User Passcode For more information, see <i>Contents: 4x + 10</i> <i>Register (WR, UNIT), p. 172.</i>
4x + 11	WR	UINT	Block Select For more information, see <i>Contents: 4x + 11</i> <i>Register (WR, UINT), p. 173</i> .
4x + 12	WR	UINT	Record Type For more information, see <i>Contents: 4x + 12</i> <i>Register (WR, UNIT), p. 173.</i>
4x + 13	WR	UINT	Record Select For more information, see <i>Contents: 4x + 13</i> <i>Register (WR, UNIT), p. 174.</i>
4x + 14	WR	UINT	Current Record For more information, see <i>Contents: 4x + 14</i> <i>Register (WR, UINT), p. 174.</i>

Clear Audit Trail PCFC 3

16 LSB

8.2.2. AUDT—Detail: 4x + 0 ... + 8, Setup and Diagnostic Data Registers

8.2.2.1. Overview	This unit provides a detailed description of the contents of the $4x + 0$ and $4x + 1$ AUDT registers.				
8.2.2.2. 4x + 0 Register (RD, HEX)	AUDT Revision Number (X.XX) Displays current function block revision number. Format is (X.XX).For example, hex 0100 indicates revision 1.00.				
8.2.2.3. Bit Summary: 4x + 1 Register (WR,	Command Word This register contains specific commands to the block entered by the user. The following table is a summary of the bits in the command word:				
BIN)	Bit	Description	Bit	Description	
	1 MSB	PCFC 0 Audit Trail	9	Reserved for system use	
	2	PCFC 1 Audit Trail	10	Change Privileged Passcode	
	3	PCFC 2 Audit Trail	11	Change Technician / Operator Passcode	
	4	PCFC 3 Audit Trail	12	Logout All	
	5	Force Process Variables PCFC 0	13	Clear Audit Trail PCFC 0	
	6	Force Process Variables PCFC 1	14	Clear Audit Trail PCFC 1	
	7	Force Process Variables PCFC	15	Clear Audit Trail PCFC 2	

Force Process Variables PCFC

8

3

8.2.2.4. Bit	The following table describes in detail the function of each bit.				
Contents: 4x + 1 Register (WR, BIN)	Bit	Description			
	Bit 1	PCFC 0 Audit Trail			
	MSB	If this Bit is ON, space has been allocated for one Audit Trail of PCFC block 0. Note : Heap size for the loadable should be set depending on the number of audit trails. (See <i>Determining How Much Memory Is Needed , p. 150</i>)			
	Bit 2	PCFC 1 Audit TrailIf this Bit is ON, space has been allocated for two Audit Trails of PCFC block 1.Note: Heap size for the loadable should be set depending on the number of audittrails. (See Determining How Much Memory Is Needed , p. 150)			
	Bit 3	PCFC 2 Audit Trail If this Bit is ON, space has been allocated for three Audit Trails of PCFC block 2. Note: Heap size for the loadable should be set depending on the number of audit trails. (See Determining How Much Memory Is Needed , p. 150)			
	Bit 4	PCFC 3 Audit Trail If this Bit is ON, space has been allocated for four Audit Trails of PCFC block Note: Heap size for the loadable should be set depending on the number of aud trails. (See <i>Determining How Much Memory Is Needed , p. 150</i>)			
	Bit 5	Force Process Variables PCFC 0 This allows the Process Variables to be forced in block zero. This is used for forcing or manually entering a process variable e.g. manually setting Specific Gravity because there is no densitometer.			
	Bit 6	Force Process Variables PCFC 1 This allows the Process Variables to be forced in block one. This is used for forcing or manually entering a process variable e.g. manually setting Specific Gravity because there is no densitometer.			
	Bit 7	Force Process Variables PCFC 2 This allows the Process Variables to be forced in block two. This is used for forcing or manually entering a process variable e.g. manually setting Specific Gravity because there is no densitometer.			
	Bit 8	Force Process Variables PCFC 3 This allows the Process Variables to be forced in block three. This is used for forcing or manually entering a process variable e.g. manually setting Specific Gravity because there is no densitometer.			
	Bit 9	Reserved for system use			
	Bit 10	 Change Privileged Passcode This bit is used to change the Passcode for Privileged access level. The user must be logged in a Privileged user. Note: Set this bit to 1 with a positive transition contact, and bit will reset itself automatically. If user is not logged in as Privileged bit will not reset. 			

Bit	Description
Bit 11	Change Technician / Operator Passcode This bit is used to change the Passcode for Technician and Operator access levels. The user must be logged in a Privileged user. Note: Set this bit to 1 with a positive transition contact, and bit will reset itself automatically. If user is not logged in as Privileged bit will not reset.
Bit 12	Logout All This bit logs out all users from the AUDT block and system. Set this bit to 1 with a positive transition contact, and bit will reset automatically. Note: If the user is not currently logged in this bit has no effect and will not clear itself.
Bit 13	Clear Audit Trail PCFC 0 Set this bit to clear the Audit Trail Base Configuration for PCFC Block 0. Note: This action requires privileged user ID status and a valid Passcode. No other Level is valid.
Bit 14	Clear Audit Trail PCFC 1 Set this bit to clear the Audit Trail Base Configuration for PCFC Block 1. Note: This action requires privileged user ID status and a valid Passcode. No other Level is valid.
Bit 15	Clear Audit Trail PCFC 2 Set this bit to clear the Audit Trail Base Configuration for PCFC Block 2. Note: This action requires privileged user ID status and a valid Passcode. No other Level is valid.
Bit 16 LSB	Clear Audit Trail PCFC 3 Set this bit to clear the Audit Trail Base Configuration for PCFC Block 3. Note: This action requires privileged user ID status and a valid Passcode. No other Level is valid.

8.2.2.5. Bit Summary: 4x + 2 Register (WR,	Fault Word This register contains the specific faults that the function block has detected. Fault Word Bits: Summary				
BIN)	Bit	Description	Bit	Description	
	1 MSB	Top Node Invalid	9	API Audit Mem Fail One	

Dit	Description	Dit	Description
1 MSB	Top Node Invalid	9	API Audit Mem Fail One
2	Bottom Node Invalid	10	API Audit Mem Fail Two
3	Record Out of Range	11	API Audit Mem Fail Three
4	PCFC Not Present	12	API Audit Mem Fail Four
5	First PCFC 4x Pointer Invalid	13	Invalid Block Configuration
6	Second PCFC 4x Pointer Invalid	14	Invalid Log Pointer
7	Third PCFC 4x Pointer Invalid	15	TMCI Pointer Invalid
8	Fourth PCFC 4x Pointer Invalid	16 LSB	User Logged In

8.2.2.6. Bit	Fault Word Bits: Contents			
Contents: 4x + 2 Register (WR.	Bit	Description		
BIN)	Bit 1 MSB	Top Node Invalid Value entered in the Top Node of the AUDT block is NOT zero. Note: There can only be one instance of the AUDT block.		
	Bit 2	Bottom Node Invalid The value in the bottom node is not valid. Enter the exact number of registers the block requires. Note: See block representation for number of register required.		
	Bit 3	Record Out of Range The record selected is out of range for the type of record. Note: See Record Type field for more information on records.		
	Bit 4	 PCFC Not Present One of the PCFC blocks using the audit trail either Does NOT exist, or Is NOT running For example: Top input is not shorted to the power rail. When this error occurs, an Alarm record will be written to the appropriate log. Note: This error does not affect the recording or use of the other meters in the system. 		
	Bit 5	First PCFC 4x Pointer Invalid The pointer entered for the first PCFC block is invalid. The register must contain a non-zero number that is in the configured 4x register space, and there must be enough 4x registers configured to support block operation. Note: If this fault occurs the block will not operate until fault is resolved.		
	Bit 6	Second PCFC 4x Pointer Invalid The pointer entered for the Second PCFC block is invalid. The register must contain a non-zero number that is in the configured 4x register space, and there must be enough 4x registers configured to support block operation. Note: If this fault occurs the block will not operate until fault is resolved.		
	Bit 7	Third PCFC 4x Pointer Invalid The pointer entered for the Third PCFC block is invalid. The register must contain a non-zero number that is in the configured 4x register space, and there must be enough 4x registers configured to support block operation. Note: If this fault occurs the block will not operate until fault is resolved.		
	Bit 8	Fourth PCFC 4x Pointer Invalid The pointer entered for the Fourth PCFC block is invalid. The register must contain a non-zero number that is in the configured 4x register space, and there must be enough 4x registers configured to support block operation. Note: If this fault occurs the block will not operate until fault is resolved.		

Bit	Description
Bit 9	 API Audit Mem Fail One There is not enough free memory in the PLC to store the Audit Trail. Ensure heap size is correctly set in the loadable. (See <i>Determining How Much Memory Is Needed , p. 150</i>) Check application program size and verify there is enough room store the Audit Trail. The AUDT block only supports the Quantum 534 and 434.
Bit 10	 API Audit Mem Fail Two There is not enough free memory for two (2) Audit Trails in this system. Ensure heap size is correctly set in the loadable. (See <i>Determining How Much Memory Is Needed , p. 150</i>) Check application program size and verify there is enough room store the Audit Trail. The AUDT block only supports the Quantum 534 and 434.
Bit 11	 API Audit Mem Fail Three There is not enough free memory for three (3) Audit Trails in this system. Ensure heap size is correctly set in the loadable. (See <i>Determining How Much Memory Is Needed , p. 150</i>) Check application program size and verify there is enough room store the Audit Trail. The AUDT block only supports the Quantum 534 and 434.
Bit 12	 API Audit Mem Fail Four There is not enough free memory for four (4) Audit Trails in this system. Ensure heap size is correctly set in the loadable. (See <i>Determining How Much Memory Is Needed , p. 150</i>) Check application program size and verify there is enough room store the Audit Trail. The AUDT block only supports the Quantum 534 and 434.
Bit 13	Invalid Block Configuration Audit Trails must be selected in order. When using multiple audit trails (multiple PCFC blocks), Bits 1-4 of the Command Word must be set in sequential order with no gaps. See the table "Setting the bit order," which follows the description of Bit 16.
Bit 14	 Invalid Log Point The pointer entered in "Report Area Type" 4x / 6x (4x + 7) and "Report Area Offset" (4x + 8) registers is not valid. The pointer is either Zero, or The Starting Address + Total Report Length is outside the register area mapped in the PLC configuration.

Bit	Description
Bit 15	TMCI Pointer Invalid The pointer entered in the PCFC block 4x table that points to the TMCI block is invalid. Note: If this fault occurs, the block will not operate until the fault is resolved.
Bit 16	User Logged In
LSB	This event bit does not trigger a fault output on the block. The purpose is to notify the user / programmer that someone is currently logged into the block and can make changes.

Setting the bit order

Configuration Status					
	Command Word Bit	1	2	3	4
Valid Configuration		1	1	1	0
Invalid Configuration		1	1	0	1

Pointer to Table in First PCFC Block

This register contains the value in the middle node in the first PCFC block to have an Audit Trail without the leading digit '4.'

Only the first four blocks can use the API Audit Trail (Top Node numbers from 0 to 3 on the PCFC).

When programming, ensure that the middle node of the PCFC matches the top node of the PCFC block. The address number is entered without the preceding data type 4, for example, 401256 is entered as 1256; 412560, as 12560.

WARNING UNINTENDED CONTROLLER OPERATION If you assign the wrong address in this register, you could cause the following: • Stop the block from functioning, or • Cause the program logic to behave erratically, or • Stop the controller or lock it up. Enter the correct middle address of the PCFC block. Failure to follow this precaution can result in death, serious injury, or equipment damage.

8.2.2.7. Contents: 4x + 3 Register (WR, UINT)

8.2.2.8.	Pointer to Table in Second PCFC Block
Contents: 4x + 4	This register contains the value in the middle node in the second PCFC block to
Register (WR,	have an Audit Trail.
UINT)	Only the first four blocks can use the API Audit Trail (Top Node numbers from 0 to
	3 on the PCFC).
	When programming, ensure that the middle node of the PCFC matches the top node

of the PCFC block. The address number is entered without the preceding data type 4, for example, 401256 is entered as 1256; 412560, as 12560.

WARNING

UNINTENDED CONTROLLER OPERATION

If you assign the wrong address in this register, you could cause the following:

- Stop the block from functioning, or
- Cause the program logic to behave erratically, or
- Stop the controller or lock it up.

Enter the correct middle address of the PCFC block.

Failure to follow this precaution can result in death, serious injury, or equipment damage.

8.2.2.9. Pointer to Table in Third PCFC Block
Contents: 4x + 5 Register (WR, UINT)
Dolly the first four blocks can use the API Audit Trail (Top Node numbers from 0 to 3 on the PCFC). When programming, ensure that the middle node of the PCFC matches the top node

of the PCFC block. The address number is entered without the preceding data type 4, for example, 401256 is entered as 1256; 412560, as 12560.

	WARNING
	UNINTENDED CONTROLLER OPERATION
Ŵ	 If you assign the wrong address in this register, you could cause the following: Stop the block from functioning, or Cause the program logic to behave erratically, or Stop the controller or lock it up. Enter the correct middle address of the PCFC block.
	Failure to follow this precaution can result in death, serious injury, or equipment damage.

8.2.2.10.	Pointer to Table in Fourth PCFC Block
Contents: 4x + 6	This register contains the value in the middle node in the fourth PCFC block to have
Register (WR,	an Audit Trail.
UNIT)	Only the first four blocks can use the API Audit Trail (Top Node numbers from 0 to
	3 on the PCFC).
	When programming, ensure that the middle node of the PCFC matches the top node

of the PCFC block. The address number is entered without the preceding data type 4, for example, 401256 is entered as 1256; 412560, as 12560.

WARNING

UNINTENDED CONTROLLER OPERATION

If you assign the wrong address in this register, you could cause the following:

- Stop the block from functioning, or
- Cause the program logic to behave erratically, or
- Stop the controller or lock it up.
- Enter the correct middle address of the PCFC block.

Failure to follow this precaution can result in death, serious injury, or equipment damage.

8.2.2.11. Contents: 4x + 7 Register (WR, UNIT)	Report Area Type 4x / 6x Report Address Modulo 10000 High Word (00XX) The 4x+7 and 4x+8 registers define the starting address of several registers used to display audit log data. This area pointed to by this address acts as a window into the audit log which allows the user to view audit log data. The actual log is maintained internally and is not available to the user other than using this 'window.' This field contains the two most significant digits of that 6-digit address (the first part of the 4x or 6x address in Modulo 10000 format). For example, if the report area address is 401000, enter 40 in this field. If the report area address is 623000, enter 62 in this field.
8.2.2.12. Contents: 4x + 8 Register (WR, UNIT)	Report Area Offset Report Address Modulo 10000 Low Word (XXXX) The 4x+7 and 4x+8 registers define the starting address of several registers used to display audit log data. This area pointed to by this address acts as a window into the audit log which allows the user to view audit log data. The actual log is maintained internally and is not available to the user other than using this 'window'. This field contains the four least significant digits of that 6-digit address (the remainder part of the 4x or 6x address in Modulo 10000 format). For example, if the report area address is 401000, enter 1000 in this field. If the report area address is 623000, enter 3000 in this field.

8.2.3. AUDT—Detail: 4x + 9 and 4x + 10, User Name and Passcode Registers

8.2.3.1. Contents: 4x + 9 Register (WR, UNIT)	User Identification Number User enters assigned identification number. For a description of the access level, see below. Also see the parameter index for more information.			
	User ID	Access Level	Descriptions of rights	
	100	Privileged	 Complete access to all variables Destruction of Audit Logs Creating Passcodes Note: The default Passcode is 12345. 	
	200	Technician	 This access level allows Access to many functions Access to all entries (Except Passcode creation and destruction of logs) (See Parameters and Functions — User Security Access Levels, p. 256) Within the flow computer fields, allows Transducer Manual overrides (if applicable) Product Gravity Overrides Prover Operations Batching Operations Note: The default Passcode for this level is 1234. 	
	300	Operator	 Access for Batching and Proving operations See User Security Access Level Table for Parameter and Functions. Note: The default Passcode for this level is 123. 	

8.2.3.2.	User Passcode
Contents: 4x + 10	Enter the Passcode for the Audit Trail block valid numbers are between 1 and
Register (WR,	65535.
UNIT)	Note: As soon as the Passcode is entered and the middle input is set high, the
	Passcode field is cleared.

- If a valid (correct) Passcode is entered, access will be granted and will generate an Event Log entry with the users id and time and date.
- If an invalid (NOT correct) Passcode is entered, the User Id and Passcode fields are cleared.

To determine if logged in, look at bit 16 of the Fault Word (4x + 2) of the AUDT block.

8.2.4. AUDT—Detail: 4x + 11 to 4x + 14, the Record Registers

8.2.4.1. Contents: 4x + 11 Register (WR, UINT)	Block Select Enter the Top Node number of the PCFC block's Audit Trail to be read. Valid ranges are 0 to 3 only. Note: If a value is set which is outside of this range or the number of blocks configured, the block will automatically set to 0.		
8.2.4.2. Contents: 4x + 12 Register (WR,	Record T This field different ty	ype contains the record type to read from the log database. There are eight _/ pe of logs.	
UNII)	Record Type	Record Type Description	
	0	Configuration	
	1	Alarm	
	2	Event	
	3	Base Configuration	
	4	Current Configuration	
	5	Batch Report	
	6	Prove Report	
	7	Last Meter Factor Table (read)	
	8	Last Meter Factor Table (write)	
	Note: For zero.	record types 3 to 6, once the record type has been entered, the field will be set to	

For detailed information on the logs, see API Audit Trail 21.2 Report logging section.

8.2.4.3. Contents: 4x + 13 Register (WR, UNIT)	Record S Enter the registers range.	Select record number to view. The record type determ the data will be displayed. Ensure the record nu	nines in which t umber falls with	able of in the valid
	Record	Record Type Description	Becord	Number of

Record	Record Type Description	Record	Number of	
Туре		Number	Records	
		Range		
0	Configuration	(0 to 499)	500	
1	Alarm	(0 to 249)	250	
2	Event	(0 to 249)	250	
3	Base Configuration	(0)	1	
4	Current Configuration	(0)	1	
5	Batch Report	(0 to 11)	12	
6	Prove Report	(0 to 3)	4	
7	Last Meter Factor Table (read)	(0 to 15)	16	
8	Last Meter Factor Table (write)	(0 to 15)	16	
Note: If an invalid range has been entered, the Record Select field will be over written with a				
zero.				

For detailed information on the logs, see API Audit Trail 21.2 Report logging section.

8.2.4.4. Contents: 4x + 14 Register (WR, UINT)

Current Record

Displays the next current record to write for the block and record type selected. For example, if Current Record = 11, then there are 11 actual records (counting zero) and the block is prepared to write the 12th record.

8.3 AUDT Configuration—Report Registers

At a Glance

Purpose	 Report logs are divided into five view windows: configuration, alarm, and event report base configuration/current configuration report batch report prover report last meter factor table The address of these view windows is located in the 4x + 7 +8 regis AUDT block. The view windows allow you to view individual records of the various report 	ter in the eports.		
Section?	I his section contains the following topics:	Paga		
	8.3.1. AUDT Report Logging—Detail: Report Registers—Configuration, Alarm, and Event Logs	176		
	8.3.2. AUDT Report Logging—Log Types	180		
	8.3.3. AUDT Report Logging—Detail: Index of Configuration Parameters			
	8.3.4. AUDT Report Logging—Detail: Index of Alarm Log Parameters			
	8.3.5. AUDT Report Logging—Detail: Index of Event Log Parameters	189		
	8.3.6. AUDT Report Logging—Detail: Report Registers—Base Configuration/ Current Configuration Logs			
	8.3.7. AUDT Report Logging—Detail: Report Registers—Batch Logs			
	8.3.8. AUDT Report Logging—Detail: Report Registers—Prover Logs			
	8.3.9. AUDT Report Logging—Detail: Report Registers—Last Meter Factor Table	200		

8.3.1. AUDT Report Logging—Detail: Report Registers—Configuration, Alarm, and Event Logs

8.3.1.1. Configuration Log Records	The configuration log contains data on the changes in the configuration (Per API 2540 Chapter 21 Section 2 12.3.2 and 123.3). The configuration log is stored in a ring buffer. When the number of log entries reaches the maximum limit, the oldest log entry is over written with the new configuration. The configuration log stores the last 500 changes made to the base configuration. The configuration log can be erased to store a new configuration with the right user privileges.
8.3.1.2. Alarm Log Records	The alarm log is triggered either by the two fault words in the PCFC block, or by a fault word in the TMCI and a fault word in the AUDT block itself. The alarm log displays the value of the process variable that is associated with the alarm along with a time and date stamp, alarm value and parameter index number, which identifies the alarm. The alarm log is stored in a ring buffer so when the number of alarms reaches the maximum limit, the oldest alarm is over written with the new alarm.
8.3.1.3. Event Log Records	The event log is triggered by one status event word in the PCFC block. The event log displays the value of the process variable that is associated with the event along with a time and date stamp, event value, and parameter index number (identifies event). The event log is stored in a ring buffer so when the number of events reaches the maximum limit, the oldest event is over written with the new event.

8.3.1.4. Table of Configuration, Alarm, and Event Records

The previously defined fields: Block Select (4x + 11), Record Type (4x + 12), and Record Select (4x + 13) determine which Audit Trail record type and record number that is displayed in the table below.

This table is a common structure for the Configuration, Alarm, and Event records.

Report Register	Access	Data Type	Comment
4x + 0	RD	UINT	Configuration / Alarm / Event Number This field is for displaying the chronological order of Configuration (0 to 499) / Alarms / Events (0 to 249) as they occurred. Note: The Alarm log is a ring buffer. If the Event Counter rolls over to 0, the rollover indicates that 249 was the last alarm to occur.
4x + 1	RD	UINT	Record Month This field displays the month when the Alarm / Event occurred.
4x + 2	RD	UINT	Record Day This field displays the Day when the Alarm / Event occurred.
4x + 3	RD	UINT	Record Year This field displays the Year when the Alarm / Event occurred.
4x + 4	RD	UINT	Record Hour This field displays the Hour when the Alarm / Event occurred.
4x + 5	RD	UINT	Record Minute This field displays the Minute when the Alarm / Event occurred.
4x + 6	RD	UINT	Record Second This field displays the Second when the Alarm / Event occurred.
4x + 7	RD	UINT	User Identification This field displays the Current User Identification code that is logged into the system. This is used with the Configuration and Events records (It is possible to have a current user during an Alarm if a user is logged into the AUDT block at the time of Alarm).

Report Register	Access	Data Type	Comment
4x + 8	RD	UINT	Parameter Index This field displays the parameters affected and provides information on the record type. For example, Parameter Index # 21 is a configuration record that has to do with Meter Factor. All register values relate to the Meter Factor.
4x + 9	RD	UINT	Alarm / Event Value This field displays the new value of the Alarm / Event. This Field is used only for an Alarm or Event record.
4x + 10	RD	UINT	Old Value Binary Format This field displays the value previous to the one shown in the New Value field (Intended to be viewed in Binary format). Note: This field is not used with Alarm Records.
4x + 11	RD	UINT	New Value Binary Format This field displays the new value that is currently being used (intended to be viewed in Binary format).
4x + 12	RD	UINT	Old Value UINT Format This field displays the value previous to the one shown in the New Value field (Intended to be viewed unsigned integer format). Note: This field is not used with Alarm Records.
4x + 13	RD	UINT	New Value UINT Format This field displays the new value that is currently being used (intended to be viewed in unsigned integer format).
4x + 14 +15	RD	UINT	Old Value UDINT Format This field displays the value previous to the one shown in the New Value field (Intended to be viewed in unsigned long integer format). Note: This field is not used with Alarm Records.
4x + 16 +17	RD	UINT	New Value UDINT Format This field displays the new value that is currently being used (intended to be viewed in unsigned long integer format).

Report Register	Access	Data Type	Comment
4x + 18 +19	RD	UINT	Old Value FLOAT Format This field displays the value previous to the one shown in the New Value field (Intended to be viewed Floating point or Real format). Note: This field is not used with Alarm Records.
4x + 20 +21	RD	UINT	New Value FLOAT Format This field displays the new value that is currently being used (intended to be viewed in Floating point or Real format).
4x + 22 +23	RD	UDINT	ISV Accumulated This field displays the accumulated Indicated Standard Volume value at the time of the Alarm / Event.

8.3.2. AUDT Report Logging—Log Types

8.3.2.1. Overview	This unit presents a summary	of the AUDT log types available.

8.3.2.2. Log Types The AUDT block report-logging function stores eight different types of logs.

- Log types zero (0) through seven (7) are read only. Read Only logs cannot be modified in any way.
- Log type eight (8) is a write (with Passcode).

The following table shows the different log types that can be viewed. The log type determines in which table of registers the data appears.

Log Type	Log Type Description	Log Number Range	Number of Records (Changes)
0	Configuration	(0 to 499)	500
1	Alarm	(0 to 249)	250
2	Event	(0 to 249)	250
3	Base Configuration	(0 to 0)	1
4	Current Configuration	(0 to 0)	1
5	Batch Report	(0 to 11)	12
6	Prove Report	(0 to 3)	4
7	Last Meter Factor Table (Read)	(0 to 15)	16
8	Last Meter Factor Table (Write)	(0 to 15)	16
8.3.3. AUDT Report Logging—Detail: Index of Configuration Parameters

8.3.1. Overview This material describes all possible values for the Parameter Configuration Index.

Parameter Index	Data Type	Description of the Data			
0	BIN	Command Word 1 Displays the Old and New Value for the parameter.			
1	BIN	Command Word 2 Displays the Old and New Value for the parameter.			
2	BIN	Fault Word 1 See below the Alarm Logs parameter index 201 to 216. (See Alarm Log Parameters, p. 185)			
3	BIN	Fault Word 2 See below the Alarm Logs parameter index 301 to 316. (See Alarm Log Parameters, p. 185)			
4	BIN	Status Events Word See below the Event Logs parameter index 401 to 416. (See Event Log Parameters, p. 189)			
5	UINT	Meter Run For example: 1 to 16 Displays the Old and New Value for the parameter.			
6	UINT	TMCI Block Starting 4x Displays the Old and New Value for the parameter.			
7	UINT	Product Type Displays the Old and New Value for the parameter.			
8	UINT	Product Name Displays the Old and New Value for the parameter.			
9	FLOAT	Sediment and Water % CSW Displays the Old and New Value for the parameter.			
10	FLOAT	Calculated Meter Factor (After proving run) Displays the Old and New Value for the parameter.			
11	ASCII (2)	Serial Number of Meter Displays the Old and New Value for the parameter.			
12	ASCII (2)	Serial Number of Meter Displays the Old and New Value for the parameter.			
13	ASCII (2)	Serial Number of Meter Displays the Old and New Value for the parameter.			

The following table provides descriptions for each index number.

Parameter Index	Data Type	Description of the Data
14	ASCII (2)	Serial Number of Meter Displays the Old and New Value for the parameter.
15	ASCII (2)	Meter ID Displays the Old and New Value for the parameter.
16	ASCII (2)	Meter ID Displays the Old and New Value for the parameter.
17	ASCII (2)	Meter ID Displays the Old and New Value for the parameter.
18	ASCII (2)	Meter ID Displays the Old and New Value for the parameter.
19	UINT	Meter Size Displays the Old and New Value for the parameter.
20	UINT	Meter Type Displays the Old and New Value for the parameter.
21	FLOAT	Meter Factor Displays the Old and New Value for the parameter.
22	FLOAT	Meter K Factor 1.0 - 65535.0 Displays the Old and New Value for the parameter.
23	UINT	4X Offset to Time of Day Clock Displays the Old and New Value for the parameter.
24	UINT	Start of Day 'Hour' (0 - 23 military) Displays the Old and New Value for the parameter.
25	UINT	Start of Day 'Minute' (0 - 59) Displays the Old and New Value for the parameter.
26	UINT	Report Address Modulo 10000 High Word (00XX) For example, 4x or 6x Displays the Old and New Value for the parameter.
27	UINT	Report Address Modulo 10000 Low Word (XXXX) Displays the Old and New Value for the parameter.
28	UINT	Internal Diameter of the Pipe Displays the Old and New Value for the parameter.
29	UINT	Wall Thickness of the Pipe Displays the Old and New Value for the parameter.
30	UINT	Modulus of Elasticity for the Pipe Material x 10 ⁵ Displays the Old and New Value for the parameter.
31	UINT	Coefficient of Cubic Expansion per ° F or °C of the Pipe Material Displays the Old and New Value for the parameter.

Parameter Index	Data Type	Description of the Data	
32	UDINT	Base Volume of Prover @ 60°F / 15 °C 0 PSI (Barrels) / M^3 Displays the Old and New Value for the parameter.	
33	UINT	Number of Consecutive Proving Runs Displays the Old and New Value for the parameter.	
34	UINT	Gravity / Density Conversion Range Displays the Old and New Value for the parameter.	
35	FLOAT	Gravity / Density High Engineering Units Displays the Old and New Value for the parameter.	
36	FLOAT	Gravity / Density Low Engineering Units Displays the Old and New Value for the parameter.	
37	UINT	Temperature Conversion Range (Meter) Displays the Old and New Value for the parameter.	
38	FLOAT	Temperature High Engineering Units (Meter) Displays the Old and New Value for the parameter.	
39	FLOAT	Temperature Low Engineering Units (Meter) Displays the Old and New Value for the parameter.	
40	UINT	Pressure Conversion Range (Meter) Displays the Old and New Value for the parameter.	
41	FLOAT	Pressure High Engineering Units (Meter) Displays the Old and New Value for the parameter.	
42	FLOAT	Pressure Low Engineering Units (Meter) Displays the Old and New Value for the parameter.	
43	UINT	Temperature Conversion Range (Prover) Displays the Old and New Value for the parameter.	
44	FLOAT	Temperature High Engineering Units (Prover) Displays the Old and New Value for the parameter.	
45	FLOAT	Temperature Low Engineering Units (Prover Displays the Old and New Value for the parameter.	
46	UINT	Pressure Conversion Range (Prover) Displays the Old and New Value for the parameter.	
47	FLOAT	Pressure High Engineering Units (Prover) Displays the Old and New Value for the parameter.	
48	FLOAT	Pressure Low Engineering Units (Prover) Displays the Old and New Value for the parameter.	
49	UINT	Pulse Fidelity Frequency Threshold Displays the Old and New Value for the parameter.	
50	UINT	Pulse Fidelity Batch Count Errors Displays the Old and New Value for the parameter.	

Parameter Index	Data Type	Description of the Data			
51	UINT	Filter Samples Displays the Old and New Value for the parameter.			
52	UINT	Base Temperature Displays the Old and New Value for the parameter.			
53	UINT	TMCI Command Word Displays the Old and New Value for the parameter.			
54	UINT	Meter Card Type One Displays the Old and New Value for the parameter.			
55	UINT	Meter Card Starting One 3x Displays the Old and New Value for the parameter.			
56	UINT	Meter Card Starting One 4x Displays the Old and New Value for the parameter.			
57	UINT	Meter Card Type Two Displays the Old and New Value for the parameter.			
58	UINT	Meter Card Starting Two 3x Displays the Old and New Value for the parameter.			
59	UINT	Meter Card Starting Two 4x Displays the Old and New Value for the parameter.			
60	UINT	Meter Card Type Three Displays the Old and New Value for the parameter.			
61	UINT	Meter Card Starting Three 3x Displays the Old and New Value for the parameter.			
62	UINT	Meter Card Starting Three 4x Displays the Old and New Value for the parameter.			
63	UINT	Meter Card Type Four Displays the Old and New Value for the parameter.			
64	UINT	Meter Card Starting Four 3x Displays the Old and New Value for the parameter.			
65	UINT	Meter Card Starting Four 4x Displays the Old and New Value for the parameter.			
66	UINT	Zero Flow Reading Timer Displays the Old and New Value for the parameter.			
Legend HEX - Hexac INT - Integer FLOAT - 3.4 UINT - Unsig	lecimal 0 to FF x 10^-38 to 3.4 ned Integer 0 t	FF 4 x 10^38 o 65535 pteger 0 to 4 294 967 295			

8.3.4. AUDT Report Logging—Detail: Index of Alarm Log Parameters

8.3.4.1. Alarm Log Parameters

The AUDT function block defines all of the data that is collected by the block, and for easier identification of that data, the AUDT function block assigns each data item an index number shown in register 4x + 8.

The following table describes the contents of registers 4x + 7 and up. (See *Table of Configuration, Alarm, and Event Records, p. 177*) The parameter index is shown in register 4x + 8 and other registers will be filled in as described below.

Parameter Index	Data Type	Description of the Data	Data Type for Process Variable
201	BIN	Invalid Top Node Does not display New Value. This is a base programming error and the PCFC block will not function. This error should not occur during normal operation unless the program has changed. This will generate a PCFC Not Present fault in the AUDT block and be recorded in the alarm log. Note: Invalid Top Node may not generate a 201 error in the log due to the nature of the error. It will however generate an error which will be logged in the Alarm log under 501 PCFC Not Present.	NONE
202	BIN	Address to Report Area Invalid Displays New Value of the Report Address Modulo Hi and Low fields in UINT format.	UINT
203	BIN	Time of Day Clock Invalid / Not Set Displays New Value of the 4x Offset to Time of Day Clock field in UINT format.	UINT
204	BIN	Minimum Density Exceeded Displays New Value of the Gravity / Density Scaled Output field in FLOAT format. Note: This error may occur if a value is uncorrected and a CTL error occurs. Is not generating a proper corrected density according to the API table.	FLOAT
205	BIN	Maximum Density Exceeded Displays New Value of the Gravity / Density Scaled Output field in FLOAT format.	FLOAT
206	BIN	Invalid Pressure Conversion Range Displays Pressure Conversion Range (Meter) in the New Value field in FLOAT format.	FLOAT

Parameter Index	Data Type	Description of the Data	Data Type for Process Variable
207	BIN	Invalid Temperature Conversion Range Displays Temperature Conversion Range (Meter) in the New Value field in UINT format.	UINT
208	BIN	Invalid Bottom Node Does not display an old and New Value. This is a base programming error and the PCFC block will not function. This error should not occur during normal operation unless the program has changed. This will generate a PCFC Not Present fault in the AUDT block, and the error will be recorded in the alarm log. Note: Invalid Bottom Node may not generate a 208 error in the log due to the nature of the error. It will however generate error will be logged in the Alarm log under 501 PCFC Not Present.	NONE
209	BIN	Pressure Input Invalid Displays New Value of the Pressure Raw Counts (Meter) field in UINT format. Note: This error is due to an invalid 3x pointer.	UINT
210	BIN	Temperature Input Invalid Displays New Value of the Temperature Raw Counts (Meter) field in UINT format. Note: This error is due to an invalid 3x pointer.	UINT
211	BIN	Pressure Under Range Displays New Value of the Pressure Scaled Output field in FLOAT format.	FLOAT
212	BIN	Pressure Over Range Displays New Value of the Pressure Scaled Output field in FLOAT format.	FLOAT
213	BIN	Temperature Under Range Displays New Value of the Temperature Scaled Output field in FLOAT format.	FLOAT
214	BIN	Temperature Over Range Displays New Value of the Temperature Scaled Output field in FLOAT format.	FLOAT
215	BIN	Invalid CPL Value Displays Process Variable Meter Pressure in the New Value field.	FLOAT

Parameter Index	Data Type	Description of the Data	Data Type for Process Variable
216	BIN	Invalid CTL Value Displays Process Variable Meter Temperature in the New Value field.	FLOAT
301	BIN	Pulse Fidelity Error Displays the New Value of the Pulse Fidelity status flags which are found in the Status events word. Note: The other flags are masked out. All data is in the second nibble from the left 0000 1111 0000 0000 (msb).	BIN
302	BIN	Min / Max Prove Runs Exceeded Displays "Number of Consecutive Proving Runs" in the New Value field.	UINT
303	BIN	Invalid Pipe Wall Thickness Displays "Wall Thickness of the Pipe" in the New Value field.	UINT
304	BIN	Invalid Pipe Inside Diameter Displays "Internal Diameter of the Pipe" in the New Value field.	UINT
305	BIN	Invalid Modulus of Elasticity Displays "Modulus of Elasticity for the Pipe Material x 10^5" in the New Value field.	UINT
306	BIN	Invalid Coefficient of Cubic Expansion per degree pipe material Displays "Coefficient of Cubic Expansion per Degree Pipe Material" in the New value field.	UINT
307	BIN	Invalid Specific Gravity / Density Conversion Range Displays "Specific Gravity / Density Conversion Range" in the New Value field.	UINT
308	BIN	Invalid Specific Gravity / Density Input Displays "Specific Gravity / Density Raw Counts" in the New Value field.	UINT
309	BIN	Invalid Specific Gravity / Density Under Range Displays "Specific Gravity / Density Scaled Output" in the New Value field.	FLOAT
310	BIN	Invalid Specific Gravity / Density Over Range Displays "Specific Gravity / Density Scaled Output" in the New Value field.	FLOAT

Parameter Index	Data Type	Description of the Data	Data Type for Process Variable
311	BIN	Invalid Product Choice Displays "Product Type" in the New Value field.	FLOAT
312	BIN	Function Not Available with Hardware Displays the New Value in the UDINT format field. Note: The values are Command Word One and Two. Command Word One holds the first 16 bits, and Command Word Two, the second 16 bits. (Change the radix to BIN to view the individual bit settings).	UDINT
313	BIN	Invalid IEEE Floating Point Format Number Displays "Error Code" in the New Value field.	FLOAT
314	BIN	Invalid 4x TMCI Pointer Displays "TMCI Block Starting 4x Output Register" in the New Value field.	UINT
315	BIN	Invalid Base Volume of Prover Displays "Base Volume of Prover" in the New Value field.	UDINT
316	BIN	Invalid Meter Run Number Displays "Meter Run" in the New Value field.	UINT

8.3.5. AUDT Report Logging—Detail: Index of Event Log Parameters

8.3.5.1. Event The AUDT function block defines all of the data that is collected by the block, and for easier identification of that data, the AUDT function block assigns each data item an index number.

Parameter Index	Parameter Type	Description	Record Field
401	BIN	Pulse Fidelity Channel A / B Displays "Status Events" in the Old and New Binary fields.	BIN
402	BIN	CPL Forced to 1.0 Displays "Status Events" in the Old and New Binary fields.	BIN
403	BIN	Prove Counter Not Zero Displays "Status Events" in the Old and New Binary fields.	BIN
404	BIN	CPS Forced to 1.0 Displays "Status Events" in the Old and New Binary fields.	BIN
405	BIN	Pulse Fidelity Error Sequence Displays "Status Events" in the Old and New Binary fields.	BIN
406	BIN	Pulse Fidelity Error Phase Displays "Status Events" in the Old and New Binary fields.	BIN
407	BIN	Pulse Fidelity Error Frequency Displays "Status Events" in the Old and New Binary fields.	BIN
408	BIN	Pulse Fidelity Error Count Displays "Status Events" in the Old and New Binary fields.	BIN
409	BIN	Reserved for system use	

The following table provides descriptions for each index number.

Parameter	Parameter	Description Re		
Index	Туре		Field	
410	BIN	Meter Proving Gate Status Displays "Status Events" in the Old and New Binary fields. The bit pattern (0 to 4) represents the status of each detector switch as it occurs. MSB 1 2 3 4 5 6 7 8 9 10111213141516 LSB 000 = Waiting for First Detector Switch 001 = First Detector Switch Occurred 010 = Second Detector Switch Occurred 011 = Third Detector Switch Occurred 100 = Fourth Detector Switch Occurred 100 = Fourth Detector Switch Occurred Note: 1 to 2 for unidirectional provers and 1 to 4 for bidirectional provers		
411	BIN	Reserved for system use		
412	BIN	Reserved for system use		
413	BIN	Reserved for system use		
414	BIN	Reserved for system use		
415	BIN	Proving Report Done Displays "Status Events" in the Old and New Binary fields.		
416	BIN	Proving Run in Process Displays "Status Events" in the Old and New Binary fields.		
501	BIN	PCFC Not Present This error is generated from the AUDT block. It indicates that the AUDT block and PCFC are not communicating. Therefore no old and new value will be displayed.		
502	BIN	Reserved for system use		
503				
504				

8.3.6. AUDT Report Logging—Detail: Report Registers—Base Configuration/ Current Configuration Logs

Base Configuration Records	Report Register	Access	Data Type	Comment
	4x + 24	WR	BIN	Command Word 1
	4x + 25	WR	BIN	Command Word 2
	4x + 26	WR	UINT	Flow Card Number, for example 1, 2, 3, 4
	4x + 27	WR	UINT	TMCI Starting 4x register
	4x + 28	WR	UINT	Product Type (0 - 2)
	4x + 29	WR	UINT	Product Name (0 - 15)
	4x + 30 +31	WR	FLOAT	Sediment and Water % CSW
	4x + 32 +33	WR	FLOAT	Calculated Meter Factor
	4x + 34	WR	ASCII	Serial Number of the Flow Meter
	4x + 35	WR	ASCII	Serial Number of the Flow Meter
	4x + 36	WR	ASCII	Serial Number of the Flow Meter
	4x + 37	WR	ASCII	Serial Number of the Flow Meter
	4x + 38	WR	ASCII	Meter Identification or PI & D
	4x + 39	WR	ASCII	Meter Identification or PI & D
	4x + 40	WR	ASCII	Meter Identification or PI & D
	4x + 41	WR	ASCII	Meter Identification or PI & D
	4x + 42	WR	UINT	Size of the Meter
	4x + 43	WR	UINT	Type of Meter Used
	4x + 44 +45	WR	FLOAT	Meter M Factor
	4x + 46 +47	WR	FLOAT	Meter K Factor
	4x + 48	WR	UINT	Pointer to Time of Day Clock
	4x + 49	WR	UINT	Hour of the Start of Day (Military)
	4x + 50	WR	UINT	Minute of the Start of Day
	4x + 51	WR	UINT	Reference Type to Store Log Information
	4x + 52	WR	UINT	Reference Offset to Store Log Information to
	4x + 53	WR	UINT	Internal Diameter of the Pipe

Report Register	Access	Data Type	Comment
4x + 54	WR	UINT	Wall Thickness of the Pipe
4x + 55	WR	UINT	Modules of Elasticity for the Pipe Material
4x + 56	WR	UINT	Coefficient of Cubic Expansion per Degree F or C
4x + 57	WR	UDINT	Base Volume of the Prover @ 60 F and 0 PSI (Barrels)
4x + 59	WR	UINT	Number of Consecutive Proving Runs
4x + 60	WR	UINT	Density Raw Counts
4x + 61	WR	UINT	Determines which linear data range to use for the Calculation of Scaled Density
4x + 62 +63	WR	FLOAT	Density High Engineering Unit
4x + 64 + 65	WR	FLOAT	Density Low Engineering Unit
4x + 66	WR	UINT	Raw Analog Temperature Input
4x + 67	WR	UNIT	Determines which linear data range to use for the Calculation of Scaled Temperature
4x + 68 +69	WR	FLOAT	Temperature High Engineering Unit
4x + 70 +71	WR	FLOAT	Temperature Low Engineering Unit
4x + 72	WR	UINT	Raw Analog Pressure Input
4x + 73	WR	UINT	Determines which linear data range to use for the Calculation of Scaled Pressures
4x + 74 +75	WR	FLOAT	Pressure High Engineering Unit
4x + 76 + 77	WR	FLOAT	Pressure Low Engineering Unit
4x + 78	WR	UNIT	Raw Analog Temperature Input
4x + 79	WR	UINT	Determines which linear data range to use for the Calculation of Scaled Temperature
4x + 80 +81	WR	FLOAT	Temperature High Engineering Unit
4x + 82 +83	WR	FLOAT	Temperature Low Engineering Unit
4x + 84	WR	UINT	Raw Analog Pressure Input
4x + 85	WR	UNIT	Determines which linear data range to use for the Calculation of Scaled Temperature.

Configuration	Report Register	Access	Data Type	Comment			
necords	4x + 86 +87	WR	FLOAT	Pressure High Engineering Unit			
	4x + 88 +89	WR	FLOAT	Pressure Low Engineering Unit			
	4x + 90	WR	UINT	Frequency at which Pulse Fidelity stops monitoring			
	4x + 91	WR	UINT	TMCI Starting 4x register			
	4x + 92	WR	UINT	Number of samples used to smooth the frequency (3 mi)			
	4x + 93	WR	UINT	Base Temperature of the VCF Calculations 60F / 15 C			
	4x + 94	WR	BIN	Command Word 1			
	4x + 95	WR	DEC	Flow Card Number, for example 1, 2, 3, 4			
	4x + 96	WR	DEC	Flow Card Number Starting 3x register			
	4x + 97	WR	DEC	Flow Card Number Starting 4x register			
	4x + 98	WR	DEC	Flow Card Number, for example 1, 2, 3, 4			
	4x + 99	WR	DEC	Flow Card Number Starting 3x register			
	4x + 100	WR	DEC	Flow Card Number Starting 4x register			
	4x + 101	WR	DEC	Flow Card Number, for example 1, 2, 3, 4			
	4x + 102	WR	DEC	Flow Card Number Starting 3x register			
	4x + 103	WR	DEC	Flow Card Number Starting 4x register			
	4x + 104	WR	DEC	Flow Card Number, for example 1, 2, 3, 4			
	4x + 105	WR	DEC	Flow Card Number Starting 3x register			
	4x + 106	WR	DEC	Flow Card Number Starting 4x register			
	4x + 107	WR	DEC	Flow Rate Reading Time Out			
		-	-				

8.3.7. AUDT Report Logging—Detail: Report Registers—Batch Logs

8.3.7.1. Table of	Batch Log Records Registers					
Batch Log Records	Report Register	Access	Data Type	Comment		
	4x + 108	WR	UINT	The Month when Report Started		
	4x + 109	WR	UINT	The Day when Report Started		
	4x + 110	WR	UINT	The Hour when Report Started		
	4x + 111	WR	UINT	The Minute when Report Started		
	4x + 112	WR	UINT	The Month when Report Ended		
	4x + 113	WR	UINT	The Day when Report Ended		
	4x + 114	WR	UINT	The Hour when Report Ended		
	4x + 115	WR	UINT	The Minute when Report Ended		
	4x + 116 +117	WR	FLOAT	Average Temperature		
	4x + 118 +119	WR	FLOAT	Average Pressure		
	4x + 120 +121	WR	FLOAT	Average Density Corrected		
	4x + 122 +123	WR	FLOAT	Average CTL		
	4x + 124 +125	WR	FLOAT	Average CPL		
	4x + 126 +127	WR	FLOAT	Average Meter Factor		
	4x + 128 +129	WR	UINT	Average Temperature INT		
	4x + 129	WR	UINT	Average Pressure INT		
	4x + 130	WR	UINT	Average Density INT Corrected		
	4x + 131	WR	UINT	Average CTL Integer Portion		
	4x + 132	WR	UINT	Average CTL Decimal Portion		
	4x + 133	WR	UINT	Average CPL Integer Portion		
	4x + 134	WR	UINT	Average CPL Decimal Portion		
	4x + 135	WR	UINT	Average Meter Factor INT		
	4x + 136	WR	UINT	ISV Barrels, Cubes Modulo High		
	4x + 137	WR	UINT	ISV Barrels, Cubes Modulo Low		

Report Register	Access	Data Type	Comment
4x + 138 +139	WR	UDINT	ISV Accumulator Channel A ISV accumulator will roll over at 9,999,999
4x + 140 +141	WR	UDINT	ISV Accumulator Channel B
4x + 142 +143	WR	UDINT	GSV Accumulator Channel GSV accumulator will roll over at 9,999,999
4x + 144	WR	UINT	GSV Barrels or Cubes Modulo High
4x + 145	WR	UINT	GSV Barrels or Cubes Modulo Low
4x + 146	WR	UNIT	Average S W
4x + 147	WR	UINT	NSV Barrels or Cubes Modulo High
4x + 148	WR	UNIT	NSV Barrels or Cubes Modulo Low

Prover Logs Records

8.3.8. AUDT Report Logging—Detail: Report Registers—Prover Logs

Report Register	Access	Data Type	Comment	
4x + 150	WR	UINT	Month	
4x + 151	WR	UINT	Day	
4x + 152	WR	UINT	Hour	
4x + 153	WR	UINT	Minute	
4x + 154	WR	UINT	Pipe Internal Diameter	
4x + 155	WR	UINT	Pipe Wall Thickness	
4x + 156	WR	UINT	Elasticity	
4x + 157	WR	UINT	Cubic Exp.	
4x + 158	WR	UINT	API Tables	
4x + 159	WR	UINT	Product Name	
4x + 160 +163	WR	ASCII	Meter Serial Number	
4x + 164 +167	WR	ASCII	Meter ID	
4x + 168	WR	UINT	Meter Size	
4x + 169	WR	UINT	Meter Type	
4x + 170 185	WR	UDINT	Run 1 Meter Proving Report See the Register Functions table following.	
4x + 186 201	WR	FLOAT	Run 2 Meter Proving Report See the Register Functions table following.	
4x + 202 217	WR	FLOAT	Run 3 Meter Proving Report See the Register Functions table following.	
4x + 218 233	WR	FLOAT	Run 4 Meter Proving Report See the Register Functions table following.	
4x + 234 249	WR	FLOAT	Run 5 Meter Proving Report See the Register Functions table following.	
4x + 250 265	WR	FLOAT	Run 6 Meter Proving Report See the Register Functions table following.	
4x + 266 281	WR	FLOAT	Run 7 Meter Proving Report See the Register Functions table following.	
4x + 282	WR	FLOAT	Run 8 Meter Proving Report	

8.3.8.1. Table of Prover Log Records Registers

Report Register	Access	Data Type	Comment	
4x + 298 313	WR	FLOAT	Run 9 Meter Proving Report See the Register Functions table following.	
4x + 314 329	WR	FLOAT	Run 10 Meter Proving Report See the Register Functions table following.	
4x + 330	WR	UDINT	Average Proving Pulses	
4x + 332 +333	WR	FLOAT	Average Temperature at the Prover	
4x + 334 +335	WR	FLOAT	Average Temperature at the Meter	
4x + 336 +337	WR	FLOAT	Average Pressure at the Prover	
4x + 338 +339	WR	FLOAT	Average Pressure at the Meter	
4x + 340 +341	WR	FLOAT	Average ISV / GSV Flow Rate	
4x + 342 +343	WR	FLOAT	Average API Corrected Gravity	
4x + 344 +345	WR	FLOAT	Average Meter Frequency	
4x + 346 +347	WR	UDINT	Base Volume Prover	
4x + 348 +349	WR	FLOAT	CTS	
4x + 350 +351	WR	FLOAT	CPS	
4x + 352 +353	WR	FLOAT	CTL	
4x + 354 +355	WR	FLOAT	CPL	
4x + 356 +357	WR	FLOAT	Total ISV BBLs	
4x + 358 +359	WR	FLOAT	Batch ISV BBLs	
4x + 359 +360	WR	FLOAT	Calculated Meter Factor	
4x + 361 +362	WR	FLOAT	% Change in MF to Prev. MF	

Report Register	Access	Data Type	Comment
4x + 363 +364	WR	FLOAT	K Factor
4x + 365 +366	WR	UINT	Calculated K Factor
4x + 367 +368	WR	FLOAT	CCFP
4x + 369 +370	WR	FLOAT	CCFM
4x + 371 +372	WR	UDNIT	Corrected Prover Volume
4x + 373 +374	WR	UDINT	Corrected Meter Volume
4x + 375 +376	WR	UDINT	Metered Volume

8.3.8.2.Register Table of functions Functions

Run	Total Pulses	Temperature Prover	Temperature Meter	Pressure Prover	Pressure Meter	Flow Rate	Corrected Gravity	Meter Frequency
	UDINT	FLOAT	FLOAT	FLOAT	FLOAT	FLOAT	FLOAT	FLOAT
1	4x + 170	4x + 172	4x + 174	4x + 176	4x + 178	4x + 180	4x + 182	4x + 184
	171	173	175	177	179	181	183	185
2	4x + 186	4x + 188	4x + 190	4x + 192	4x + 194	4x + 196	4x + 198	4x + 200
	187	189	191	193	195	197	199	201
3	4x + 202	4x + 204	4x + 206	4x + 208	4x + 210	4x + 212	4x + 214	4x + 216
	203	205	207	209	211	213	215	217
4	4x + 218	4x + 220	4x + 222	4x + 224	4x + 226	4x + 228	4x + 230	4x + 232
	219	221	223	225	227	229	231	233
5	4x + 234	4x + 236	4x + 238	4x + 240	4x + 242	4x + 244	4x + 246	4x + 248
	235	237	239	241	243	245	247	249
6	4x + 250	4x + 252	4x + 254	4x + 256	4x + 258	4x + 260	4x + 262	4x + 264
	251	253	255	257	259	261	263	265
7	4x + 266	4x + 268	4x + 270	4x + 272	4x + 274	4x + 276	4x + 278	4x + 280
	267	269	271	273	275	277	279	281
8	4x + 282	4x + 284	4x + 286	4x + 288	4x + 290	4x + 292	4x + 294	4x + 296
	283	285	287	289	291	293	295	297
9	4x + 298	4x + 300	4x + 302	4x + 304	4x + 306	4x + 308	4x + 310	4x + 312
	299	301	303	305	307	309	311	313
10	4x + 314	4x + 316	4x + 318	4x + 320	4x + 322	4x + 324	4x + 326	4x + 328
	315	317	319	321	323	325	327	329

8.3.9. AUDT Report Logging—Detail: Report Registers—Last Meter Factor Table

8.3.9.1. Last The Last Meter Factor table stores the last meter factor used for the specific product processed. For example, here is a sample entry: Premium Gasoline ISV Flow Rate 1201 BBL /HR On 3/22/02 with a meter factor of 1.0029. The Last Meter Factor Table can hold up to 16 different products. When a new meter factor is calculated, the previous meter factor is used. The loadable looks at the product name, finds the previous meter factor, and applies it to the new meter factor

Last Mater Factor Table Begisters

r	1	<u> </u>	1
Report Register	Access	Data Type	Comment
4x + 377 +378 (Product Name * 8)	WR	FLOAT	Last Meter Factor (0 to 15)
4x + 379 +380 (Product Name * 8)	WR	FLOAT	Indicated Standard Volume BBL/HR (0 to 15)
4x + 381 (Product Name * 8)	WR	UINT	Last Month (0 to 15)
4x + 382 (Product Name * 8)	WR	UINT	Last Day (0 to 15)
4x + 383 (Product Name * 8)	WR	UINT	Last Hour (0 to 15)
4x + 384	WR	UINT	Last Min. (0 to 15)

calculation. Data is stored based on Product Name (the PCFC register 4x + 9.

Part V Function Block Installation

V

At a Glance

Purpose This material describes installing the function blocks.

What's in this Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
9	Installing the PCFC Loadables Using Concept Panel Software	203
10	Installing the PCFC Loadables Using ProWORX NxT or ProWORX32 Panel Software	221

This page is intentionally blank.

9. Installing the PCFC Loadables Using Concept Panel Software

At a Glance		
Purpose	This material describes how to install the loadables and configure hardware using Concept 2.5 SR2 panel software. If you are using this material and proceed to <i>Installing the PCFC Loadables Using</i> or <i>ProWORX32 Panel Software</i> , p. 221.	the Quantum ProWORX, skip ProWORX NxT
What's in this Chapter?	This chapter contains the following topics:	
	Торіс	Page
	9.1. Setting Parameters and Unpacking Loadables Using Concept	204
	9.2. Loading the Loadables Using Concept	209
	9.3. Selecting the Quantum Hardware Module Using Concept	211
	9.4. Configuring the I/O Drops Using Concept	213
	9.5. Setting the Module's Personality Using Concept	215
		I

9

9.1 Setting Parameters and Unpacking Loadables Using Concept

Procedure	See		
1	Setting Parameters and Unpacking Loadables Using Concept, p. 204		
2	Loading the Loadables Using Concept, p. 209		
3	Selecting the Quantum Hardware Module Using Concept, p. 211		
4	Configuring the I/O Drops Using Concept, p. 213		
5	Setting the Module's Personality Using Concept, p. 215		

9.1.1. Overview Installing the loadables consists of the following procedures.

Note: Before attempting to complete these procedures, you should be familiar with Concept software and PLC programming and are ready to configure the hardware and software for the liquid loadable.

Note: Concept 2.5 SR2 or higher may be used to load and configure the Liquid loadable blocks. However, Concept panel software does not provide DX zoom screens for configuration of the block. The files required to add DX zoom screens to Concept are provided on the PCFC Loadable CD.

Note: The Liquid loadables are only available in 984LL. However, controllers with enough memory can run 984LL and IEC in the same PLC.

9.1.2. Setting To inst Parameters Step

To install the loadable and associate zoom screens,

Step	Action
1	Insert the Liquid Flow Loadable CD (Part Number 309 ULD 454 00) into the CDROM drive and copy the contents of the directory: <cd drive="">:\loadable to the Concent "det" directory:</cd>
	to the concept dat directory. For example: If your CD drive is drive $a \in A$ and Concept is installed in
	c:\cc25sr2\dat, copy the files from e:\loadable to c:\cc25sr2\dat.
2	Copy the files in the Concept directory on the CD to the Concept install directory. Example: If your CD drive is drive e:\ and Concept is installed in c:\cc25sr2 on the loca drive, copy the files from e:\concept to c:\cc25sr2.
3	Create a backup directory in the Concept install directory.
4	Copy the files wi.dll and dxzoom.dll FROM the Concept install directory to the backup directory.
5	If Concept 2.5 SR2 is installed, copy the files from the CD directory concept\25sr2_files to the Concept install directory. If Concept 2.6 SR1 is installed, copy the files from the CD directory concept\26sr1_files to the Concept install directory. Copy the .dll files from the Concept directory on the CD to the Concept install directory.
6	Start the Concept software.
7	From the Main Menu, choose File Open or File New Project.
8	From the Main Menu, choose Project Configurator.
9	On the <i>PLC Configuration</i> screen, double click the mouse on PLC Type: and choose the appropriate PLC.

Step	Action						
10	From the Main Menu, select Configure Specials and then select Time of Day Clock , or in the <i>PLC Configuration</i> screen, double click the Specials box. The <i>Specials</i> dialog appears.						
	Specials						
	Maximum						
	Battery Coil 0x 1536						
	Timer Register 4x 5000						
	✓ Time of Day 4x 500 -400507 4993						
	Allow Duplicate Coils (LL984 only)						
	<u>F</u> irst Coil Address: 0x						
	Watchdog Timeout (ms*10): 60 Online Editing Timeslice (ms): 20						
	OK Cancel <u>H</u> elp						
11	Enter the starting register for the Time of Day clock.						
12	Click OK.						

Step	Action			
13	From the Main Menu, s <i>PLC Configuration</i> scre appears.	elect Configure Lc en, double click the	adables, or • Loadables box. ⁻	The <i>Loadables</i> dialog
	Loadables			×
	Bytes Available:	609904	Bytes Used: 0	
	<u>A</u> vailable:		I <u>n</u> stalled:	
	@1S7 V196 @1SE V196 @2I7 V196 @2IE V196 ASUP V196	<u>I</u> nstall => <= <u>R</u> emove		
	Warning! Confirm user loadables	Unpack are valid for your PLC	Edit	
	ОК	Cancel	<u>H</u> elp	

9.1.3. Unpacking	To unpack the loadables,				
Loadables	Step	Action			
	1	Click on Unpack . The <i>Unpack Loadable File</i> dialog appears.			
		Unpack Loadable File			
		File name: Eolders: OK			
		Asup196.exe c:\concept\dat Cancel			
		emuq196.exe Ihsb196.exe Loader.exe Lsup.exe 0100196.exe PCFC.exe TMCI.exe Ulex196.exe			
		List files of type: Drives: User Loadables (*.exe)			
	2	Using the Unpack Loadable File dialog, find the directory/drive where the LSUP.EXE is located.			
	3	Select LSUP.EXE and click OK. Repeat this step for TMCI.exe and PCFC.exe. As each of these loadables is unpacked, it creates a copy (called LSUP V196, TMCI V196, and PCFC V196, respectively). Each copy appears in the Left pane of the dialog box in Step 9. If there is a conflict with an existing Opcode, any unique Opcode that is not taken will work. Default Opcodes: LSUP = FF TMCI = 21 PCFC = 1F For more information on Opcodes, see the Concept online documentation. When this step is complete leave this dialogue box open to complete the next step. The loadables are now ready to be installed.			
	4	Note: The preceding procedure is for a simple system. Other liquid flow blocks may be added by following the same setup.			

9.2. Loading the Loadables Using Concept

9.2.1. Loading the Loadables

After completing the first stage of installation, use the following procedure to load the loadables.

WARNING

UNINTENDED CONTROLLER OPERATION The LSUP.EXE must be the first block in the configuration. Otherwise, the controller may not operate properly.

Failure to follow this precaution can result in death, serious injury, or equipment damage.

Step	Action				
1	Select PCFC V196 in the left panel of the <i>Loadables</i> dialog and click on Install =>. Repeat for TMCI V196 and any other loadables to be used. Lastly, select LSUP V196 in the left panel of the Loadables dialog and click on Install =>. (Note: LSUP V916 must be the last block installed and FIRST in the list of Installed: loadables.) The <i>Installed</i> field of the dialog will list the installed blocks as shown here:				
	Loadables		×		
	Bytes Available: Available: @1S7 V196 @1SE V196 @217 V196 @21E V196 ASUP V196 ▼	609904 <u>I</u> nstall => <= <u>R</u> emove	Bytes Used: 119136 Installed: LSUP V196 PCFC V196 TMCI V196		
	Warning! Confirm user loadable	Unpack s are valid for your PL Cancel	C		

9.3. Selecting the Quantum Hardware Module Using Concept

9.3.1. Are You in the Right Place?	This section hardware. I Parameters	n describes the second stage of PCFC loadable installation on Quantum f you have not completed the first stage of installation, go back to <i>Setting</i> s and Unpacking Loadables Using Concept, p. 204.			
9.3.2. Selecting	Use the following procedure to configure Quantum hardware.				
the Quantum Hardware	Step	Action			
Module	1	Run the ModConnect Tool . (Find this in the program group where Concept was installed.) The <i>Concept Module Installation</i> dialog appears.			
		Concept Module Installation			
		File Modules Help			
		Open Installation File Ctr+O Save Changes Ctrl+S			
		Exit			
		Module Details Provider: Version: Copyright:			
	2	From the Main Menu, choose $\textbf{File} \rightarrow \textbf{Open Installation File}$			

Step	Action
3	 Select the drive and path of the floppy included with the Spectrum Controls module. To install a Quantum module, select the file called Spectrum.MDC. The <i>Select Module</i> dialog appears.
	Select Module
	Installing from: D:\Liquid Flow Hardware
	Click the module you want to install, and then click Add Module:
	MDC-ACI-050-00SC AN IN 32CH Current MDC-ACI-051-00SC AN IN 32CH Volt/Curr MDC-ACI-052-00SC AN IN 32CH Timestamp MDC-AUI-040-00SC Universal 16CH MDC-AVI-050-00SC AN IN 32CH Voltage MDC-AVI-050-00SC AN IN 32CH Voltage MDC-EHC-204-00SC 4CH Counter/Flowmeter MDC-MPC-204-00SC 8CH Counter/Flowmeter MDC-MPC-204-00SC 4CH Count/Meter Proving
4	Select the part number of the module you intend to install. Click Add Module and then Close . Exit the program. When prompted to save you changes click Yes . (For a description of the modules and their functionality see <i>TMCI Function Block</i> , <i>p</i> . <i>31</i> .)
5	Exit the ModConnect Tool . The Module is now available from the Concept I/O pick list, and you can configure the I/O drops.

9.4. Configuring the I/O Drops Using Concept

9.4.1. Configuring the	After sele O drops.	cting the Quantum module, use the following procedure to configure the I/			
I/O Drops	Step	Action			
	1	Start the Concept software and open the Project you created.			
	2	From the Main Menu, choose Project \rightarrow Configurator . The <i>PLC Configuration</i> dialog appears.			
	3	Choose Configure \rightarrow I/O Map The I/O Map dialog appears.			
		Expansion Size: 144 Insert Delete Go To: Local/Remote (Head Slot?) Cut Copy Paste Drop Type Holdup (x100ms) In bits Out bits Status Edit 1 Quantum I/O 3 176 96 Select this row when inserting at end of list Select this row when inserting at end of list Head Setup OK Cancel Help			

Step	Action						
4	Click on the button with the three dots "" under the <i>Edit</i> column. The <i>Local Quantum Drop</i> dialog appears.						
	Local Quantum Drop						
	Drop Modules: 4 ASCII Port #: none v Bits In: 176 Params Bits Out: 96 Status Table:						
	Prey Next Clear Delete Cut Copy Paste						
	Rack-Slot Module Detected In Ref In End Out Ref Out End						
	151 MPC-204-00SC 300001 300011 400006 4CH Count						
	1-2 CPU-434-12 CPU 2MB 1						
	1-3 NOE-7/1-10 ENET 10/1						
	1-5						
	1-7						
	1-8						
	1-9						
	1-10						
	1-11						
5	Click on the button with the three dots "" under the Module column and selec						
Ū.	the module you wish to configure. Enter the Traffic Can date into the In Defend						
	and module you wish to configure. Enter the manic cop data into the In Herand						
	Out Het columns.						
	NOTE: Do NOT click OK at this point. Leave the <i>Local Quantum Drop</i> window						
	open for the next procedure.						

9.5. Setting the Module's Personality Using Concept

Module's	personali	ty.			
Personality	Step	Action			
	1	Run the SCIOCFG.EXE utility program. This program is located on the floppy that came with the Spectrum Controls module. Double click the SCIOCFG.EXE icon. The <i>Spectrum I/O Configuration Tool</i> dialog appears.			
		Spectrum I/O Configuration Tool			
	2	Click on Concept Sync . The Spectrum I/O Configuration Tool dialog window is minimized. The tool is still running, waiting for you to perform the next step.			

9.5.1. Setting the After configuring the I/O drops use the following procedure to set the module's

Step	Action						
3	Click on the Params button in the <i>Local Quantum Drop</i> dialog (which should still be open from the previous phase of the installation). A <i>Configure</i> dialog appears. The name of the dialog includes the name of the selected module (for instance, 140-MPC-204-00SC, as shown below). Options in the dialog vary depending on which module is selected. (For a description of the modules and their functionality see <i>Turbine Meter Flow Module, p. 19</i> .)						
	Configure 140-MPC-204-00SC X Channel: Registers (hex) Input Voltage Range: Reg1: 0048 5V 12V 24V AC Gate Voltage Range: 0048 Reg3: 0048 5V 12V 24V AC Reg3: 0048 Reg3: 0048 Reg3: 0048 Reg3: 0048 Reg4: 0048 Reg5: 0000 0000						
	Filters: O 16 Bit (65K) 30KHz Digital Filter O 16 Bit (65K) 15KHz Analog Filter O 24 Bit (16M) Autocycle Delay (mSec) O O 0 Defaults Cancel QK						
Step	Action						
------	--	---------------------------	--------------------	--	--	--	--
4	Choose the appropriate options. The fields marked "(<i>Required</i>)" must be set to the values shown or the loadable block will not function correctly. For the MPM module:						
	Configure 140-MPC-204-00SC						
	Channel:	Registers (hex)				
		Reg1:	0040				
	Input Voltage Range © 5V © 12V © 24V © AC	Reg2:	0040				
		Reg3:	0040				
	Gate Voltage Range	Reg4:	0040				
		Reg5:	0000				
	Filters: Counter Size:	Reg6:	0000				
	30KHz Digital Filter 30KHz Analog Filter	d)_{Reg7:}	0000				
		Reg8:	0000				
	Signal Timeout (Sec) Autocycle Delay (mSec)	Reg9:	0000				
	0 (Required)						
	Spectrum Controls Defaults		<u>0</u> K				
	If the flow meter does not use a pre-amp, then select "AC" for the input voltage						
	range. If the meter does include a pre-amp then see the ma	nufacturer	's data sheet for				
	the output voltage. For the "Gate Voltage Range" or D	etector sw	itch voltage, this				
	Note: The 140 EHC 204 00sc and 140 EHC 208 00s	c do not u	se the Gate				
	Voltage Range and are not capable of doing meter p	proving.					

Step	Action			
5	The fields marked "(Req block will not function co	uired)" must be set to prrectly. For the EHC n	the values nodules:	shown or the loadable
	Configure 140-EHC-208	8-00SC		×
	Channel		Registers (he	ex)
	• 1 • 2 • 3 • 4 •	5 0 6 0 7 0 8	Reg1:	0000
	Input Voltage Range		Reg2:	0000
	• 5V • 12V • 24V •	AC	Reg3:	0000
	Counter Mode	Counter Size	Reg4:	0000
	(Required) • UniDirectional	C 16 bit (65k) (Required) Reg5:	0000
	BiDirectional	24 bit (16M)	Reg6:	0000
	C Quadrature 1X	Rate Scale	Reg7:	0000
	Quadrature 4X	• 1.0 Hz (Required • 0.1 Hz) Reg8:	0000
			Reg9:	0000
	Filters	Autocycle Delay (mSec)		
	L 15KHz Analog Filter	0 (Required		Spectrum Controls
		Defaults	<u>C</u> ancel	<u>O</u> K
	Click OK to set the char	nges and close the Col	<i>nfigure</i> dial	og.

10. Installing the PCFC Loadables Using ProWORX NxT or ProWORX32 Panel Software

10

Purpose	This material describes how to install the loadables and use the ProWORX NxT or ProWORX32 panel software. If you are usi material and proceed to <i>Installing the PCFC Loadables Using</i> <i>Software, p. 203.</i>	he loadables with t ing Concept, skip t g <i>Concept Panel</i>
What's in this	This chapter contains the following topics:	
What's in this Chapter?	This chapter contains the following topics:	Page
What's in this Chapter?	This chapter contains the following topics: Topic 10.1. Understanding the ProWORX Installation Procedure	Page 222
What's in this Chapter?	This chapter contains the following topics: Topic 10.1. Understanding the ProWORX Installation Procedure 10.2. Installing the Loadables Using ProWORX	Page 222 223

10.1. Understanding the ProWORX Installation Procedure

10.1.1. Prerequisites for Installation with ProWORX	Note: Be the ProW hardware	fore attempting to complete these procedures, you should be familiar with /ORX software and PLC programming, and you are ready to configure the e and software for the liquid loadable.
	To install be supplie • LSUP.I • PCFC. • TMCI.E	the PCFC function block into the PLC configuration, these loadables must ed: EXE EXE EXE EXE
	Additional either Pro	I loadables may be installed as well as custom register editor screens for Worx NxT or ProWorx32.
10.1.2. Load LSUP.EXE First Requirement	The LSUF configurat PCFC.EX	P.EXE loadable must be listed as the first loadable in the PLC tion, followed by the PCFC.EXE loadable. If this order is not followed the E loadable function block will not execute properly.
		WARNING
		UNINTENDED CONTROLLER OPERATION
		The LSUP.EXE must be the first block in the configuration. Otherwise, the controller may not operate properly.
		Failure to follow this precaution can result in death, serious injury, or equipment damage.
10.1.3. More	Refer to y	our PLC software manual for instructions on configuring user loadable

Information on Configuring User-Loadable **Function Blocks** function blocks.

10.2. Installing the Loadables Using ProWORX

the Loadables	Stop		tion				
Using ProWORX	1	Ins RC De <c< td=""><td colspan="5">Insert the Liquid Flow Loadable CD (Part Number 309 ULD 454 00) into the CD- ROM drive. Depending on the ProWORX version, copy the contents of: <cd drive="">:\Loadable into the \PROWORX\NXT\ subdirectory.</cd></td></c<>	Insert the Liquid Flow Loadable CD (Part Number 309 ULD 454 00) into the CD- ROM drive. Depending on the ProWORX version, copy the contents of: <cd drive="">:\Loadable into the \PROWORX\NXT\ subdirectory.</cd>				
	2	Co	Copy the contents of <cd dirve="">:\ProWorx_NxT into the PROWORX\NXT directory.</cd>				
	3	If a use ne Ex Pre	If audit logging will be used (AUDT), the AUDT block must be modified to correctly use PLC memory. Run the batch file which begins with the number of audit logs needed. Example: If 3 audit logs will be used, run the 3AUDTLOGS.bat file before starting ProWorx.				
	4	Sta No pro	art ProWORX ote: Refer to t ojects	(. From the N he ProWOR)	1ain Menu, ch K manual for	noose File → Oper information on crea	n or File \rightarrow New . ating and opening
	5	Fro Th	From the ProWORX Main Menu, choose Configuration \rightarrow Configuration . The Controller Configuration dialog appears.				
		Co	ntroller Configur	ation			×
			General	Ports	Controller	User Loadables	Loadable Library
			Controller Typ	e	Controller D	etails	
			Current Cont Quantur	troller Type: n 113/3	Ex M Exten	ec Cartridge: V2.XX (h emory Pack: ded Memory: User Logic:	as Eqn. Nets, Fast
			Change C	ontroller <u>T</u> ype	Mic	S908 Size: ro 1/O Mode:	
			Controller Sum Total Lo Modu Execut	nmary ogic: 15186 ules: 04 tive:		<u>E</u> dit Details	
			ОК	Cancel			Help

Step	Action
6	Click Change Controller Type . Note: Refer to the ProWORX manual and <i>PLC Liquid Flow Features Table, p. 17</i> for information on selecting controller type.
7	Choose the appropriate PLC.
8	From the ProWORX Main Menu, choose Configuration → Configuration . The <i>Controller Configuration</i> dialog appears.
	General Ports Controller User Loadables Loadable Library
	Dxxxx: 1536 1xxxx: Iotal Messages: 0000 00000 1xxxx: 0512 3xxxx: 0512 5000 Message Words: 00000 3xxxx: 5010 ASCII Ports: 00 Timer Register(4x): 1001 3xxxx: 5000 ASCII Ports: 00 Watch Dog Tm(*10ms): 0000 Segments: 32 I/20 Words: 00158 I/20 Words: 00158 00021 I/0 Time Slice: 020 Dup Coil Start: 0000 I/20 Words: 0000
	OK Cancel Help
9	Select the <i>General</i> Tab at the top of the box. In the <i>Time of Day Clock (4x)</i> enter the starting register for the Time of Day Clock. Click OK .

Step	Action
10	From the ProWORX Main Menu, choose Configuration \rightarrow Configuration . The <i>Controller Configuration</i> dialog appears.
	Controller Configuration
	General Ports Controller User Loadables Loadable Library
	Loadable Library Source of Loadables
	C:\PROWORX\NXT\
	Library Type: O Database O Old Taylor .TLD
	Select Library Hebuild Edit Opcode View Text
11	Select the <i>Loadable Library</i> tab at the top of the box.
	In the Source of Loadables area, click the Exe Format button to turn it on.
	Source of Loadables C:\PROWORX\NXT\
	O <u>D</u> atabase O <u>O</u> ld Taylor .TLD
	O Modicon © Exe format
	Click on the Browse button to select the .exe files.
12	Select all of the .exe files in the list and click <<transfer< b=""> to copy them to your library.</transfer<>

Step	Action		
13	From the ProWORX Main Menu, choose Configuration \rightarrow Configuration .		
	The Controller Configuration dialog appears.		
	Controller Configuration		
	General Ports Controller User Loadables Loadable Library		
	Loadable Library Loadables in Database		
	Type Name Opcode Name Opcode Version		
	MSL LSUP (FF) 136 MSL PCFC (1F) 9CFC (1F) 196		
	MSL PHWX (46) MSL TMCI (21) Load >>		
	MSL FNUI (22)		
	Select Library		
	<u>Update</u>		
	UK Lancel Help		
14	Select the User Loadables tab at the top of the box.		
15	Click Select Library		
	A dialog appears, listing available libraries. Select LSUP, PCFC, and TMCI (and		
	T23E, T24E, AUDT, ITOI if these loadables will be used).		
	Click OK .		
	The library names appear in the <i>Loadable Library</i> list.		
10	Click on the LCIUD line in the Likram Tradict then click Loods to add it to the		
10	Loadables in Database list		
	NOTE: It is very important to load LSUP first.		
17	Click on the PCFC line in the <i>Library Type</i> list, then click Load>> to add it to the		
	Loadables in Database list.		
18	Click on the TMCI line in the <i>Library Type</i> list, then click Load>> to add it to the		
	Loadables in Database list.		
19	Repeat Step 16 for other liquid flow loadables.		
20	Click Update and then click OK.		
	The loadables are now available for use in ladder logic.		

10.2.2. ProWORX 32	ProWorx32 installation is similar to NxT. The directory name for the install is PROWORX\32.
Installation	Contents of <cd drive="">:\ProWORX32 directory should be copied to</cd>
	Contents of <cd drive="">:\Loadable directory should be copied to c:\PROWORX\32.</cd>

10.3. Using the Loadables in Ladder Logic

10.3.1. Using the Loadables in Ladder Logic Once you have installed the loadables, you can use them in ladder logic. They are listed in alphabetic order in the Instruction panel on the right side of the ProWORX screen. You can use drag and drop methods to insert blocks into the logic. (For more information on ladder logic programming see the ProWORX manual or online documentation.)

After inserting loadable blocks into logic, configure the blocks by doing the following:

Step	Action
1	Select the block.
2	Right click on the block.
3	Select Register Editor.
4	Enter data in the registers.

Appendices

What's in this Appendix?

The appendix contains the following chapters:

Chapter	Chapter Name	Page
A	Flow Equations and Algorithms	233
В	Integer-to-Integer (ITOI) Function Block	243
С	Analog Input Conversion Ranges	253
D	User Security Access Levels	255

A. Flow Equations and Algorithms

Α

A.1. Flow Equations and Algorithms

A.1.1. API References	All Flow equations used in the PCFC block are referenced from the API Standard 2540.
A.1.2. Flow Rate at Flowing Conditions: Bbls / Hr	Indicated Volume = $\frac{\text{MeterFrequency}}{\text{NominalKFactor}} \times 3600$
A.1.3. Net Flow Rate at Base Conditions: Bbls / Hr (API 2540 Chapter 12 Section 2 Part 1.10.2)	Gross Standard Volume = $IV \times CTL \times CPL \times MF$
A.1.4. Correction for Sediment and Water (CSW) (API 2540 Chapter 12 Section 2 Part 1.11.7)	CSW = [1 - (%S&W / 100)]

A.1.5. Determination of Net Standard of Volume (API 2540 Chapter 12 Section 2 Part 1.10.3)	Net Standard Volume = $GSV \times CSW$	
A.1.6. Determination of S&W Volume (API 2540 Chapter 12 Section 2 Part 1.10.4)	Sediment Water Volume = $GSV - [GSV \times \langle 1 - [\%S\&W]/100 \rangle]$	
A.1.7. Calculated K Factor	Some sites choose to keep the Meter Factor to a value of 1.0 by changing the K Factor.	
	$1/Meter Factor \times K Factor = Calculated K Factor$	

A.1.8. Correction Factor for Temperature of Liquid (CTL) in Imperial Mode (API 2540 Chapter 11.1 Volume X, ANSI/ ASTM D1250-1980)

$$CTL = \exp[\langle 0 - \alpha T \rangle \times \Delta T \times \langle 0.8 \times \alpha T \times \Delta T \rangle]$$

Where:

 ΔT = Current Temperature – 60°F

$$\alpha T = \frac{K_0 + \langle K_1 \times \rho T \rangle}{\rho T^2} \qquad OR \qquad \alpha T = A + \left[\frac{\beta}{\left(\rho T\right)^2}\right]$$

$$\rho_t[Kg/m^3] = \frac{141.5 \times 999.012}{Current Density API + 131.5}$$

 ρ_t = Density at temperature t

API = Observed API Gravity

999.012 = Density of water at 60° F, Kg/m³

Tables

Tables 5&6	API Range	К0	K1	K2
А	0.0 to 100	341.0957	0.0	0.0
В	52.0 to 85.0	192.4571	0.2438	0.0
В	48.0 to 52.0	1489.0670	0.0	-0.00186840
В	37.0 to 48.0	330.3010	0.0	0.0
В	0.0 to 37.0	103.8720	0.2701	0.0
D	-10.0 to 45.0	0.0	0.3488	0.0

API Gravity (Imperial)				
0 = Crude 1 = Product 2 = Lubricating Oil				
Input	Input	Input		
Tempe	erature Range 0 to 300 °F all	Tables		
API Gravity 0 to 100	API Gravity 0 to 85	API Gravity -10 to 45		
Table 5A	Table 5B	Table 5D		
Corrected API 0 to 100	Corrected API Gravity 0 to 85	Corrected API Gravity -10 to 45		
Table 6A	Table 6B	Table 6D		
CTL	CTL	CTL		
Output Ref. to 60 °F	Output Ref. to 60 °F	Output Ref. to 60 °F		

Tables 23 & 24	Relative Density	К0	K1	K2
А	0.6110 to 1.0760	341.0957	0.0	0.0
В	0.6530 to 0.7705	192.4571	0.2438	0.0
В	0.7710 to 0.7885	1489.0670	0.0	-0.00186840
В	0.7890 to 0.8395	330.3010	0.0	0.0
В	0.8400 to 1.0750	103.8720	0.2701	0.0
D	0.8000 to 1.1640	0.0	0.3488	0.0

Specific Gravity (Imperial)					
0 = Crude 1 = Product 2 = Lubricating Oil					
Input	Input	Input			
Tempo	Temperature Range 0 to 300 °F all Tables				
Specific Gravity .611 to 1.076	Specific Gravity 0.653 to 1.076	Specific Gravity .800 to 1.164			
Table 23A	Table 23B	Table 23D			
Specific Gravity .611 to 1.076	Specific Gravity 0.653 to 1.076	Specific Gravity .800 to 1.164			
Table 24A	Table 24B	Table 24D			
CTL	CTL	CTL			
Output Ref. to 60 °F	Output Ref. to 60 °F	Output Ref. to 60 °F			

A.1.9. Correction Factor for Pressure of Liquid (CPL) in Imperial Mode (API 2540 Chapter 12 Section 2 Part 1.11.1.2

$$CPL = \frac{1}{\left[1 - \left(\frac{Pressure \times Ctable}{100000}\right)\right]}$$

A.1.10. Where: Compressibility Factor Calculations (API 2540 Chapter 11.2.1 Compressibility Factors for Hydrocarbons: 0 to 90 API) A.1.11. Correction Factor for Temperature of Liquid (CTL) in Metric Mode (API 2540 Chapter 11.1 Volume X, ANSI/ASTM D1250-1980)

$$CTL = \exp[(0 - \alpha T) \times \Delta T \times (1 + (0.8 \times \alpha T \times \Delta T))]$$

$$\Delta T$$
 = Current Temperature – 15°C

$$\alpha T = \frac{\left[K_0 + (K_1 \times \rho T)\right]}{\left(\rho T\right)^2} \quad OR \quad \alpha T = A + \left[\frac{B}{\left(\rho T\right)^2}\right]$$

$$\rho T \left[\frac{Kg}{m^3} \right] = Product Density Corrected to 15°C$$

Tables

Tables 53 & 54	Density Kg/m	К0	K1	К2
А	6110 to 1075	613.9723	0.0	0.0
В	653 to 770	346.4228	0.4388	0.0
В	770 to 788	2680.3206	0.0	-0.00336312
В	788 to 839	594.5470	0.0	0.0
В	839 to 1075	186.9696	0.4862	0.0
D	800 to 1164	0.0	0.6278	0.0

Density (Metric Gravity)					
0 = Crude 1 = Product 2 = Lubricating Oil					
Input	Input	Input			
Temperature Range -18	Temperature Range -18 to 150 °C all Tables except (53D &54D -20 to 150 °C)				
Density 610 to 1075 kg/m ³	Density 653 to 1075 kg/m ³	Density 800 to 1164 kg/m ³			
Table 53A	Table 53B	Table 53D			
Density 610 to 1075 Kg/m	Density 653 to 1075 Kg/m	Density 800 to 1164 Kg/m			
Table 54A	Table 54B	Table 54D			
CTL	CTL	CTL			
Output Ref. to 15 °C Output Ref. to 15 °C Output Ref. to 15					

Density (Metric Gravity)		
0 = Crude	1 = Product	2 = Lubricating Oil

Input	Input	Input
Temperature Range -18	to 150 °C all Tables except ((59D & 60D -20 to 150 °C)
Density 610 to 1075 kg/m ³	Density 653 to 1075 kg/m ³	Density 800 to 1164 kg/m ³
Table 59A	Table 59B	Table 59D
Density 610 to 1075 kg/m ³	Density 653 to 1075 kg/m ³	Density 800 to 1164 kg/m ³
Table 60A	Table 60B	Table 60D
CTL	CTL	CTL
Output Ref. to @ 20 °C	Output Ref. to @ 20 °C	Output Ref. to @ 20 °C

Tables 59 and 60 for standard reference temperature of 20°C are also included for crude oils, petroleum products and lubricating oils which has been adopted by ISO as international standard ISO 91-2, Petroleum Measurement Tables - Part 2: Tables based on a reference temperature of 20°C.

A.1.12. Correction Factor for Pressure of Liquid (CPL) in Metric Mode (API 2540 Chapter 12 Section 2 Part 1.11.1.2)

 $CPL = \frac{1.0}{(1.0 - F(P - P_F))}$

Where

T =	Product Temperature in degrees C
p=	Product Standard Density in Kg/L (i.e. Kg/m ^{3} × 0.001)
P=	Product Pressure in Kpag
P _E =	Product Equilibrium Pressure in Kpag. Equals 0 or product vapor.

A.1.13.

Compressibility Factor Calculations (API 2540 Chapter 11.2.1M Compressibility Factors for Hydrocarbons: 638 – 1074Kg/m)

$$F = a + bT + \frac{c}{\rho^2} + \frac{d1}{\rho^2}$$
$$F = -\frac{e^F}{e^F}$$

$$r = \frac{1}{1,000,000.0}$$

Compressibility Constants:

a=	-1.6208
b=	0.00021592
C=	0.87096
d=	0.0042092

A.1.14. Averaging (API 2540 Chapter 21 Section 2, 9.2.13.2 Averaging Techniques)	The function block averages temperature, pressure, density, and meter M factor for reports. The average for each entity is a function of the barrels produced. The average formula is shown below. $New Average = \frac{Previous Gross Barrels \times Previous Average + New Gross I}{Previous Gross Barrels + New Gross F}$	
A.1.15. Correction for the effect of temperature against steel, Cts (API 2540 Chapter 12 Section	Cps = 1 + (T - 60)y Where:	
2,12.2.5.1)	T = Temperature of the container walls	
	y = Coefficient of cubical expansion per degrees of the material of which the container is made	
A.1.16. Correction for the effect of Pressure against steel, Cts (API 2540 Chapter 12 Section 2,12.2.5.2)	$Cps = 1 + \left(\frac{PD}{Et}\right)$ Where:	

P =	Internal pressure	
D =	internal diameter	
E =	modulus of elasticity for the container material	
t =	wall thickness of the container	

A.1.17. $CCF = C_{TS} \times C_{PS} \times C_{TL} \times C_{PL}$ and C_{SW} Combined Correction Factor (CCF) (API 2540 Chapter 12 Section 2, 12.2.5.5 Combined Correction Factor) A.1.18. K-Factors and Composite K-Factors (KFs, CKFs) (API 2540 Chapter 12 Section 2 Part 1, 1.11.5)

NewKF = (OldKF)/MF

B. Integer-to-Integer (ITOI) Function Block

Β

At a Glance				
Purpose	This chapter describes the ITOI function block. This block is used with the PCFC block to convert prover raw count values and bas volume of the prover into single, 16-bit word parts. This allows SCADA hosts an human-machine interfaces (HMI) that don't support 32-bit unsigned long integers read and write such values.			
What's in this	This chapte	er contains the following sections:		
Chapter?	Section	Торіс	Page	
	B.1	Representation of the ITOI Function Block	245	
	B.2	ITOI Function Block Configuration Overview	250	

B.1 Representation of the ITOI Function Block

At a Glance

Purpose This section describes the block structure representation and operation function block.				
What's in this	This section contains the following topics:			
Section?	Торіс	Page		
	B.1.1. ITOI Block Structure Representation	246		
	B.1.2. ITOI Block Operational Representation	249		

B.1.1. ITOI Block Structure Representation

B.1.1.4. Top Node Content

There are three function codes available on the ITOI function block, as described here. All examples shown assume that the ITOI block middle node is 400100.

Function	Description		
#01	 Convert a Prove Count The convert prove count function truncates the last for digits of the prover count value (basically removes the fraction value that was obtained by double chronometry). The function divides the raw prover count by 10,000 and stores the whole portion in the lower register and the reminder in the high register. For example: 400101 = 121007 (UDINT) 400103 = 12 (UINT) 400104 = 1007 (UINT) Note: If small volume proving "double chronometry" is used, do not use this function. Example: Pow Count 1210071225 		
	121007		
#02	 Convert BVP to two implied registers. The function 02 converts the base volume of the prover into two implied register fields. This is so the HMI or SCADA that cannot handle 32 bit integer numbers can read them in two implied 16bit integer fields. For example: 400101 = 124628000 (UDINT) 400103 = 12462 (UINT) 400104 = 8000 (UINT) Example: Base Volume Prover 124628000. 		
	124628000 12462 8000 12462 8000 store whole in low word store remainder in high word		

	Function	Description
	#03	Convert two implied registers to BVP. The function 03 does the opposite of function 02 by taking the two implied register and making them one 32 bit integer. This is so the HMI or SCADA that cannot handle 32 bit integer numbers can write them. For Example: • 400101 = 12462 (UINT) • 400102 = 8000 (UINT) • 400103 = 124628000 (UDINT) Example: Base Volume Prover Registers 12462 8000 Iow word → 12462 • 124628000 ← high word
B.1.1.5. Middle Node Content	The 4x req registers t	jister entered in the middle node is the first of 5 contiguous holding hat comprise the control block.
B.1.1.6. Bottom Node Content	The bottom node must contain a constant (#0005) representing the length of the control block in registers.	

B.1.2. ITOI Block Operational Representation

B.1.2.1. The ITOI block is used with the PCFC block to convert prover raw count values and base volume of the prover into single, 16-bit word parts. This allows SCADA hosts and human-machine interfaces (HMI) that don't support 32-bit unsigned long integers to read and write such values.

B.2 ITOI Function Block Configuration Overview

At a Glance

Purpose	s in this This section summarizes the configuration of the ITOI function block			
What's in this				
Section?	Торіс	Page		
	B.2.1. ITOI Configuration	251		
	B.2.2. ITOI Setup and Diagnostic Data Configuration Details	252		

B.2.1. ITOI Configuration

4x + 3

4x + 4

WR

WR

B.2.1.1. Overview The following sections provide an overview of ITOI function block register contents. Details about the registers appear in the next section, *ITOI Setup and Diagnostic Data Configuration Details*, *p. 252*. (For a description of the abbreviations and terms used in register descriptions, see Glossary, p. 265.)

The following table lists the ITOI block registers that represent setup and diagnostic data.				
Register	Comment			
4x + 0	RD	HEX	Revision (X.XX)	
4x + 1	WR	UINT	Implied Decimal Low Word	
4x + 2	WR	UINT	Implied Decimal High Word	
	he following ata. Register 4x + 0 4x + 1 4x + 2	The following table lists ata.RegisterComment4x + 0RD4x + 1WR4x + 2WR	'he following table lists the ITOI ata.RegisterComment4x + 0RDHEX4x + 1WRUINT4x + 2WRUINT	

UINT

UINT

For setup and diagnostic register details, see *ITOI Setup and Diagnostic Data Configuration Details, p. 252.*

Implied Decimal Low Word (Converted)

Implied Decimal High Word (Converted)

B.2.2. ITOI Setup and Diagnostic Data Configuration Details

B.2.2.1. Overview	This section provides details about the configuration of ITOI control blocks.			
B.2.2.2. 4x + 0 (RD, HEX)	Revision (X.XX)			
B.2.2.3. 4x + 1	Implied Decimal Low Word A			
(WR, UINT)	Enter or move the low word of an UDINT into this register for conversion. The results are stored in $4x + 2$ and $4x + 3$.			
	Note: The values in the register are not modified in any way.			
B.2.2.4. 4x + 2	Implied Decimal High Word B			
(WR, UINT)	Enter or move the high word of an UDINT into this register for conversion. The			
	results are stored in $4x + 2$ and $4x + 3$.			
	Note: The values in the register are not modified in any way.			
B.2.2.5. 4x + 3	Implied Decimal Low Word C			
(WR, UINT)	This register contains low word of the converted value.			
B.2.2.6. 4x + 4	Implied Decimal High Word D			
(WR, UINT)	This register contains high word of the converted value.			
C. Analog Input Conversion Ranges

С

C.1. Analog Input Conversion Ranges

984 Ranges	
0	0000 4095
1	4096 8192
2	0000 8192
3	0001 5999
4	0001 7499
5	0001 9999
6	0001 14999
7	Reserved
Quantum Engineering Ra	nges
8	768 64768
9	16768 48768
10	064000
11	032000
12	6400 32000
Quantum Thermocouple	Ranges
13	TC Degrees (-454 +3308)
14	TC 0.1 Degrees (-4540 +32767)
15	TC Raw Units (0 65535)
Quantum Volt Meter Rang	ges
16	-10000 +10000
18	-5000 +5000
20	0 10000

C.1.1. Ranges Table

890USE14000 May 2003

984 Ranges	
22	05000
24	1000 5000
25	04000
Additional Ranges	
30	-32000 +32000

Note: If an invalid range is entered, the default range (0 to 4095) will be used.

D. User Security Access Levels

D

At a Glance

Purpose	This material presents the user security access levels.		
What's in this	This chapter contains the following topics:		
Chapter? Topic		Page	
	D.1. User Security Access Levels — Parameters and Functions — PCFC	256	
	D.1. User Security Access Levels — Parameters and Functions — TMCI	260	

D.1. User Security Access Levels — Parameters and Functions — PCFC

User Security Access-Level Table for Parameters and Functions

Parameter Description	Access		
	Operator	Technician	Privileged
Clear Logs and reports	No	No	Yes
Change Passcodes	No	No	Yes
Print Audit Trail	Yes	Yes	Yes
Force Process Variables in PCFC	No	Yes	Yes
Add Audit Trails	No	Yes	Yes
Command Word 1 - bit 1 Retro MF Batch	No	Yes	Yes
Command Word 1 - bit 2 Set CPL to 1.0	No	Yes	Yes
Command Word 1 - bit 3 API Trial Disable	No	No	Yes
Command Word 1 - bit 4 Corrected Density	No	Yes	Yes
Command Word 1 - bit 5 Hydrometer	No	Yes	Yes
Command Word 1 - bit 6 Force Density	No	Yes	Yes
Command Word 1 - bit 7 Force Press	No	Yes	Yes
Command Word 1 - bit 8 Force Temp	No	Yes	Yes
Command Word 1 - bit 9 Meter Proving Used	No	Yes	Yes
Command Word 1 - bit 10 No Batch Report	Yes	Yes	Yes
Command Word 1 - bit 11 No Batch Report	Yes	Yes	Yes
Command Word 1 - bit 12 No Batch Report	Yes	Yes	Yes
Command Word 1 - bit 13 API / SG	No	Yes	Yes
Command Word 1 - bit 14 Metric / Imperial	No	Yes	Yes
Command Word 1 - bit 15 Press M / I	No	Yes	Yes
Command Word 1 - bit 16 Temp M / I	No	Yes	Yes
Command Word 2 - bit 1 Auto Prove	No	Yes	Yes
Command Word 2 - bit 2 Force CPS to 1.0	No	Yes	Yes
Command Word 2 - bit 3 Flow ISV / GSV	Yes	Yes	Yes
Command Word 2 - bit 4 Pulse Fidelity	No	Yes	Yes
Command Word 2 - bit 5 Meter Phasing	No	Yes	Yes
Command Word 2 - bit 6 Bi - Directional	No	Yes	Yes
Command Word 2 - bit 7 Force Press	No	Yes	Yes
Command Word 2 - bit 8 Force Temp	No	Yes	Yes

D.1.1. Parameters and Functions — User Security Access Levels

Parameter Description	Access			
	Operator	Technician	Privileged	
Command Word 2 - bit 9 Flow rate Filter	No	Yes	Yes	
Command Word 2 - bit 10 No. Prove Report	Yes	Yes	Yes	
Command Word 2 - bit 11 No. Prove Report	Yes	Yes	Yes	
Command Word 2 - bit 12 No. Prove Report	Yes	Yes	Yes	
Command Word 2 - bit 13 User Base Temp	No	Yes	Yes	
Command Word 2 - bit 14 GSV / GSV Accum.	No	Yes	Yes	
Command Word 2 - bit 15 Abort Prove	Yes	Yes	Yes	
Command Word 2 - bit 16 Start Prove Run	Yes	Yes	Yes	
Meter Run, For example: 1 to 16 Displays the Old and New value for the parameter.	No	No	Yes	
TMCI Block Starting 4x Displays the Old and New value for the parameter.	No	No	Yes	
Product Type Displays the Old and New value for the parameter.	Yes	Yes	Yes	
Product Name Displays the Old and New value for the parameter.	Yes	Yes	Yes	
Sediment and Water % CSW Displays the Old and New value for the parameter.	Yes	Yes	Yes	
Serial Number of Meter Displays the Old and New value for the parameter.	No	No	Yes	
Meter ID Displays the Old and New value for the parameter.	No	No	Yes	
Meter Size Displays the Old and New value for the parameter.	No	No	Yes	
Meter Type Displays the Old and New value for the parameter.	No	No	Yes	
Meter K Factor 1.0 - 65535.0 Displays the Old and New value for the parameter.	No	No	Yes	
4X Offset to Time of Day Clock Displays the Old and New value for the parameter.	No	No	Yes	
Start of Day 'Hour' (0 - 23 military) Displays the Old and New value for the parameter.	No	No	Yes	
Start of Day 'Minute' (0 - 59) Displays the Old and New value for the parameter.	No	No	Yes	
Report Address Modulo 10000 High Word (00XX), For example: 4x or 6x Displays the Old and New value for the parameter.	No	No	Yes	

Parameter Description	Access			
	Operator	Technician	Privileged	
Report Address Modulo 10000 Low Word (XXXX) Displays the Old and New value for the parameter.	No	No	Yes	
Internal Diameter of the Pipe Displays the Old and New value for the parameter.	No	No	Yes	
Wall Thickness of the Pipe Displays the Old and New value for the parameter.	No	No	Yes	
Modulus of Elasticity for the Pipe Material x 10 ⁵ Displays the Old and New value for the parameter.	No	No	Yes	
Coefficient of Cubic Expansion per ° F or °C of the Pipe Material Displays the Old and New value for the parameter.	No	No	Yes	
Base Volume of Prover @ 60°F / 15 °C 0 PSI (Barrels) / M^3 Displays the Old and New value for the parameter.	No	No	Yes	
Number of Consecutive Proving Runs Displays the Old and New value for the parameter.	No	No	Yes	
Gravity / Density Conversion Range Displays the Old and New value for the parameter.	No	Yes	Yes	
Gravity / Density High Engineering Units Displays the Old and New value for the parameter.	No	No	Yes	
Gravity / Density Low Engineering Units Displays the Old and New value for the parameter.	No	Yes	Yes	
Temperature Conversion Range (Meter) Displays the Old and New value for the parameter.	No	Yes	Yes	
Temperature High Engineering Units (Meter) Displays the Old and New value for the parameter.	No	Yes	Yes	
Temperature Low Engineering Units (Meter) Displays the Old and New value for the parameter.	No	Yes	Yes	
Pressure Conversion Range (Meter) Displays the Old and New value for the parameter.	No	Yes	Yes	
Pressure High Engineering Units (Meter) Displays the Old and New value for the parameter.	No	Yes	Yes	
Pressure Low Engineering Units (Meter) Displays the Old and New value for the parameter.	No	Yes	Yes	
Temperature Conversion Range (Prover) Displays the Old and New value for the parameter.	No	Yes	Yes	
Temperature High Engineering Units (Prover) Displays the Old and New value for the parameter.	No	Yes	Yes	

Parameter Description	Access		
	Operator	Technician	Privileged
Temperature Low Engineering Units (Prover) Displays the Old and New value for the parameter.	No	Yes	Yes
Pressure Conversion Range (Prover) Displays the Old and New value for the parameter.	No	Yes	Yes
Pressure High Engineering Units (Prover) Displays the Old and New value for the parameter.	No	Yes	Yes
Pressure Low Engineering Units (Prover) Displays the Old and New value for the parameter.	No	Yes	Yes
Pulse Fidelity Frequency Threshold Displays the Old and New value for the parameter.	No	No	Yes
Pulse Fidelity Batch Count Errors Displays the Old and New value for the parameter.	No	Yes	Yes
Filter Samples Displays the Old and New value for the parameter.	No	Yes	Yes
Base Temperature Displays the Old and New value for the parameter.	No	Yes	Yes

D.2. User Security Access Levels — Parameters and Functions — TMCI

Parameters and	Parameter Description	Access		
Functions —		Operator	Technician	Privileged
Access Levels	TMCI Block Starting 4x Displays the Old and New value for the parameter.	No	No	Yes
	Product Type Displays the Old and New value for the parameter.	Yes	Yes	Yes
	Product Name Displays the Old and New value for the parameter.	Yes	Yes	Yes
	Sediment and Water % CSW Displays the Old and New value for the parameter.	Yes	Yes	Yes
	Serial Number of Meter Displays the Old and New value for the parameter.	No	No	Yes
	Meter ID Displays the Old and New value for the parameter.	No	No	Yes
	Meter Size Displays the Old and New value for the parameter.	No	No	Yes
	Meter Type Displays the Old and New value for the parameter.	No	No	Yes
	Meter K Factor 1.0 - 65535.0 Displays the Old and New value for the parameter.	No	No	Yes
	4X Offset to Time of Day Clock Displays the Old and New value for the parameter.	No	No	Yes
	Start of Day 'Hour' (0 - 23 military) Displays the Old and New value for the parameter.	No	No	Yes
	Start of Day 'Minute' (0 - 59) Displays the Old and New value for the parameter.	No	No	Yes
	Report Address Modulo 10000 High Word (00XX), For example: 4x or 6x Displays the Old and New value for the parameter.	No	No	Yes
	Report Address Modulo 10000 Low Word (XXXX) Displays the Old and New value for the parameter.	No	No	Yes
	Internal Diameter of the Pipe Displays the Old and New value for the parameter.	No	No	Yes
	Wall Thickness of the Pipe Displays the Old and New value for the parameter.	No	No	Yes

. . -. . . . ____ . . . _ . – ...

Parameter Description	Access		
	Operator	Technician	Privileged
Modulus of Elasticity for the Pipe Material x 10 ⁵ Displays the Old and New value for the parameter.	No	No	Yes
Coefficient of Cubic Expansion per ° F or °C of the Pipe Material Displays the Old and New value for the parameter.	No	No	Yes
Base Volume of Prover @ 60° F / 15 $^{\circ}$ C 0 PSI (Barrels) / M^3 Displays the Old and New value for the parameter.	No	No	Yes
Number of Consecutive Proving Runs Displays the Old and New value for the parameter.	No	No	Yes
Gravity / Density Conversion Range Displays the Old and New value for the parameter.	No	Yes	Yes
Gravity / Density High Engineering Units Displays the Old and New value for the parameter.	No	No	Yes
Gravity / Density Low Engineering Units Displays the Old and New value for the parameter.	No	Yes	Yes
Temperature Conversion Range (Meter) Displays the Old and New value for the parameter.	No	Yes	Yes
Temperature High Engineering Units (Meter) Displays the Old and New value for the parameter.	No	Yes	Yes
Temperature Low Engineering Units (Meter) Displays the Old and New value for the parameter.	No	Yes	Yes
Pressure Conversion Range (Meter) Displays the Old and New value for the parameter.	No	Yes	Yes
Pressure High Engineering Units (Meter) Displays the Old and New value for the parameter.	No	Yes	Yes
Pressure Low Engineering Units (Meter) Displays the Old and New value for the parameter.	No	Yes	Yes
Temperature Conversion Range (Prover) Displays the Old and New value for the parameter.	No	Yes	Yes
Temperature High Engineering Units (Prover) Displays the Old and New value for the parameter.	No	Yes	Yes
Temperature Low Engineering Units (Prover) Displays the Old and New value for the parameter.	No	Yes	Yes
Pressure Conversion Range (Prover) Displays the Old and New value for the parameter.	No	Yes	Yes
Pressure High Engineering Units (Prover) Displays the Old and New value for the parameter.	No	Yes	Yes

Parameter Description	Access			
	Operator	Technician	Privileged	
Pressure Low Engineering Units (Prover) Displays the Old and New value for the parameter.	No	Yes	Yes	
Pulse Fidelity Frequency Threshold Displays the Old and New value for the parameter.	No	No	Yes	
Pulse Fidelity Batch Count Errors Displays the Old and New value for the parameter.	No	Yes	Yes	
Filter Samples Displays the Old and New value for the parameter.	No	Yes	Yes	
Base Temperature Displays the Old and New value for the parameter.	No	Yes	Yes	
TMCI Command Word Displays the Old and New value for the parameter.	No	No	Yes	
Meter Card Type One Displays the Old and New value for the parameter.	No	No	Yes	
Meter Card Starting One 3x Displays the Old and New value for the parameter.	No	No	Yes	
Meter Card Starting One 4x Displays the Old and New value for the parameter.	No	No	Yes	
Meter Card Type Two Displays the Old and New value for the parameter.	No	No	Yes	
Meter Card Starting Two 3x Displays the Old and New value for the parameter.	No	No	Yes	
Meter Card Starting Two 4x Displays the Old and New value for the parameter.	No	No	Yes	
Meter Card Type Three Displays the Old and New value for the parameter.	No	No	Yes	
Meter Card Starting Three 3x Displays the Old and New value for the parameter.	No	No	Yes	
Meter Card Starting Three 4x Displays the Old and New value for the parameter.	No	No	Yes	
Meter Card Type Four Displays the Old and New value for the parameter.	No	No	Yes	
Meter Card Starting Four 3x Displays the Old and New value for the parameter.	No	No	Yes	
Meter Card Starting Four 4x Displays the Old and New value for the parameter.	No	No	Yes	

Parameter Description	Access		
	Operator	Technician	Privileged
Zero Flow Reading Timer Displays the Old and New value for the parameter.	No	No	Yes

This page is intentionally blank.

Glossary

F	A
-	-

API Gravity Measure of the density or gravity of liquid petroleum products in the United States. Derived from the relative density in accordance with the following equation:

Gravity at 60°F =
$$\left(\frac{141.5}{\text{relative density } 60 / 60°F}\right) - 131.5$$

API gravity is expressed in degrees, 10 degrees API being equivalent to 1.0, the specific gravity of water.

В

Barrel (bbl)	Unit of volume equal to 9,702.0 cubic inches or 42 US gallons.
Base Volume Prover (BVP or BPV)	The volume of the prover at base conditions as shown on the calibration certificate and obtained arithmetically by three consecutive successful calibrated prover volumes (this is usually provided by a third party).
BPV	See Base Volume Prover.
BVP	See Base Volume Prover.

С

CPL	Volume correction for temperature.
CPS	Correction factor for the effect of pressure on steel
CTL	Volume correction for pressure.
CTS	Correction factor for the effect of temperature on steel.
Cubic Meter	(M ³⁾ . Unit of volume equal to 1,000,000.0 milliliters), or 1,000.0 liters.

D

Density	The mass or weight of a substance per unit volume. For instance, specific gravity, relative density, and API gravity are units of density.
---------	--

F

FLOAT	-3.4×10^{38} to 3.4 x 10^{38}

G

Gross Standard Volume	Gross standard volume. The volume is correct for base conditions and for meter accuracy. Sometimes known as the Net Volume.
Gross Volume	Occasional synonym for Indicated Standard Volume.
GSV	See Gross Standard Volume.

н	
НЕХ	Hexadecimal 0 to FFFF
Indicated Standard Volume (ISV)	Equal to raw meter pulses/K Factor, with no correction factors. Sometimes known as the Gross Volume.
INT	Integer +32767 to -32767
ISV	See Indicated Standard Volume.
К	
K Factor (KF)	The number of meter pulses per unit volume (for instance, 200 pulses/bbl). This can usually be found tagged on the body of the meter and may change if the meter was rebuilt.
KF	See K Factor.
Μ	
Meter Factor (MF)	A dimensionless value obtained by dividing the volume of the liquid passed through the prover, corrected to standard conditions during proving, by the indicated standard volume as registered by the meter.
MF	See Meter Factor.

Ν

Net Standard Volume (NSV)	Gross standard volume corrected for non-merchantable quantities such as sediment and water.
Net Volume	Occasional synonym for Gross Standard Volume.
R	
RD	Read Register is read only.
Relative Density	Ratio of the weight of a given volume to the weight of an equal volume at the same temperature. Sometimes known as RD.
S	
S&W V	See Sediment & Water Volume.
Sediment & Water Volume (S&W V)	This is the volume of all non merchantable quantities such as sediment and water in bbl / hr.
SG	See Specific Gravity.
Specific Gravity (SG)	See Relative Density.
U	
UINT	Unsigned Integer 0 to 65535

W

WR

Write/Read Register; can be written and read by the user programmer.

This page is intentionally blank.

Index

Numerics

2540 Standard (API), 229 984 ladder logic instruction set, 13 984 ranges, 249

Α

algorithms flow, 229 analog input conversion ranges, 249 **API Gravity** definition of, 261 API Standard 2540, 229 AUDT block structure representation, 146 control inputs, 146 control outputs. 146 node contents, 146 operation, 147 setup and diagnostic registers summary, 161 averaging equation, 236

В

Base volume prover definition of, 261 batch reports, 120 block structure representation AUDT, 146 PCFC, 50 TMCI, 34

С

calculated K factor equation, 230 combined correction factor equation. 237 Compact hardware, 17 compressibility factor calculations equation, 233, 235 configuration data logging, 137 control inputs AUDT. 146 **PCFC**, 50 TMCI. 34 control outputs AUDT. 146 **PCFC. 50** TMCI, 34 conversion ranges, 249 correction factor for pressure of liquid in imperial mode equation, 232 correction factor for pressure of liquid in metric mode equation, 235

correction factor for temperature of liquid in imperial mode equation, 231 correction factor for temperature of liquid in metric mode equation, 234 correction factor for the effect of pressure against steel equation, 236 correction factor for the effect of temperature against steel equation, 236 correction for sediment and water equation. 229 CPL definition of, 262 CPS definition of, 262 CTI definition of. 262 CTS definition of, 262

D

data logging configuration, 137 operation, 137 data logging and report generation, 116 determination of net standard of volume equation, 230 determination of S&W volume equation, 230

Ε

engineering ranges, 249 equations averaging, 236 calculated K factor, 230 combined correction factor, 237 compressibility factor calculations, 233, 235 correction factor for pressure of liquid in imperial mode, 232 correction factor for pressure of liquid in metric mode, 235 correction factor for temperature of liquid in imperial mode, 231 correction factor for temperature of liquid in metric mode. 234 correction factor for the effect of pressure against steel, 236 correction factor for the effect of temperature against steel, 236 correction for sediment and water, 229 determination of net standard of volume, 230 determination of S&W volume, 230 flow, 229 flow rate at flowing conditions bbls/hr. 229 K factors and composite K factors, 237 net flow rate at base conditions bbls/hr. 229

F

flow card registers (PCFC), 55 flow card setup registers (PCFC), 81 flow equations and algorithms, 229 flow measurement cards Quantum, 20 Quantum, specifications, 20 flow rate at flowing conditions bbls/hr equation, 229 function block installation, 203 functions by hardware and software platforms, 17 flow measurement with meter proving, 17 pulse fidelity, 17 reports and data logging, 17 simple flow measurement, 17

G

Gross Standard Volume definition of, 262 GSV definition of, 262

Η

hardware Compact hardware, 17 hardware platforms, 17 hardware Quantum hardware, 17 hardware Turbine Meter Card hardware, 17

I

I/O hardware, 17 Indicated Standard Volume definition of 263 input conversion ranges, 249 installation, 203 Integer-to-Integer (ITOI) function block block structure representation, 242 block structure representation, diagram, 242 block structure representation. inputs, 242 block structure representation, node contents. 243 block structure representation, outputs, 242 Integer-to-Integer (ITOI) function block configuration, 247 setup and diagnostic, 247, 248 ISV definition of, 263

Κ

K Factor definition of, 263 K factors and composite K factors equation, 237

L

ladder logic instruction set, 13 Last Meter Factor Table, 134

Μ

meter card types, 45 Meter Factor definition of, 263 meter factor table last 134 meter proving card (140 MPM 204 00sc) configuration, 25 specifications, 26 Meter Proving Card (Quantum 140 MPM 204 00sc), 24 meter proving report, 136 meter proving reports, 123, 124, 126, 129 data storage lavout, 123 details, 124, 126, 129 enabling, 123 meter setup/real-time data registers (PCFC), 56, 86 MF definition of. 263

Ν

net flow rate at base conditions bbls/hr equation, 229 node contents AUDT, 146 PCFC, 50 TMCI, 34

0

operation AUDT, 147 PCFC, 51 TMCI, 35

Ρ

passcodes, 151 passwords, 151

PCFC, 13 block structure representation, 50 control inputs. 50 control outputs. 50 flow card setup registers. 81 flow card setup registers summary, 55 meter setup/real-time data registers, 86 meter setup/real-time data registers summary, 56 node contents. 50 operation, 51 product data registers. 82 product data registers summary, 55 program diagnostic data registers, 99 program diagnostics registers summary, 60 prover data registers, 91 prover data registers summary, 58 pulse fidelity registers, 98 pulse fidelity registers summary, 60 real-time correction factor data registers, 85 real-time correction factor data registers summary, 55 real-time metering data registers, 88 real-time metering data registers summary, 57 real-time process variables registers, 94 real-time process variables registers summary, 59 register summary, 53 report setup registers, 89 report setup registers summary, 57 SCADA data in implied decimal format registers. 90 SCADA data in implied decimal format registers summary, 58 setup and diagnostic data register (4x + 0), 61setup and diagnostic data register (4x + 1), 61setup and diagnostic data register (4x + 2), 66setup and diagnostic data register (4x + 3), 71

setup and diagnostic data register (4x + 4), 75setup and diagnostic data register (4x + 5), 78 setup and diagnostic data registers summary, 54 PCFC example single run. 15 single run with meter proving, 16 PCEC function block installation 203 platforms hardware and software. 17 PLC. 13 product data registers (PCFC), 55, 82 program diagnostic data registers (PCFC), 99 program diagnostics registers summary (PCFC), 60 Programmable Controller Flow Computer (PCFC), 13 block structure representation, 47 operational representation, 47 prover data registers (PCFC), 91 prover data registers summary (PCFC), 58 prover run tables, 127, 128 pulse fidelity registers (PCFC), 98 pulse fidelity registers summary (PCFC), 60

Q

Quantum engineering ranges, 249 Quantum flow measurement cards specifications, 21 Quantum hardware, 17 140 CPU 113 0X, 17 140 CPU 434 12A, 17 140 CPU 534 14A, 17 140 EHC 204 00sc, 17, 46 140 EHC 208 00sc, 17, 46 140 MPM 204 00sc, 17 140 MPM 204 00sc (Meter Proving Card), 24, 46 wiring diagram, 140 ECH 204 00sc, 22 wiring diagram, 140 MPM 204 00sc (Meter Proving Card), 28 Quantum meter proving card (140 MPM 204 00sc) configuration, 25 specifications, 26 Quantum thermocouple ranges, 249 Quantum volt meter ranges, 249

R

real-time correction factor data registers (PCFC), 55, 85 real-time metering data registers (PCFC), 88 real-time metering data registers summary (PCFC), 57 real-time process variables registers (PCFC), 94 real-time process variables registers summary (PCFC), 59 register layout tables, 123 report sample meter proving, 136 report generation and data logging, 116 report register contents, 118 report setup registers (PCFC), 89 report setup registers summary (PCFC), 57 report types, 117 reports meter proving, 123, 124, 126, 129 reports, batch, 120 current batch, 120 previous batch, 121 sample, 121 sequence, 120 reports, timed, 122 daily, 122 monthly, 122 sequence, 122 time-of-day clock, 122 types of, 122

S

SCADA data in implied decimal format registers (PCFC), 90 SCADA data in implied decimal format registers summary (PCFC), 58 setup and diagnostic data registers (PCFC), 54 setup and diagnostic data registers (TMCI), 37 setup and diagnostic registers summary (AUDT), 161 software platforms, 17

Т

thermocouple ranges, 249 timed reports, 122 time-of-dav clock, 122 configuration, 138 example, 139 registers, 138 TMCI block structure representation, 34 control inputs. 34 control outputs, 34 meter card types, 45 node contents. 34 operation, 35 Quantum functionality, 46 register summary, 37 setup and diagnostic data registers summary, 37 Turbine Meter Card Interface (TMCI) configuration setup and diagnostic, 39

U

user levels, 151

V

volt meter ranges, 249

Index

W

wiring diagram Meter Proving Card (Quantum 140 MPM 204 00sc), 28 Quantum 140 ECH 204 00sc, 22 Quantum 140 ECH 208 00sc, 23 Quantum 140 MPM 204 00sc, 28