## **Modicon TSX Momentum**

170 AEC 920 00 User manual

870 USE 008 00 eng



© 2000 Schneider Electric All Rights Reserved

### **Table of Contents**



|           | About the book                                                                                                                                                                                                                                                                                                                      | 7                          |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Part I    | Function overview                                                                                                                                                                                                                                                                                                                   | _                          |
| Chapter 1 | Introduction. Introduction . Introduction . Function mode and Application Range .                                                                                                                                                                                                                                                   | 11<br>12                   |
| Chapter 2 | Description of the operating modes Introduction Overview of the operating modes Common counter properties Count Channel for Count Functions with Pulse and Incremental Encoder Operating modes for Pulse and Incremental Encoders. Operating Modes for Absolute Encoder Count channel for counting functions with absolute encoders | 17<br>18<br>19<br>23<br>24 |
| Chapter 3 | TSX Momentum adapter  System structure TSX Momentum Bus Adapter  CPU adapters and interface adapters of the TSX Momentum.                                                                                                                                                                                                           | 33                         |

| Part II   | Module description                                                                                                                                                                                              |                            |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Chapter 4 | Structure of the AEC 920 Introduction Internal Connections and Meaning of Signals Wiring and Examples                                                                                                           | 39<br>40<br>42             |
|           | LED Status Indicators Technical Data Selecting a Momentum adapter Selection of Terminal Blocks                                                                                                                  | 50                         |
| Part III  | Configuration                                                                                                                                                                                                   |                            |
| Chapter 5 | Configuration of Output Words Introduction Configuration Summary of the output words Configuring output words 1 and 2 Configuring output words 3 and 4 Data in output word 5/6 and 7/8. File format of set data | 57<br>58<br>60<br>60<br>67 |
| Chapter 6 | Status Messages and Count Values Introduction Status and error bits (words 1 and 2). Status returned (Words 3 and 4). Actual values for counters 1 and 2.                                                       | 81<br>82<br>85             |
| Chapter 7 | Parameter Setting of the AEC Block Introduction Brief description Representation. Parameter description                                                                                                         | 89<br>90<br>92             |

| Chapter 8 | Application examples9                 |
|-----------|---------------------------------------|
| -         | Introduction                          |
| 8.1       | Up counter (Mode 2)                   |
|           | Introduction                          |
|           | Example 1:                            |
|           | Solution:                             |
| 8.2       | Up counter with preset value          |
|           | Introduction                          |
|           | Task specification                    |
|           | Solution:                             |
| 8.3       | Up counter with internal clock pulse  |
|           | Introduction                          |
|           | Task specification                    |
|           | Solution:                             |
| 8.4       | Pulse counter with external time base |
|           | Introduction                          |
|           | Example 4:                            |
|           | Solution:                             |
| 8.5       | Period meter with internal time base  |
|           | Introduction                          |
|           | Task specification                    |
|           | Solution:                             |
|           |                                       |
| Index     | 13!                                   |

### About the book



### At a Glance

**Document Scope** 

This manual describes the structure and the configuration of the fast counter module AEC 920. The different operating modes are explained using the applications as examples.

**Validity Note** 

The AEC 920 is a Momentum module and can only be used with Concept version 2.2 or higher.

### Related Documents

| Title of Documentation                                  | Reference Number |
|---------------------------------------------------------|------------------|
| TSX Momentum I/O units                                  | 870 USE 002 00   |
| M1 CPU and interface adapter                            | 870 USE 101 00   |
| ControlNet bus adapter 170 LNT 710 00                   | 870 USE 007 00   |
| DeviceNet bus adapter 170 LNT 810 00                    | 870 USE 104 00   |
| Ethernet bus adapter 170 ENT 110 00                     | 870 USE 112 00   |
| Interbus bus adapter 170 LNT 110 00                     | 870 USE 003 00   |
| Modbus Plus bus adapter 170 LNT 1x0 20 (IEC addressing) | 870 USE 103 00   |
| Modbus Plus bus adapter 170 LNT 1x0 21 (984 addressing) | 870 USE 111 00   |
| ProfiBus bus adapter 170 DNT 110 00                     | 870 USE 004 00   |
| FIPI/O bus adapter 170 FNT 110 00 for TSX7 and April    | 870 USE 005 00   |
| FIPI/O bus adapter 170 FNT 110 01 for TSX Premium       | 870 USE 105 00   |

### **User Comments**

We welcome your comments about this document. You can reach us by e-mail at  $\mathsf{TECHCOMM}@\mathsf{modicon.com}$ 

### **Function overview**

I

### Introduction

### At a Glance

This part of this manual provides a brief overview of the structure, application and various operating modes of the 170 AEC 920 00 fast counter module.

# What's in this part?

This Part contains the following Chapters:

| Chapter | Chaptername                        | Page |
|---------|------------------------------------|------|
| 1       | Introduction                       | 11   |
| 2       | Description of the operating modes | 17   |
| 3       | TSX Momentum adapter               | 33   |

Introduction

1

### Introduction

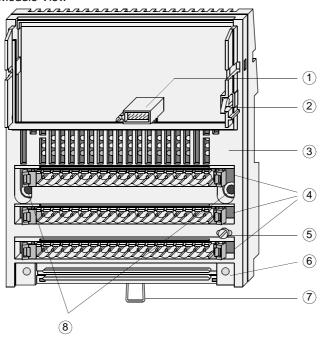
### Overview

This chapter contains a short overview of function mode and application range.

## What's in this Chapter?

This Chapter contains the following Maps:

| Торіс                               | Page |
|-------------------------------------|------|
| Introduction                        | 12   |
| Function mode and Application Range | 13   |


### Introduction

General Information about the AEC 920 00 Counter The 170 AEC 920 00 I/O Unit is used for fast counting operations and conforms to the system properties of the TSX Momentum family. With the addition of a Bus or CPU adapter it forms an operating module.

In this book the mode of operation of the 170 AEC 920 00 is described.

- Introduction (current chapter)
- Description of the operating modes, p. 17
- Structure of the AEC 920, p. 39
- Configuration of Output Words, p. 57
- Status Messages and Count Values, p. 81
- Parameter Setting of the AEC Block, p. 89

Module View



- 1 Internal Connector to the Adapter
- 2 Locking and Grounding Contact for the Adapter
- 3 LED display field
- 4 Sockets for the Terminal Plugs
- 5 Grounding Screw
- 6 Installation Point for Bus Bar

- 7 Locking Catch for DIN Rail
- 8 Holes for Wall Mounting

### **Function mode and Application Range**

## Use of the AEC 920 00

The 170 AEC 920 00 I/O Unit has two hardware counters with a max. input frequency of 200 kHz.

They can be used for the following applications:

- Event Counts
- Frequency Measurements
- Period Measurements
- Clock output (Pulse Generator)
- · Path evaluation using incremental encoders

The module can therefore be used to evaluate pulses and positions. To do this, one of 13 possible operating modes must be set depending on the application (see *Overview of the operating modes*, *p. 18*).

Encoders evaluate impulses or positions and send this information on to the I/O Unit. The I/O Unit's firmware interprets them, depending on the operating mode, as impulses, path increments, etc and compares them continuously with preset values. It controls two hardware outputs per counter depending on the result of this comparison. These outputs can therefore used for pre-stop and limit switch outputs.

These operating modes often demand particular types of encoder (impulse encoders, absolute encoders, or incremental encoders). The encoder input signals are 5 Volt signals; 24 Volt signals are also acceptable in many applications.

For the control of counting and comparison functions, each of the two counters has three additional hardware inputs that can also be used as software signals:

- Enabling the Counting Function
- Accept default value
- Freeze counter value

**Note:** The operating modes are described in the chapter *Description of the operating modes, p. 17.* The configuration and diagnostic data for these functions are in the chapter titled *Configuration of Output Words, p. 57* and in *Status Messages and Count Values, p. 81.* Examples of the configuration of counter operation modes can be found in the chapter *Parameter Setting of the AEC Block, p. 89.* 

#### **Event Counting**

The module is suitable for the evaluation of fast count impulses and for specific reactions if preset values are exceeded in positive or negative direction.

### Repeating Counters (Infinite Counts)

In this operating mode the module counts to the previously transferred modulo value and subsequently jumps to the "0" value, and counts from then on. If the value "0" is exceeded during down counting, the count value jumps to the modulo value. Only positive modulo values are acceptable.

**Note:** The repeating function can be activated for each operating mode by the transfer of a positive modulo value (Reference Number 7). The operating modes C, D and E for absolute encoders are exceptions.

## Frequency Measurements

In this operating mode frequencies up to 200 kHz can be measured. The time base can be varied in a range from 0.1 ms to 1000 ms.

### Period Measurements

In this operating mode the duration of a period can be measured. To do this the pulses are counted for the duration of the gate time Various time bases can be selected according to the duration of the period. There are 5 time bases available, from 1ms to 10,000 ms.

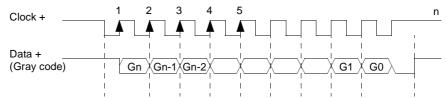
# Clock output (Pulse Generator)

Pulses generated through the module can be distributed through the outputs Q1 (Counter 1) and Q2 (Counter 2). Pulses with a pulse-width of 1 ms up to 1000 s can be distributed (see *Operating mode 8: Pulse Counter with Time Base (RPM measurement)*, p. 26).

## Incremental Path Evaluation

Path evaluation with incremental encoders occurs according to the counting procedure. The measuring system must therefore be reset after switching on or voltage loss (accepting preset values). The encoder then transmits a reference signal (zero impulse). In order to identify the direction of spin whilst turning forwards or backwards, the encoder sends two periodical square wave signals in quadrature, which are evaluated and counted correspondingly in the AEC.

To ensure secure data transfer at higher frequencies, the signals can also be transmitted as differential signals corresponding to the RS 422, so that interfering impulses as well as common-mode interference can be recognized and filtered out. In this case six lines are required for the data transfer (two each for the three count inputs). Accepting Reference Values (accepting preset values) If the current positions are lost because of voltage loss or disconnection, AEC 920 00 measuring system has to be reset when the voltage returns or when it is reconnected (accepting preset values). The encoder will transmit a reference signal (zero impulse) to do this. There seven different possibilities available for the acceptance of a preset value. An acceptance of the preset value is also necessary after every new enable of the counting channel, otherwise the digital outputs will not be operated. So that the point of reference is constantly approached from one direction, the reference point switch should be installed just in front of a hardware limit switch.


## Absolute Path Evaluation

In absolute path evaluation, a numerical value is assigned to each position. This task is undertaken by an absolute encoder. The numerical values exist in the encoder as a code pattern (e.g. on code slices in dual code, gray code or similar). The advantage of this type of encoder is that the absolute position is available immediately after it is switched on.

The determination of the actual position is carried out as follows:

The 170 AEC 920 00 requests the position value through a clock pulse sequence. The absolute position existing in the encoder is saved with the first clocking signal of the AEC 920 00, and transmitted to the 170 AEC 920 00 as a serial data telegram (Gn...G0) synchronously to the Clock Signal. The length of the data stream to be transmitted is dependent on the resolution and the data format of the encoder and can be defined using configuration words. With standard codes the resolution is n=24.

SSI-Data and Clocking Telegrams



This data transfer is conducted through a Synchronous Serial Interface of four lines (two each for Clock Signal and data).

To ensure secure data transfer, the signals are transmitted as differential signals corresponding to RS 422 so that interfering impulses can be identified and common-mode interference filtered out.

# Description of the operating modes

2

### Introduction

### Overview

In the following chapter is a description of all current operating modes in which the counter can function. The operating modes for each counter are set individually over output words 1 and 2.

Further information can be found in the section titled Configuration, p. 55

# What's in this Chapter?

This Chapter contains the following Maps:

| Торіс                                                                | Page |
|----------------------------------------------------------------------|------|
| Overview of the operating modes                                      | 18   |
| Common counter properties                                            | 19   |
| Count Channel for Count Functions with Pulse and Incremental Encoder | 23   |
| Operating modes for Pulse and Incremental Encoders                   | 24   |
| Operating Modes for Absolute Encoder                                 | 29   |
| Count channel for counting functions with absolute encoders          | 31   |

### Overview of the operating modes

Overview of the operating modes of the AEC 090 00

The following table gives an overview of the current operating modes:

| Operating mode | Encoder<br>Type *) | Function                                                                                                                                                                                                                             |  |
|----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0              | -                  | Channel not ready, Parameters not reset, Output = 0                                                                                                                                                                                  |  |
| 1              | imp                | Down counter                                                                                                                                                                                                                         |  |
| 2              | imp                | Up counter                                                                                                                                                                                                                           |  |
| 3              | ink                | corresponds with operation mode "0"                                                                                                                                                                                                  |  |
| 4              | ink                | Up/down counter, path evaluation, 1/1-logic                                                                                                                                                                                          |  |
| 5              | ink                | Up/down counter, path evaluation, 4/1-logic                                                                                                                                                                                          |  |
| 6              | imp                | Differential counter: Counter input A = up; Counter input B = down                                                                                                                                                                   |  |
| 7              | imp                | Up counter /Down counter: Counter Input A = up/down;<br>Counter Input B = Direction (1 = up, 0 = down)                                                                                                                               |  |
| 8              | imp                | Impulse counter with time base (e.g. for variable speeds couning, Cv factors, etc) a) with external Clock Signal on counter in put B as time base or b) digital output (Q) as time base on counter input B                           |  |
| 9              | imp                | Period meter with 5 time bases for full or half period, full period 0 = no time base, 1 = 1, 2 = 10, 3 = 100, 4 = 1 000, 5 = 10 000 [micro sec]; half per 9 = 1, A = 10, B = 100, C= 1 000, D = 10 000 [micro sec]                   |  |
| A              | imp                | Frequency meter with 5 time bases for full or half period; whole period $0 = no$ time base, $1 = 0.1$ , $2 = 1$ , $3 = 10$ , $4 = 100$ , $5 = 1$ 000 [ms]; half period $9 = 0.1$ , $A = 1$ , $B = 10$ , $C = 100$ , $D = 1$ 000 [ms] |  |
| В              | -                  | corresponds with operation mode "0"                                                                                                                                                                                                  |  |
| С              | abs                | Path evaluation with single-turn encoders (SSI), 12 bit resolution                                                                                                                                                                   |  |
| D              | abs                | Path evaluation with multi-turn encoders (SSI), 24 bit resolution                                                                                                                                                                    |  |
| Е              | abs                | Path evaluation with multi-turn encoders (SSI), 25 bit resolution                                                                                                                                                                    |  |
| F              | -                  | Software-Reset. In this instance both counters are always set back, regardless of the operation mode for counter 1 or 2 being invoked.                                                                                               |  |

Note: \*) Explanation of Encoder Type:

inc = incremental encoder abs = absolute encoder imp = impulse encoder

**Note:** 0, 3 and B are not really operating modes. The counter is in "Zero Status", that is, in a secure status and it is inactive.

### **Common counter properties**

### **Counter types**

The two counters of the 170 AEC 920 00 I/O Unit can only be operated as a group, either with incremental, pulse or absolute encoders.

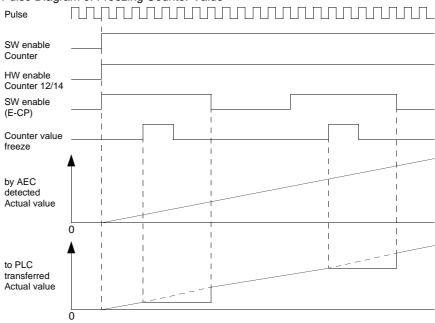
## Counter Resolu-

The resolution of the counter is 24 bit maximum (signed); corresponding to decimal values of -16 777 216 ... +16 777 215. The count range used is defined through the operating mode. There are thirteen operating modes available.

## 5 V / 24 V Counter Inputs

Encoders with 5 V differential signal (RS 422) as well as encoders with 24 V signal (single-ended) can be connected to the module.

## Preset Value (Preset)


With the preset value (Preset) the counter can be loaded with a freely definable value from the PLC. The acceptance of the preset value is dependent on the preset mode as well as the digital inputs. In this case digital input 1 is assigned to counter 1, and digital input 4 is assigned to counter 2. If no preset value is transmitted from the PLC, then 0 is applied as the preset value in the counter.

## Software Limit Switch

The operation range of the counter can be specified with the upper and lower software limit switch. If the limits of the software limit switch are exceeded, the digital outputs will be switched off, and an error message will be generated. The software limit switches are only active after the parameters for the upper and lower software limit switch have been transferred.

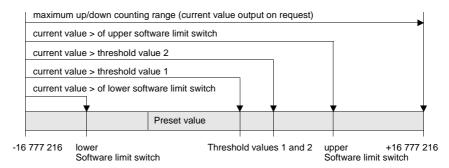
Freeze current counter value (Capture Function) With this function the current counter value is relayed into an additional register. The counter operates independently of this function. This function is particularly useful for measuring pulses or paths. The counter value is frozen after enabling through software (Bit E\_CP) and through an edge at hardware input I3 for counter 1 and I6 for counter 2. After the frozen counter value is accepted it is transferred to the PLC in actual values until the Bit E\_CP is reset by the software. After being reset the actual value of the counter is transmitted.

Pulse Diagram of Freezing Counter Value



## **Event Processing**

The user has the option of assigning event-controlled functions to the outputs. The digital outputs are set when the defined event has occurred.


The following events can be defined:

- Counter value = Threshold value 18
- Counter Value >= Threshold Value 18
- Counter Value <= Threshold Value 18</li>
- Counter Value >= Threshold Value 1 and < Threshold Value 2</li>

Further information can be found in *Reference numbers for the command data (out-put word 3 and 4, (Bits 0... 4)), p. 68.* 

The terms used in this book are explained below:

#### **Definition of Term**



The counting pulse signals are dependent on the type of encoder. The I/O Unit can process signal levels of 5V or 24V.

For this reason there are two counter inputs available for each of the two counters.

- 5V-Differential Signals (Channels A+, A-; B+, B-; Z+, Z-)
- 24V-Differential Signals (Channels A\*, A-; B\*, B-; Z\*, Z-)
- 24V Single-ended Signals (Channels A\*, B\*, Z\* connected with the relationship of the encoder potential. Switch off the encoder monitor!)

## Digital Inputs to control counters

The digital inputs (counter enable, preset value and selection of current counter status) are only effective in combination with the corresponding software signals.

**Note:** With 5V and 24V signals the counter inputs can operate using configurations with and without filters. When the filter is activated (used with mechanical contacts), the count frequency is reduced (max. 20 kHz).

## Digital outputs to control actuators

The digital outputs operate in two ways:

- through configured links in the user program
- through forcing in the configuration (possible anytime)

How the outputs become effective is specified in the counter configuration (see *Configuring the digital outputs, p. 70*).

# Channel-specific Error Messages

The user can obtain detailed indications as to the nature of the error at the counter input through the error word. This can be:

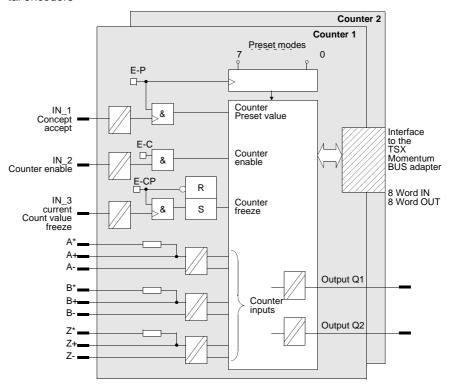
- Error in the supply voltage for the encoder
- Running over or under the measuring range
- Faulty encoder
- Faulty encoder connection

These errors are reported through the input word (see chapter *Status Messages and Count Values, p. 81*).

Receiving the Preset Value into the Counter (Preset-Mode) With the preset value (Preset) the counter can be loaded with a freely definable value from the PLC. The acceptance of the preset value is dependent on the preset mode as well as the digital inputs. In this case digital input 1 is assigned to counter 1, and digital input 4 is assigned to counter 2.

The following preset modes are available:

| Preset Mode | Function                                                                                                                                                                       |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0           | No preset value                                                                                                                                                                |
| 1           | The preset value is accepted with a positive edge at the digital input "Preset"                                                                                                |
| 2           | The preset value is accepted with a negative edge at the digital input "Preset"                                                                                                |
| 3           | The preset value is accepted with a rising edge of the hardware input "Preset". The counter has stopped. The counter starts again with the falling edge of the hardware input. |
| 4           | The preset value is accepted with a positive edge (during upwards counting) or with a negative edge (during downwards counting) on the digital input "Preset".                 |
| 5           | The preset value is accepted with a negative edge (during upwards counting) or with a positive edge (during downwards counting) on the digital input "Preset".                 |
| 6           | Reference Point with Short Cam Signal                                                                                                                                          |
| 7           | Reference Point with Long Cam Signal                                                                                                                                           |


In preset modes 6 and 7 the zero pulse from the encoder (counter input Z) is used for the reception of the preset value. The encoder gives out this counting pulse after every full rotation.

The preset mode can be set (see also chapter *Preset mode (output word 1 and 2, (Bits 12 ... 14)), p. 64*). The preset modes are not applicable in all operating modes (frequency, period and pulse counters).

### **Count Channel for Count Functions with Pulse and Incremental Encoder**

## Functional Principle

The configured links for software and hardware show the correlations for incremental encoders



### **Operating modes for Pulse and Incremental Encoders**

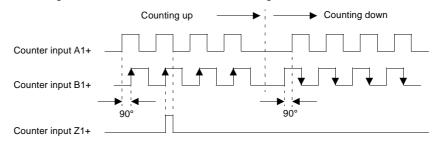
## Overview of the operating modes

Operating modes 1 ... A are described below.

### Operating mode 1: Down Counter for Pulses

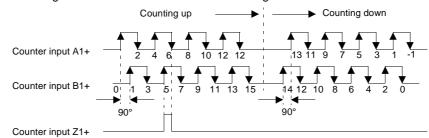
In this operating mode all pulses of counter input A are used for down counting, beginning from a preset value (default = 0). Counter input B has no function. Pulse encoders with 5V differential output as well as pulse encoders with 24V single ended output (24V initiators) can be connected. Two digital outputs can be controlled using two programmable threshold values (see example *Up counter (Mode 2), p. 97*).

### Operating mode 2: Up counter for Pulses


In this operating mode all pulses of counter input A are used for up counting, beginning from a preset value (default = 0). Counter input B has no function. Pulse encoders with 5V differential output as well as pulse encoders with 24V single ended output (24V initiators) can be connected. Two digital outputs can be controlled using two programmable threshold values (see example *Up counter (Mode 2), p. 97*).

## Operating mode 3: Reserved

corresponds with operating mode "0"

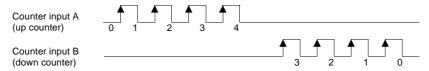

Operating mode 4 Counting with incremental encoder with 1/1 logic Position measurement with incremental encoders is carried out according to the counting procedure. The measuring system must therefore be reset after switching on or power failure. The encoder transmits a reference signal (zero pulse) to do this. In order to identify the direction of spin when counting up or down, the incremental encoder sends two periodical square wave signals in quadrature, which are evaluated by the AEC 920. Two digital outputs can be controlled using two programmable threshold values.

Pulse Diagram of incremental encoder with 1/1 logic



Operating mode 5: Counting with incremental encoder with 1/4 logic As with operating mode 4, but with fourfold resolution, as each edge of counter input A and B is evaluated (see example *Up counter (Mode 2), p. 97*).

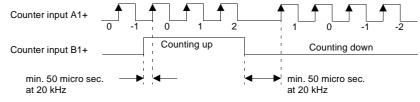
Pulse diagram of incremental encoder with 1/4 logic




Note: In operating modes 4 and 5 the differential signals are not displayed.

### Operating mode 6: Differential counter

In this operating mode, all pulses at counter input A cause the counter to count up, and all pulses at counter input B cause it to count down. This means that in this operating mode the difference is established between counter input A and counter input B. Two digital outputs can be controlled using two programmable threshold values.


Differential Counter Pulse diagram



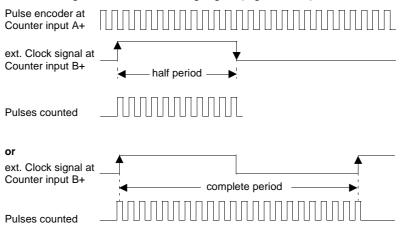
Operating mode 7: Up/Down counter with direction signal

In this operating mode all pulses at counter input A corresponding to the valence at counter input B are counted either up or down. With signal 1 at counter input B counting proceeds upwards, with signal 0 at counter input B counting proceeds downwards. Two digital outputs can be controlled using two programmable threshold values.

Pulse diagram of Up/Down Counter



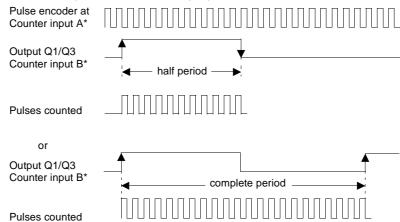
Operating mode 8: Pulse Counter with Time Base (RPM measurement) This operating mode is suitable for determining velocities, rates of flow or rotary speeds. The pulses are counted and saved during a selected time base (gate opening time). Then the counter is reset and the counting process starts again. The gate opening time can be controlled through two modes.


- · an external clocking signal or
- an internal clocking signal transmitted through digital outputs Q1 or Q3. These outputs must be configured (output words 3 and 4) as frequency outputs (Function D). The frequency must also be selected through reference number B.

The count duration results from the positive edge to the negative edge of the clocking signal (half period) or from one positive edge to the next (full period). This is also defined in output words 3 and 4.

**Note:** The digital inputs Accept Preset Value, Counter Enable and Freeze Current Counter Value have no role in this operating mode. Only the frequency output function is available for the digital outputs (see *Output word 4, p. 68*).

### Example 1:


Pulse Counting with External Clocking Signal (e.g. 5V level)



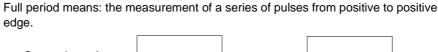
**Note:** When an external clocking signal of a 24V level is used, the external clocking signal must be connected to counter input B\*.

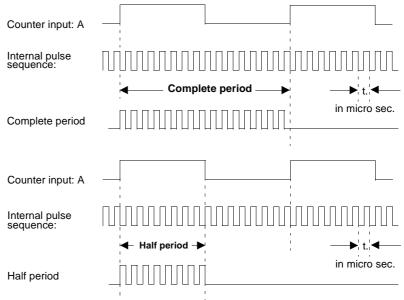
### Example 2:

Pulse Counting with internal clocking signal (24V level only)



If no external clocking signal is available, digital outputs Q1/Q3 can be configured as frequency outputs. However, as the outputs are only available at 24 V level, the corresponding output Q1/Q3 must be connected with the 1M to counter input B\* and B-.


### Operating mode 9: Period meter with 5 time bases


This operating mode measures the duration of a period. To do this the pulses are counted for the duration of the gate time. Various time bases can be selected according to the duration of the period. There are 5 time bases available, from 1ms to 10,000 ms.

This operating mode is used to acquire time measurements for processes.

**Note:** The time base should be chosen to achieve the desired accuracy and ensure the measuring time of the counter is not exceeded.

Full as well as half periods can be measured depending on the process.

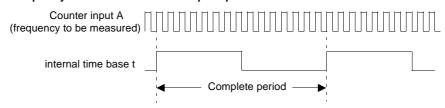




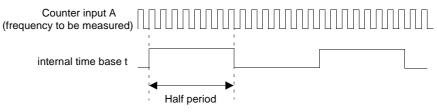
**Note:** Half period means: the measurement of a series of pulses from positive to the next negative edge.

# Operating mode A: Frequency meter with 5 time bases

In this operating mode the number of pulses per unit of time is measured. Various time bases can be selected according to the frequency to be measured. There are 5 time bases available, from 0.1 ms to 1000 ms.


**Note:** The time base should be chosen to achieve the desired accuracy and ensure the measuring time of the counter is not exceeded.

Full as well as half periods can be measured depending on the process.


- Full period means: the measurement of a frequency from positive to positive edge
  of the time base.
- Half period means: the measurement of a frequency from positive to negative edge of the time base.

### Pulse diagram for Full and Half Periods

#### Frequency measurement over a complete period



### Frequency measurement over a half period



### **Operating Modes for Absolute Encoder**

# Absolute Encoder with SSI Protocol

Absolute encoders with SSI protocol can also be connected to both counters of the 170 AEC 920 00. A mixed operation with incremental encoders and absolute encoders is not possible.

The functions that deviate from the incremental encoder only are described below.

Note: In operating modes C, D and E the input filter must be switched off.

## Counter Resolution

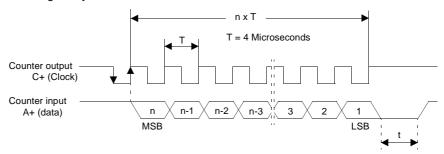
The resolution of the two count channels is either 12, 24, or 25 Bit. This corresponds to decimal values from +4096 to +33 554 431.

The following operating modes are possible with absolute encoders:

- C = Counting with a resolution of 12 Bit (Single-turn Encoder)
- D = Counting with a resolution of 24 Bit (Multi-turn Encoder)
- E = Counting with a resolution of 25 Bit (Multi-turn Encoder)

#### **Encoder Offset**

With the encoder offset the absolute position value of the encoder can be shifted. This shift is only permissible within the max. encoder resolution. The defined offset is added to the current actual value through an 0–>1 edge on Bit E\_P.


To make the absolute value of the encoder the machine zero point, the current actual position is transferred (negated) as the offset for the encoder. Through the addition of absolute value and offset carried out in the module, the actual value stands now at zero.

### SSI = Synchronous Serial Interface

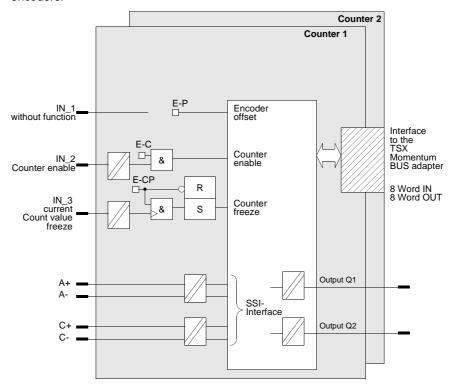
With the transfer of the absolute position, the absolute position data is transferred to a clock specified by the counter synchronously, beginning with the "most significant bit" (MSB).

The length of the data word may be 12 bit with single-turn encoders, and 24 or 25 bit with multi-turn encoders. Evaluations of parity bits or power failure bits are not provided.

Clock Signal Cycle for Data Format



Each Clock Signal edge triggers the transmission of a data bit. The Clock Signal frequency is specified by the module and amounts to 250 kHz.


Clock Signal and data signals stand at level 1 when non-operative. The current measurement is saved with the first falling edge. The data transmission occurs with the first rising edge.

After transmission of a data word, the data output stays at level 0 until the absolute encoder is ready for another measurement request (t). This time is dependent on the absolute encoder being used and amounts to approximately 30 microseconds.

### Count channel for counting functions with absolute encoders

Absolute encoder function display

The configured links for software and hardware show the correlations for absolute encoders.



Operating mode C: Channel acquisition with single turn encoders (SSI), 12 bit resolution Connection of an SSI encoder with one channel. The resolution amounts to 12 bits per rotation (single turn encoder).

Single turn encoders begin to count from 0 after one full rotation. They are suitable for procedures where the encoder does not use the whole rotation, or for applications where the number of rotations is not important (carousel, etc.).

An example of path evaluation with single-turn encoders can be found in *Up counter* (Mode 2), p. 97.

### Operating mode D: Channel acquisition with multi-turn encoders (SSI), 24 bit resolution

The multi-turn encoder with 24 bit resolution delivers 12 bit resolution per rotation (4096 pulses), and can count 4096 rotations before overrunning. The advantage of the absolute encoder is that the absolute position is available immediately after it is switched on.

### Operating mode E: Channel acquisition with multi-turn encoders (SSI), 25 bit resolution

The multi-turn encoder with 25 bit resolution delivers 13 bit resolution per rotation (8192 pulses), and can count 4096 rotations before overrunning. The advantage of the absolute encoder is that the absolute position is available immediately after it is switched on.

An example of path evaluation with multi-turn encoders can be found in *Up counter* (Mode 2), p. 97.

## **TSX Momentum adapter**

3

### System structure

### Overview

TSX Momentum is a modular system. Bus adapters and CPU adapters work in connection with an I/O unit as standalone modules. In order to function properly, each I/O unit must be equipped with an adapter.

The following two sections give an overview of the available CPU and bus adapters.

# What's in this Chapter?

This Chapter contains the following Maps:

| Topic                                                   | Page |
|---------------------------------------------------------|------|
| TSX Momentum Bus Adapter                                | 34   |
| CPU adapters and interface adapters of the TSX Momentum | 34   |

### **TSX Momentum Bus Adapter**

## Available Bus Adapters

The Bus Adapters are used in the I/O Units as interfaces for numerous, industry-standardized, open communication networks.

The following Bus Adapters are available:

| Type No.       | Bus Adapters for                                      |
|----------------|-------------------------------------------------------|
| 170 INT 110 00 | INTERBUS                                              |
| 170 NEF 110 21 | Modbus Plus, simple network cable and 984 data format |
| 170 NEF 160 21 | Modbus Plus, double network cable and 984 data format |
| 170 PNT 110 20 | Modbus Plus, simple network cable and IEC data format |
| 170 PNT 160 20 | Modbus Plus, double network cable and IEC data format |
| 170 DNT 110 00 | Profibus DP                                           |
| 170 FNT 110 00 | FIPIO for TSX 7 and April                             |
| 170 FNT 110 01 | FIPIO for TSX Premium                                 |
| 170 LNT 710 00 | DeviceNet                                             |
| 170 LNT 810 00 | ControlNet                                            |
| 170 ENT 110 00 | Ethernet                                              |

**Note:** Detailed Information about the individual Bus Adapters can be found in separate manuals (see *Related Documents*, *p. 7*).

### CPU adapters and interface adapters of the TSX Momentum

### **CPU Adapters**

The CPU adapter can be compared to the central unit of a PLC that runs a user program and controls process I/O points. It can be plugged into this I/O unit to control its I/O points as local I/O.

The following four CPU adapters are available:

| Туре           | Internal Mem- | Flash RAM  | Clocking Speed | Interfaces  |
|----------------|---------------|------------|----------------|-------------|
|                | ory           |            |                |             |
| 171 CCS 700 00 | 64 Kbytes     | 256 Kbytes | 20 MHz         | 1 x RS-232  |
| 171 CCS 700 10 | 64 Kbytes     | 256 Kbytes | 32 MHz         | 1 x RS-232  |
| 171 CCS 760 00 | 256 Kbytes    | 256 Kbytes | 20 MHz         | 1 x RS-232  |
|                |               |            |                | 1 x I/O bus |
| 171 CCS 780 00 | 64 Kbytes     | 256 Kbytes | 20 MHz         | 1 x RS-232  |
|                |               |            |                | 1 x RS-485  |
| 171 CCS 780 10 | 512 Kbytes    | -          | 32 MHz         | 1 x RS-232  |
|                |               |            |                | 1 x RS-485  |
| 171 CCS 760 10 | 512 Kbytes    | -          | 32 MHz         | -           |

The functionality of the CPU adapter can be expanded using an interface adapter. The interface adapter is connected between the CPU adapter and the I/O unit. Interface adapters offer:

- Time
- Battery buffering
- · Additional communication interfaces

**Note:** Interface adapters can only be used in connection with a CPU adapter and not with bus adapters.

Three different interface adapters are available:

| Туре           | Interfaces                                                |
|----------------|-----------------------------------------------------------|
| 172 JNN 210 32 | 32 Modbus interface which are RS-232 or RS-485 compatible |
| 172 PNN 210 22 | a Modbus Plus interface                                   |
| 172 PNN 260 22 | Two (redundant) Modbus Plus interfaces                    |

**Note:** Additional documentation: Further information about CPU adapters and interface adapters can be found in the *M1 CPU and Interface Adapter* manual.

The dimensions of modules assembled together (with and without interface adapters) are given in the TSX Momentum I/O Unit manual.

## **Module description**



#### Hardware

#### At a Glance

This part describes the mechanical structure and offers hints for wiring and the status LEDs.

## What's in this part?

This Part contains the following Chapters:

| Chapter | Chaptername              | Page |
|---------|--------------------------|------|
| 4       | Structure of the AEC 920 | 39   |

Structure of the AEC 920

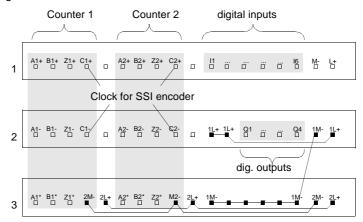
4

#### Introduction

#### Overview

The following chapter provides an overview of the hardware structure of the fast counter module AEC 920. Details of the wiring of the module are given and the signal assignments are described.

## What's in this Chapter?


This Chapter contains the following Maps:

| Торіс                                       | Page |
|---------------------------------------------|------|
| Internal Connections and Meaning of Signals | 40   |
| Wiring and Examples                         | 42   |
| LED Status Indicators                       | 49   |
| Technical Data                              | 50   |
| Selecting a Momentum adapter                | 53   |
| Selection of Terminal Blocks                | 53   |

#### **Internal Connections and Meaning of Signals**

#### I/O unit

The figure below shows the internal connections of the I/O Unit.



#### **CAUTION**



Danger of short circuit and/or spikes.

A module unprotected by a fuse can cause short circuit and/or spikes. Provide external fuses as a safety measure. The fuse values are provided in the wiring diagrams.

If you do not follow these precautions, you will endanger people's safety or risk damage to the I/O Unit.

Failure to observe this precaution can result in injury or equipment damage.

#### Assignment of Terminal Blocks

#### Series 1

| Terminal No. | Signal   | Function                                                  |  |
|--------------|----------|-----------------------------------------------------------|--|
| 1, 6         | A1+, A2+ | positive differential input A (5 V), counter channel 1, 2 |  |
| 2, 7         | B1+, B2+ | positive differential input B (5 V), counter channel 1, 2 |  |
| 3, 8         | Z1+, Z2+ | positive differential input Z (5 V), counter channel 1, 2 |  |
| 4, 9         | C1+, C2+ | positive clock output for SSI, counter channel 1, 2       |  |
| 11, 14       | I1, I4   | digital inputs accept preset value, counter channel 1, 2  |  |
| 12, 15       | I1, I5   | digital inputs counter enable, counter channel 1, 2       |  |

| Terminal No. | Signal | Function                                                              |
|--------------|--------|-----------------------------------------------------------------------|
| 13, 16       | 13, 16 | digital inputs, freeze current counter value for counter channel 1, 2 |
| 17           | M-     | Supply voltage -return line                                           |
| 18           | L+     | Supply for module +24 VDC                                             |

#### Series 2

| Terminal No. | Signal   | Function                                                                          |  |
|--------------|----------|-----------------------------------------------------------------------------------|--|
| 1, 6         | A1-, A2- | negative differential input A, counter channel 1, 2                               |  |
| 2, 7         | B1-, B2- | negative differential input B, counter channel 1, 2                               |  |
| 3, 8         | Z1-, Z2- | negative differential input Z, counter channel 1, 2                               |  |
| 4, 9         | C1-, C2- | negative clock output for SSI, counter channel 1, 2                               |  |
| 13, 14       | Q1, Q2   | digital output from counter channel 1                                             |  |
| 15, 16       | Q3, Q4   | digital output from counter channel 2                                             |  |
| 17           | 1M-      | -Return (+ 24 VDC Switching Voltage)                                              |  |
| 11, 12, 18   | 1L+      | + 24 VDC Switching voltage for digital outputs, supply voltage for digital inputs |  |

#### Series 3

| Terminal No. | Signal   | Function                                                    |
|--------------|----------|-------------------------------------------------------------|
| 1, 6         | A1*, A2* | positive differential inputs A (24 V), counter channel 1, 2 |
| 2, 7         | B1*, B2* | positive differential inputs B (24 V), counter channel 1, 2 |
| 3, 8         | Z1*, Z2* | positive differential inputs Z (24 V), counter channel 1, 2 |
| 11 16        | 1M-      | -Return (+ 24 VDC Switching Voltage)                        |
| 4, 9, 17     | 2M-      | -Return (for encoder supply)                                |
| 5, 10, 18    | 2L+      | +5 +30 VDC supply voltage for encoder                       |

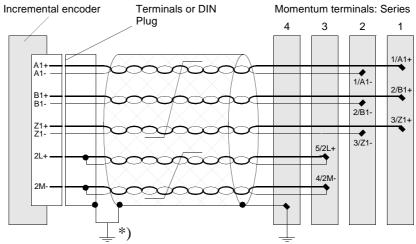
## Limit Frequencies and Cable Lengths for Incremental Encoders

#### Encoder Type with Signal Level

| Signal Level | Cable Length                   | Limit Frequency (kHz)     |
|--------------|--------------------------------|---------------------------|
| 5 V          | 100 m, shielded, twisted pairs | 200 kHz                   |
| 5 V          | 300 m, shielded, twisted pairs | 300 kHz                   |
| 24 V         | 300 m                          | 10 kHz (Filter activated) |

#### Limit Frequencies and Cable Lengths for Absolute Encoders

| Encoder<br>Type with | Cable Length | Limit Frequency (kHz)                    |
|----------------------|--------------|------------------------------------------|
| RS 422               | max. 100 m   | each one is determined by the AEC 920 00 |


#### Wiring and Examples

#### **Hints for Wiring**

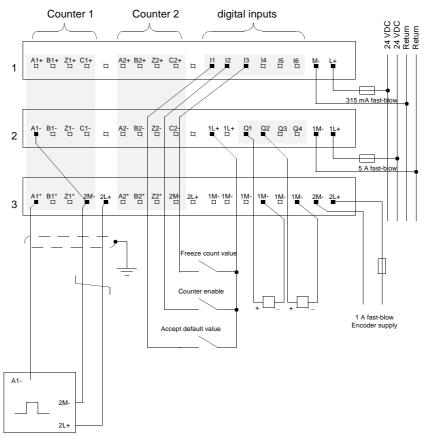
To protect count signals from external interference in push-pull or common mode, we recommend the following measures:

- Use shielded, twisted pair cables with a minimum line diameter of 0.22mm, two for the count signals.
- Ground the cable shield.
- Assuming that the same grounding is used, the counter inputs of the I/O Unit can be connected with a multi-lead cable (twisted pair), which also supplies the encoder.
- For the encoder supply (principally 5 V), take note that the voltage drop amounts to ca 0.35 V with a cable length of 100m, 1 mm 2 line diameter and a encoder current consumption of 100 mA.
- Keep encoder cables and power supply leads or similar sources of electrical interference separate (distance as much as possible >0.5 m).
- The supply for encoders and periphery should be drawn from separate sources, to achieve isolation.

#### Example of Connection of a Incremental Encoder for 5 V (Counter 1)



\*) This link is established directly, if the incremental encoder does not have a connection to ground


43 870 USE 008 00 August 2000

## Wiring Example for Pulse Encoder (5 V) Counter 1 Counter 2 digital inputs 24 VDC 24 VDC Return Return A2+ B2+ Z2+ C2+ 1 315 mA fast-ble Z2-C2-Q1 Q2 Q3 Q4 1M- 1L+ 2 Z2\* 2M- 2L+ A2\* B2\* 3 □ □ ■ . 1 A fast-blow A1+

44 870 USE 008 00 August 2000

Pulse encoder

#### Installation example for Pulse Encoder (24 V)



Note: The installation example refers to operating mode 1: Down Counting

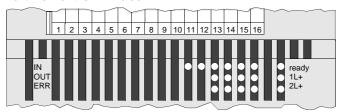
### Installation Example for Incremental Encoders (RS 422) Counter 1 Counter 2 digital inputs A2+ B2+ Z2+ C2+ 315 mA fast-blo Z1- C1- A2- B2- Z2- C2-2 2M- 2L+ A2\* B2\* Z2\* 3 Freeze count valu Counter enable 1 A fast-blow Accept default value Encoder supply A1+ Z1+ Z1-2M-2L+

## Counter 1 digital inputs Counter 2 A2+ B2+ Z2+ C2+ 315 mA fast-blo Z2- C2-A2- B2-Z2\* 2M- 2L+ 2L+ A2\* B2\* 1M- 1M-1M-1M- 1M-Freeze count valu Counter enable Accept default value 1 A fast-blow Encoder supply Α 2L+

#### Installation for use as 24 V pulse encoder for A, B and R line

**Note:** The installation example refers to operating modes 3, 4 and 5.

#### Installation Example for Absolute Encoders with Actuators Counter 1 Counter 2 digital inputs A2+ B2+ Z2+ C2+ 1 315 mA fast-blo A2- B2-Z2-C2-1L+ 1L+ Q1 Q2 Q3 Q4 1M- 1L+ 2 5 A fast-blo 2L+ A2\* B2\* Z2\* 2M-2L+ 1 A fast-blow Encoder supply A1+ C1+ A1-C1-2M-Absolute encoder 2L+


Note: The installation example refers to operating modes C, D and E (Absolute Encoder SSI).

48 870 USE 008 00 August 2000

#### **LED Status Indicators**

#### **LED Block**

#### Front view of the LED block:



#### LED meaning

| LED              | Status | Meaning                                                                                                      |
|------------------|--------|--------------------------------------------------------------------------------------------------------------|
| ready            | green  | Ready for operation; supply voltage available for internal logic (5 V).                                      |
|                  | off    | Not ready for operation.                                                                                     |
| 1L+              | green  | Turn-on voltage 1L+ for digital outputs Q1 4 available.                                                      |
|                  | off    | Turn-on voltage 1L+ for digital outputs Q1 4 unavailable.                                                    |
| 2L+              | green  | Supply voltage for encoder 2L+(5 30V) available.                                                             |
|                  | off    | Supply voltage for encoder 2L+(5 30 V) 4 unavailable.                                                        |
| Top row<br>IN    | green  | Input status (depending on the LED input); input point active, i.e. "1" signal on the input (logic "ON").    |
| 11 16            | off    | Input status (depending on the LED input); input point inactive, i.e. "0" signal on the input (logic "OFF"). |
| OUT row<br>13 16 | green  | Output status (one LED per digital output); output active, i.e. 1-signal on the output (logic "ON").         |
|                  | off    | Output status (one LED per digital output); output inactive, i.e. 0-signal on the output (logic "OFF").      |
| Bottom<br>row    | red    | Digital outputs overloaded (one LED per output); short circuit or overload of the corresponding output.      |
| ERR<br>13 16     | off    | Outputs Q1 Q4 function as normal.                                                                            |

#### **Technical Data**

## General information

#### General information on 170 AEC 920 00:

| Type of module                                 | 2 quick counters (10 200 kHz)      |
|------------------------------------------------|------------------------------------|
| Supply voltage, encoder supply, starting volt- | 24 VDC                             |
| age                                            |                                    |
| Input current                                  | 6 mA at 24 VDC (Type 1+ or Type 2) |
| Max. load current                              | 0.5 A/Output                       |
| ID-Code for Interbus                           | 0633 hex1587 dec                   |
| Supply voltage                                 | 20 24 30 VDC                       |
| Current consumption                            | type. 200 mA at 24 VDC max. 350 mA |
| Power loss                                     | 4 W typical, 6 W maximum           |

## Digital inputs (help inputs)

#### Layout of inputs:

| Encoder supply               | 24 V type., 30 V max.                                                                                  |
|------------------------------|--------------------------------------------------------------------------------------------------------|
| Number of Inputs             | 6                                                                                                      |
| Number of groups             | 2                                                                                                      |
| Input                        | 3 for every counter with the functions: a) accept preset value b) Enable counter c) Freeze count value |
| Type of signal               | True High                                                                                              |
| IEC 1131 Type                | 1+                                                                                                     |
| Signal level for 1-signal    | +11 +30 VDC                                                                                            |
| Signal level for 0-signal    | -3 +5 VDC                                                                                              |
| Input current                | min. 2.6 mA for 1-Signal,<br>max. 1.2 mA for 0-Signal,                                                 |
| Voltage range for inputs     | -3 +30 VDC                                                                                             |
| Surge                        | Surge 45 Vp for 10 ms                                                                                  |
| Input delay (output counter) | max. 1 ms off to on,<br>max. 1 ms on to off                                                            |

## Counter inputs (for pulses)

#### Layout of counter inputs:

| Input types               | 5 VDC differential (RS422) or 24 VDC single ended |
|---------------------------|---------------------------------------------------|
| IEC 1131 Type             | 2                                                 |
| Count range (incremental) | 24 Bit plus sign (-16 777 216bis +16 777 215)     |
| (absolute)                | 25 Bit (0 to 33 554 431)                          |

#### 5 VDC differential

| max. count frequency       | 200 kHz           |  |  |  |  |  |
|----------------------------|-------------------|--|--|--|--|--|
| Input voltage for 1-signal | minimum 2.4 VDC   |  |  |  |  |  |
| Input current for 1-signal | > 3.7 mA          |  |  |  |  |  |
| Input voltage for 0-signal | maximum 1.2 VDC   |  |  |  |  |  |
| Input current for 0-signal | < 1 mA at 1.2 VDC |  |  |  |  |  |

### 24 VDC single ended

| max. count frequency       | 10 kHz             |
|----------------------------|--------------------|
| Input voltage for 1-signal | minimum 11 VDC     |
| Input current for 1-signal | > 6 mA             |
| Input voltage for 0-signal | -3 +5 VDC          |
| Input current for 0-signal | < 2 mA at <= 5 VDC |

#### Digital outputs

#### Layout of outputs:

| Output type          | Semi-conductor                                                |  |  |  |  |  |  |
|----------------------|---------------------------------------------------------------|--|--|--|--|--|--|
| Switching voltage    | 20 24 30 VDC                                                  |  |  |  |  |  |  |
| Number of outputs    | 4                                                             |  |  |  |  |  |  |
| Number of groups     | 2                                                             |  |  |  |  |  |  |
| Switching current    | max. 0.5 A/Output                                             |  |  |  |  |  |  |
| Type of signal       | True High                                                     |  |  |  |  |  |  |
| Leakage current      | < 0.5 mA at 24 VDC                                            |  |  |  |  |  |  |
| Voltage drop when on | < 0.5 VDC at 0.5 A                                            |  |  |  |  |  |  |
| Overload protection  | Outputs are protected against overloading and short circuits. |  |  |  |  |  |  |
| Error display        | 1 red LED per output (row 3) for short circuits/overloading   |  |  |  |  |  |  |

| Error message                   | Error message (I/O-error) for the bus-adapter, if the module is defect (self-test by the I/O unit) |  |  |  |  |  |
|---------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Output delay for resistive load | max. 0.1 ms 0 -> 1, max. 0.1 ms 1 -> 0                                                             |  |  |  |  |  |
| Maximum operation cycles        | 1 000/h inductive load<br>100/s resistive load<br>8/s Lamp load at 2.4 W                           |  |  |  |  |  |
| Definable functions             | see chapter 4, page 55                                                                             |  |  |  |  |  |

#### Clock-output for absolute encoder:

| Output type                 | 5 VDC differential (RS 422) |  |  |  |  |  |
|-----------------------------|-----------------------------|--|--|--|--|--|
| Output voltage for 1-signal | >+/- 2 VDC                  |  |  |  |  |  |
| Output current for 1-signal | > 20 mA                     |  |  |  |  |  |

**Note:** If the outputs Q1 and/or Q3 are used as frequency outputs, the load must be at least 1kOhm.

#### Protective measures, certifications and mechanical structure

#### Potential isolation between each other and against PE:

| digital I/O signals, | 500 VAC for 1 min. |
|----------------------|--------------------|
| counter inputs,      |                    |
| clock outputs,       |                    |
| Supply voltage       |                    |

#### Safety devices:

| Internal                                | none                                                                                                          |  |  |  |  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|--|
| External: Supply voltage L+             | 315 mA fast-blow (with Bus-Adapter)                                                                           |  |  |  |  |
| External: Sensor and actuator supply1L+ | Depending on the design of the current consumption of the connected sensors and actuators, max. 5 A fast-blow |  |  |  |  |
| External: Encoder supply 2L+            | Depending on the design of the current consumption of the connected encoder, max. 1 A fast-blow               |  |  |  |  |

#### EMC for industrial use

| Resistance to disturbance | IEC 1131 surge voltage in the network supply 500 V, 12 Ohm |  |  |  |  |  |
|---------------------------|------------------------------------------------------------|--|--|--|--|--|
| Emissions                 | EN 50081-2                                                 |  |  |  |  |  |
| Certifications            | UL, CUL, CSA, CE                                           |  |  |  |  |  |

#### Mechanical structure

| Width                   | 125 mm                                                                                                  |
|-------------------------|---------------------------------------------------------------------------------------------------------|
| Depth (without adapter) | 40 mm                                                                                                   |
| Height                  | 141.5 mm without or with single bus bar<br>159.5 mm with double bus bar<br>171.5 mm with triple bus bar |
| Weight                  | 240 g                                                                                                   |

#### **Selecting a Momentum adapter**

## Bus/CPU adapters

Choose an appropriate Bus or CPU adapter for your application and assemble it according to the instructions in the User's Manual *TSX Momentum I/O Unit*.

#### **CAUTION**



#### Danger of injury and/or damage to the I/O unit.

When the I/O Unit is connected to the power supply, electrical voltages are present. Make sure that there is no voltage present while the I/O unit has no adapter.

This can be ensured by connecting the terminal blocks only after first assembling the adapter.

Unplug the terminal blocks before separating the adapter from the I/O unit. The I/O unit will be then be dead.

Failure to observe this precaution can result in injury or equipment damage.

#### **Selection of Terminal Blocks**

## Selection of Terminal Blocks

For the connection of encoders as well as sensors and actuators to the I/O Unit, suitable terminal blocks must be acquired. These can be found in User's Guide *TSX Momentum I/O-Units* (see *Selection of Terminal Blocks and Bus Bar*).

## Configuration



#### Overview

#### At a Glance

This part deals with the configuration of the fast counter module 170 AEC 920 00. The DFB block AEC is described and a configuration example is given for each operating mode.

## What's in this part?

This Part contains the following Chapters:

| Chapter | Chaptername                        | Page |
|---------|------------------------------------|------|
| 5       | Configuration of Output Words      | 57   |
| 6       | Status Messages and Count Values   | 81   |
| 7       | Parameter Setting of the AEC Block | 89   |
| 8       | Application examples               | 95   |

## **Configuration of Output Words**

5

#### Introduction

#### Overview

By setting parameters for the output words, the counting functions, output configuration and default values for the count channels of the 170 AEC 920 00 module are set

To simplify open project creation, the functions of the output words for each bit will be explained.

## What's in this Chapter?

This Chapter contains the following Maps:

| Торіс                            | Page |
|----------------------------------|------|
| Configuration                    | 58   |
| Summary of the output words      | 60   |
| Configuring output words 1 and 2 | 60   |
| Configuring output words 3 and 4 | 67   |
| Data in output word 5/6 and 7/8  | 79   |
| File format of set data          | 80   |

### Configuration

#### **Output words**

The eight output words for the counter are sent from the bus master to the I/O module with the following configuration data:

|                              |                                    |       | Outp       | •          | •       |       | JII G | ata.  |                   |    |    |    |    |    |    |
|------------------------------|------------------------------------|-------|------------|------------|---------|-------|-------|-------|-------------------|----|----|----|----|----|----|
| 15                           | 14                                 | 13    | 12         | 11         | 10      | 9     | 8     | 7     | 6                 | 5  | 4  | 3  | 2  | 1  | 0  |
| Configuration for counter 1  |                                    |       |            |            |         |       |       |       |                   |    |    |    |    |    |    |
| Address 4x +1: Output word 2 |                                    |       |            |            |         |       |       |       |                   |    |    |    |    |    |    |
| 15                           | 14                                 | 13    | 12         | 11         | 10      | 9     | 8     | 7     | 6                 | 5  | 4  | 3  | 2  | 1  | 0  |
| Con                          | figur                              | ation | for c      | ounte      | er 2    |       |       |       |                   |    |    |    |    |    |    |
| Add                          | Iress                              | 4x -  | -2: O      | utpu       | t wo    | rd 3  | I     |       |                   |    |    |    |    |    |    |
| 15                           | 14                                 | 13    | 12         | 11         | 10      | 9     | 8     | 7     | 6                 | 5  | 4  | 3  | 2  | 1  | 0  |
|                              | •                                  |       | of th      | _          | jital o | utpu  | ts    |       | erenc<br>en circ  |    |    |    |    |    |    |
| Add                          | Iress                              | 4x +  | -3: O      | utpu       | t wo    | rd 4  |       |       |                   |    |    |    |    |    |    |
| 15                           | 14                                 | 13    | 12         | 11         | 10      | 9     | 8     | 7     | 6                 | 5  | 4  | 3  | 2  | 1  | 0  |
| Q3,                          | Q4 f                               | or co | of thounte | r 2        |         | ·     |       | Ope   | erence<br>en circ |    |    |    |    |    |    |
| 15                           | 14                                 | 13    | 12         | սւքս<br>11 | 10      | 9     | (LOW  | 7 WOI | 6                 | 5  | 4  | 3  | 2  | 1  | 0  |
|                              | data                               | for c | ounte      | er 1 (     | low p   | art)  | _     | -     |                   |    | _  |    |    |    |    |
| Add                          | Iress                              | 4x +  | ⊦5: O      | utpu       | t wo    | rd 6  | (Higl | h wo  | rd)               |    |    |    |    |    |    |
| 31                           | 30                                 | 29    | 28         | 27         | 26      | 25    | 24    | 23    | 22                | 21 | 20 | 19 | 18 | 17 | 16 |
| Set                          | data                               | for c | ounte      | er 1 (     | high    | part) |       |       |                   |    |    |    |    |    |    |
| Add                          | Iress                              | 4x -  | -6: O      | utpu       | t wo    | rd 7  | (Low  | ow v  | d)                |    |    |    |    |    |    |
| 15                           | 14                                 | 13    | 12         | 11         | 10      | 9     | 8     | 7     | 6                 | 5  | 4  | 3  | 2  | 1  | 0  |
| Set                          | Set data for counter 2 (low part)  |       |            |            |         |       |       |       |                   |    |    |    |    |    |    |
| Add                          | Iress                              | 4x -  | + 7: C     | Outpu      | ut wo   | ord 8 | (Hig  | h wo  | ord)              |    |    |    |    |    |    |
| 31                           | 30                                 | 29    | 28         | 27         | 26      | 25    | 24    | 23    | 22                | 21 | 20 | 19 | 18 | 17 | 16 |
| Set                          | Set data for counter 2 (high part) |       |            |            |         |       |       |       |                   |    |    |    |    |    |    |

**Note:** A detailed description of word functions can be found in the chapter *Configuration of Output Words, p. 57.* 

#### Input words

The bus master receives eight words from the I/O module containing information as follows:

| Add                                     | Address 3x: Input word 1                  |                |                     |             |       |             |       |      |        |       |      |       |       |        |    |
|-----------------------------------------|-------------------------------------------|----------------|---------------------|-------------|-------|-------------|-------|------|--------|-------|------|-------|-------|--------|----|
| 15                                      | 14                                        | 13             | 12                  | 11          | 10    | 9           | 8     | 7    | 6      | 5     | 4    | 3     | 2     | 1      | 0  |
| Mod                                     | Module status bits for counter 1          |                |                     |             |       |             |       |      |        |       |      |       |       |        |    |
| Add                                     | dress                                     | 3x +           | -1: In              | put         | word  | 12          |       | ."   |        |       |      |       |       |        |    |
| 15                                      | 14                                        | 13             | 12                  | 11          | 10    | 9           | 8     | 7    | 6      | 5     | 4    | 3     | 2     | 1      | 0  |
| Mod                                     | dules                                     | status         | bits                | for c       | ounte | er 2        | !     | Err  | or bit | s for | coun | ter 2 |       |        |    |
| Add                                     | dress                                     | 3x +           | -2: In              | put         | word  | 3           |       |      |        |       |      |       |       |        |    |
| 15                                      | 14                                        | 13             | 12                  | 11          | 10    | 9           | 8     | 7    | 6      | 5     | 4    | 3     | 2     | 1      | 0  |
| Out                                     | put s                                     | tatus          | cour                | nter 1      |       |             |       | Refe | erenc  | e nu  | mber | s for | set c | lata 1 |    |
| Add                                     | dress                                     | 3x +           | -3: In              | put         | word  | 14          |       |      |        |       |      |       |       |        |    |
| 15                                      | 14                                        | 13             | 12                  | 11          | 10    | 9           | 8     | 7    | 6      | 5     | 4    | 3     | 2     | 1      | 0  |
| Out                                     | put s                                     | tatus          | cour                | nter 2      | 2     | !           | !     | Refe | erenc  | e nu  | mber | s for | set c | lata 2 | 2  |
| Add                                     | dress                                     | 3x +           | -4: In              | put         | word  | 5 (L        | ow v  | vord | )      |       |      |       |       |        |    |
| 15                                      | 14                                        | 13             | 12                  | 11          | 10    | 9           | 8     | 7    | 6      | 5     | 4    | 3     | 2     | 1      | 0  |
| Cur                                     | rent o                                    | count          | word                | d cou       | inter | 1 (lo       | w pai | rt)  |        |       |      |       |       |        |    |
| Add                                     | dress                                     | 3x +           | - 5: C              | Outpu       | ut wo | ord 6       | (Hig  | h wc | rd)    |       |      |       |       |        |    |
| 31                                      | 30                                        | 29             | 28                  | 27          | 26    | 25          | 24    | 23   | 22     | 21    | 20   | 19    | 18    | 17     | 16 |
| Cur                                     | rent o                                    | count          | word                | d cou       | inter | 1 (hi       | gh pa | art) |        |       |      |       |       |        |    |
| Add                                     | dress                                     | 4x +           | -6: In              | put         | word  | 7 (L        | ow v  | vord | )      |       |      |       |       |        |    |
| 15                                      | 14                                        | 13             | 12                  | 11          | 10    | 9           | 8     | 7    | 6      | 5     | 4    | 3     | 2     | 1      | 0  |
| Current count word counter 2 (low part) |                                           |                |                     |             |       |             |       | rt)  |        |       |      |       |       |        |    |
|                                         | Address 4x + 7: Output word 8 (High word) |                |                     |             |       |             |       |      |        |       |      |       |       |        |    |
| Add                                     | dress                                     | 4x +           | - 7: C              | Outpu       | ut wo | ord 8       | (Hig  | n wc | nuj    |       |      |       |       |        |    |
| <b>Add</b> 31                           | 30                                        | <b>4x 4</b> 29 | - <b>7: C</b><br>28 | Outpi<br>27 | 26    | ord 8<br>25 | (Hig  | 23   | 22     | 21    | 20   | 19    | 18    | 17     | 16 |

**Note:** A detailed description of word functions can be found in the chapter *Status Messages and Count Values, p. 81.* 

#### **DFB Block**

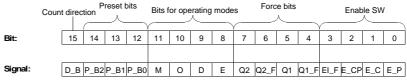
The DFB block is provided to simplify project creation using the 170 AEC 920 00 module

**Note:** A detailed description of the AEC block can be found in chapter *Parameter Setting of the AEC Block, p. 89* 

#### Summary of the output words

## The 8 output words

8 output words are available for the configuration of the two counters of the 170 AEC


Summary of the function of the output words

| Output word | Function                                        |
|-------------|-------------------------------------------------|
| 1           | Configuration bit for counter 1                 |
| 2           | Configuration bit for counter 2                 |
| 3           | Configuration of outputs/set data for counter 1 |
| 4           | Configuration of outputs/set data for counter 2 |
| 5           | Set points for counter 1 (Bit 0 15)             |
| 6           | Set points for counter 1 (Bit 16 31)            |
| 7           | Set points for counter 2 (Bit 0 15)             |
| 8           | Set points for counter 2 (Bit 16 31)            |

#### Configuring output words 1 and 2

#### Bit/Signal display

The following functions for counter 1 are determined with output word 1:



#### Meaning of the signals:

| Signal | Meaning                                                                                       |
|--------|-----------------------------------------------------------------------------------------------|
| D_B    | If Bit 15 is set by the software, the count direction in all operating modes will be reversed |
| P_B2   | 3 bits for the choice of preset mode                                                          |
| P_B1   |                                                                                               |
| P_B0   |                                                                                               |
| М      | 4 bits for the choice of operation mode                                                       |
| 0      |                                                                                               |
| D      |                                                                                               |
| E      |                                                                                               |
| Q2     | Valence entry for digital output Q2 (force to 0 or 1)                                         |
| Q2_F   | Activate force for digital output Q2 (1=active)                                               |
| Q1     | Valence entry for digital output Q1 (force to 0 or 1)                                         |
| Q1_F   | Activate force for digital output Q1 (1=active)                                               |
| EI_F   | Enable input filter<br>0 = without Filter (<= 200 kHz); 1 = with Filter (<= 20 kHz)           |
| E_CP   | Enable software to freeze count value                                                         |
| E_C    | Enable software for counter                                                                   |
| E_P    | Enable acceptance of preset value                                                             |

With SSI-encoders, the preset value and the software limit switch values must still be transmitted after the count directions of have been reversed. With output 2 the same functions are determined for counter 2 (but Q3 instead of Q1 and Q4 instead of Q2 with digital outputs).

#### Enable software and Filter (Output word 1 and 2, (Bits 0 ... 4))

With these bits the following functions are enabled:

#### $D0 = E_P$

1 = Enable acceptance of preset value (Preset). The preset value will be accepted after it has been enabled by the software with an edge at the hardware input I1/I4.

#### $D1 = E_C$

1 = Enable counters. The counter is enabled with a 1 signal on the hardware input 12/15 after being enabled by the software.

#### $D2 = E_CP$

1 = Freeze count value enable (Capture). The count value is frozen with an edge at the hardware input I3/I6 after it has been enabled by the software. After the frozen count value has been accepted it will be transmitted as the actual value to the PLC, until the Bit E\_CP is reset again through the software. After being reset the actual value of the counter is transmitted. Pulses, which enter the count input after the count value has been frozen, continue being counted internally.

#### $D3 = EI_F$

1 = Activating the input filter of the count inputs. Through activating the input filter the input frequency of the counter is limited to < 20 kHz.

**Note:** It is necessary to activate the filter in order to prevent disturbances for 24V single-ended pulse encoders.

# Force the digital outputs (output word 1 and 2, (Bits 3 ... 7))

The digital outputs can be switched on or off independently from the assigned function of the PLC counter (force).

#### $D4 = Q1_F$

1= activate forcing for digital output Q1. D5 specifies the valence of the output Q1.

#### D5 = Q1

This bit defines the valence of the digital output Q1 for forcing. 0 = output inactive, 1 = output active (24 V).

#### $D6 = Q2_F$

1= activate forcing for digital output Q2. D7 determines the valence of the Q2 output.

#### D7 = Q2

This bit defines the valence of the digital output Q2 for forcing. 0 = output inactive, 1 = output active (24 V).

#### Bit 8 to Bit 11 for operation modes (output word 1 and 2)

Bit 8 to bit 11 for operation modes (output word 1 and 2)

| Operation mode (Hex) | Bit<br>11 10 9 8 | Type of encoder | Function                                          |
|----------------------|------------------|-----------------|---------------------------------------------------|
| 0                    | 0000             |                 | Channel not ready, parameter reset back, output=0 |
| 1                    | 0 0 0 1          | pulse           | Down counter                                      |
| 2                    | 0010             | pulse           | Up counter                                        |
| 3                    | 0 0 1 1          |                 | corresponds with operation mode "0"               |
| 4                    | 0100             | ink             | Up/down counter, path evaluation, 1/1 logic       |
| 5                    | 0101             | ink             | Up/down counter, path evaluation, 1/4 logic       |

| Operation mode (Hex) | Bit<br>11 10 9 8 | Type of encoder | Function                                                                                                                                                                                                      |
|----------------------|------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6                    | 0110             | pulse           | Difference counter: Counter input A = upwards; Counter input B = down                                                                                                                                         |
| 7                    | 0111             | pulse           | Up/down counter Counter input A = up/down; Counter input B = direction (1=up, 0=down)                                                                                                                         |
| 8                    | 1000             | pulse           | Pulse counter with external time base (e.g. for speed counter, rate of flow, etc.) a) with external clock on the counter input B as time base or b) frequency output (Q1/Q3) as time basis on counter input B |
| 9                    | 1001             | pulse           | Period meter with 5 time bases for full or half periods; 0= without time basis; half per.: 9 = 1, A = 10, B = 100, C= 1 000, D = 10 000 [ms] half per.: 9 = 1, A = 10, B = 100, C= 1 000, D = 10 000 [ms]     |
| A                    | 1010             | pulse           | Frequency meter with 5 time bases for full or half periods; 0= without time basis whole period: 1 = 0.1, 2 = 1.3 = 10.4 = 100, 5 = 1000 [ms]; half period: 9 = 0.1, A = 1, B = 10, C= 100, D = 1000 [ms]      |
| В                    | 1011             |                 | corresponds with operation mode "0"                                                                                                                                                                           |
| С                    | 1100             | abs             | Path evaluation with single-turn encoders (SSI), 12 bit resolution                                                                                                                                            |
| D                    | 1101             | abs             | Path evaluation with multi-turn encoders (SSI), 24 bit resolution                                                                                                                                             |
| Е                    | 1110             | abs             | Path evaluation with multi-turn encoders (SSI), 25 bit resolution                                                                                                                                             |
| F                    | 1111             |                 | Software reset. In this instance both counters are always reset, regardless of this operation mode is called for counter 1 or 2.                                                                              |

#### Preset mode (output word 1 and 2, (Bits 12 ... 14))

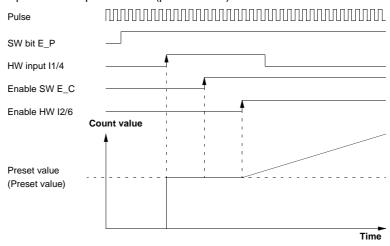
The preset values are accepted through the hardware input (I1 for counter 1, I4 for counter 2). If no preset value is transmitted from the PLC, a preset value of 0 will be accepted. But the SW enable must be set!

Preset mode

| Bits: | 14 13 12 | Function (Preset modes)                                                                                                                                                   |
|-------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| hex 0 | 0 0 0    | Preset value is accepted with SW-Bit E_P="1" signal (the HW input I1/4 has no function)                                                                                   |
| hex 1 | 0 0 1    | The preset value is accepted with the 0/1 edge of the HW-preset signal (see <i>Preset mode hex 1, p. 65</i> ) *                                                           |
| hex 2 | 0 1 0    | The preset value is accepted with the 1/0 edge of the HW preset signal. *                                                                                                 |
| hex 3 | 011      | The preset value is accepted if the preset signal is 1, and the counter is stopped. The counter starts if the preset signal is 0 (see <i>Preset mode hex 3, p. 65</i> ) * |
| hex 4 | 100      | The preset value is accepted with the 1/0 edge (up counter) and with 0/1 edge (down counter) of the preset signal. Application with axes control. *                       |
| hex 5 | 1 0 1    | The preset value is accepted with the 1/0 edge (up counter) and with 0/1 edge (down counter) of the preset signal. *                                                      |
| hex 6 | 110      | Reference point with short cam signal (see Preset value (Preset) accepted with short cams, p. 66) *                                                                       |
| hex 7 | 111      | Reference point with long cam signal (see <i>Preset value (Preset) accepted with short cams, p. 66</i> ) *                                                                |

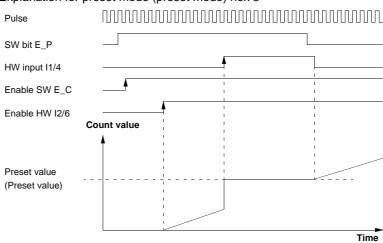
<sup>\*)</sup> SW Bit E\_P must always be signal "1".

## Reversals of the count directions E\_P


#### $D15 = D_B$

If Bit 15 is set to 1 by the software, the count direction in all operating modes will be reversed.

**Note:** With SSI encoders the preset value and the software limit switch value must be transmitted again after the count directions of have been reversed.


#### Preset mode hex

#### Explanation for preset mode (preset mode) hex 1

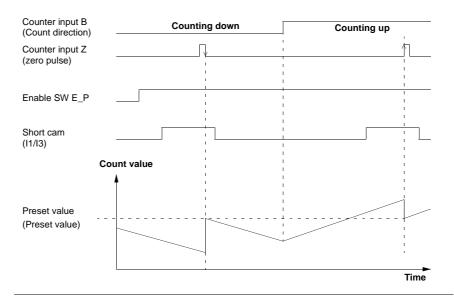


## Preset mode hex 3

#### Explanation for preset mode (preset mode) hex 3



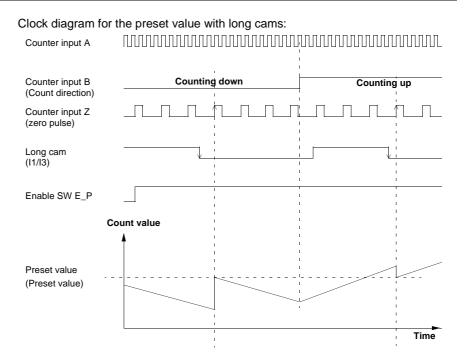
Preset value (Preset) accepted with short cams The preset value is accepted, if the software enable (Bit E\_P), the hardware input (I1/4) and the zero pulse are applied at the count input Z.


This function can be used if only a zero pulse is delivered from the encoder over the cam length. The down counter value is accepted with a falling edge of the zero pulse, and the up counter value with a rising edge. With incremental encoders it is always accepted with the rising edge of the zero pulse, because the counter input B at the time of the zero-pulse is always 1.

**Note:** If the encoder delivers several zero pulses whilst the cam signal is on, the counter will be set to the preset value with every zero pulse.

The following clock diagram explains the setting to the preset value with a short cam signal.

Function of the short cam






Preset value (Preset) accepted with long cams The preset value is accepted, with the first rising edge of the zero pulse on the count input, as a result of the "1" changing to "0" on the hardware input. For it to be accepted it is necessary for the software to be enabled via the Bit E\_P.

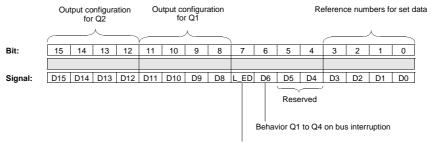
Note: All other zero pulses have no effect.

The following clock diagram explains the setting to the preset value with a long cam signal.



#### Configuring output words 3 and 4

## Output words 3 and 4


Output word 3 is used to determine the following functions for counter 1, while output word 4 is used for counter 2:

#### Output word 3

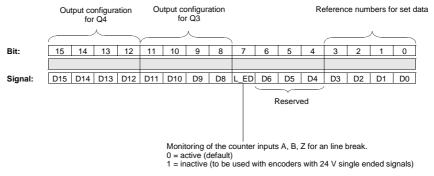
Output word 3 is used to specify the following functions for counter 1:

- The meaning of the parameters which will be transferred to words 5 and 6 is specified using the reference numbers for set data (D0...D3).
- D4 and D5 are reserved
- D6, D7 behavior of the module during bus interrupt and line break of the counter inputs
- Output configuration of the digital output Q1 (D8 ...D11)
- Output configuration of the digital output Q2 (D12 ... D15)

#### Bit and signal representation of output word 3:



Monitoring of the counter inputs A, B, Z for an line break.


0 = active (default)
1 = inactive (to be used with encoders with 24 V single ended signals)

#### **Output word 4**

Output word 4 is used to specify the following functions for counter 2:

- The meaning of the parameters which will be transferred to words 7 and 8 is specified using the reference numbers for set data (D0...D3).
- D4, D5 and D6 are reserved
- D7 behavior of the counter during line break of the count inputs
- Output configuration of the digital output Q3 (D8 ...D11)
- Output configuration of the digital output Q4 (D12 ... D15)

Bit and signal representation of output word 4:



Reference numbers for the command data (output word 3 and 4, (Bits 0... 4))

The reference numbers can be used to send various set data to the module. Output word 4 can be used to determine the same functions for counter 2 (but with Q3 instead of Q1 and Q4 instead of Q2 for digital outputs).

68 870 USE 008 00 August 2000

#### Individually, these are as follows:

| Reference number | 43210                  | Function                                                                                                       |
|------------------|------------------------|----------------------------------------------------------------------------------------------------------------|
| hex: 0           | 00000                  | No reference number selected                                                                                   |
| hex: 1           | 00001                  | Reference number for preset value or SSI offset value                                                          |
| hex: 2           | 00010                  | Reference number for threshold value 1*)                                                                       |
| hex: 3           | 00011                  | Reference number for threshold value 2*)                                                                       |
| hex: 4           | 00100                  | Reference number for lower software limit switch*) (Outputs will be disabled, if counting pulses >= value)     |
| hex: 5           | 00101                  | Reference number for lower software limit switch*) (Outputs will be disabled, if counting pulses <= value)     |
| hex: 6           | 00110                  | Reference number for pulse width of the digital outputs (Q) for counters 1 and 2 in ms                         |
| hex: 7           | 00111                  | Reference number for modulo value with repeating counters; function can be disabled with the modulo value = 0. |
| hex: 8           | 01000                  | Reference number for time base in "period meter" counter mode                                                  |
| hex: 9           | 01001                  | Reference number for time base in "frequency meter" counter mode                                               |
| hex: A           | 01010                  | Reference number for operating mode 8 (pulse counter with time base)                                           |
| hex: B           | 01011                  | Reference number for time base in ms for pulse at digital outputs Q1/3 (only for half cycles)                  |
| hex: C           | 01100                  | reserved                                                                                                       |
| hex: D to F      | 0 1 1 0 1<br>0 1 1 1 1 | reserved (corresponds to reference number 0)                                                                   |

<sup>\*)</sup> A HW or SW reset must be carried out to disable the functions. Value "0" is a valid parameter and does not disable this function.

#### **Default values**

If no command data has been defined (no reference number selected), the following default values are assigned to the command data:

| Function                                 | Default values                 |
|------------------------------------------|--------------------------------|
| Preset value or SSI offset value         | 0                              |
| Threshold values 1 and 2                 | not active                     |
| upper and lower software limit switch    | not active                     |
| Pulse width of the digital outputs in ms | Value = 0, no output pulse     |
| Modulo value                             | Value = 0, function not active |
| Period meter and frequency meter         | without time base              |

| Function                           | Default values    |
|------------------------------------|-------------------|
| Mode for pulse counter             | complete period   |
| Pulse counter with time base in ms | without time base |
| Line monitoring (encoder)          | active            |
| Q digital outputs                  | inactive          |

#### **D5**

Bit D5 is currently not used.

#### D6 = CLOA

This bit is used to determine whether the outputs are disabled after communication is interrupted (CLOA = 0) or whether the module continues to process the outputs (CLOA = 1). This function is only defined in the register for counter 1 and is effective for both channels.

#### $D7 = L_ED$

This bit can be used to disable line break monitoring of the counter inputs. The following applies:

0 = Line break monitoring active

1 = Line break monitoring disabled

**Note:** For encoders with a 24 DCV signal level (single-ended), bit L\_ED must be set to 1 to disabled line monitoring.

## Configuring the digital outputs

Various functions can be assigned to the digital outputs. 4 bits are available for configuration for each output.

- Counter 1 output Q1 = Bit 8 ... 11 in word 3
- Counter 1 output Q2 = Bit 12 ... 15 in word 3
- Counter 2 output Q3 = Bit 8 ... 11 in word 4
- Counter 2 output Q4 = Bit 12 ... 15 in word 4

#### The functions of the digital outputs (output words 3 and 4)

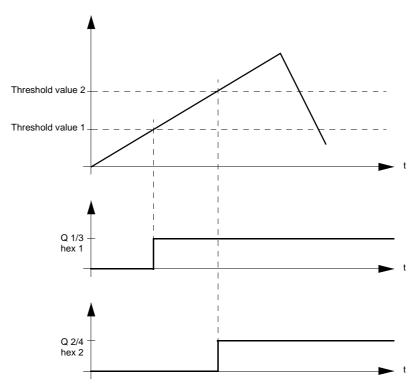
The following is a table of the functions which can be assigned to the digital outputs:

| Bits   | 11 10 9 8   | Function (Control of counter 1 digital outputs Q1/3)                                                        |
|--------|-------------|-------------------------------------------------------------------------------------------------------------|
| Bits   | 15 14 13 12 | Function (control of counter 1 digital outputs Q2/4)                                                        |
| hex: 0 | 0 0 0 0     | Outputs carry 0 signal                                                                                      |
| hex: 1 | 0 0 0 1     | Output is set to 1 signal and remains saved if count value = threshold value 1                              |
| hex: 2 | 0 0 1 0     | Output is set to 1 signal and remains saved if count value = threshold value 2                              |
| hex: 3 | 0 0 1 1     | Output is set to 1 signal, if counter enabled output becomes 0, if count value = threshold value 1 (saving) |

| Bits   | 11 10 9 8   | Function (Control of counter 1 digital outputs Q1/3)                                                                                              |
|--------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Bits   | 15 14 13 12 | Function (control of counter 1 digital outputs Q2/4)                                                                                              |
| hex: 4 | 0 1 0 0     | Output is set to 1 signal, if counter enabled output becomes 0, if count value = threshold value 2 (saving)                                       |
| hex: 5 | 0 1 0 1     | Output is set to 1 signal, if count value = threshold value 1 (saving) Output is set to 0 signal, if count value = threshold value 2 (saving)     |
| hex: 6 | 0 1 1 0     | Output is set to 1 signal, if count value >= threshold value 1; Output is set to 0 signal, if count value <=threshold value 1                     |
| hex: 7 | 0 1 1 1     | Output is set to 1 signal, counter enabled and count value < threshold value 1; Output is set to 0 signal, if count value >=threshold value 1;    |
| hex: 8 | 1 0 0 0     | Output is set to 1 signal, if count value >= threshold value 2; Output is set to 0 signal, if count value < threshold value 2                     |
| hex: 9 | 1 0 0 1     | Output is set to 1 signal, if counter enabled and count value < threshold value 2; Output is set to 0 signal, if count value >= threshold value 2 |
| hex: A | 1 0 1 0     | Output is set to 1 signal if count value => threshold value 1; output is set to 0 signal if counter value => threshold value 2                    |
| hex: B | 1 0 1 1     | Trigger pulse if count value = threshold value 1; the pulse length can be defined (1 2 EXP 32 ms)                                                 |
| hex: C | 1 1 0 0     | Trigger pulse if count value = threshold value 2; the pulse length can be defined (1 2 EXP 32 ms)                                                 |
| hex: D | 1 1 0 1     | Frequency output (only for digital outputs Q1/3), a frequency must also be given via reference number B                                           |
| hex: E | 1 1 1 0     | Values reserved (as with hex 0, no report to bus adapter);                                                                                        |
| hex: F | 1 1 1 1     |                                                                                                                                                   |

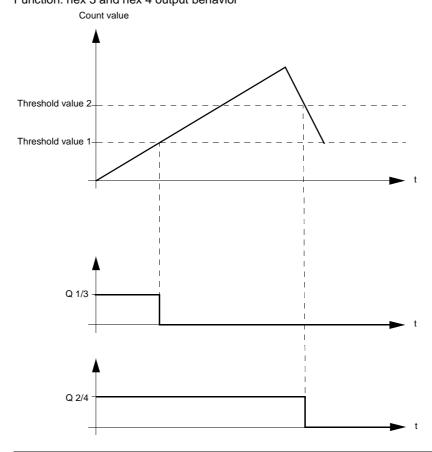
Clock diagrams for the function of the digital outputs

The following clock diagrams show the different output configurations for outputs Q1/3 and Q2/4.


## Hex 1 and hex 2 output behavior

Output Q1/3 is set to 1 signal and remains saved if the count value = threshold value 1 (hex 1).

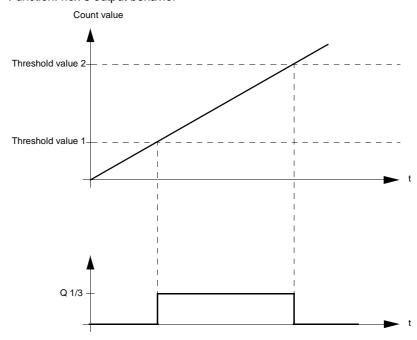
Output Q2/4 is set to 1 signal and remains saved if the count value = threshold value 2 (hex 2).


Function: hex 1 and hex 2 output behavior

Count value



## Hex 2 and hex 4 output behavior


Output Q1/Q3 is set to 1 signal as soon as the counter is enabled. Output Q1/Q3 goes to "0" if the count value is equal to the threshold value 1 (saving). Output Q2/Q4 is set to 1 signal as soon as the counter is enabled. Output Q2/Q4 goes to "0" if the count value is equal to the threshold value 2 (saving). Function: hex 3 and hex 4 output behavior

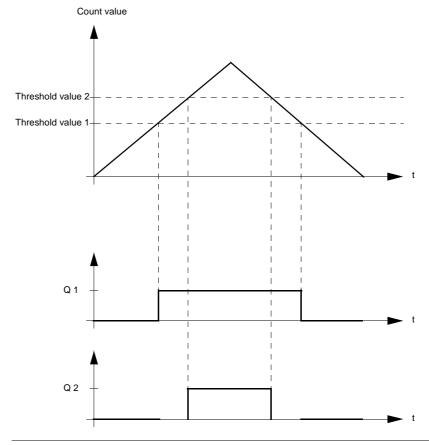


## Hex 5 output behavior

Output 1/Q3 is set to 0 signal if the count value is equal to the threshold value 1 (saving). Output 0/Q3 is set to 0 signal if the count value is equal to the threshold value 2 (saving).

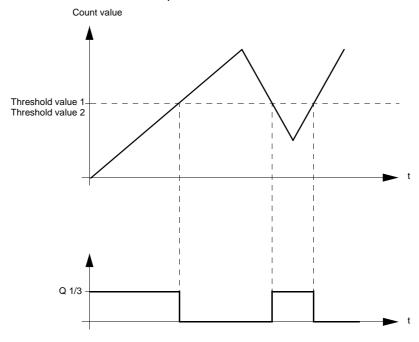
Function: hex 5 output behavior




## Hex 6 and hex 8 output behavior

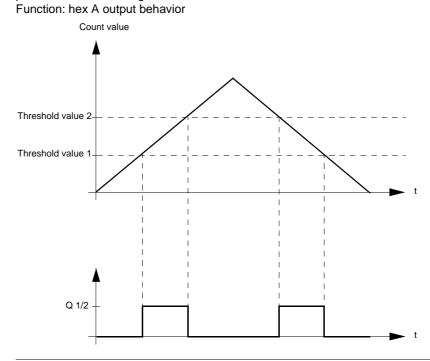
Output Q1 is set to 1 signal if the count value >= the threshold value 1. The output is set to 0 signal if the count value <= the threshold value 1.

Output Q2 is set to 1 signal if the count value >= the threshold value 2.


Output Q2 is set to 0 signal if the count value < the threshold value 2.

Function: hex 6 and hex 8 output behavior

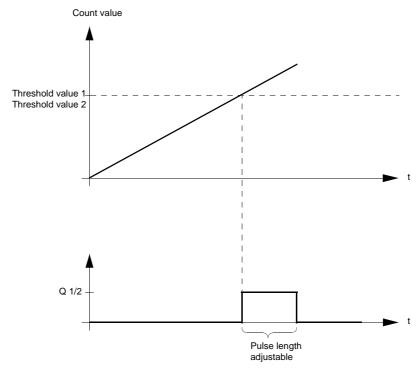



## Hex 7 and hex 9 output behavior

Output Q1/3 is set to 1 signal if the counter is enabled and count value < threshold value 1. The output is set to 0 signal if the count value >= the threshold value 1. Output Q1/Q3 is set to 1 signal if the counter is enabled and count value < threshold value 2. The output is set to 0 signal if the count value >= the threshold value 2. Function: hex 7 and hex 9 output behavior



## Hex A output behavior


Output Q1/Q3 is set to 1 signal if the count value => the threshold value 1. The output Q1/Q3 is set to 0 signal if the count value => threshold value 2.



## Hex B and hex C output behavior

The pulse is triggered as soon as the count value = threshold value 1. The pulse length can be defined here (1  $\dots$  2 EXP 32 ms) .

Function: hex B and hex C output behavior



#### **Priorities**

The following priorities apply when setting the digital outputs:

highest priority force by the PLC

Frequency output active (hex D)

Software limit switch (min., max.)

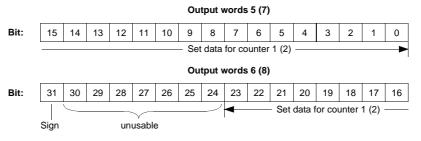
lowest priority Software configuration for threshold value 1 and 2

#### Data in output word 5/6 and 7/8

#### Output word 5/6

When counter 1 matches the reference number, set points will be sent as 32-bit values in output words 5 and 6.

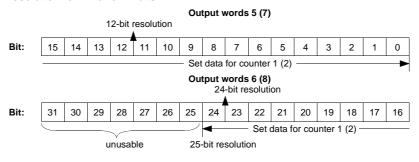
| Reference num-<br>ber | Function                                                                                                                                                                                                                                                                                                                                            |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| hex: 0                | No set point value selected                                                                                                                                                                                                                                                                                                                         |
| hex: 1                | Preset value (24 bit + signed) or SSI offset value (max. encoder resolution)                                                                                                                                                                                                                                                                        |
| hex: 2                | Threshold value 1 (24 bit + signed for incremental encoder; 25 bit for absolute encoder)                                                                                                                                                                                                                                                            |
| hex: 3                | Threshold value 2 (24 bit + signed for incremental encoder; 25 bit for absolute encoder)                                                                                                                                                                                                                                                            |
| hex: 4                | Upper software-limit switch counter 1 (24 bit + signed for incremental encoder; 25 bit for absolute encoder)                                                                                                                                                                                                                                        |
| hex: 5                | Upper software-limit switch counter 2 (24 bit + signed for incremental encoder; 25 bit for absolute encoder)                                                                                                                                                                                                                                        |
| hex: 6                | Pulse width (in ms) of digital output Q1/Q2 (1 2 EXP 32)                                                                                                                                                                                                                                                                                            |
| hex: 7                | Modulo value for event counter (repeating counter); Function can be disabled with a modulo value of 0 (max 24 bit)                                                                                                                                                                                                                                  |
| hex: 8                | Time base at counter operation mode "Period meter" (operation mode 9) $0 = \text{no time base}$ complete cycle.:1 = 1 , 2 = 10, 3 = 100, 4 = 1 000, 5 = 10 000 (in micro sec.); half period 9 = 1, A = 10, B = 100, C= 1 000, D = 10 000 (in micro sec.) Bit P_E is set for the transfer of all other values and the reference number returns to 1F |
| hex: 9                | Time base at counter operation mode "Frequency meter" (operation mode A) $0 = no$ time base complete cycle:1 = 0.1 , 2 = 1, 3 = 10, 4 = 100, 5 = 1 000 (in ms); half period: 9 = 0.1, A = 1, B = 10, C= 100, D = 1 000 (in ms) Bit P_E is set for the transfer of all other values and the reference number returns to 1F                           |
| hex: A                | Selection of complete/half cycle for pulse counter with time base (operation mode 8) (0 = invalid, PE bit is set 1 = complete cycle, 2 = half cycle at respective count input Bx)                                                                                                                                                                   |


| Reference num-<br>ber | Function                                                                                                    |
|-----------------------|-------------------------------------------------------------------------------------------------------------|
| hex: B                | Time base in ms for clock output (1 2 EXP 32)only for pulses at digital outputs Q1/3 (only for half cycles) |
| hex: C                | reserved                                                                                                    |
| hex: D<br>to hex: F   | Reserved value (corresponds to reference number 0)                                                          |

#### File format of set data

### Incremental encoder

Set data for incremental encoder


- The resolution of the set data amounts to only 24 bits plus sign (-16 777 216 to +16 777 215)
- Modulo values only have a resolution of 24 bits without sign (0 to +16 777 215). Representation of bits from output words 5(7) and 6(8)



### Set data for absolute encoder

The resolution of the set data amounts to a maximum of 25 bits without sign (0 to +33.554.431). This is dependent on the encoder resolution (from 0 to 4 095 with 12 bits; from 0 to 16 777 215 with 24 bits).

Resolution for 12 and 24 bits



# **Status Messages and Count Values**

6

#### Introduction

Overview

Status messages and count values are transferred from the counter module to the PLC in 8 words.

## What's in this Chapter?

This Chapter contains the following Maps:

| Topic                                 | Page |
|---------------------------------------|------|
| Status and error bits (words 1 and 2) | 82   |
| Status returned (Words 3 and 4)       | 85   |
| Actual values for counters 1 and 2    | 86   |

#### Status and error bits (words 1 and 2)

#### Status bits

The counter uses the status bits to deliver error messages and states of the hardware inputs and the associated software enable information.

Status and error messages are sent to the PLC for counter 1 in input word 1. The bits have the following meaning:

|         |    |     | Н   | igh b | yte = | statu | 3     |     |     |      | Lo | ow by | te = e | error |      |     |
|---------|----|-----|-----|-------|-------|-------|-------|-----|-----|------|----|-------|--------|-------|------|-----|
|         |    |     |     |       |       |       |       |     |     |      |    |       |        |       |      |     |
| Bit:    | 15 | 14  | 13  | 12    | 11    | 10    | 9     | 8   | 7   | 6    | 5  | 4     | 3      | 2     | 1    | 0   |
| Signal: | 1_ | 1_2 | 1_3 | EP_B  | EC_B  | ECP_B | CHI_B | A_1 | P_E | WD_B | LE | SOR_E | COR_E  | O_E   | PS_E | M_E |

#### Meaning of the signals

| Signal | Meaning                                           |
|--------|---------------------------------------------------|
| I_1    | Valence of digital input I1                       |
| I_2    | Valence of digital input I2                       |
| I_3    | Valence of digital input I3                       |
| EP_B   | Acceptance of software releases at a preset value |
| EC_B   | Counter 1 software releases                       |
| ECP_B  | Freeze software releases with a count value of 1  |
| CHI_B  | Initialization of counter 1 complete              |
| A_1    | Valence of count input A1                         |
| P_E    | Parameter error                                   |
| WD_B   | Time supervision error at absolute encoder        |
| L_E    | line break at the count inputs                    |
| SOR_E  | Exceeded of software limit switch                 |
| COR_E  | Counter overflow                                  |
| O_E    | Short circuit or overload of outputs Q1, Q2       |
| PS_E   | Local supply voltage missing (outputs, encoder)   |
| M_E    | Module parameters have not been defined           |

| Error bits (low-<br>bytes), Input<br>words 1 and 2<br>(bits 0 7) | The following errors are reported using these bits:                                                                                                                                                                                                                           |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D0 = M_E                                                         | 1 = Module has not yet been configured. i.e. no valid operating modes have been sent. This bit is set by resetting HW or SW.                                                                                                                                                  |
| D1 = PS_E                                                        | 1 = Local supply voltage for digital outputs or sensor supply missing.                                                                                                                                                                                                        |
| D2 = O_E                                                         | 1 = A short circuit or overload has occurred at the digital outputs.                                                                                                                                                                                                          |
| D3 = COR_E                                                       | 1 = The maximum authorized count range has been exceeded It is only possible to reset the bits using a 0->1 edge of the SW release bits (E_C). This function is not active at in absolute encoder.                                                                            |
| D4 = SOR_E                                                       | 1 = The set value for the SW-limit switch has been exceeded. The digital outputs are disabled by an error message. If the count value returns within the SW-limit switch value, the SOR_E bits switches from 1 to 0 and the outputs resume their original status.             |
| D5 = L_E                                                         | 1 = A line break has occurred at counter input A, B or Z. Only count input A is monitored by the absolute encoder.                                                                                                                                                            |
| D6 = WD_E                                                        | 1 = The time supervision for sending absolute data from the encoder has responded. This error occurs as a result of a line break or inadequately set parameters for encoder resolution. It is only possible to reset the bits using a 0->1 edge of the SW release bits (E_C). |

#### D7 = P\_E

- 1 = Reasons for faulty parameters for counter 1 could be:
- Invalid operating mode 3,B
- The incremental encoder parameters are set for one channel and the absolute encoder for another channel.
- The wrong output configuration was selected (Function E, F for output Q1/Q3; functions D, E, F for output Q2/Q4).
- In output function D for Q1/Q3, "0" was selected as the time for the frequency output.
- Invalid reference number D ... 1F was selected for the set data.
- In operating mode 8 (Pulse counter with external time base) no relevant mode was selected for the duration of the period (reference number A with an invalid value).
- In operating mode 9 (Period meter) no valid time base was selected (reference number 8 with an invalid value).
- In operating mode A (Frequency meter) no valid time base was selected (reference number 9 with an invalid value).

#### Status bits (highbytes), Input words 1 and 2 (Bits 8 ... 15)

The following states are reported using these bits:

| words 1 and 2<br>(Bits 8 15) |                                                                                                                                                                                                                          |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D8 = A_1/A_2                 | 1 = Input count A1+A2+ (5 V) or A1*/A2* (24.V) is set to "1" Signal                                                                                                                                                      |
| D9 = CHI_B                   | 1 = Counter has been correctly configured. i.e. both counters have been initialized for either the absolute or incremental encoder. A 0-signal indicates an incorrect operating mode or different encoder configuration. |
| D10 = ECP_B                  | 1 = "Enable software to freeze count value" has been set.                                                                                                                                                                |
| D11 = EC_B                   | 1 = "Enable software for counters" has been set.                                                                                                                                                                         |
| D12 = EP_B                   | 1 = "Enable acceptance of software at preset value" has been set.                                                                                                                                                        |
| D13 = I3/I6                  | 1 = Hardware input "freeze counters" is set to 1-signal.                                                                                                                                                                 |
| D14 = I2/I5                  | 1 = Hardware input "enable counters" is set to 1-signal.                                                                                                                                                                 |
| D15 = I1/I4                  | 1 = Hardware input "accept preset value" is set to 1-signal.                                                                                                                                                             |

#### Status returned (Words 3 and 4)

### Input word 3 and

Reference numbers and the bit-parameter status of the counters are sent to the PLC in input words 3 and 4.

Return values for counter 1 are sent in input word 3.

The bits have the following meaning:

|         |      | High byte = return value |     |      |          |      |    |    | Low byte = reference numbers |      |      |          |    |    |    |   |
|---------|------|--------------------------|-----|------|----------|------|----|----|------------------------------|------|------|----------|----|----|----|---|
|         |      |                          |     |      | <u> </u> |      |    |    |                              |      |      |          |    |    |    |   |
| Bit:    | 15   | 14                       | 13  | 12   | 11       | 10   | 9  | 8  | 7                            | 6    | 5    | 4        | 3  | 2  | 1  | 0 |
| Signal: | RCVA | ЪР                       | ECP | ECPP | REF      | free | Q2 | ۵1 | free                         | free | free | Reserved | D3 | D2 | 10 | 0 |

#### Meaning of the signals

| Signal   | Meaning                                              |
|----------|------------------------------------------------------|
| RCVA     | 1. Count cycle is complete                           |
| PP       | Accept preset HW and SW values                       |
| ECP      | Counter has been enabled                             |
| ECPP     | Freeze HW and SW count values                        |
| REF      | Preset value has been accepted (operating mode 4, 5) |
| free     | free                                                 |
| Q2       | Valence of digital output                            |
| Q1       | Valence of digital output                            |
| free     | free                                                 |
| free     | free                                                 |
| free     | free                                                 |
| Reserved | Reserved                                             |
| D3       | Reference numbers returned (Handshake)               |
| D2       |                                                      |
| D1       |                                                      |
| D0       |                                                      |

Reference number returned (low-bytes), Input words 3 and 4 (bits D0 ... D3)

Using bits (D0 ... D3) reference numbers which have previously been sent to the module for configuration via output word 3/4 are reported back to the PLC. A returned reference number serves as a handshake for sent set data (see *Reference numbers for the command data (output word 3 and 4, (Bits 0... 4)), p. 68*).

**Note:** Should an invalid reference number be sent, it will be recorded in these bits  $(D0 \dots D4)$  with a value of 1F hex. and the set data in words 5/6 and 7/8 will not be accepted.

#### Status returned (high-bytes), Input words 3 and 4 (bits 8 ... 15)

Using bits (D0 ... D15) the status of the counter module and the output are returned

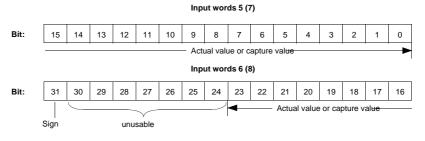
| Bit | Signal   | Meaning                                                                                                                                                                                                                                                                                                            |
|-----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D8  | Q1/Q3    | 1 = Digital output Q1/Q3 has a 1-signal.                                                                                                                                                                                                                                                                           |
| D9  | Q2/Q4    | 1 = Digital output Q2/Q4 has a 1-signal.                                                                                                                                                                                                                                                                           |
| D10 | not used |                                                                                                                                                                                                                                                                                                                    |
| D11 | REF      | 1 = The preset value has been accepted (Mode 4 or 5) and the outputs have been enabled. In all other operating modes no presetting is necessary to enable the outputs.  0 = The preset value has not been accepted (Mode 4 or 5) and the outputs have not been enabled, or an invalid operating mode was selected. |
| D12 | ECPP     | 1 = The function "freeze count values" has been activated.                                                                                                                                                                                                                                                         |
| D13 | ECP      | 1 = The function "enable counters" has been activated.                                                                                                                                                                                                                                                             |
| D14 | PP       | 1 = The function "accept preset value" is performed by the counters.                                                                                                                                                                                                                                               |
| D15 | RCVA     | 1 = The first count cycle in operating modes 8 (Pulse counter), 9 (Period measurement) or A (Frequency measurement) is complete.                                                                                                                                                                                   |

#### Actual values for counters 1 and 2

### Input words 5, 6 and 7, 8

The current encoder values (actual data) are placed in input words 5 and 6 (for counter 1), or 7 and 8 (for counter 2). Therefore each counter has two words (1 double word) at its disposal.

**Note:** Only the counters' feedback data is sent in input words 5/6 or 7/8. It is not possible to review previously sent set data.

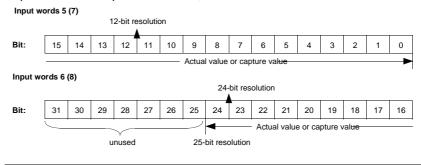

The parameter values are not sent back to the bus adapter.

# Current values for the incremental encoder

Resolution with/without sign:

- The resolution of the feedback data amounts to only 24 bits plus sign (-16.777.216 to +16 777 215)
- If a modulo value is entered, the resolution amounts to a maximum of 24 bits without sign (0 to +16 777 215).

Representation of actual values.




# Current values for the absolute encoder

Absolute encoders constantly report current values. The resolution is:

- for 25 cycles 25 bits without sign, i.e. from 0 to 33 554 431
- for 24 cycles -24 bits without sign, i.e. from 0 to 16.777.215
- for 12 cycles -12 bits without sign, i.e. from 0 to 4.095

Representation of input words for 12, 24 and 25 bits:



# Parameter Setting of the AEC Block

7

#### Introduction

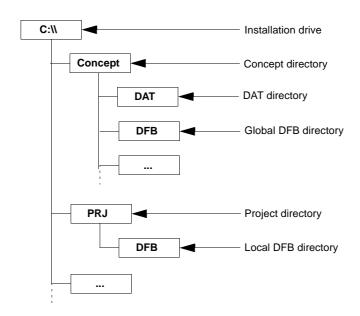
Overview

This chapter describes the AEC Block.

### What's in this Chapter?

This Chapter contains the following Maps:

| Topic                 | Page |
|-----------------------|------|
| Brief description     | 90   |
| Representation        | 92   |
| Parameter description | 93   |


#### **Brief description**

#### Function description

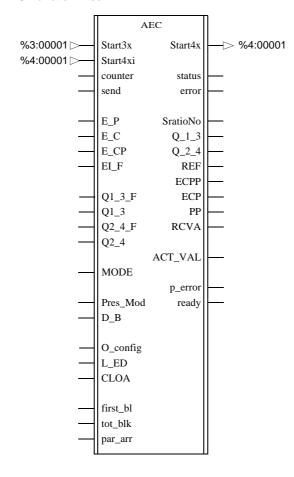
The DFB AEC serves to make configuration easier for Module 170 AEC 920 00 in Concept. For this, each counter channel requires a DFB Block. The DFB Block transmits many set values, one after another, which are then stored in the data structure "par\_arr", and returns the current values of the counters. The data transfer of bytes, words and double words is started using a 0 -> 1 edge at the "send" input. All bits are sent in each cyclic.

### Where is the AEC Block located

After installing Concept, the AEC Block can be located in the DAT directory as AEC.ASC. It must be installed before it can be used. Directory structure:



## Installing the AEC Block


The following steps are necessary for the installation of the AEC Block.  $\label{eq:continuous}$ 

| Step | Action                                                                                                                                                                                                                                                             |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Copy the file AEC.ASC from the DAT directory into a DFB directory  If the DFB is available for all projects, copy it into the global DFB directory.  If the DFB should only be available for one specific project, copy it into the project's local DFB directory. |
| 2    | Start the Concept Converter.                                                                                                                                                                                                                                       |
| 3    | From the menu File select the functionImport.                                                                                                                                                                                                                      |
| 4    | Select the file from the directory chosen in step1                                                                                                                                                                                                                 |
| 5    | Begin the conversion by clicking on <b>OK</b> .                                                                                                                                                                                                                    |
|      | Result: The AEC Block is only available for configuration in Concept.                                                                                                                                                                                              |

#### Representation

#### Symbol

#### **AEC Function Block**



#### Parameter description

#### Outputs

#### Output Type and Function:

| Parameters | Data type  | Meaning                                               |
|------------|------------|-------------------------------------------------------|
| Start4x    | Word Arr 9 | 1. Address of the 8 output words                      |
| status     | BYTE       | High-byte of 1st or 2nd input word (Status bits)      |
| error      | BYTE       | Low-byte of 1st or 2nd input word (error bits)        |
| SratioNo   | BYTE       | Reference number returned (in case of error = 1F hex) |
| Q_1_3      | BOOL       | Valence of output Q1 or Q3                            |
| Q_2_4      | BOOL       | Valence of output Q2 or Q4                            |
| REF        | BOOL       | Preset value has been accepted                        |
| ECPP       | BOOL       | Freeze HW and SW counter values                       |
| ECP        | BOOL       | Counter has been enabled                              |
| PP         | BOOL       | Accept preset HW and SW values                        |
| RCVA       | BOOL       | 1. Count cycle is complete                            |
| ACT_VAL    | DINT       | Current value or capture value                        |
| p_error    | BOOL       | Transmission error (wrong value)                      |
| ready      | BOOL       | Data transfer display:                                |
|            |            | 0 = Transmission is active                            |
|            |            | 1 = Transmission is complete                          |

#### Inputs

#### Input type and function:

| Parame-  | Data type   | Meaning                                                                                                  |
|----------|-------------|----------------------------------------------------------------------------------------------------------|
| ters     | M/ 1 A 0    | 4. Address of the Olive Association                                                                      |
| Start3x  | Word Arr 9  | 1. Address of the 8 input words                                                                          |
| Start4xi | Word Arr 9  | 1. Address of the 8 output words                                                                         |
| Counter  | BYTE        | Select counter 1 or 2                                                                                    |
| send     | BOOL        | 0-1 Edge for the data transfer of BYTE, word, double word (Bool values are sent in a cyclic manner)      |
| E_P      | BOOL        | Enable acceptance of preset value                                                                        |
| E_C      | BOOL        | Software Enable for counter                                                                              |
| E_CP     | BOOL        | Software Enable to freeze counter value                                                                  |
| EI_F     | BOOL        | Enable input filter                                                                                      |
| Q1_3_F   | BOOL        | Activate forcing of digital outputs Q1/3                                                                 |
| Q1_3     | BOOL        | Record Valence of digital outputs Q1/3;                                                                  |
| Q2_4_F   | BOOL        | Activate forcing of digital outputs Q2/4;                                                                |
| Q2_4     | BOOL        | Record Valence of digital outputs Q2/4;                                                                  |
| Mode     | BYTE        | 4 bits for the choice of operation mode                                                                  |
| Pres_Mod | BYTE        | 3 bits for the choice of preset mode                                                                     |
| D_B      | BOOL        | Invert counting direction; effective in all operating modes                                              |
| O_config | BYTE        | Configure outputs Q1/2 or Q3/4                                                                           |
| L_ED     | BOOL        | Monitoring of the counter inputs A, B, Z for a line break.                                               |
| CLOA     | BOOL        | Behavior of Q1 to Q4 during bus interruption                                                             |
| first_bl | INT         | Number of the 1st data block to be sent                                                                  |
| tot_blk  | INT         | Total number of data blocks to be sent                                                                   |
| par_arr  | Word Arr 31 | Data structure with 31 word data block:  1. word: Reference number  2. word: Set point value (High word) |
|          |             | 3. word: Set point value (low word)                                                                      |

**Note:** The data structure "par\_arr" is composed of 10 data blocks. Each data block has 3 words, the reference number, the setpoint value (Low word) and the setpoint value (High word).

### **Application examples**

8

#### Introduction

#### Overview

The following chapter contains typical applications, which are provided complete with the necessary configuration and the associated wiring.

## What's in this Chapter?

This Chapter contains the following Sections:

| Section | Topic                                 | Page |
|---------|---------------------------------------|------|
| 8.1     | Up counter (Mode 2)                   | 97   |
| 8.2     | Up counter with preset value          | 103  |
| 8.3     | Up counter with internal clock pulse  | 111  |
| 8.4     | Pulse counter with external time base | 119  |
| 8.5     | Period meter with internal time base  | 127  |

### 8.1 Up counter (Mode 2)

#### Introduction

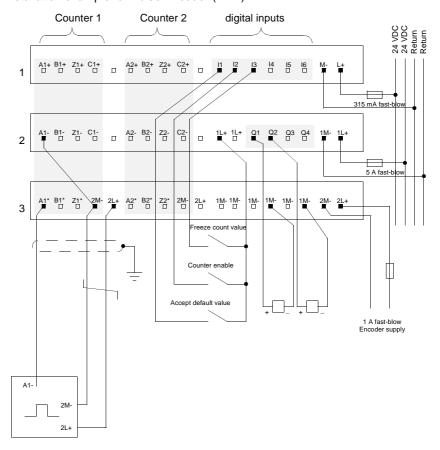
#### Overview

This section described the application of the 170 AEC 920 00 counter module as an up counter in Mode 2 with a 24 V impulse encoder.

## What's in this Section?

This Section contains the following Maps:

| Торіс      | Page |
|------------|------|
| Example 1: | 98   |
| Solution:  | 99   |


#### Example 1:

# Up counter with 24 V impulse encoder (Mode 2)

Task specification: Counter 1 as up counter

- Counter enabling via hardware input 2
- Reset via hardware input 1 (0->1-edge)
- Start value of the counter is 0
- Threshold value 1 is 100
- Threshold value 2 is 200
- Output 1 turns on when the counter is enabled and turns off when the threshold value 1 is reached
- Output 2 turns on when threshold value 1 is reached and turns off when threshold value 2 is reached.

Installation example for Pulse Encoder (24 V)



#### Solution:

### Setting Parameters

The counter parameters are set in 5 steps:

- **1.** Setting the operating mode and preset mode
- 2. Sending the threshold value 1, configuring output 1
- 3. Sending the threshold value 2, configuring output 2
- **4.** Setting the software enable
- **5.** Setting the hardware enable

These steps are explained below.

Step 1: Setting the operating mode and preset mode

The operating mode (=2) and the preset mode (=1) are set. This is done via output word 1.

Output word:

| Output word | Entry    |
|-------------|----------|
| 400 101     | 1200 hex |
| 400 102     | 0        |
| 400 103     | 0        |
| 400 104     | 0        |
| 400 105     | 0        |
| 400 106     | 0        |
| 400 107     | 0        |
| 400 108     | 0        |

#### Input word

| Input word | Return value |
|------------|--------------|
| 300 101    | 220 hex      |
| 300 102    |              |
| 300 103    | 800 hex      |
| 300 104    |              |
| 300 105    |              |
| 300 106    |              |
| 300 107    |              |
| 300 108    |              |

Step 2: Sending the threshold value 1, configuring output 1

The threshold value 1 = 100 is sent. Output 1 is simultaneously configured (Reference number 7) and the line break detection is turned off. Output words 3 and 5 are also used for this. All the other entries remain!

Output word:

| Output word | Entry    |
|-------------|----------|
| 400 101     | 1200 hex |
| 400 102     | 0        |
| 400 103     | 782 hex  |
| 400 104     | 0        |
| 400 105     | 100 hex  |
| 400 106     | 0        |
| 400 107     | 0        |
| 400 108     | 0        |

#### Input word

| Input word | Return value |
|------------|--------------|
| 300 101    | 200 hex      |
| 300 102    |              |
| 300 103    | 802 hex      |
| 300 104    |              |
| 300 105    |              |
| 300 106    |              |
| 300 107    |              |
| 300 108    |              |

#### Step 3: Sending the threshold value 2, configuring output 2

The threshold value 2 = 200 is sent. Output 2 is simultaneously configured (Reference number A) Output words 3 and 5 are also used. All the other entries remain!

**Note:** Modify the contents of word 400103 and then the entry in word 400105. Otherwise, you would overwrite the value for threshold value 1.

#### Output word:

| Output word | Entry    |
|-------------|----------|
| 400 101     | 1200 hex |
| 400 102     | 0        |
| 400 103     | A783 hex |
| 400 104     | 0        |
| 400 105     | 200 hex  |
| 400 106     | 0        |
| 400 107     | 0        |
| 400 108     | 0        |

#### Input word

| Input word | Return value |
|------------|--------------|
| 300 101    | 200 hex      |
| 300 102    |              |
| 300 103    | 803 hex      |
| 300 104    |              |
| 300 105    |              |
| 300 106    |              |
| 300 107    |              |
| 300 108    |              |

# Step 4: Setting the software enable

The counter's software enable is now set. This occurs in output word 1. All the other entries remain!

Output word:

| Output word | Entry    |
|-------------|----------|
| 400 101     | 1203 hex |
| 400 102     | 0        |
| 400 103     | A783 hex |
| 400 104     | 0        |
| 400 105     | 200 hex  |
| 400 106     | 0        |
| 400 107     | 0        |
| 400 108     | 0        |

#### Input word

| Input word | Return value |  |
|------------|--------------|--|
| 300 101    | 5A00 hex     |  |
| 300 102    |              |  |
| 300 103    | 803 hex      |  |
| 300 104    |              |  |
| 300 105    |              |  |
| 300 106    |              |  |
| 300 107    |              |  |
| 300 108    |              |  |

### Step 5: Hardware enable

Enable the counter by setting binary input 2.

Output 1 is now active. Every pulse at counter input 1 is counted The current count value is in register word 300 105. The counter can be reset to 0 by a 0->1- edge at digital input 1 (Preset value = 0)

### 8.2 Up counter with preset value

#### Introduction

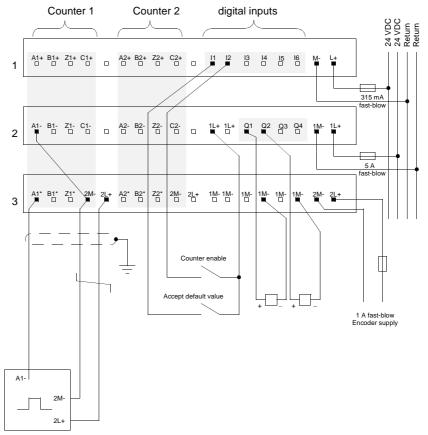
#### Overview

This section described the application of the 170 AEC 920 00 counter module as an up counter with a 24 V pulse encoder and preset values.

### What's in this Section?

This Section contains the following Maps:

| Topic              | Page |
|--------------------|------|
| Task specification | 104  |
| Solution:          | 105  |


#### Task specification

Up counter with 24 Volt pulse encoder and preset value

Task specification:

- Counter 1 as up counter with preset value:
- Counter enabling via hardware input 2
- Reset via hardware input 1 (0->1-edge)
- Start value of the counter is 100
- Threshold value 1 is 200
- Threshold value 2 is 300
- Output 2 turns on when threshold value 1 is reached and turns off when threshold value 2 is reached.
- Output 1 remains unused

Wiring example for up counter with pulse encoder (24 V)



#### Solution:

### Setting Parameters

The parameters for the counter are set in 7 steps:

- **1.** Setting the operating mode and preset mode
- 2. Sending the preset value
- 3. Sending the threshold value 1, configuring output 2
- 4. Sending the threshold value 2
- **5.** Setting the software enable
- 6. Setting the counter to the preset value
- **7.** Setting the hardware enable These steps are explained below.

Step 1: Setting the operating mode and preset mode

The operating mode (=2) and the preset mode (=1) are set. This is done via output word 1.

Output word:

| Output word | Entry    |
|-------------|----------|
| 400 101     | 1200 hex |
| 400 102     | 0        |
| 400 103     | 0        |
| 400 104     | 0        |
| 400 105     | 0        |
| 400 106     | 0        |
| 400 107     | 0        |
| 400 108     | 0        |

#### Input word

| Input word | Return value |
|------------|--------------|
| 300 101    | 220 hex      |
| 300 102    |              |
| 300 103    | 800 hex      |
| 300 104    |              |
| 300 105    |              |
| 300 106    |              |
| 300 107    |              |
| 300 108    |              |

## Step 2: Sending the preset value

The preset value 100 is sent. Output words 3 and 5 are also used for this. All the other entries remain!

Output word:

| Output word | Entry    |
|-------------|----------|
| 400 101     | 1200 hex |
| 400 102     | 0        |
| 400 103     | 81 hex   |
| 400 104     | 0        |
| 400 105     | 100 dec  |
| 400 106     | 0        |
| 400 107     | 0        |
| 400 108     | 0        |

#### Input word

| Input word | Return value |  |
|------------|--------------|--|
| 300 101    | 200 hex      |  |
| 300 102    |              |  |
| 300 103    | 801 hex      |  |
| 300 104    |              |  |
| 300 105    |              |  |
| 300 106    |              |  |
| 300 107    |              |  |
| 300 108    |              |  |

Note: Steps 1 and 2 can also be combined into one.

Step 3: Sending the threshold value 1, configuring output 2

Send the threshold value 1 = 200. Output 2 is configured at the same time (reference number A). Output words 3 and 5 are also used for this. All the other entries remain! Output word:

| Output word | Entry    |
|-------------|----------|
| 400 101     | 1200 hex |
| 400 102     | 0        |
| 400 103     | A082 hex |
| 400 104     | 0        |
| 400 105     | 200 dec  |
| 400 106     | 0        |
| 400 107     | 0        |
| 400 108     | 0        |

#### Input word

| Input word | Return value |
|------------|--------------|
| 300 101    | 200 hex      |
| 300 102    |              |
| 300 103    | 802 hex      |
| 300 104    |              |
| 300 105    |              |
| 300 106    |              |
| 300 107    |              |
| 300 108    |              |

# Step 4: Sending the threshold value 2

Send the threshold value 2 = 300. Output registers 3 and 5 are used again. All the other entries remain!

**Note:** Modify the contents of word 400103 and then the entry in word 400105. Otherwise, you would overwrite the value for threshold value 1.

#### Output word:

| Output word | Entry    |
|-------------|----------|
| 400 101     | 1200 hex |
| 400 102     | 0        |
| 400 103     | A083 hex |
| 400 104     | 0        |
| 400 105     | 300 dec  |
| 400 106     | 0        |
| 400 107     | 0        |
| 400 108     | 0        |

#### Input word

| Input word | Return value |
|------------|--------------|
| 300 101    | 200 hex      |
| 300 102    |              |
| 300 103    | 803 hex      |
| 300 104    |              |
| 300 105    |              |
| 300 106    |              |
| 300 107    |              |
| 300 108    |              |

Step 5: Setting the software enable

Set the software enable. This occurs in output word 1. All the other entries remain! Output word:

| Output word | Entry    |
|-------------|----------|
| 400 101     | 1203 hex |
| 400 102     | 0        |
| 400 103     | A083 hex |
| 400 104     | 0        |
| 400 105     | 300 dec  |
| 400 106     | 0        |
| 400 107     | 0        |
| 400 108     | 0        |

#### Input word

| Input word | Return value |  |
|------------|--------------|--|
| 300 101    | 1A00 hex     |  |
| 300 102    |              |  |
| 300 103    | 803 hex      |  |
| 300 104    |              |  |
| 300 105    |              |  |
| 300 106    |              |  |
| 300 107    |              |  |
| 300 108    |              |  |

# Step 6: Setting the counter to the preset value

Set the counter status to the preset value. Then, trigger a 0->1-edge at the binary entry. Now the entry register 300 105 displays this value. Output word:

| Output word | Entry    |
|-------------|----------|
| 400 101     | 1203 hex |
| 400 102     | 0        |
| 400 103     | A003 hex |
| 400 104     | 0        |
| 400 105     | 300 dec  |
| 400 106     | 0        |
| 400 107     | 0        |
| 400 108     | 0        |

#### Input word

| Input word | Return value |  |
|------------|--------------|--|
| 300 101    | 9A00 hex     |  |
| 300 102    |              |  |
| 300 103    | 4803 hex     |  |
| 300 104    |              |  |
| 300 105    | 100 dec      |  |
| 300 106    |              |  |
| 300 107    |              |  |
| 300 108    |              |  |

## Step 7: Hardware enable

Enable the counter by setting binary input 2.

Each pulse at the count input 1 is counted as long as the binary input 1 has a 1 signal. Register word 300 105 displays the current count value. Output 2 becomes active when the counter value is between threshold values 1 and 2; output 1 always remains inactive.

The counter is reset to the preset value with a 0->1-edge at digital input 1.

**Note:** To set a new preset value or another kind of presetting, the new value must be sent and then a positive edge must be triggered on the software bit E\_P (bit 0 in the first output word). New set points are accepted directly.

### 8.3 Up counter with internal clock pulse

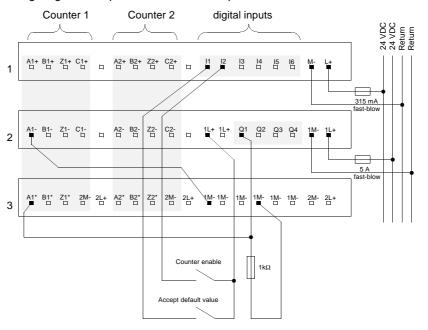
#### Introduction

#### Overview

This section describes the application of the 170 AEC 920 00 counter module as an up counter with a 24 V pulse encoder and internal clock pulse.

## What's in this Section?

This Section contains the following Maps:


| Topic              | Page |
|--------------------|------|
| Task specification | 112  |
| Solution:          | 113  |

#### Task specification

Up counter with 24 Volt pulse encoder and internal clock pulse Task specification

- Counter 1 as up counter
- Counter enabling via hardware input 2
- Reset via hardware input 1 (0->1-edge)
- Start value of the counter is 100
- Threshold value 1 is 200
- Threshold value 2 is 300
- Output 1 is frequency output with 250ms pulse. These cycles are to be counted.
- Output 2 turns on when threshold value 1 is reached and turns off when threshold value 2 is reached.
- (Output 1 remains unused)

Wiring diagram for up counter with 24 Volt pulses and internal clock



#### Solution:

## Setting Parameters

The counter parameters are set in 7 steps:

- 1. Setting the operating mode and preset mode, sending the preset value
- 2. Configuring output 1 as a frequency output
- 3. Sending the threshold value 1, configuring output 2
- 4. Sending the threshold value 2
- 5. Setting the software enable
- 6. Setting the counter to the preset value
- 7. Setting the hardware enable

These steps are explained below.

Step 1: Setting the operating mode and preset mode, sending the preset value

Set the operating mode (=2) and the preset mode (=1). At the same time, send the preset value 100 (reference number 1). Output registers 1, 3 and 5 are also used. Output word:

| Output word | Entry    |
|-------------|----------|
| 400 101     | 1200 hex |
| 400 102     | 0        |
| 400 103     | 81 hex   |
| 400 104     | 0        |
| 400 105     | 100 dec  |
| 400 106     | 0        |
| 400 107     | 0        |
| 400 108     | 0        |

#### Input word

| Input word | Return value |
|------------|--------------|
| 300 101    | 200 hex      |
| 300 102    |              |
| 300 103    | 801 hex      |
| 300 104    |              |
| 300 105    |              |
| 300 106    |              |
| 300 107    |              |
| 300 108    |              |

#### Step 2: Configuring output 1 as a frequency output

Configure output 1 as a frequency output (output mode D) and send the time base 250ms for the cycle frequency (output registers 3 and 5). The output then flashes at 250ms intervals.

#### Output word:

| Output word | Entry    |
|-------------|----------|
| 400 101     | 1200 hex |
| 400 102     | 0        |
| 400 103     | D8B hex  |
| 400 104     | 0        |
| 400 105     | 250 dec  |
| 400 106     | 0        |
| 400 107     | 0        |
| 400 108     | 0        |

#### Input word

| Input word | Return value      |  |
|------------|-------------------|--|
| 300 101    | 200 hex / 300 hex |  |
| 300 102    |                   |  |
| 300 103    | 80B hex / 90B hex |  |
| 300 104    |                   |  |
| 300 105    |                   |  |
| 300 106    |                   |  |
| 300 107    |                   |  |
| 300 108    |                   |  |

Step 3: Sending the threshold value 1, configuring output 2

Configure the output 2 (output mode A) and send the threshold value 1 = 200. (Output registers 3 and 5). Output word:

| Output word | Entry    |
|-------------|----------|
| 400 101     | 1200 hex |
| 400 102     | 0        |
| 400 103     | AD82 hex |
| 400 104     | 0        |
| 400 105     | 200 dec  |
| 400 106     | 0        |
| 400 107     | 0        |
| 400 108     | 0        |

#### Input word

| Input word | Return value      |  |
|------------|-------------------|--|
| 300 101    | 200 hex / 300 hex |  |
| 300 102    |                   |  |
| 300 103    | 802 hex / 902 hex |  |
| 300 104    |                   |  |
| 300 105    |                   |  |
| 300 106    |                   |  |
| 300 107    |                   |  |
| 300 108    |                   |  |

# Step 4: Sending the threshold value 2

Send the threshold value 2 = 300. (Output registers 3 and 5).

**Note:** Modify the contents of register 400103 before the entry in register 400105. Otherwise, overwrite the value for threshold value 1.

#### Output word:

| Output word | Entry    |
|-------------|----------|
| 400 101     | 1200 hex |
| 400 102     | 0        |
| 400 103     | AD83 hex |
| 400 104     | 0        |
| 400 105     | 300 dec  |
| 400 106     | 0        |
| 400 107     | 0        |
| 400 108     | 0        |

#### Input word

| Input word | Return value      |  |
|------------|-------------------|--|
| 300 101    | 200 hex / 300 hex |  |
| 300 102    |                   |  |
| 300 103    | 803 hex / 903 hex |  |
| 300 104    |                   |  |
| 300 105    |                   |  |
| 300 106    |                   |  |
| 300 107    |                   |  |
| 300 108    |                   |  |

Step 5: Setting the software enable

Set the software enable (output word 1). Output word:

| Output word | Entry    |
|-------------|----------|
| 400 101     | 1203 hex |
| 400 102     | 0        |
| 400 103     | AD83 hex |
| 400 104     | 0        |
| 400 105     | 300 dec  |
| 400 106     | 0        |
| 400 107     | 0        |
| 400 108     | 0        |

#### Input word

| Input word | Return value        |  |
|------------|---------------------|--|
| 300 101    | 1B00 hex / 1A00 hex |  |
| 300 102    |                     |  |
| 300 103    | 803 hex / 903 hex   |  |
| 300 104    |                     |  |
| 300 105    |                     |  |
| 300 106    |                     |  |
| 300 107    |                     |  |
| 300 108    |                     |  |

# Step 6: Setting the counter to the preset value

Set the counter status to the preset value. Then, trigger a 0->1-edge at the binary entry. Now the entry register 300 105 displays this value. Output word:

| Output word | Entry    |
|-------------|----------|
| 400 101     | 1203 hex |
| 400 102     | 0        |
| 400 103     | AD83 hex |
| 400 104     | 0        |
| 400 105     | 300 dec  |
| 400 106     | 0        |
| 400 107     | 0        |
| 400 108     | 0        |

#### Input word

| Input word | Return value        |
|------------|---------------------|
| 300 101    | 9B00 hex / 4903 hex |
| 300 102    |                     |
| 300 103    | 4803 hex / 4903 hex |
| 300 104    |                     |
| 300 105    | 100 dec             |
| 300 106    |                     |
| 300 107    |                     |
| 300 108    |                     |

## Step 7: Hardware enable

Enable the counter by setting binary input 2.

Each pulse at the count input 1 is counted as long as 1 signal is at binary input 1. Register word 300 105 displays the current count value. Output 2 becomes active when the counter value is between threshold values 1 and 2; output 1 always remains inactive.

The counter is reset to the preset value with a 0->1-edge at digital input 1.

**Note:** When configuring output 1 or 3 as a frequency output, make sure that a value > 0 is entered in register 5/6 or 7/8 before mode D (register 3 or 4) is entered for the corresponding output, otherwise the output remains inactive.

Inverting bit D\_B (bit 15 in output word 1) reverses the counting direction.

### 8.4 Pulse counter with external time base

#### Introduction

#### Overview

This section describes the application of the 170 AEC 920 00 counter module as a pulse counter (Mode 8) with an external time base.

## What's in this Section?

This Section contains the following Maps:

| Topic      | Page |
|------------|------|
| Example 4: | 120  |
| Solution:  | 121  |

#### Example 4:

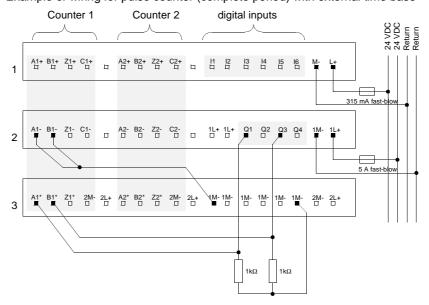
#### Pulse counter (Mode 8) with external time base

#### Task specification:

The number of pulses per time interval is to be counted. This time interval need not be fixed but can vary. In this example, it is one second. The pulses to be counted are on digital output 1 and the counting gate on digital output 3.

This results in the following settings:

- Operating mode 8
- Counter 1 as pulse counter, complete period
- Output 1 is a frequency output with e.g. a 5 ms cycle (5 ms in, 5 ms out) and simulates the counter pulse.
- Output 3 is a frequency output with a 500 ms cycle (500 ms in, 500 ms). It simulates the time base of 1s with the "complete period" setting. (Counting then proceeds from one positive edge to the next).


**Note:** In "Pulse counter" mode, the preset mode and the digital inputs have no function. Only the "Frequency output" function is available for the digital outputs. 24 single ended signals are present in this example. Therefore only the 20 kHz filter needs to be activated.

## Wiring example for pulse counter

#### Wire:

- Output 1 with count input A1\* (clamp 2.13 with clamp 3.1)
- Output 3 with count input A1\* (clamp 2.15 with clamp 3.2)
- A1 with the group of digital outputs (clamp 2.1 with clamp 3.,11)
- B1- and the group of digital outputs (clamp 2.2 with clamp 3.12)
- Each 1 kOhm of resistance from output 1 and 3 to the group

Example of wiring for pulse counter (complete period) with external time base



#### Solution:

## Setting Parameters

The counter parameters are set in these 5 steps:

- 1. Setting the operating mode and activating the 20 kHz filter
- 2. Configuring output 1 as a frequency output for the count frequency and disabling the line break monitoring
- 3. Configuring output 3 as a frequency output for the time base
- 4. Sending the "complete period" id
- 5. Setting the software enable

These steps are explained below.

Step 1: Setting the operating mode and activating the 20 kHz filter

Set the operating mode (=8) and the 20 kHz filter. This occurs in the output word word 1. Output word:

| Output word | Entry   |
|-------------|---------|
| 400 101     | 808 hex |
| 400 102     | 0       |
| 400 103     | 0       |
| 400 104     | 0       |
| 400 105     | 0       |
| 400 106     | 0       |
| 400 107     | 0       |
| 400 108     | 0       |

#### Input word

| Input word | Return value |
|------------|--------------|
| 300 101    | 220 hex      |
| 300 102    |              |
| 300 103    | 800 hex      |
| 300 104    |              |
| 300 105    |              |
| 300 106    |              |
| 300 107    |              |
| 300 108    |              |

122 870 USE 008 00 August 2000

Step 2: Configuring output 1 as a frequency output and disabling the line break monitoring

Configure output 1 as a frequency output (output mode D), disable the line break monitoring and send the time base 5ms as the cycle frequency (output registers 3 and 5). The output then flashes at 5ms intervals.

**Note:** Enter the time base first and then the reference values in register 3. Otherwise, output 1 is disabled.

#### Output word:

| Output word | Entry   |
|-------------|---------|
| 400 101     | 808 hex |
| 400 102     | 0       |
| 400 103     | D8B hex |
| 400 104     | 0       |
| 400 105     | 5 dec   |
| 400 106     | 0       |
| 400 107     | 0       |
| 400 108     | 0       |

#### Input word

| Input word | Return value      |
|------------|-------------------|
| 300 101    | 200 hex / 300 hex |
| 300 102    |                   |
| 300 103    | 80B hex / 90B hex |
| 300 104    |                   |
| 300 105    |                   |
| 300 106    |                   |
| 300 107    |                   |
| 300 108    |                   |

Step 3: Configuring output 3 (counter 2) as a frequency output for the time base

Configure output 3 as a frequency output (output mode D) and send a cycle frequency time base of 500ms (output registers 4 and 7). The output then flashes at 500ms intervals.

#### Output word:

| Output word | Entry   |
|-------------|---------|
| 400 101     | 808 hex |
| 400 102     | 0       |
| 400 103     | D8B hex |
| 400 104     | D0B hex |
| 400 105     | 5 dec   |
| 400 106     | 0       |
| 400 107     | 500 dec |
| 400 108     | 0       |

#### Input word

| Input word | Return value      |
|------------|-------------------|
| 300 101    | 200 hex / 300 hex |
| 300 102    |                   |
| 300 103    | 80B hex / 90B hex |
| 300 104    | B hex / 10B hex   |
| 300 105    |                   |
| 300 106    |                   |
| 300 107    |                   |
| 300 108    |                   |

Note: Steps 1 ... 3 can also be combined into one.

Step 4: Sending the "complete period" id

This occurs via output registers 3 and 5 (reference number A, value 1). Output word:

| Output word | Entry   |
|-------------|---------|
| 400 101     | 808 hex |
| 400 102     | 0       |
| 400 103     | D8A hex |
| 400 104     | D0B hex |
| 400 105     | 1 dec   |
| 400 106     | 0       |
| 400 107     | 500 dec |
| 400 108     | 0       |

#### Input word

| Input word | Return value      |  |
|------------|-------------------|--|
| 300 101    | 200 hex / 300 hex |  |
| 300 102    |                   |  |
| 300 103    | 80A hex / 90A hex |  |
| 300 104    | B hex / 10B hex   |  |
| 300 105    |                   |  |
| 300 106    |                   |  |
| 300 107    |                   |  |
| 300 108    |                   |  |

Step 5: Setting the software enable

Set the counter enable (bit in register 1). Output word:

| Output word | Entry   |
|-------------|---------|
| 400 101     | 80A hex |
| 400 102     | 0       |
| 400 103     | D8A hex |
| 400 104     | D0B hex |
| 400 105     | 1 dec   |
| 400 106     | 0       |
| 400 107     | 500 dec |
| 400 108     | 0       |

#### Input word

| Input word | Return value        |   |
|------------|---------------------|---|
| 300 101    | A00 hex / B00 hex   |   |
| 300 102    |                     |   |
| 300 103    | 880A hex / 890A hex | - |
| 300 104    | B hex / 10B hex     |   |
| 300 105    | 100 dec             | - |
| 300 106    |                     |   |
| 300 107    |                     |   |
| 300 108    |                     | - |

The pulse at count input 1 are counted as long as the software enable is on. After the first measurement, bit 15 in input register 3 is set and the count value per second is in input register 5, 100 in this case.

**Note:** When configuring output 1 or 3 as a frequency output, make sure that a value > 0 is entered in register 5/6 or 7/8 before mode D (register 3 or 4) is entered for the corresponding output, otherwise the output remains inactive.

Switching from full to half cycle only becomes active after a positive edge of the software enable bit (bit 1 in word 1).

The digital inputs have no function in operating mode 8.

### 8.5 Period meter with internal time base

#### Introduction

#### Overview

This section describes the application of the 170 AEC 920 00 counter module as a period meter with an internal time base.

## What's in this Section?

This Section contains the following Maps:

| Topic              | Page |
|--------------------|------|
| Task specification | 128  |
| Solution:          | 129  |

#### Task specification

#### Period meter (Mode 9) with external time base

In this operating mode the duration of a period can be measured. This period is the duration of a

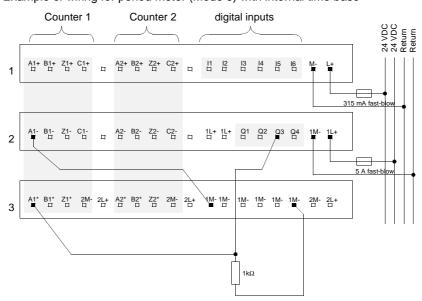
- positive edge to the next negative one at count input A (= counting gate)half cycle
- positive to the next positive edge at count input A (= counting gate) full cycle

During the gate opening time the counter counts internal time cycles which it generates according to a definable time base. This time base is entered as a coded value which also specifies whether the counting gate is opened over the full or half cycle. 5 different time bases with a full and half cycle respectively are available – 10 different codes altogether.

The time base (internally generated time interval) should be 10ms. The period to be measured is simulated via digital output 3 (frequency output with a 50ms time interval).

The following settings are generated from this:

- Operating mode 9 (counter 1 as period meter)
- Time base 2 (10 ms, full cycle)
- Output 3 is a frequency output with a 50 ms interval and generates the counting gate (50ms in, 50ms out = 100ms gate opening time in a full cycle).


**Note:** In "Period meter" mode, the preset mode and the digital inputs have no function. Only the "Frequency output" function is available for the digital outputs.

24 single ended signals are present in this example. Therefore only the 20 kHz filter needs to be activated.

As no signals are connected to counter input B and Z, the line break monitoring needs to be disabled.

#### Wiring:

- Output 3 with count input A1\* (clamp 2.15 with clamp 3.1)
- A1 with the group of digital outputs (clamp 2.1 with clamp 3.11)
- A 1 kOhm resistance from output 1 to the group



#### Example of wiring for period meter (Mode 9) with internal time base

#### Solution:

## **Setting Parameters**

The counter parameters are set in these 4 steps:

- 1. Setting the operating mode and activating the 20 kHz filter
- 2. Configuring output 3 as a frequency output for the count frequency
- 3. Sending the time base, period id and disabling the line break monitoring
- 4. Setting the software enable 1

These steps are explained below.

Step 1: Setting the operating mode and activating the 20 kHz filter

Set the operating mode (=9) and the 20 kHz filter. This occurs in the output word word 1.

#### Output word:

| Output word | Entry   |
|-------------|---------|
| 400 101     | 908 hex |
| 400 102     | 0       |
| 400 103     | 0       |
| 400 104     | 0       |
| 400 105     | 0       |
| 400 106     | 0       |
| 400 107     | 0       |
| 400 108     | 0       |

#### Input word

| Input word | Return value |  |
|------------|--------------|--|
| 300 101    | 220 hex      |  |
| 300 102    |              |  |
| 300 103    | 800 hex      |  |
| 300 104    |              |  |
| 300 105    |              |  |
| 300 106    |              |  |
| 300 107    |              |  |
| 300 108    |              |  |

Step 2: Configuring output 3 (counter 2) as a frequency output for the count pulse

Configure output 3 as a frequency output (output mode D) and send a time base of 50ms for the cycle frequency (output words 4 and 7). The output then flashes at 50ms intervals.

**Note:** Enter the time base into register 7 first, then the reference numbers D0B into register 4! Otherwise, output 3 will be disabled!

#### Output word:

| Output word | Entry   |
|-------------|---------|
| 400 101     | 908 hex |
| 400 102     | 0       |
| 400 103     | 0       |
| 400 104     | D0B hex |
| 400 105     | 0       |
| 400 106     | 0       |
| 400 107     | 50 dec  |
| 400 108     | 0       |

#### Input word

| Input word | Return value      |
|------------|-------------------|
| 300 101    | 220 hex / 320 hex |
| 300 102    |                   |
| 300 103    | 800 hex           |
| 300 104    | B hex / 10B hex   |
| 300 105    |                   |
| 300 106    |                   |
| 300 107    |                   |
| 300 108    |                   |

Step 3: Sending the time base, period id and disabling the line break monitoring

This is done via output words 3 and 5. Output word:

| Output word | Entry   |
|-------------|---------|
| 400 101     | 908 hex |
| 400 102     | 0       |
| 400 103     | 88 hex  |
| 400 104     | D0B hex |
| 400 105     | 2 dec   |
| 400 106     | 0       |
| 400 107     | 50 dec  |
| 400 108     | 0       |

#### Input word

| Input word | Return value      |  |
|------------|-------------------|--|
| 300 101    | 200 hex / 300 hex |  |
| 300 102    |                   |  |
| 300 103    | 808 hex           |  |
| 300 104    | B hex / 10B hex   |  |
| 300 105    |                   |  |
| 300 106    |                   |  |
| 300 107    |                   |  |
| 300 108    |                   |  |

Step 4: Setting the software enable

Set the counter enable (bit in word 1). Output word:

| Output word | Entry   |
|-------------|---------|
| 400 101     | 90A hex |
| 400 102     | 0       |
| 400 103     | 88 hex  |
| 400 104     | D0B hex |
| 400 105     | 2 dec   |
| 400 106     | 0       |
| 400 107     | 50 dec  |
| 400 108     | 0       |

#### Input word

| Input word | Return value      |
|------------|-------------------|
| 300 101    | A00 hex / B00 hex |
| 300 102    |                   |
| 300 103    | 8808 hex          |
| 300 104    | B hex / 10B hex   |
| 300 105    | 9990 dec          |
| 300 106    |                   |
| 300 107    |                   |
| 300 108    |                   |

**Note:** Steps 1 ... 4 can also be combined into one.

The internal time interval encoder pulse are counted as long as the counting gate is open and the software enable is present. After the first measurement, bit 15 in input word 3 is set and the count value per gate opening time is in input word 5, 9990 in this case. This corresponds to  $9990 \times 10 \text{ ms} = 99.9 \text{ ms}$ .



#### Index

5 V / 24 V Counter Inputs, 19 Current values for the absolute encoder, 87 incremental encoder, 87 Α A\_1/A\_2, 84 D Absolute Encoder, 29 D\_B, 64 Absolute Path Evaluation, 15 Data in output words 5 and 6, 79 Actual values for counters 1 and 2, 86 Application Range, 13 Default values, 69 Assignment of Terminal Blocks, 40 DFB, 92 DFB Block, 98 DFB inputs, 94 C DFB outputs, 93 Capture, 62 DFB Parameter Setting, 92, 93 Capture Function, 20 Differential counter, 25 Digital Inputs, 21 Channel-specific Error Messages, 21 CHI\_B, 84 Digital output functions, 70 Digital outputs, 21 CLOA, 70 Down Counter, 24 Clock output, 14 Down counter, 62 Configuration, 58 Down counter with direction signal, 25 Configuring output words 1 and 2, 60 output words 3 and 4, 67 Ε the digital outputs, 70 Connection of an Incremental Encoder E\_C, 61 for 5 V, 42 E\_CP, 62 E\_P, 61 COR\_E, 83 EC\_B, 84 Count Values, 81 ECP\_B, 84 Counter Resolution, 19, 29 Counting functions with Absolute EI\_F, 62 Encoders, 31 Enable software, 61

870 USE 008 00 1/10/01 135

Encoder Offset, 30

M E, 83

Machine Zero Point, 30

EP B. 84 Modulo value for event counter, 79 Error bits (low-bytes), 83 Multi-turn encoders with 24 bits, 32 Event Counting, 13 Multi-turn encoders with 25 bits, 32 Event Processing, 20 F O E, 83 File format of set data, 80 Operating modes, 62 Force, 62 Operating modes of the AEC 090 00, 18 Freeze count value, 62 Output word 3, 67 Freeze current counter value, 20 Output word 4, 68 Frequency Measurements, 14 Output words, 58 Frequency meter with 5 time bases, 28, 62 Functional Principle Incremental Encoder, P 23 P\_E, 84 Path evaluation with Multi-turn-encoders ı (SSI), 25 bit, 62 11/14, 84 Path evaluation with Mult-turn-encoders 12/15, 84 (SSI), 24 Bit, 62 13/16.84 Path evaluation with single-turn-encoders, ID-Code for Interbus, 50 Incremental encoder with 1/1 logic, 24 Period Measurements, 14 Incremental encoder with 1/4 logic, 25 Period meter with 5 time bases, 27, 62 Incremental Path Evaluation, 14 Preset, 19 Preset mode, 64 Infinite Counts, 14 Input words, 59 Preset modes, 64 Preset Value, 19, 79 Internal Connections, 40 Interrupting communication, 70 Preset value (Preset) accepted with long cams, 66 Preset value (Preset) accepted with short L cams, 66 Preset-Mode, 22 L\_E, 83 PS\_E, 83 L\_ED, 70 LED Status Indicators, 49 Pulse counter with external time base, 62 Limit Frequencies for Absolute Encoders, 42 Pulse Counter with Time Base, 26 Pulse Generator, 14 Limit Frequencies for Incremental Encoders, 42 Line break monitoring, 70 Q Lower software-limit switch, 79 Q1, 62 Q1\_F, 62 M Q2, 62

136 870 USE 008 00 1/10/01

Q2\_F, 62

#### R

Receiving the Preset Value into the Counter, 22

Reference number for lower software limit switch, 68

Reference number for modulo value, 68 Reference number for operating mode 8 (impulse counter with time base), 68 Reference number for preset value or SSI offset value, 68

Reference number for pulse width, 68 Reference number for threshold value 1, 68 Reference number for threshold value 2, 68

Reference number for time base in "Frequency meter" mode, 68

Reference number for time base in "Period meter" mode, 68

Reference number for time base in ms, 68 Reference number for upper software limit switch, 68

Reference number returned (low-bytes), 86 Reference numbers for command data, 68 Repeating Counters, 14 Reversal of the count directions, 64 RPM measurement, 26

#### S

Selection of complete/half cycle for pulse counter with time base, 79
Set data for absolute encoder, 80
Set data for incremental encoder, 80
Single turn encoders, 31
Software Limit Switch, 19
Software Reset, 62
SOR\_E, 83
SSI, 30
Status and error bits (words 1 and 2), 82
Status bits (high-bytes), 84
Status Messages, 81
Status returned (high-bytes), 86
Status returned (Words 3 and 4), 85
Synchronous Serial Interface, 30

#### T

Technical Data, 50
Threshold value 1, 79
Threshold value 2, 79
Time base at counter operation mode
"Frequency meter", 79
Time base at counter operation mode
"Period meter", 79
Time base in ms for clock output, 79

#### U

Up, 62
Up Counter, 24
Up/down counter, 62
Up/down counter, path evaluation, 1/1 Logic, 62
Up/down counter, path evaluation, 1/4 Logic, 62
Upper software-limit switch counter, 79

#### W

WD\_E, 83
Wiring, 42
Wiring Example for
Absolute Encoder with Actuators, 42
Impulse encoder (24 V), 98
Incremental Encoder (RS 422), 42
Pulse Encoder (24 V), 42, 104
Pulse Encoder (5V), 42

870 USE 008 00 1/10/01 137

138 870 USE 008 00 1/10/01