Modicon

Ladder Logic Block Library
User Guide

Volume 4

840USE10100 Version 5.0

043505766 79

a brand of

Schneid .
° “@ Telemecanique

840USE10100 April 2004

Document Set

At a Glance

This manual consists of four volumes.

Volume 1
e General Information and Instruction Descriptions (A - D)

Volume 2
e Instruction Descriptions (E)

Volume 3
e Instruction Descriptions (F - N)

Volume 4
e General Information and Instruction Descriptions (O - X) and Appendix

840USE10100 April 2004

840USE10100 April 2004

Table of Contents

Safety Information i, XXXi

Aboutthe BooKk............. ittt Xxxiii

Partl General Information......................... ...t 1
Introduction 1

Chapter 1 Ladder Logic Overviewoiieerinnnnnnrnnnnns 3
AtaGlance 3

Segments and Networks in Ladder Logic 4

How a PLC Solves Ladder LogiC.ot 7

Ladder Logic Elements and Instructions. 8

Chapter2 Memory AllocationinaPLCccivvnnn. 15
AtaGlancCe 15

USer MEMOTY. . ..o 16

State RAMValues. 18

State RAM Structure 20

The Configuration Table e 22

Thel/OMap Table e 27

Chapter 3 Ladder LogicOpcodes.civiiiinnnnnnnnnnnnns 29
AtaGlancCe e 29

Translating Ladder Logic Elements in the System Memory Database 30

Translating DX Instructions in the System Memory Database 33

Opcode Defaults for Loadables. 37

Chapter4 Instructions.............cciiiiiiiiiiiiiii i it innnnns 39
Parameter Assignment of Instuctions i 39

Chapter5 InstructionGroups............c.iiiiiiiiiinninrnnnnns 41
AtaGlance 41

INStruCtion GroUPS.ttt e 42
ASCIITFUNCHONS . . ot 43

Counters and Timers Instructions 44

Fast /O Instructions 45

840USE10100 April 2004 \

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10
Chapter 11

Chapter 12

Loadable DX 46

Math Instructions 47
Matrix Instructions e 49
Miscellaneous 50
Move InStructions. 51
SKIPS/SPECIals oo 52
Special INStructions 53
Coils, Contacts and Interconnects. 54
Equation Networksciiiiiiiiiiiiinnnn. 55
AtaGIaNCE . ..o 55
Equation Network Structure. 56
Mathematical Equations in Equation Networks 59
Mathematical Operations in Equation Networks 64
Mathematical Functions in Equation Networks 69
Data Conversions in an Equation Network 72
Roundoff Differences in PLCs without a Math Coprocessor 74
Benchmark Performance. 75
Closed Loop Control / Analog Values 77
AtaGlance e 77
Closed Loop Control /AnalogValues it 78
PCFL Subfunctions e 79
APID EXample. . ..o 83
PID2 Level Control Exampleo 87
Formatting Messages for ASCIl READ/WRIT Operations ... 91
AtaGIaNCE . ..o 91
Formatting Messages for ASCIl READ/WRIT Operations. 92
Format Specifiers. 93
Special Set-up Considerations for Control/Monitor Signals Format. 96
Coils, Contacts and Interconnects. 99
AtaGlance e 929
COIlS. e 100
CoNtaCES. . . e 102
Interconnects (Shorts) e e 104
InterruptHandling i 105
Interrupt Handling 105
SubroutineHandling oo, 107
Subroutine Handling 107
Installation of DX Loadables., 109
Installation of DX Loadables 109

vi

840USE10100 April 2004

Part Il Instruction Descriptions (AtoD) 111
AtaGlance 111

Chapter 13 1X3X - Input Simulation o0, 113
AtA GIANCE . . . ot 113

Short Description: 1X3X - Input Simulation. 114

Representation: 1X3X - Input Simulation 115

Chapter 14 AD16: Ad16Bit......... ...ttt i innnns 117
AtaGlance 117

Short DesCription.o 118

Representation: AD16 - 16-bit Addition. 119

Chapter 15 ADD: Addition.......... ..ottt it innnnns 121
AtaGlanceo 121

Short DescCription.o 122

Representation: ADD - Single Precision Add 123

Chapter 16 AND:Logical And...........c.ciiiiiiiiiiii i it innnnns 125
AtaGlanceo 125

Short DesCription.o 126

Representation: AND - Logical And i 127

Parameter Description. 129

Chapter 17 BCD: BinarytoBinaryCodeccviiinnnnn 131
AtaGlance 131

Short DesCription.o 132

Representation: BCD - Binary Coded Decimal Conversion 133

Chapter 18 BLKM: Block Move.cciiiiiiiiiiiiininnnnnns 135
AtaGlanceo 135

Short DesCription.o 136

Representation: BLKM - Block Move o, 137

Chapter 19 BLKT:BlocktoTable...............cciiiiiiiiinn.t. 139
AtaGlance 139

Short DesCription.o 140

Representation: BLKT - Block-to-Table Move. 141

Parameter Description. e 142

Chapter 20 BMDI: Block Move with Interrupts Disabled 143
AtaGlanceo 143

Short Description: BMDI - Block Move Interrupts Disabled. 144

Representation: BMDI - Block Move Interrupts Disabled 145

Chapter21 BROT:BitRotatecc ittt 147
AtaGlanceo 147

840USE10100 April 2004 Vii

Chapter 22

Chapter 23

Chapter 24

Chapter 25

Chapter 26

Chapter 27

Chapter 28

Short DesCriptionot 148

Representation: BROT -BitRotate 149
Parameter Description. 150
CALL: Activate Inmediate or Deferred DX Function 151
AT A GLANGE 151
Short Description: CALL - Activate Immediate or Deferred DX Function. 152
Representation: CALL - Activate Immediate DX Function. 153
Representation: CALL - Activate Deferred DX Function 156
CANT - Interpret Coils, Contacts, Timers, Counters, and the
SUBBIOCK.oii it i i ittt e et s n e 159
AtAGIANCE . .ot 159
Short Description: CANT - Interpret Coils, Contacts, Timers, Counters,

andthe SUB BIOCK.o 160
Representation: CANT - Interpret Coils, Contacts, Timers, Counters,

andthe SUB BIOCK. 161
Parameter Description: CANT - Interpret Coils, Contacts, Timers, Counters,
andthe SUB BIOCK.o 162
CHS: Configure Hot Standby 165
AtaGlance 165
Short DesCriptiono 166
Representation: CHS - Configure Hot Standby 167
Detailed Description. 169
CKSM:Check Sum.ciiiiiiiiiiee e innnnns 173
AtaGlance 173
Short Description 174
Representation: CKSM - Checksum 175
Parameter Description. 177
CMPR: Compare Register...............ccoiiiiinnnns 179
AtaGlance 179
Short DesCriptiono ot 180
Representation: CMPR - Logical Compare 181
Parameter Description. 182
COils ..o e a e 183
AtAGIANCE . . o 183
Short Description: Coilsot 184
General Usage Guidelines: Coils. i, 185
COMM - ASCIl Communications Function 187
AtAGIANCE . .ot 187
Short Description: COMM - ASCIl Communications Block 188
Representation: COMM - ASCII Communications Function 189

viii

840USE10100 April 2004

Chapter 29 COMP: Complementa Matrix 191
AtaGlance 191

Short DesCription.o 192

Representation: COMP - Logical Compliment 193

Parameter Description. 195

Chapter30 Contactscciiiiiiiiiii it iinnnnrrnnnnns 197
ALA GIaNCE . . . ot 197

Short Description: Contacts.ot 198

Representation: Contacts 199

Chapter31 CONV-ConvertDatacciiiiiiiinnnnnns 201
ALA GIANCE . . . ot 201

Short Description: CONV -ConvertDatao ... 202

Representation: CONV - ConvertData., 203

Chapter 32 CTIF - Counter, Timer, and Interrupt Function............ 205
AtA GIANCE. . . ot 205

Short Description: CTIF - Counter, Timer, and Interrupt Function 206

Representation: CTIF - Counter, Timer, Interrupt Function. 207

Parameter Description: CTIF - Register Usage Table (Top Node) 208

Chapter 33 DCTR:DownCounter............coiiiiiiiiinrrnnnnns 215
AtaGlanceo 215

Short DesCription.o 216

Representation: DCTR-Down Counter, 217

Chapter 34 DIOH: DistributedI/OHealth 219
AtaGlance 219

Short DesCription.o 220

Representation: DIOH - Distributed /O Health. 221

Parameter Description. e 223

Chapter 35 DISA - Disabled Discrete Monitor. 225
ALA GIaNCE . . . ot 225

Short Description: DISA - Disabled Discrete Monitor 226

Representation: DISA - Disabled Discrete Monitor. 227

Chapter36 DIV:Divide.ot i i it inanas 229
AtaGlanceo 229

Short DesCription.o 230

Representation: DIV - Single Precision Division. 231

EXample ... 233

Chapter 37 DLOG: Data Logging for PCMCIA Read/Write Support. 235
AtaGlance 235

Short DesCription.o 236

840USE10100 April 2004 ix

Chapter 38

Chapter 39

Chapter 40

Part Il

Chapter 41

Chapter 42

Chapter 43

Chapter 44

Representation: DLOG i e 237

Parameter Description. 238
RunTime Error Handling. 240
DMTH - Double PrecisionMath. 241
AtaGlance 241
Short Description: DMTH - Double Precision Math - Addition, Subtraction,
Multiplication, and Division. 242
Representation: DMTH - Double Precision Math - Addition, Subtraction,
Multiplication, and Division. 243
DRUM: DRUM Sequencerccvvunrnnnrnnnrnns 251
AtaGIaNCe . ..o 251
Short DesCription o 252
Representation: DRUM 253
Parameter Description. 254
DV16: Divide16Bitcciiiiiiiiiiaa.. 257
AtaGlance e 257
Short Description 258
Representation: DV16 - 16-bit Division 259
EXample. 260
Instruction Descriptions (E) 261
AtaGIanCe 261
EARS - Event/Alarm Recording System 263
AtA GIaNCE . . .o 263
Short Description: EARS - Event/Alarm Recording System 264
Representation: EARS - Event/Alarm Recording System 265
Parameter Description: EARS - Event/Alarm Recording System 267
EMTH: Extended Math. 271
AtaGlance e 271
Short Description 272
Representation: EMTH - Extended Math Functions 273
Parameter Description.o 274
Floating Point EMTH Functions. i, 276
EMTH-ADDDP: Double Precision Addition 277
AtaGIaNCe . ..o 277
Short DesCription o 278
Representation: EMTH - ADDDP - Double Precision Math - Addition. 279
Parameter Description. 281
EMTH-ADDFP: Floating Point Addition................. 283
AtaGlance e 283

840USE10100 April 2004

Short DesCription.o 284

Representation: EMTH - ADDFP - Floating Point Math - Addition 285
Parameter Description. e 286
Chapter 45 EMTH-ADDIF: Integer + Floating Point Addition.......... 287
AtaGlanceo 287
Short DesCription.ot 288
Representation: EMTH - ADDIF - Integer + Floating Point Addition......... 289
Parameter Description.o 290
Chapter 46 EMTH-ANLOG: Base 10 Antilogarithm.................. 291
AtaGlance 291
Short DesCription.o 292
Representation: EMTH - ANLOG - integer Base 10 Antilogarithm 293
Parameter Description. e 295
Chapter 47 EMTH-ARCOS: Floating Point Arc Cosine of an Angle
(inNRadians)ttt ittt 297
AtaGlance 297
Short DesCription.o 298
Representation: EMTH - ARCOS - Floating Point Math - Arc Cosine of an Angle
(iINRadians) e 299
Parameter Description.o 301
Chapter 48 EMTH-ARSIN: Floating Point Arcsine of an Angle
(iNRadians)ttt ittt n e anans 303
AtaGlanceo 303
Short DesCription.o 304
Representation: EMTH - ARSIN - Arcsine of an Angle (in Radians)......... 305
Parameter Description. 306
Chapter 49 EMTH-ARTAN: Floating Point Arc Tangent of an Angle
(iNRadians)ttt ittt ine e nnans 307
AtaGlance 307
Short DesCription.o 308
Representation: Floating Point Math - Arc Tangent of an Angle (in Radians). . 309
Parameter Description. 311
Chapter 50 EMTH-CHSIN: Changing the Sign of a Floating Point
Number i i e s 313
AtaGlanceo 313
Short DesCription.o 314
Representation: EMTH - CHSIN - Change the Sign of a Floating Point Number315
Parameter Description.o 317
840USE10100 April 2004 Xi

Chapter 51

Chapter 52

Chapter 53

Chapter 54

Chapter 55

Chapter 56

Chapter 57

EMTH-CMPFP: Floating Point Comparison.............. 319
AtaGIanCe 319
Short DesCription oot 320
Representation: EMTH - CMFPF - Floating Point Math Comparison 321
Parameter Description. 323
EMTH-CMPIF: Integer-Floating Point Comparison........ 325
Ata GlanCe 325
Short Description 326
Representation: EMTH - CMPIF - Floating Point Math -

Integer/Floating Point Comparison i, 327
Parameter Description. 329
EMTH-CNVDR: Floating Point Conversion of Degrees to
Radians.ciiiiii it 331
AtaGIanCe 331
Short DesCription oot 332
Representation: EMTH - CNVDR - Conversion of Degrees to Radians 333
Parameter Description. 335
EMTH-CNVFI: Floating Point to Integer Conversion 337
Ata GlanCe 337
Short Description 338
Representation: EMTH - CNVFI - Floating Point to Integer Conversion 339
Parameter Description. 341
Runtime Error Handling 342
EMTH-CNVIF: Integer-to-Floating Point Conversion 343
AtaGIaNCe . ..o 343
Short DesCription o 344
Representation: EMTH - CNVIF - Integer to Floating Point Conversion 345
Parameter Description. 347
Runtime Error Handling 348
EMTH-CNVRD: Floating Point Conversion of Radians to
Degrees.coiiiiii i i i e 349
AtaGIanCe . ..o 349
Short Description 350
Representation: EMTH - CNVRD - Conversion of Radians to Degrees 351
Parameter Description. 353
EMTH-COS: Floating Point Cosine of an Angle (in Radians)355
AtaGIaNCe . ..o 355
Short DesCription o 356
Representation: EMTH - COS - Cosine of an Angle (in Radians) 357
Parameter Description. 358

Xii

840USE10100 April 2004

Chapter 58 EMTH-DIVDP: Double Precision Division. 359
AtaGlance 359

Short DesCription.o 360

Representation: EMTH - DIVDP - Double Precision Math - Division 361

Parameter Description. 363

Runtime Error Handling. 364

Chapter 59 EMTH-DIVFI: Floating Point Divided by Integer........... 365
AtaGlanceo 365

Short DesCription.o 366

Representation: EMTH - DIVFI - Floating Point Divided by Integer 367

Parameter Description. 368

Chapter 60 EMTH-DIVFP: Floating Point Division. 369
AtaGlance 369

Short DesCription.o 370

Representation: EMTH - DIVFP - Floating Point Division. 371

Parameter Description.o 372

Chapter 61 EMTH-DIVIF: Integer Divided by Floating Point. 373
AtaGlanceo 373

Short DesCription.o 374

Representation: EMTH - DIVIF - Integer Divided by Floating Point 375

Parameter Description.o 376

Chapter 62 EMTH-ERLOG: Floating Point Error ReportLog.......... 377
AtaGlance 377

Short DesCription.o 378

Representation: EMTH - ERLOG - Floating Point Math - Error Report Log . . . 379

Parameter Description.o e 381

Chapter 63 EMTH-EXP: Floating Point Exponential Function......... 383
AtaGlanceo 383

Short DesCription.o 384

Representation: EMTH - EXP - Floating Point Math - Exponential Function .. 385

Parameter Description.o 387

Chapter 64 EMTH-LNFP: Floating Point Natural Logarithm........... 389
AtaGlance 389

Short DesCription.o 390

Representation: EMTH - LNFP - Natural Logarithm 391

Parameter Description. e 393

Chapter 65 EMTH-LOG: Base 10 Logarithm 395
AtaGlanceo 395

Short DesCription.o 396

Representation: EMTH - LOG - Integer Math - Base 10 Logarithm 397

840USE10100 April 2004 Xiii

Chapter 66

Chapter 67

Chapter 68

Chapter 69

Chapter 70

Chapter 71

Chapter 72

Parameter Description. 399

EMTH-LOGFP: Floating Point Common Logarithm 401
AtaGIaNCe . ..o 401
Short Description 402
Representation: EMTH - LOGFP - Common Logarithm 403
Parameter Description. 405
EMTH-MULDP: Double Precision Multiplication.......... 407
AtaGIanCe . ..o 407
Short Description 408
Representation: EMTH - MULDP - Double Precision Math - Multiplication 409
Parameter Description. 411
EMTH-MULFP: Floating Point Multiplication............. 413
AtaGIaNCe . ..o 413
Short DesCription o 414
Representation: EMTH - MULFP - Floating Point - Multiplication 415
Parameter Description. 416
EMTH-MULIF: Integer x Floating Point Multiplication 417
AtaGIanCe . ..o 417
Short Description 418
Representation: EMTH - MULIF - Integer Multiplied by Floating Point 419
Parameter Description. 421
EMTH-PI: Load the Floating Point Value of "Pi".......... 423
AtaGIaNCe . ..o 423
Short DesCription o 424
Representation: EMTH - PI - Floating Point Math -

Load the Floating PointValue of PI. 425
Parameter Description. 426

EMTH-POW: Raising a Floating Point Number to an Integer

PoWer ... e e 427
AtaGIanCe . ..o 427
Short Description 428
Representation: EMTH - POW - Raising a Floating Point Number to an Integer
PoWer. . . 429
Parameter Description. 430
EMTH-SINE: Floating Point Sine of an Angle (in Radians) . 431
AtaGIaNCe . ..o 431
Short Description 432
Representation: EMTH - SINE - Floating Point Math -

Sineofan Angle (inRadians) 433
Parameter Description.o 435

Xiv

840USE10100 April 2004

Chapter 73 EMTH-SQRFP: Floating Point Square Root.............. 437
AtaGlance 437
Short DesCription.o 438
Representation: EMTH - SQRFP - Square Root. 439
Parameter Description. 440
Chapter 74 EMTH-SQRT: Floating Point Square Root 441
AtaGlanceo 441
Short DesCription.ot 442
Representation: EMTH - SQRT - Square Root. 443
Parameter Description.o 445
Chapter 75 EMTH-SQRTP: Process SquareRoot................... 447
AtaGlance 447
Short DesCription.o 448
Representation: EMTH - SQRTP - Double Precision Math -
Process Square RoOot 449
Parameter Description. e 451
EXample ... 452
Chapter 76 EMTH-SUBDP: Double Precision Subtraction............ 453
AtaGlanceo 453
Short DesCription.o 454
Representation: EMTH - SUBDP - Double Precision Math - Subtraction 455
Parameter Description.o 457
Chapter 77 EMTH-SUBFI: Floating Point - Integer Subtraction........ 459
AtaGlance 459
Short DesCription.o 460
Representation: EMTH - SUBFI - Floating Point minus Integer 461
Parameter Description.o 462
Chapter 78 EMTH-SUBFP: Floating Point Subtraction............... 463
AtaGlanceo 463
Short DesCription.o 464
Representation: EMTH - SUBFP - Floating Point - Subtraction 465
Parameter Description. 466
Chapter 79 EMTH-SUBIF: Integer - Floating Point Subtraction........ 467
AtaGlance 467
Short DesCription.o 468
Representation: EMTH - SUBIF - Integer minus Floating Point 469
Parameter Description. 470
Chapter 80 EMTH-TAN: Floating Point Tangent of an Angle
(inNnRadians)ttt ittt et 471
AtaGlanceo 471
840USE10100 April 2004 XV

Chapter 81

Chapter 82

Part IV

Chapter 83

Chapter 84

Chapter 85

Chapter 86

Short DesCriptionot 472

Representation: EMTH - TAN - Tangent of an Angle (in Radians) 473
Parameter Description. 474
ESI: Support ofthe ESIModule 475
AtaGlance 475
Short Description 476
Representation. 477
Parameter Description. 478
READ ASCII Message (Subfunction 1) o it 481
WRITE ASCIl Message (Subfunction2) 485
GET DATA (Subfunction 3) oo 486
PUT DATA (Subfunction 4) e 488
ABORT (Middle Input ON)o oo e 492
RunTime Errors.o 493
EUCA: Engineering Unit Conversion and Alarms 495
AtaGlance 495
Short DesCription oot 496
Representation: EUCA - Engineering Unitand Alarm 497
Parameter Description. 498
EXamples. 500
Instruction Descriptions (FtoN) 507
Ata GlanCe 507
FIN:Firstin. ... e 509
Ata GlanCe 509
Short Descriptiono 510
Representation: FIN - Firstin. 511
Parameter Description. 512
FOUT:FirstOutciiiiiii i iiinannnn 513
AtaGIaNCe . ..o 513
Short DesCription o 514
Representation: FOUT - FirstOQut i 515
Parameter Description. 517
FTOI: Floating PointtoInteger........................ 519
AtaGIanCe . ..o 519
Short Description 520
Representation: FTOI - Floating Point to Integer Conversion 521
GD92 - Gas Flow FunctionBlock 523
AtA GIaNCE . . .o 523
Short Description: GD92 - Gas Flow Function Block 524
Representation: GD92 - Gas Flow FunctionBlock 525

840USE10100 April 2004

Parameter Description - Inputs: GD92 - Gas Flow Function Block. 527
Parameter Description - Outputs: GD92 - Gas Flow Function Block 533
Parameter Description - Optional Outputs: GD92 - Gas Flow Function Block . 534

Chapter 87 GFNX AGA#3 ‘85 and NX19 ‘68 Gas Flow Function Block . .535
ALA GIaNCE . . . ot 535
Short Description: GFNX - Gas Flow FunctionBlock 536
Representation: GFNX - Gas Flow FunctionBlock. 537
Parameter Description - Inputs: GFNX - Gas Flow Function Block. 539
Parameter Description - Outputs: GFNX - Gas Flow Function Block 546
Parameter Description - Optional Outputs: GFNX - Gas Flow Function Block . 547
Chapter 88 GG92 AGA #3 1992 Gross Method Gas Flow Function Block
.. 549
AtA GIANCE. . . ot 549
Short Description: GG92 - Gas Flow FunctionBlock 550
Representation: GG92 - Gas Flow FunctionBlock 551
Parameter Description - Inputs: GG92 - Gas Flow Function Block. 553
Parameter Description - Outputs: GG92 - Gas Flow Function Block 558
Parameter Description - Optional Outputs: GG92 - Gas Flow Function Block . 559
Chapter 89 GM92 AGA #3 and #8 1992 Detail Method Gas Flow Function
] o T 561
ALA GIANCE . . . ot 561
Short Description: GM92 - Gas Flow FunctionBlock 562
Representation: GM92 - Gas Flow FunctionBlock. 563
Parameter Description - Inputs: GM92 - Gas Flow Function Block. 565
Parameter Description - Outputs: GM92 - Gas Flow Function Block 571
Parameter Description - Optional Outputs: GM92 - Gas Flow Function Block . 572
Chapter 90 G392 AGA #3 1992 Gas Flow FunctionBlock 573
ALA GIANCE. . . ot 573
Short Description: G392 - Gas Flow Function Block 574
Representation: G392 - Gas Flow FunctionBlock 575
Parameter Description - Inputs: G392 - Gas Flow Function Block 577
Parameter Description - Outputs: G392 - Gas Flow Function Block. 582
Parameter Description - Optional Outputs: G392 - Gas Flow Function Block. . 583
Chapter 91 HLTH: History and Status Matrices. 585
AtaGlanceo 585
Short DesCription.o 586
Representation: HLTH - System Health 587
Parameter Description.o 588
Parameter Description Top Node (History Matrix) 589
Parameter Description Middle Node (Status Matrix). 594
Parameter Description Bottom Node (Length) 599
840USE10100 April 2004 xvii

Chapter 92 HSBY-HotStandby..................o iuins. 601
ALA GIaNCE . ..o 601

Short Description: HSBY - Hot Standby. 602

Representation: HSBY -Hot Standby o i 603

Parameter Description Top Node: HSBY - Hot Standby 605

Parameter Description Middle Node: HSBY - Hot Standby 606

Chapter 93 IBKR: IndirectBlockReadccouant. 607
AtaGIanCe . ..o 607

Short Description 608

Representation: IBKR - Indirect Block Read 609

Chapter 94 IBKW: Indirect Block Writecovinatt. 611
AtaGIanCe 611

Short DesCription oot 612

Representation: IBKW - Indirect Block Write. 613

Chapter95 ICMP:InputCompareccviiiinnrrrrnnnnnnns 615
AtaGIaNCe . ..o 615

Short Description 616

Representation: ICMP - Input Compare., 617

Parameter Description. 618

Cascaded DRUM/ICMP BIOCKS oo 621

Chapter 96 ID: InterruptDisable............... ..., 623
AtaGIanCe 623

Short Description: ID - Interrupt Disable 624

Representation: ID - Interrupt Disable 625

Parameter Description: ID - Interrupt Disable 626

Chapter 97 IE:InterruptEnable 627
Ata GlanCe 627

Short Description: |IE - Interrupt Enable. 628

Representation: |IE - Interrupt Enable 629

Parameter Description: IE - Interrupt Enable. 630

Chapter 98 IMIO: Immediate l/O.........., 631
AtaGIaNCe . ..o 631

Short Description: IMIO - Immediate /O i 632

Representation: IMIO - Immediate /0. i 633

Parameter Description: IMIO - Immediate I/O 634

Run Time Error Handling: IMIO - Immediate /O 636

Chapter 99 IMOD: Interrupt Module Instruction.................... 637
AtaGIanCe . ..o 637

Short Description: IMOD - Interrupt Module. 638

Representation: IMOD - Interrupt Module 639

xviii 840USE10100 April 2004

Parameter Description: IMOD - Interrupt Module 641

Chapter 100 ITMR: InterruptTimer.............c.cciiiiiiiiiinnnns 647
AtaGlance 647
Short Description: ITMR - Interval Timer Interrupt 648
Representation: ITMR - Interval Timer Interrupt 649
Parameter Description: ITMR - Interval Timer Interrupt 651
Chapter 101 ITOF: Integer to FloatingPoint 653
AtaGlanceo 653
Short DesCription.o 654
Representation: ITOF - integer to Floating Point Conversion. 655
Chapter 102 JSR: Jumpto Subroutine....................ivin.t. 657
AtaGlance 657
Short DesCription.o 658
Representation: JSR - Jump to Subroutine. oL 659
Chapter 103 LAB: Label for a Subroutine 661
AtaGlance 661
Short DesCription.o 662
Representation: LAB-Label. i 663
Parameter Description.o 664
Chapter 104 LOAD:LoadFlashcoiiiiiiiiiii i, 665
AtaGlanceo 665
Short DesCription.o 666
Representation: LOAD - Load. 667
Parameter Description. 668
Chapter 105 MAP 3: MAP Transaction..............ccoiiiiiinnnnnns 669
AtaGlance 669
Short DesCription.o 670
Representation: MAP 3 - Map Transaction. 671
Parameter Description.o 672
Chapter 106 MATH -IntegerOperationscoiiiiinnnnns 677
ALA GIaNCE . . . ot 677
Short Description: MATH - Integer Operations - Decimal Square Root, Process
Square Root, Logarithm (base 10), and Antilogarithm (base 10)........... 678
Representation: MATH - Integer Operations - Decimal Square Root, Process
Square Root, Logarithm (base 10), and Antilogarithm (base 10)........... 679
Chapter 107 MBIT: Modify Bit............cciiiiiii i nns 685
AtaGlanceo 685
Short DesCription.o 686
Representation: MBIT - Logical Bit Modify 687
840USE10100 April 2004 XiX

Chapter 108

Chapter 109

Chapter 110

Chapter 111

Chapter 112

Parameter Description. 688

MBUS: MBUS Transactionccoiviinenn. 689
AtaGIaNCe . ..o 689
Short Description 690
Representation: MBUS - Modbus Il Transfer. 691
Parameter Description. 692
The MBUS Get Statistics Function 694
MRTM: Multi-Register Transfer Module................. 699
AtaGlance 699
Short DesCription oot 700
Representation: MRTM - Multi-Register Transfer Module. 701
Parameter Description. 702
MSPX (SeripleX)ooiiii ittt iiinn e innnnns 705
AtA GIaNCE . . .o 705
Short Description: MSPX (Seriplex). 706
Representation: MSPX (Seriplex) 707
MSTR: Master.ottt iiinannerrnnnnns 709
AtaGlance e 709
Short Description 711
Representation: MSTR - Master Instruction. 712
Parameter Description. 713
Write MSTR Operation.o e 717
READ MSTR Operation.ot e 719
Get Local Statistics MSTR Operationco i, 721
Clear Local Statistics MSTR Operation., 723
Write Global Data MSTR Operation. 725
Read Global Data MSTR Operationt 726
Get Remote Statistics MSTR Operation, 727
Clear Remote Statistics MSTR Operation., 729
Peer Cop Health MSTR Operation 731
Reset Option Module MSTR Operation., 734
Read CTE (Config Extension Table) MSTR Operation. 736
Write CTE (Config Extension Table) MSTR Operation 738
Modbus Plus Network Statistics.o i i 740
TCP/IP Ethernet Statistics i e 745
Run Time Errors e 746
Modbus Plus and SY/MAX Ethernet Error Codest 747
SY/MAX-specific Error Codes 749
TCP/IP Ethernet Error Codest 751
CTE Error Codes for SY/MAX and TCP/IP Ethernet. 754
MU16: Multiply 16 Bit.o e 755
AtaGIaNCe . ..o 755

840USE10100 April 2004

Short DesCription.o 756

Representation: MU16 - 16-Bit Multiplication 757

Chapter 113 MUL: Multiplyccoii it e e e i nann s 759
AtaGlance 759

Short Description. e 760

Representation: MUL - Single Precision Multiplication 761

EXample ... 762

Chapter 114 NBIT: BitControl. it i i ainnn 763
AtaGlance 763

Short DesCription.o 764

Representation: NBIT - Normal Bit, 765

Chapter 115 NCBT: Normally Closed Bit..................., 767
Ata GlanCeo 767

Short DesCription.o 768

Representation: NCBT - Bit Normally Closed 769

Chapter 116 NOBT: NormallyOpenBitot 771
AtaGlance 771

Short Description. e 772

Representation: NOBT - Bit NormallyOpen 773

Chapter 117 NOL: Network Option Module for Lonworks 775
AtaGlance 775

Short DesCription.o 776

Representation: NOL - Network Option Module for Lonworks 777

Detailed Description 778

PartV Instruction Descriptions (OtoQ)................. 781
AtaGlance 781

Chapter 118 OR:Logical OR.......... ...t i i nnn 783
AtaGlance 783

Short Description. 784

Representation: OR - Logical Or. 785

Parameter Description. e 787

Chapter 119 PCFL: Process Control Function Library................ 789
AtaGlance 789

Short Description. e 790

Representation: PCFL - Process Control Function Library. 791

Parameter Description. 792

Chapter 120 PCFL-AIN: AnalogInput. oo 797
AtaGlance 797

840USE10100 April 2004 XXi

Chapter 121

Chapter 122

Chapter 123

Chapter 124

Chapter 125

Chapter 126

Chapter 127

Short DesCriptionot e 798
Representation: PCFL - AIN - Convert Inputs to Scaled Engineering Units . . . 799

Parameter Description. 800
PCFL-ALARM: Central Alarm Handler.................. 803
AtaGIaNCe . ..o 803
Short Description 804
Representation: PCFL - ALRM - Central Alarm Handler for a P(v) Input. 805
Parameter Description. 806
PCFL-AOUT: AnalogOutput.............ccciiiinnnt. 809
AtaGIaNCE . ..o 809
Short DesCriptionot 810
Representation: PCFL - AOUT - Convert Outputs to Values in the

Othrough 4095 Range.ot e 811
Parameter Description. e 812
PCFL-AVER: Average Weighted Inputs Calculate 813
AtaGIaNCe 813
Short Description e 814
Representation: PCFL - AVER - Average Weighted Inputs. 815
Parameter Description. 816
PCFL-CALC: Calculated presetformula 819
AtaGIaNCE . ..o 819
Short DesCriptionot e 820
Representation: PCFL - CALC - Calculate Present Formula. 821
Parameter Description. 822
PCFL-DELAY: Time Delay Queue. 825
AtaGIanCe . ..o 825
Short Descriptiono e 826
Representation: PCFL - DELY - Time Delay Queue 827
Parameter Description. 828
PCFL-EQN: Formatted Equation Calculator 829
AtaGIaNCE . ..o 829
Short DesCriptionot e 830
Representation: PCFL - EQN - Formatted Equation Calculator 831
Parameter Description. 832
PCFL-INTEG: Integrate Input at Specified Interval 835
AtaGIanCe . ..o 835
Short Description e 836
Representation: PCFL - INTG - Integrate Input at Specified Interval. 837
Parameter Description. 838

XXii

840USE10100 April 2004

Chapter 128

PCFL-KPID: Comprehensive ISA Non Interacting PID 839

AtaGlance 839
Short DesCription.o e 840
Representation: PCFL - KPID - Comprehensive ISA Non-Interacting
Proportional-Integral-Derivative. 841
Parameter Description. e 842
Chapter 129 PCFL-LIMIT: Limiter forthePv 845
AtaGlanceo 845
Short Description.t 846
Representation: PCFL - LIMIT - Limiter forthe P(v) 847
Parameter Description. e 848
Chapter 130 PCFL-LIMV: Velocity Limiter for Changes inthePv 849
AtaGlanceo 849
Short DesCription. e 850
Representation: PCFL - LIMV - Velocity Limiter for Changes in the P(v) 851
Parameter Description.o e 852
Chapter 131 PCFL-LKUP: Look-upTable...............ccoiivviinnn. 853
AtaGlance 853
Short Description. 854
Representation: PCFL - LKUP - Look-up Table 855
Parameter Description. e 856
Chapter 132 PCFL-LLAG: First-order Lead/Lag Filter 859
AtaGlance 859
Short DesCription. e 860
Representation: PCFL - LLAG - First-Order Lead/Lag Filter. 861
Parameter Description. 862
Chapter 133 PCFL-MODE: Put Input in Auto or Manual Mode.......... 863
AtaGlance 863
Short Description.t 864
Representation: PCFL - MODE - Put Input in Auto or Manual Mode 865
Parameter Description. e 866
Chapter 134 PCFL-ONOFF: ON/OFF Values for Deadband 867
AtaGlance 867
Short DesCription.o e 868
Representation: PCFL - ONOFF - Specifies ON/OFF Values for Deadband . . 869
Parameter Description. e 870
Chapter 135 PCFL-PI: ISA Non InteractingPl 873
AtaGlance 873
Short Description. 874
Representation: PCFL- Pl e 875
840USE10100 April 2004 XXiii

Chapter 136

Chapter 137

Chapter 138

Chapter 139

Chapter 140

Chapter 141

Chapter 142

Parameter Description. 876

PCFL-PID: PID Algorithmsciiiiinn... 879
AtaGIaNCE . ..o 879
Short Description 880
Representation: PCFL - PID - Algorithms 881
Parameter Description. e 882
PCFL-RAMP: Ramp to Set Point at a Constant Rate 885
AtaGIaNCe . ..o 885
Short Description 886
Representation: PCFL - RAMP - Ramp to Set Point at Constant Rate 887
Parameter Description. 888

PCFL-RATE: Derivative Rate Calculation over a Specified

Timeme.ot ittt 891
AtaGIaNCE . ..o 891
Short DesCriptionot e 892
Representation: PCFL - RATE - Derivative Rate Calculation Over a

Specified TIMe. . ..ot 893
Parameter Description. 894
PCFL-RATIO: Four Station Ratio Controller 895
AtaGIaNCe 895
Short Description 896
Representation: PCFL - RATIO - Four-Station Ratio Controller 897
Parameter Description. 898
PCFL-RMPLN: Logarithmic Ramp to Set Point........... 901
AtaGIaNCE . ..o 901
Short DesCriptionot e 902
Representation: PCFL - RMPLN - Logarithmic Ramp to Set Point 903
Parameter Description. 904
PCFL-SEL: Input Selection.................cciiinatn 905
AtaGIanCe . ..o 905
Short Description 906
Representation: PCFL - SEL - High/Low/Average Input Selection 907
Parameter Description. 908
PCFL-TOTAL: Totalizer for Metering Flow 911
AtaGIaNCE . ..o 911
Short DesCriptionot e 912
Representation: PCFL - TOTAL - Totalizer for Metering Flow. 913
Parameter Description. 914

XXiv

840USE10100 April 2004

Chapter 143 PEER: PEER Transaction...............c.oiiiinrnnnnns 917
AtaGlance 917

Short DesCription.o e 918

Representation: PEER - Modbus Il Identical Transfer 919

Parameter Description.o 920

Chapter 144 PID2: Proportional Integral Derivative 921
AtaGlance 921

Short Description. 922

Representation: PID2 - Proportional/Integral/Derivative 923

Detailed Description e 924

Parameter Description. 927

RUNTIME ErrOrso e 932

Part VI Instruction Descriptions (Rto2) 935
AtaGlanceo 935

Chapter 145 R -->T: RegistertoTable..................o ut. 937
AtaGlanceo 937

Short Description. 938

Representation: R — T - Registerto TableMove 939

Parameter Description.t 940

Chapter 146 RBIT:ResetBit............. .. 941
AtaGlance 941

Short DesCription. e 942

Representation: RBIT-ResetBit 943

Chapter 147 READ:Read.............c.iiiiiiiiiiiiiii ity 945
AtaGlance 945

Short DesCription. e 946

Representation: READ - Read ASClI Port 947

Parameter Description.o e 948

Chapter 148 RET: Return from a Subroutine........................ 951
AtaGlance 951

Short Description. 952

Representation: RET - Return to Scheduled Logic. 953

Chapter 149 RTTI - RegistertolnputTable......................... 955
ALA GIANCE. . .ot 955

Short Description: RTTI - Registerto Input Table. 956

Representation: RTTI - Registerto InputTable 957

Chapter 150 RTTO - Registerto OutputTable....................... 959
ALA GIANCE. . .ot 959

Short Description: RTTO - Register to Output Table. 960

840USE10100 April 2004 XXV

Chapter 151

Chapter 152

Chapter 153

Chapter 154

Chapter 155

Chapter 156

Chapter 157

Chapter 158

Chapter 159

Representation: RTTO - Registerto Output Table 961

RTU - Remote Terminal Unit.......................... 963
ALA GIaNCE . . .o 963
Short Description: RTU - Remote Terminal Unit 964
Representation: RTU - Remote Terminal Unit. 965
SAVE:SaveFlash i, 969
AtaGIaNCe . ..o 969
Short Description 970
Representation: SAVE -Save 971
Parameter Description. 972
SBIT:SetBit...........ciiiiiiiiii i i it e innnnns 973
AtaGIaNCE . ..o 973
Short DesCriptionot e 974
Representation: SBIT -SetBit. i 975
SCIF: Sequential Control Interfaces. 977
AtaGIaNCE . ..o 977
Short Description e 978
Representation: SCIF - Sequential Control Interface. 979
Parameter Description. 981
SENS:Sensecciiiiiiiirinnrnnnrrnnnrnnnens 983
AtaGIaNCe . ..o 983
Short DesCriptionot e 984
Representation: SENS - Logical Bit-Sense 985
Parameter Description. 986
£ 1o 987
AtAGIaNCE . . .o 987
Short Description: Shorts. 988
Representation: Shorts 989
SKP - SkippingNetworksot 991
AtA GIaNCE . . .o 991
Short Description: SKP - Skipping Networks 992
Representation: SKP - Skipping Networks 993
SRCH:Search.cciiiiiiii it iiaeinnees 995
AtaGIaNCE . ..o 995
Short DesCriptionot 996
Representation: SRCH-Search i 997
Parameter Description. e 999
STAT:Statusccoiiiiiii it i e ennn s 1001
AtaGIanCeo 1001

XXVi

840USE10100 April 2004

Short DesCription. 1002

Representation: STAT - Statuso e 1003
Parameter Description.t 1004
Description ofthe Status Table. 1005
Controller Status Words 1 - 11 for Quantum and Momentum. 1009
I/0O Module Health Status Words 12 - 20 for Momentum 1014
I/O Module Health Status Words 12 - 171 for Quantum 1016
Communication Status Words 172 - 277 for Quantum 1018
Controller Status Words 1 - 11 for TSX Compact and Atrium. 1023
I/0O Module Health Status Words 12 - 15 for TSX Compact 1026
Global Health and Communications Retry Status Words 182 ... 184 for TSX
COMPACT . ..t 1027
Chapter 160 SU16: Subtract16Bit...................ccoiiiiinnnn. 1029
AtaGlance o 1029
Short DescCription. 1030
Representation: SU16 - 16-bit Subtraction. 1031
Chapter 161 SUB: Subtractioncciiiiiiiiiiiinnnns 1033
AtaGlance o 1033
Short Description.o i 1034
Representation: SUB - Subtraction. i, 1035
Chapter 162 SWAP-VMEBitSwapcciiiiiiiiiiiinnnnns 1037
ALA GIANCE. . . ot 1037
Short Description: SWAP - VME BitSwap, 1038
Representation: SWAP - VME BitSwap. 1039
Chapter 163 TTR -Tableto Registercciuat, 1041
AtA GIANCE. . . ot 1041
Short Description: TTR - Tableto Register. 1042
Representation: TTR - Tableto Register 1043
Chapter 164 T-->RTabletoRegister, 1045
AtaGlance o 1045
Short Description.o i 1046
Representation: T — R - Table to RegisterMove 1047
Parameter Description. 1049
Chapter 165 T-->T:TabletoTable................... ..o, 1051
AtaGlance 1051
Short DescCription. 1052
Representation: T— T - Tableto TableMove 1053
Parameter Description. e 1055
Chapter 166 T.01 Timer: One Hundredth Second Timer.............. 1057
AtaGlance 1057
840USE10100 April 2004 XXVii

Chapter 167

Chapter 168

Chapter 169

Chapter 170

Chapter 171

Chapter 172

Chapter 173

Chapter 174

Short DesCription ot e 1058

Representation: T.01 - One Hundredth of a Second Timer. 1059
T0.1 Timer: One Tenth Second Timer 1061
AtaGIanCeo 1061
Short Descriptiono 1062
Representation: T0.1 - One Tenth of a Second Timer. 1063
T1.0 Timer: One Second Timer.ccovuuunnn 1065
AtaGIanCeo 1065
Short Description 1066
Representation: T1.0- One Second Timero, 1067
T1MS Timer: One Millisecond Timer 1069
AtaGIanCe 1069
Short DesCription ot e 1070
Representation: TIMS - One Millisecond Timer 1071
Example. 1072
TBLK: TabletoBlock., 1073
AtaGIlanCeo 1073
Short Description 1074
Representation: TBLK - Table-to-Block Move 1075
Parameter Description. e 1077
TEST: Testof2Valuesccciiiiiiiann. 1079
AtaGIaNCe 1079
Short DesCription ot e 1080
Representation: TEST - Testof2Values 1081
UCTR:UpCounter..........coiiiiriinnnnnnrrnnnnns 1083
AtaGIaNCe 1083
Short Description e 1084
Representation: UCTR -UpCounter i, 1085
VMER-VMEReadc0iiiiiiiiiiiiiinnnnns 1087
AtA GIaNCE . . .o 1087
Short Description: VMER-VMERead, 1088
Representation: VMER-VMERead 1089
Parameter Description: VMER-VMERead 1090
VMEW -VMEWrite.o it innnnnnns 1091
AtAGIaNCE . ..o 1091
Short Description: VMEW -VME Writeo i 1092
Representation: VMEW - VME Write. 1093
Parameter Description: VMEW -VME Write 1095

xxviii

840USE10100 April 2004

Chapter 175 WRIT: Write it it i innans 1097
AtaGlance o 1097

Short DescCription. 1098

Representation: WRIT - Write ASClI Port. 1099

Parameter Description.t 1100

Chapter 176 XMIT-Transmit. ittt ittt innnnns 1103
ALA GIANCE. . . ot 1103

General Description: XMIT - Transmit. 1104

XMIT Modbus Functions e 1105

Chapter 177 XMIT CommunicationBlock 1111
ALA GIANCE. . . ot 1111

Short Description: XMIT CommunicationBlock 1112

Representation: XMIT CommunicationBlock 1113

Parameter Description: Middle Node - Communication Control Table 1115

Parameter Description: XMIT Communication Block 1119

Parameter Description: XMIT Communications Block 1121

Chapter 178 XMIT Port StatusBlockciiiiiiinnnnns 1123
ALA GIANCE. . . ot 1123

Short Description: XMIT Port Status Block 1124

Representation: XMIT Port Status Block. 1125

Parameter Description: Middle Node - XMIT Conversion Block 1127

Chapter 179 XMIT ConversionBlockot 1131
AtA GIANCE. . . ot 1131

Short Description: XMIT Conversion Block 1132

Representation: XMIT ConversionBlock 1133

Parameter Description: XMIT ConversionBlock. 1135

Chapter 180 XMRD: Extended MemoryRead 1139
AtaGlance 1139

Short Description. 1140

Representation: XMRD - Extended Memory Read 1141

Parameter Description. e 1142

Chapter 181 XMWT: Extended Memory Write 1145
AtaGlance o 1145

Short DescCription. 1146

Representation: XMWT - Extended Memory Write. 1147

Parameter Description. 1148

Chapter 182 XOR: Exclusive OR.ttt it iinnnnns 1151
AtaGlance 1151

Short Description.ot 1152

Representation: XOR - Boolean Exclusive Or. 1153

840USE10100 April 2004 XXiX

AppendiCesiiiii et a s 1157
Optimizing RIO Performance with the Segment Scheduler. 1157

Appendix A AppendiX A....... ...t i 1159
Optimizing RIO Peformance with the Segment Scheduler 1159

SCaAN TIME . . ot e 1160

HowtoMeasure Scan Time.ttt e 1164

Maximizing Throughput 1165

Order of SOIVe oo 1167

Using Segment Scheduler to Improve Critical I/O Throughput 1168

Using Segment Scheduler to Improve System Performance. 1169

Using Segment Scheduler to Improve Communication Port Servicing 1170

Sweep FUNCHONS 1171

GloSSaryiiiii i e, XXXV
INdeX ... e Ivii

XXX 840USE10100 April 2004

Safety Information = <

Important Information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with
the device before trying to install, operate, or maintain it. The following special
messages may appear throughout this documentation or on the equipment to warn
of potential hazards or to call attention to information that clarifies or simplifies a
procedure.

The addition of this symbol to a Danger or Warning safety label indicates
A that an electrical hazard exists, which will result in personal injury if the

instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal
injury hazards. Obey all safety messages that follow this symbol to avoid

possible injury or death.

A DANGER

DANGER indicates an imminently hazardous situation, which, if not avoided, will
result in death, serious injury, or equipment damage.

A\ WARNING

WARNING indicates a potentially hazardous situation, which, if not avoided, can result
in death, serious injury, or equipment damage.

/\ CAUTION

CAUTION indicates a potentially hazardous situation, which, if not avoided, can result
in injury or equipment damage.

840USE10100 April 2004

XXXi

Safety Information

PLEASE NOTE Electrical equipment should be serviced only by qualified personnel. No responsi-
bility is assumed by Schneider Electric for any consequences arising out of the use
of this material. This document is not intended as an instruction manual for untrained
persons.
© 2004 Schneider Electric. All Rights Reserved.

XXXii 840USE10100 April 2004

About the Book

At a Glance

Document Scope

Validity Note

Related
Documents

This documentation will help you configure LL 984 instructions to any controller
using ProWorx NxT, ProWorx 32 or Modbus Plus. Examples in this book are used
with ProWorx 32. For LL 984 using Concept software, see Concept Block Library
LL984 (840USE49600).

The data and illustrations found in this book are not binding. We reserve the right to
modify our products in line with our policy of continuous product development. The
information in this document is subject to change without notice and should not be
construed as a commitment by Schneider Electric.

Title of Documentation Reference Number

Concept Block Library LL 984 840USE49600

840USE10100 April 2004

XXXiii

About the Book

Product Related
Warnings

User Comments

Schneider Electric assumes no responsibility for any errors that may appear in this
document. If you have any suggestions for improvements or amendments or have
found errors in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic
or mechanical, including photocopying, without express written permission of
Schneider Electric.

All pertinent state, regional, and local safety regulations must be observed when
installing and using this product. For reasons of safety and to ensure compliance
with documented system data, only the manufacturer should perform repairs to
components.

When controllers are used for applications with technical safety requirements,
please follow the relevant instructions.

Failure to use Schneider Electric software or approved software with our hardware
products may result in injury, harm, or improper operating results.

Failure to observe this product related warning can result in injury or equipment
damage.

We welcome your comments about this document. You can reach us by e-mail at
TECHCOMM@maodicon.com

XXXiV

840USE10100 April 2004

Instruction Descriptions (O to Q)

\')

At a Glance

Introduction In this part instruction descriptions are arranged alphabetically from O to Q.

840USE10100 April 2004 781

Instruction Descriptions (O to Q)

What's in this This part contains the following chapters:

Part? Chapter Chapter Name Page
118 OR: Logical OR 783
119 PCFL: Process Control Function Library 789
120 PCFL-AIN: Analog Input 797
121 PCFL-ALARM: Central Alarm Handler 803
122 PCFL-AOUT: Analog Output 809
123 PCFL-AVER: Average Weighted Inputs Calculate 813
124 PCFL-CALC: Calculated preset formula 819
125 PCFL-DELAY: Time Delay Queue 825
126 PCFL-EQN: Formatted Equation Calculator 829
127 PCFL-INTEG: Integrate Input at Specified Interval 835
128 PCFL-KPID: Comprehensive ISA Non Interacting PID 839
129 PCFL-LIMIT: Limiter for the Pv 845
130 PCFL-LIMV: Velocity Limiter for Changes in the Pv 849
131 PCFL-LKUP: Look-up Table 853
132 PCFL-LLAG: First-order Lead/Lag Filter 859
133 PCFL-MODE: Put Input in Auto or Manual Mode 863
134 PCFL-ONOFF: ON/OFF Values for Deadband 867
135 PCFL-PI: ISA Non Interacting Pl 873
136 PCFL-PID: PID Algorithms 879
137 PCFL-RAMP: Ramp to Set Point at a Constant Rate 885
138 PCFL-RATE: Derivative Rate Calculation over a Specified Timeme 891
139 PCFL-RATIO: Four Station Ratio Controller 895
140 PCFL-RMPLN: Logarithmic Ramp to Set Point 901
141 PCFL-SEL: Input Selection 905
142 PCFL-TOTAL: Totalizer for Metering Flow 911
143 PEER: PEER Transaction 917
144 PID2: Proportional Integral Derivative 921

782 840USE10100 April 2004

OR: Logical OR

118

At a Glance

Introduction This chapter describes the instruction OR.

What's in this This chapter contains the following topics:

2

Chapter? Topic Page
Short Description 784
Representation: OR - Logical Or 785
Parameter Description 787

840USE10100 April 2004 783

OR: Logical OR

Short Description

Function The OR instruction performs a Boolean OR operation on the bit patterns in the
Description source and destination matrices.
The ORed bit pattern is then posted in the destination matrix, overwriting its previous
contents.
0 1 1 0

SOL.ITCG / L L L L destination
bits \TOR—l FOR—l roRl TORl) obis

0 0 0 1 1 1 1 1

WARNING

Overriding of any disabled coils within the destination matrix
without enabling them

OR will override any disabled coils within the destination matrix without
enabling them. This can cause personal injury if a coil has disabled an
operation for maintenance or repair because the coil’s state can be
changed by the OR operation.

Failure to follow this precaution can result in death, serious injury,
or equipment damage.

784 840USE10100 April 2004

OR: Logical OR

Representation: OR - Logical Or

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT — —— ACTIVE

source

matrix
Source matrix

destination
matrix
Source bit: 0011
OR Compare bit: 0101
) Result bit: 0111
Length: 1 to 100 registers | h
(16 to 1600 bits) engt
Parameters State RAM Data Type Meaning
Reference

Top input 0x, 1x None Initiates OR
source matrix | 0x, 1x, 3x, 4x | ANY_BIT First reference in the source matrix.
(top node)
destination 0x, 4x ANY_BIT First reference in the destination matrix
matrix
(middle node)
length INT, UINT Matrix length, range: 1 ... 100.
(bottom node)
Top output 0x None Echoes state of the top input

840USE10100 April 2004

785

OR: Logical OR

An OR Example Whenever contact 10001 passes power, the source matrix formed by the bit pattern
in registers 40600 and 40601 is ORed with the destination matrix formed by the bit
pattern in registers 40606 and 40607. The ORed bit pattern is then copied into
registers 40606 and 40607, overwriting the original destination bit pattern.

source matrix

40600 = 1111111100000000 40601 = 1111111100000000
4‘ ‘7 40600 —
10001 Original destination matrix
40606 40606 = 1111111111111111 40607 = 0000000000000000
OR
00002

ORed destination matrix
40606 = 1111111111111111 40607 = 1111111100000000

CAUTION

Outputs and coils cannot be turned off with the OR instruction.

Failure to follow this precaution can result in injury or equipment
damage.

Note: If you want to retain the original destination bit pattern of registers 40606 and
40607, copy the information into another table using the BLKM instruction before
performing the OR operation.

786 840USE10100 April 2004

OR: Logical OR

Parameter Description

Matrix Length The integer entered in the bottom node specifies the matrix length, i.e. the number
(Bottom Node) of registers or 16-bit words in the two matrices. The matrix length can be in the range
1...100. A length of 2 indicates that 32 bits in each matrix will be ORed.

840USE10100 April 2004 787

OR: Logical OR

788 840USE10100 April 2004

PCFL:
Process Control Function Library

119

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the instruction PCFL.

This chapter contains the following topics:

Topic Page

Short Description 790
Representation: PCFL - Process Control Function Library 791
Parameter Description 792

840USE10100 April 2004

789

PCFL: Process Control Function Library

Short Description

Function
Description

The PCFL instruction gives you access to a library of process control functions
utilizing analog values.

PCFL operations fall into three major categories.

e Advanced Calculations

e Signal Processing

e Regulatory Control

A PCFL function is selected from a list of alphabetical subfunctions in a pulldown
menu in the panel software, and the subfunction is displayed in the top node of the
instruction (see Function (Top Node), p. 792 for a list of subfunctions and
descriptions).

PCFL uses the same FP library as EMTH. If the PLC that you are using for PCFL
does not have the onboard 80x87 math coprocessor chip, calculations take a
comparatively long time to execute. PLCs with the math coprocessor can solve
PCFL calculations ten times faster than PLCs without the chip. Speed, however,
should not be an issue for most traditional process control applications where
solution times are measured in seconds, not milliseconds.

790

840USE10100 April 2004

PCFL: Process Control Function Library

Representation: PCFL - Process Control Function Library

Symbol Representation of the instruction
CONTROL INPUT — —— OPERATION SUCCESSFUL
function
L ERROR
parameter
block
PCFL
Length: 1 - 255
length
Parameter
Description Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = enables specified process control
function
function Selection of process control function
(top node) An indicator for the selected PCFL library
function is specified in the top node.
(For more information, see Function (Top
Node), p. 792.)
parameter 4x INT, UINT, First in a block of contiguous holding
block WORD registers where the parameters for the
(middle node) specified subfunction are stored
length INT, UINT Length of parameter block (depending on
(bottom node) selected subfunction
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004

791

PCFL: Process Control Function Library

Parameter Description

Function A subfunction for the selected PCFL library function is specified in the top node.
(Top Node) Operation | Subfunction | Description Time-
dependent
Operations

Advanced |AVER Average weighted inputs no
Calculations | caLc Calculate preset formula no

EQN Formatted equation calculator no
Signal ALARM Central alarm handler for a PV input no
Processing | p|N Convert inputs to scaled engineering units no

AOUT Convert outputs to values in the 0 ... 4095 range | no

DELAY Time delay queue yes

LKUP Look-up table no

INTEG Integrate input at specified interval yes

LLAG First-order lead/lag filter yes

LIMIT Limiter for the PV (low/low, low, high, high/high) | no

LIMV Velocity limiter for changes in the PV (low, high) |yes

MODE Put input in auto or manual mode no

RAMP Ramp to set point at a constant rate yes

RMPLN Logarithmic ramp to set point (~2/3 closer to set | yes

point for each time constant)

RATE Derivative rate calculation over a specified time |yes

SEL High/low/average input selection no
Regulatory | KPID Comprehensive ISA non-interacting yes
Control proportional-integral-derivative (PID)

ONOFF Specifies ON/OFF values for deadband no

PID PID algorithms yes

PI ISA non-interacting PI (with halt/manual/auto yes

operation features)
RATIO Four-station ratio controller no
TOTAL Totalizer for metering flow yes

792 840USE10100 April 2004

PCFL: Process Control Function Library

Advanced
Calculations

Signal
Processing

Regulatory
Control

Parameter Block
(Middle Node)

Advanced calculations are used for general mathematical purposes and are not
limited to process control applications. With advanced calculations, you can create
custom signal processing algorithms, derive states of the controlled process, derive
statistical measures of the process, etc.

Simple math routines have already been offered in the EMTH instruction. The
calculation capability included in PCFL is a textual equation calculator for writing
custom equations instead of programming a series of math operations one by one.

Signal processing functions are used to manipulate process and derived process
signals. They can do this in a variety of ways; they linearize, filter, delay, and
otherwise modify a signal. This category would include functions such as an Analog
Input/Output, Limiters, Lead/Lag, and Ramp generators.

Regulatory functions perform closed loop control in a variety of applications.
Typically, this is a PID (proportional integral derivative) negative feedback control
loop. The PID functions in PCFL offer varying degrees of functionality. Function 75,
PID, has the same general functionality as the PID2 instruction but uses floating
point math and represents some options differently. PID is beneficial in cases where
PID2 is not suitable because of numerical concerns such as round-off.

For more information, see PCFL Subfunctions, p. 79.

The 4x register entered in the middle node is the first in a block of contiguous holding
register where the parameters for the specified PCFL operation are stored.

The ways that the various PCFL operations implement the parameter block are
described in the description of the various subfunctions (PCFL operations).

Within the parameter block of each PCFL function are two registers used for input
and output status.

840USE10100 April 2004

793

PCFL: Process Control Function Library

Output Flags In all PCFL functions, bits 12 ... 16 of the output status register define the following
standard output flags:

tl2fs]a]s]e]7]8]0 10| 1n|2|1s|1al1s|16

Bit Function

1-11 Not used

12 1 = Math error - invalid floating point or output

13 1 = Unknown PCFL function

14 not used

15 1 = Size of the allocated register table is too small

16 1 = Error has occurred - pass power to the bottom output

For time-dependent PCFL functions, bits 9 and 11 are also used as follows:

tl2fs]a]s]e]7]8] 010 1n|2|1s|1al1s|16

Bit Function

1-8 Not used

9 1 = Initialization working

10 Not used

11 1 = lllegal solution interval

12 1 = Math error - invalid floating point or output

13 1 = Unknown PCFL function

14 not used

15 1 = Size of the allocated register table is too small

16 1 = Error has occurred - pass power to the bottom output

794 840USE10100 April 2004

PCFL: Process Control Function Library

Input Flags

Length
(Bottom Node)

In all PCFL functions, bits 1 and 3 of the input status register define the following
standard input flags:

1l2|s|afs|e]7]8]o]10]112]1s]1a|15|16

Bit

Function

1

1 = Function initialization complete or in progress
0 = Initialize the function

not used

1 = Timer override

not used

The integer value entered in the bottom node specifies the length, i.e. the number of
registers, of the PCFL parameter block. The maximum allowable length will vary
depending on the function you specify.

840USE10100 April 2004

795

PCFL: Process Control Function Library

796 840USE10100 April 2004

PCFL-AIN: Analog Input

120

At a Glance

Introduction This chapter describes the subfunction PCFL-AIN.

What's in this This chapter contains the following topics:

?

Chapter? Topic Page
Short Description 798
Representation: PCFL - AIN - Convert Inputs to Scaled Engineering Units 799
Parameter Description 800

840USE10100 April 2004

797

PCFL-AIN: Analog Input

Short Description

Function
Description

Note: This instruction is a subfunction of the PCFL instruction. It belongs to the
category Signal Processing.

The AIN function scales the raw input produced by analog input modules to
engineering values that can be used in the subsequent calculations.

Three scaling options are available.

e Auto input scaling

e Manual input scaling

e Implementing process square root on the input to linearize the signal before
scaling

798

840USE10100 April 2004

PCFL-AIN: Analog Input

Representation: PCFL - AIN - Convert Inputs to Scaled Engineering Units

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT —— —— OPERATION SUCCESSFUL
AIN
. ERROR
parameter
block
PCFL
#14
Parameters State RAM Data Type Meaning
Reference

Top input 0x, 1x None ON = enables specified process control

function
AIN Selection of the subfunction AIN
(top node)
parameter 4x INT, UINT First in a block of contiguous holding
block registers where the parameters for the
(middle node) specified subfunction are stored

For more information, see Parameter

Block (Middle Node), p. 801.
14 INT, UINT Length of parameter block for subfunction
(bottom node) AIN (can not be changed)
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004

799

PCFL-AIN: Analog Input

Parameter Description

Mode of
Functioning

AIN supports the range resolutions for following device types:

Quantum Engineering Ranges

Resolution Range: Valid Range: Under Range: Over
o0V 768 ... 64 768 767 64 769
\% 16 768 ... 48 768 16 767 48 769
0..10V 0... 64 000 0 64 001
0..5V 0...32 000 0 32 001
1.5V 6400 ... 32 000 6 399 32 001
Quantum Thermocouple
Resolution Range: Valid
TC degrees -454 ... +3 308
TC 0.1 degrees -4 540 ... +32 767
TC Raw Units 0..65535
Quantum Voltmeter
Resolution Range: Valid Range: Under Range: Over
10V -10 000 ... +10 000 -10 001 +10 001
5V -5 000 ... +5 000 -5 001 +5 001
0..10V 0...10 000 0 10 001
0..5V 0...5000 0 5001
1..5V 1000 ... 5000 999 5001

800

840USE10100 April 2004

PCFL-AIN: Analog Input

Parameter Block

(Middle Node)

Output Status

The length of the AIN parameter block is 14 registers.

Register Content
Displayed Input from a 3x register
First implied Reserved

Second implied

Output status

Third implied

Input status

Fourth and fifth implied

Scale 100% engineering units

Sixth and seventh implied

Scale 0% engineering units

Eighth and ninth implied Manual input

10th and 11th implied Auto input

12th and 13th implied Output

Bit Function

1.5 Not used

6 1 = with TC PSQRT, invalid: in extrapolation range, PSQRT not used
7 1 = input out of range

8 1 = echo under range from input module
9 1 = echo over range from input module
10 1 = invalid output mode selected

11 1 = invalid Engineering Units

12...16 | Standard output bits (flags)

840USE10100 April 2004

801

PCFL-AIN: Analog Input

Input Status

Bit Function

1..3 Standard input bits (flags)

4..8 Ranges (see following tables)

9 1 = process square root on raw input

10 1 = manual scaling mode
0 = auto scaling mode

11 1 = extrapolate over-/under-range for auto mode
0 = clamp over-/under-range for auto mode

12...16 Not used

Quantum Engineering Ranges

Bit

4 5 6 7 Range

0 1 0 0 +/- 10V

0 1 0 0 1 +/- 5V

0 1 0 1 0 0..10V

0 1 0 1 1 0..5V

0 1 1 0 0 1..5V
Quantum Thermocouple

Bit

4 5 6 7 8 Range

0 1 1 0 1 TC degrees
0 1 1 1 0 TC 0.1 degrees
0 1 1 1 1 TC raw units
Quantum Voltmeter

Bit

4 5 6 7 8 Range

1 0 0 0 0 +/- 10V

1 0 0 1 0 +/- 5V

1 0 1 0 0 0..10V

1 0 1 1 0 0..5V

1 1 0 0 0 1..5V

Note: Bit 4 in this register is nonstandard use.

802

840USE10100 April 2004

PCFL-ALARM: Central Alarm
Handler

121

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the subfunction PCFL-Alarm.

This chapter contains the following topics:

Topic Page

Short Description 804
Representation: PCFL - ALRM - Central Alarm Handler for a P(v) Input 805
Parameter Description 806

840USE10100 April 2004

803

PCFL-ALARM: Central Alarm Handler

Short Description

Function
Description

Note: This instruction is a subfunction of the PCFL instruction. It belongs to the
category Signal Processing.

The ALARM function gives you a central block for alarm handling where you can set
high (H), low (L), high high (HH), and low low (LL) limits on a process variable.
ALARM lets you specify

e A choice of normal or deviation operating mode

e Whether to use H/L or both H/L and HH/LL limits

e Whether or not to use deadband (DB) around the limits

804

840USE10100 April 2004

PCFL-ALARM: Central Alarm Handler

Representation: PCFL - ALRM - Central Alarm Handler for a P(v) Input

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT — —— OPERATION SUCCESSFUL
ALRM
| ERROR
parameter
block
PCFL
#16
Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = enables specified process control
function
ALRM Selection of the subfunction ALARM
(top node)
parameter 4x INT, UINT, First in a block of contiguous holding
block WORD registers where the parameters for the
(middle node) specified subfunction are stored
For more information, see Parameter
Block (Middle Node), p. 806.
16 INT, UINT Length of parameter block for subfunction
(bottom node) ALARM (can not be changed)
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004

805

PCFL-ALARM: Central Alarm Handler

Parameter Description

Mode of The following operating modes are available.
Functioning Mode Meaning
Normal Operating Mode | ALARM operates directly on the input. Normal is the default
condition
Deviation Operating ALARM operates on the change between the current input and
Mode the last input.
Deadband When enabled, the DB option is incorporated into the HH/H/LL/L

limits. These calculated limits are inclusive of the more extreme
range, e.g. if the input has been in the high range, the output
remains high and does not transition when the input hits the
calculated H limit.

Operations A flag is set when the input or deviation equals or crosses the
corresponding limit. If the DB option is used, the HH, H, LL, L
limits are adjusted internally for crossed-limit checking and
hysteresis.

Note: ALARM automatically tracks the last input, even when you specify normal
mode, to facilitate a smooth transition to deviation mode.

Parameter Block The length of the ALARM parameter block is 16 registers.

(Middle Node) Register Content
Displayed and first implied Input registers
Second implied Output status
Third implied Input status
Fourth and fifth implied HH limit value
Sixth and seventh implied H limit value
Eighth and ninth implied L limit value
10th and 11th implied LL limit value
12th and 13th implied Deadband (DB) around limit
14th and 15th implied Last input

806 840USE10100 April 2004

PCFL-ALARM: Central Alarm Handler

Output Status
Bit Function
1.4 Not used
5 1 = DB set to negative number
6 1 = deviation mode chosen with DB option
7 1 =LLcrossed (x < LL
8 1 =Lcrossed (x =< L orLL <x <L) with HH/LL option set
9 1 =H crossed (x = H or H < x < HH) with HH/LL option set
10 1 = HH crossed (x = HH)
11 1 = invalid limits specified

12...16 | Standard output bits (flags)

Input Status

Bit Function
1..4 Standard input bits (flags)
5 1 = deviation mode

0 = normal mode

1 = both H/L and HH/LL limits apply

1 = DB enabled

1 = retain H/L flag when HH/LL limits crossed
.16 Not used

Ol Nl O®

840USE10100 April 2004 807

PCFL-ALARM: Central Alarm Handler

808 840USE10100 April 2004

PCFL-AOUT: Analog Output

122

At a Glance

Introduction This chapter describes the subfunction PCFL-AOUT.

What's in this This chapter contains the following topics:

?

Chapter? Topic Page
Short Description 810
Representation: PCFL - AOUT - Convert Outputs to Values in the 0 through 811
4095 Range
Parameter Description 812

840USE10100 April 2004

809

PCFL-AOUT: Analog Output

Short Description

Function
Description

Formula

Note: This instruction is a subfunction of the PCFL instruction. It belongs to the
category Signal Processing.

The AOUT function is an interface for calculated signals for output modules. It

converts the signal to a value in the range 0 ... 4 096.

Formula of the AOUT function:

OUT =

scale x (IN-LEU)

(HEU - LEU)

The meaning of the elements:

Element Meaning

HEU High Engineering Unit
IN Input

LEU Low Engineering Unit
ouT Output

scale Scale

810

840USE10100 April 2004

PCFL-AOUT: Analog Output

Representation: PCFL - AOUT - Convert Outputs to Values in the 0 through 4095
Range

Symbol Representation of the instruction
CONTROL INPUT — —— OPERATION SUCCESSFUL
AOUT
| ERROR
parameter
block
PCFL
#9
Parameter
Description Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = enables specified process control
function
AOUT Selection of the subfunction AOUT
(top node)
parameter 4x INT, UINT First in a block of contiguous holding
block registers where the parameters for the
(middle node) specified subfunction are stored
For more information, see Parameter
Block (Middle Node), p. 812.
9 INT, UINT Length of parameter block for subfunction
(bottom node) AOUT (can not be changed)
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004 811

PCFL-AOUT: Analog Output

Parameter Description

Parameter Block

(Middle Node)

Output Status

Input Status

The length of the AOUT parameter block is 9 registers.

Register Content

Displayed and first implied Input in engineering units
Second implied Output status

Third implied Input status

Fourth and fifth implied High engineering units
Sixth and seventh implied Low engineering units
Eighth and ninth implied Output

Bit Function

1.7 Not used

8 1 = clamped low

9 1 = clamped high

10 not used

11 1 = invalid H/L limits

12...16 Standard output bits (flags)

Bit Function

1..4 Standard input bits (flags)

5..16 Not used

812

840USE10100 April 2004

PCFL-AVER: Average Weighted
Inputs Calculate

123

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the subfunction PCFL-AVER.

This chapter contains the following topics:

Topic Page

Short Description 814
Representation: PCFL - AVER - Average Weighted Inputs 815
Parameter Description 816

840USE10100 April 2004

813

PCFL-AVER: Average Weighted Inputs Calculate

Short Description

Function
Description

Formula

Note: This instruction is a subfunction of the PCFL instruction. It belongs to the

category Advanced Calculation.

The AVER function calculates the average of up to four weighted inputs.

Formula of the AVER function:

RES =

(k+ (wyxIny)+(wyxIny) + (w3 x Ing) + (w, x Iny))

The meaning of the elements:

1+w1+w2+w3+w4

Element

Meaning

Inputs

Constant

Result

Weights

814

840USE10100 April 2004

PCFL-AVER: Average Weighted Inputs Calculate

Representation: PCFL - AVER - Average Weighted Inputs

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT — — OPERATION SUCCESSFUL
AVER
. ERROR
parameter
block
PCFL
#24
Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = enables specified process control
function
AVER Selection of the subfunction AVER
(top node)
parameter 4x INT, UINT First in a block of contiguous holding
block registers where the parameters for the
(middle node) specified subfunction are stored
For more information, see Parameter
Block (Middle Node), p. 816.
24 INT, UINT Length of parameter block for subfunction
(bottom node) AVER (can not be changed)
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004

815

PCFL-AVER: Average Weighted Inputs Calculate

Parameter Description

Parameter Block
(Middle Node)

Output Status

The length of the AVER parameter block is 24 registers.

Register

Content

Displayed and first implied

reserved

Second implied

Output status

Third implied

Input status

Fourth and fifth implied Value of In1
Sixth and seventh implied Value of Inv2
Eighth and ninth implied Value of In3
10th and 11th implied Value of In4
12th and 13th implied Value of k
14th and 15th implied Value of wv1

16th and 17th implied

Value of wv2

18th and 19th implied

Value of wv3

20th and 21st implied

Value of wv4

22nd and 23rd implied

Value of result

‘1‘2‘3‘4’5’6’7’8‘9‘10‘11‘12’13’14’15‘16‘

Bit Function
1..9 Not used
10 1 = no inputs activated
11 1 = result negative
0 = result positive
12...16 Standard output bits (flags)

816

840USE10100 April 2004

PCFL-AVER: Average Weighted Inputs Calculate

Input Status

1]2]a|a|s |67 8]0[10]11]12]18]14]15]16]

Bit Function

N
I

Standard input bits (flags)

1 =1In4 and w4 are used

1 =1In38 and w3 are used

1 =1In2 and w2 are used

1 =1In1 and w1 are used

1 =k is active
0..16 Not used

- O O|N| O »

A weight can be used only when its corresponding input is enabled, e.g. the 20th
and 21st implied registers (which contain the value of w4) can be used only when
the 10th and 11th implied registers (which contain In4) are enabled. The | in the
denominator is used only when the constant is enabled.

840USE10100 April 2004

817

PCFL-AVER: Average Weighted Inputs Calculate

818 840USE10100 April 2004

PCFL-CALC:
Calculated preset formula

124

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the subfunction PCFL-CALC.

This chapter contains the following topics:

Topic Page

Short Description 820
Representation: PCFL - CALC - Calculate Present Formula 821
Parameter Description 822

840USE10100 April 2004

819

PCFL-CALC: Calculated preset formula

Short Description

Function

Description . . - : -
escriptio Note: This instruction is a subfunction of the PCFL instruction. It belongs to the

category Advanced Calculation.

The CALC function calculates a preset formula with up to four inputs, each
characterized in a separate register of the parameter block.

820 840USE10100 April 2004

PCFL-CALC: Calculated preset formula

Representation: PCFL - CALC - Calculate Present Formula

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT — — OPERATION SUCCESSFUL
CALC
. ERROR
parameter
block
PCFL
#14
Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = enables specified process control
function
CALC Selection of the subfunction CALC
(top node)
parameter 4x INT, UINT First in a block of contiguous holding
block registers where the parameters for the
(middle node) specified subfunction are stored
For more information, see Parameter
Block (Middle Node), p. 822.
14 INT, UINT Length of parameter block for subfunction
(bottom node) CALC (can not be changed)
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004

821

PCFL-CALC: Calculated preset formula

Parameter Description

Parameter Block
(Middle Node)

The length of the CALC parameter block is 14 registers.

Register Content
Displayed and first implied Reserved

Second implied Output status
Third implied Input status

Fourth and fifth implied Value of input A
Sixth and seventh implied Value of input B
Eighth and ninth implied Value of input C
10th and 11th implied Value of input D
12th and 13th implied Value of the output

Output Status
‘ 1 ‘2 ‘ 3 ‘ 4 ’ 5 ’ 6 ’ 7 ’ 8 ‘ 9 ‘10‘11‘12’13’14’15‘16‘
Bit Function
1...10 Not used
11 1 = bad input code chosen
12...16 Standard output bits (flags)
822 840USE10100 April 2004

PCFL-CALC: Calculated preset formula

Input Status

1]2]a|a|s|6|7 8|00

12] 18] 14| 15| 16

Bit Function

1..4 Standard input bits (flags)
not used

7..10 Formula Code

11...16 | Not used

Formula Code

Bit Formula Code

7 8 9 10

0 1 (AxB)-(CxD)
0 0 1 1 (AxB)/(CxD)
0 1 0 0 A/(Bx CxD)
0 1 0 1 (AxBxC)/D

0 1 1 0 AxBxCxD

0 1 1 1 A+B+C+D

1 0 0 0 A x B(C-D)

1 0 0 1 A[(B/C)D]

1 0 1 0 A xLN(B/C)

1 0 1 1 (A-B)—(C-D)/LN[(A-B)/(C-D)]
1 1 0 0 (A/B)FC/D)

1 1 0 1 (A-B)/(C-D)

840USE10100 April 2004

823

PCFL-CALC: Calculated preset formula

824 840USE10100 April 2004

PCFL-DELAY: Time Delay Queue

125

At a Glance

Introduction This chapter describes the subfunction PCFL-DELAY.

What's in this This chapter contains the following topics:

?

Chapter? Topic Page
Short Description 826
Representation: PCFL - DELY - Time Delay Queue 827
Parameter Description 828

840USE10100 April 2004 825

PCFL-DELAY: Time Delay Queue

Short Description

Function
Description

Note: This instruction is a subfunction of the PCFL instruction. It belongs to the
category Signal Processing.

The DELAY function can be used to build a series of readings for time-delay
compensation in the logic. Up to 10 sampling instances can be used to delay an
input.

All values are carried along in registers, where register x[0] contains the current
sampled input. The 10th delay period does not need to be stored. When the 10th
instance in the sequence takes place, the value in register x[9] can be moved
directly to the output

A DXDONE message is returned when the calculation is complete. The function can
be reset by toggling the first-scan bit.

826

840USE10100 April 2004

PCFL-DELAY: Time Delay Queue

Representation: PCFL - DELY - Time Delay Queue

Symbol Representation of the instruction
CONTROL INPUT — — OPERATION SUCCESSFUL
DELY
| ERROR
parameter
block
PCFL
#32
Parameter
Description Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = enables specified process control
function
DELY Selection of the subfunction DELY
(top node)
parameter 4x INT, UINT First in a block of contiguous holding
block registers where the parameters for the
(middle node) specified subfunction are stored
For more information, see Parameter
Block (Middle Node), p. 828.
32 INT, UINT Length of parameter block for subfunction
(bottom node) DELY (can not be changed)
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004 827

PCFL-DELAY: Time Delay Queue

Parameter Description

Parameter Block The length of the DELAY parameter block is 32 registers.

(Middle Node) Register

Content

Displayed and first implied

Input at time n

Second implied

Output status

Third implied Input status
Fourth implied Time register
Fifth implied Reserved

Sixth and seventh implied

At (in ms) since last solve

Eighth and ninth implied

Solution interval (in ms)

10th and 11th implied x[0] delay
12th and 13th implied x[1] delay
14th and 15th implied x[2] delay
28th and 29th implied x[9] delay

30th and 31st implied

Output registers

Output Status

‘1‘2‘3‘4’5’6’7’8‘9‘10‘11‘12’13’14’15‘16‘

Bit Function

1.3 Not used

4 1 =k out of range

5..8 Count of registers left to be initialized
9..16 Standard output bits (flags)

Input Status

1]2]alals 6|7 |8]9]10]11]12]13]14]15]16

Bit Function

1..4 Standard input bits (flags)

5..8 Time Delay < 10

9..11 Echo number of registers left to be initialized
12..16 | Not used

828

840USE10100 April 2004

PCFL-EQN:
Formatted Equation Calculator

126

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the subfunction PCFL-EQN.

This chapter contains the following topics:

Topic Page

Short Description 830
Representation: PCFL - EQN - Formatted Equation Calculator 831
Parameter Description 832

840USE10100 April 2004

829

PCFL-EQN: Formatted Equation Calculator

Short Description

Function
Description

Note: This instruction is a subfunction of the PCFL instruction. It belongs to the
category Advanced Calculation.

The EQN function is a formatted equation calculator. You must define the equation
in the parameter block with various codes that specify operators, input selection and
inputs.

EQN is used for equations that have four or fewer variables but do not fit into the
CALC format. It complements the CALC function by letting you input an equation
with floating point and integer inputs as well as operators.

830

840USE10100 April 2004

PCFL-EQN: Formatted Equation Calculator

Representation: PCFL - EQN - Formatted Equation Calculator

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT — —— OPERATION SUCCESSFUL
EQN
| ERROR
parameter
block
PCFL
#64
Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = enables specified process control
function
EQN Selection of the subfunction EQN
(top node)
parameter 4x INT, UINT First in a block of contiguous holding
block registers where the parameters for the
(middle node) specified subfunction are stored
For more information, see Parameter
Block (Middle Node), p. 832.
15 ... 64 INT, UINT Length of parameter block for subfunction
(bottom node) EQN
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004

831

PCFL-EQN: Formatted Equation Calculator

Parameter Description

Parameter Block The length of the EQN parameter block can be as high as 64 registers.

(Middle Node) Register Content
Displayed and first implied Reserved
Second implied Output status
Third implied Input status
Fourth and fifth implied Variable A
Sixth and seventh implied Variable B
Eighth and ninth implied Variable C
10th and 11th implied Variable D
12th and 13th implied Output
14th implied First formula code
15th implied Second possible formula code
63rd implied Last possible formula code

Output Status

1]2]alals 6|7 |8]9]10]11]12]13]14]15]16

Function

Stack error

Not used

Code of last error logged

1 = bad operator selection code

1 = EQN not fully programmed

1 = bad input code chosen

Standard output bits (flags)

832

840USE10100 April 2004

PCFL-EQN: Formatted Equation Calculator

Input Status

1]2]a|a|s |67 8]0[10]11]12]18]14]15]16]

Bit Function
1..4 Standard input bits (flags)
5 1 = Degree/radian option for trigonometry
6..8 not used
9..16 Equation size for display in Concept
Formula Code Each formula code in the EQN function defines either an input selection code or an

operator selection code.
Formula Code (Parameter Block)

‘1’2’3’4‘5‘6‘7‘8’9’10’11’12‘13‘14‘15‘16‘

Bit Function
1.4 Not used
Definition of input selection
11 Not used
12 ...16 | Definition of operator selection

Input Selection

Bit

Input Selection

Use operator selection

oo | N

1 Float input

e
—_

16-bit integer

o

Variable A

o | o
-

Variable B

Variable C

—a | a|la|l a0l O,

oOjlojolojojojlo|o

e
- O

Variable D

840USE10100 April 2004

833

PCFL-EQN: Formatted Equation Calculator

Operator Selection

Bit Operator Selection
12 13 14 15 16

0 0 0 0 0 No operation

0 0 0 0 1 Absolute value

0 0 0 1 0 Addition

0 0 0 1 1 Division

0 0 1 0 0 Exponent

0 0 1 1 1 LN (natural logarithm)
0 1 0 0 0 G (logarithm)

0 1 0 0 Multiplication

0 1 0 1 0 Negation

0 1 0 1 1 Power

0 1 1 0 0 Square root

0 1 1 0 1 Subtraction

0 1 1 1 0 Sine

0 1 1 1 Cosine

1 0 0 0 0 Tangent

1 0 0 0 1 Arcsine

1 0 0 1 0 Arccosine

1 0 0 1 1 Arctangent

834

840USE10100 April 2004

PCFL-INTEG: Integrate Input at
Specified Interval

127

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the subfunction PCFL-INTEG.

This chapter contains the following topics:

Topic Page
Short Description 836
Representation: PCFL - INTG - Integrate Input at Specified Interval 837
Parameter Description 838

840USE10100 April 2004

835

PCFL-INTEG: Integrate Input at Specified Interval

Short Description

Function
Description

Note: This instruction is a subfunction of the PCFL instruction. It belongs to the
category Signal Processing.

The INTEG function is used to integrate over a specified time interval. No protection
against integral wind-up is provided in this function. INTEG is time-dependent, e.g.
if you are integrating at an input value of 1/sec, it matters whether it operates over
one second (in which case the result is 1) or over one minute (in which case the
result is 60).

You can set flags to either initialize or restart the function after an undetermined
down-time, and you can reset the integral sum if you wish. If you set the initialize
flag, you must specify a reset value (zero or the last output in case of power failure),
and calculations will be skipped for one sample.

The function returns a DXDONE message when the operation is complete.

836

840USE10100 April 2004

PCFL-INTEG: Integrate Input at Specified Interval

Representation: PCFL - INTG - Integrate Input at Specified Interval

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT — —— OPERATION SUCCESSFUL
INTG
. ERROR
parameter
block
PCFL
#16
Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = enables specified process control
function
INTG Selection of the subfunction INTEG
(top node)
parameter 4x INT, UINT First in a block of contiguous holding
block registers where the parameters for the
(middle node) specified subfunction are stored
For more information, see Parameter
Block (Middle Node), p. 838.
16 INT, UINT Length of parameter block for subfunction
(bottom node) INTEG (can not be changed)
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004

837

PCFL-INTEG: Integrate Input at Specified Interval

Parameter Description

Parameter Block The length of the INTEG parameter block is 16 registers.

(Middle Node)

Register Content
Displayed and first implied Current Input
Second implied Output status
Third implied Input status
Fourth implied Time register
Fifth implied Reserved

Sixth and seventh implied

At (in ms) since last solve

Eighth and ninth implied

Solution interval (in ms)

10th and 11th implied Last input
12th and 13th implied Reset value
14th and 15th implied Result

Output Status

‘1‘2‘3‘4’5’6’7’8‘9‘10‘11‘12’13’14’15‘16‘

Bit Function

1..8 Not used

9..16 Standard output bits (flags)

Input Status

‘1‘2‘3‘4’5’6’7’8‘9‘10‘11‘12’13’14’15‘16‘

Bit Function

1..4 Standard input bits (flags)
Reset sum

6..16 Not used

838

840USE10100 April 2004

PCFL-KPID: Comprehensive ISA
Non Interacting PID

128

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the subfunction PCFL-KPID.

This chapter contains the following topics:

Topic Page

Short Description 840
Representation: PCFL - KPID - Comprehensive ISA Non-Interacting 841
Proportional-Integral-Derivative

Parameter Description 842

840USE10100 April 2004

839

PCFL-KPID: Comprehensive ISA Non Interacting PID

Short Description

Function

Description . . - : -
escriptio Note: This instruction is a subfunction of the PCFL instruction. It belongs to the

category Regulatory Control.

The KPID function offers a superset of the functionality of the PID function, with
additional features that include:

A gain reduction zone

A separate register for bumpless transfer when the integral term is not used
A reset mode

An external set point for cascade control

Built-in velocity limiters for set point changes and changes to a manual output
A variable derivative filter constant

Optional expansion of anti-reset wind-up limits

840 840USE10100 April 2004

PCFL-KPID: Comprehensive ISA Non Interacting PID

Representation: PCFL - KPID - Comprehensive ISA Non-Interacting
Proportional-Integral-Derivative

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT — — OPERATION SUCCESSFUL
KPID
| ERROR
parameter
block
PCFL
#64
Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = enables specified process control
function
KPID Selection of the subfunction KPID
(top node)
parameter 4x INT, UINT First in a block of contiguous holding
block registers where the parameters for the
(middle node) specified subfunction are stored
For more information, see Parameter
Block (Middle Node), p. 842.
64 INT, UINT Length of parameter block for subfunction
(bottom node) KPID (can not be changed)
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004

841

PCFL-KPID: Comprehensive ISA Non Interacting PID

Parameter Description

Parameter Block

(Middle Node)

The length of the KPID parameter block is 64 registers.

Register Content
General Displayed and first implied | Live input, x
Parameters | 5econd implied Output Status, Register 1
Third implied Output Status, Register 2
Fourth implied Reserved
Fifth implied Input Status
Input Sixth and seventh implied | Proportional rate, KP
Parameters | Ejghth and ninth implied Reset time, Tl
10th and 11th implied Derivative action time, TD
12th and 13th implied Delay time constant, TD1
14th and 15th implied Gain reduction zone, GRZ
16th and 17th implied Gain reduction in GRZ, KGRZ
18th and 19th implied Limit rise of manual set point value
20th and 21st implied Limit rise of manual output
22nd and 23rd implied High limit for Y
24th and 25th implied Low limit for Y
26th and 27th implied Expansion for anti-reset wind-up limits
Inputs 28th and 29th implied External set point for cascade

30th and 31st implied

Manual set point

32nd and 33rd implied Manual Y
34th and 35th implied Reset for Y
36th and 37th implied Bias

842

840USE10100 April 2004

PCFL-KPID: Comprehensive ISA Non Interacting PID

Register Content
Outputs 38th and 39th implied Bumpless transfer register, BT
40th and 41st implied Calculated control difference (error term), XD
42nd implied Previous operating mode
43rd and 44th implied Dt (in ms) since last solve
45th and 46th implied Previous system deviation, XD_1
47th and 48th implied Previous input, X_1
49th and 50th implied Integral part for Y, YI
51st and 52nd implied Differential part for Y, YD
53rd and 54th implied Set point, SP
55th and 56th implied Proportional part for Y, YP
57th implied Previous operating status
Timing 58th implied 10 ms clock at time n
Information | 59th implied Reserved
60th and 61th implied Solution interval (in ms)
Output 62th and 63th implied Manipulated output variable, Y

Output Status,

Register 1 1]2]a|a|s |67 8]0[10]11]12]18]14]15]16]
Bit Function
1 Error
2 1 = low limit exceeded
3 1 = high limit exceeded
4 1 = Cascade mode selected
5 1 = Auto mode selected
6 1 = Halt mode selected
7 1 = Manual mode selected
8 1 = Reset mode selected
9..16 Standard output bits (flags)

840USE10100 April 2004

843

PCFL-KPID: Comprehensive ISA Non Interacting PID

Output Status,
Register 2
‘1‘2‘3‘4’5’6’7’8‘9‘10‘11‘12’13’14’15‘16‘
Bit Function
1.4 Not used
5 1 = Previous D mode selected
6 1 = Previous | mode selected
7 1 = Previous P mode selected
8 1 = Previous mode selected
9..16 Not used

Input Status

tl2fs]a]s]e]7]8] 010 1n|2|1s|1al1s|16

Bit Function
1.4 Standard input bits (flags)
5 1 = Reset mode
6 1 = Manual mode
7 1 = Halt mode
8 1 = Cascade mode
9 1 = Solve proportional algorithm
10 1 = Solve integral algorithm
11 1 = Solve derivative algorithm
12 1 = solve derivative algorithm based on x
0 = solve derivative algorithm based on xd
13 1 = anti--reset wind-up on Y| only
0 = normal anti--reset wind-up
14 1 = disable bumpless transfer
0 = bumpless transfer
15 1 =Manual Y tracks Y
16 1 = reverse action for loop output

0 = direct action for loop output

844

840USE10100 April 2004

PCFL-LIMIT: Limiter for the Pv

129

At a Glance

Introduction This chapter describes the subfunction PCFL-LIMIT.

What's in this This chapter contains the following topics:

2

Chapter? Topic Page
Short Description 846
Representation: PCFL - LIMIT - Limiter for the P(v) 847
Parameter Description 848

840USE10100 April 2004 845

PCFL-LIMIT: Limiter for the Pv

Short Description

Function
Description

Note: This instruction is a subfunction of the PCFL instruction. It belongs to the
category Signal Processing.

The LIMIT function limits the input to a range between a specified high and low
value. If the high or low limit is reached, the function sets an H or L flag and clamps
the output.

LIMIT returns a DXDONE message when the operation is complete.

846

840USE10100 April 2004

PCFL-LIMIT: Limiter for the Pv

Representation: PCFL - LIMIT - Limiter for the P(v)

Symbol Representation of the instruction
CONTROL INPUT — — OPERATION SUCCESSFUL
LIMIT
| ERROR
parameter
block
PCFL
#9
Parameter
Description Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = enables specified process control
function
LIMIT Selection of the subfunction LIMIT
(top node)
parameter 4x INT, UINT First in a block of contiguous holding
block registers where the parameters for the
(middle node) specified subfunction are stored
For more information, see Parameter
Block (Middle Node), p. 848.
9 INT, UINT Length of parameter block for subfunction
(bottom node) LIMIT (can not be changed)
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004 847

PCFL-LIMIT: Limiter for the Pv

Parameter Description

Parameter Block The length of the LIMIT parameter block is 9 registers.

(Middle Node) Register Content
Displayed and first implied Current input
Second implied Output status
Third implied Input status
Fourth and fifth implied Low limit
Sixth and seventh implied High Limit
Eighth implied Output register

Output Status

1]2]alals 6|7 |8]9]10]11]12]13]14]15]16

Bit Function

1.8 Not used

9 1 = input < low limit

10 1 = input > high limit

11 1 = invalid high/low limits (e.g., low = high
12...16 Standard output bits (flags)

Input Status
1]2]alals 6|7 |8]9]10]11]12]13]14]15]16
Bit Function
1.4 Standard input bits (flags)
5..16 Not used

848 840USE10100 April 2004

PCFL-LIMV: Velocity Limiter for
Changes in the Pv

130

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the subfunction PCFL-LIMV.

This chapter contains the following topics:

Topic Page

Short Description 850
Representation: PCFL - LIMV - Velocity Limiter for Changes in the P(v) 851
Parameter Description 852

840USE10100 April 2004

849

PCFL-LIMV: Velocity Limiter for Changes in the Pv

Short Description

Function

Description Note: This instruction is a subfunction of the PCFL instruction. It belongs to the
category Signal Processing.
The LIMV function limits the velocity of change in the input variable between a
specified high and low value. If the high or low limit is reached, the function sets an
H or L flag and clamps the output.
LIMV returns a DXDONE message when the operation is complete.

850

840USE10100 April 2004

PCFL-LIMV: Velocity Limiter for Changes in the Pv

Representation: PCFL - LIMV - Velocity Limiter for Changes in the P(v)

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT — — OPERATION SUCCESSFUL
LIMV
. ERROR
parameter
block
PCFL
#14
Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = enables specified process control
function
LIMV Selection of the subfunction LIMV
(top node)
parameter 4x INT, UINT First in a block of contiguous holding
block registers where the parameters for the
(middle node) specified subfunction are stored
(For expanded and detailed information
please see Parameter Block (Middle
Node), p. 852.)
14 INT, UINT Length of parameter block for subfunction
(bottom node) LIMV (can not be changed)
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004

851

PCFL-LIMV: Velocity Limiter for Changes in the Pv

Parameter Description

Parameter Block

(Middle Node)

Output Status

The length of the LIMV parameter block is 14 registers.

Register

Content

Displayed and first implied

Input register

Second implied

Output status

Third implied Input status
Fourth implied Time register
Fifth implied Reserved

Sixth and seventh implied

At (in ms) since last solve

Eighth and ninth implied

Solution interval (in ms)

10th and 11th implied

Velocity limit / sec

12th and 13th implied

Result

1]2]alals 6|7 |8]9]10]11]12]13]14]15]16

Bit Function

1.5 Not used

6 1 = negative velocity limit
7 1 = input < low limit

8 1 = input > high limit
9..16 Standard output bits (flags)

Input Status

1]2]alals 6|7 |8]9]10]11]12]13]14]15]16

Bit Function

1..4 Standard input bits (flags)

5..16 Not used

852 840USE10100 April 2004

PCFL-LKUP: Look-up Table

131

At a Glance

Introduction This chapter describes the subfunction PCFL-LKUP.

What's in this This chapter contains the following topics:

?

Chapter? Topic Page
Short Description 854
Representation: PCFL - LKUP - Look-up Table 855
Parameter Description 856

840USE10100 April 2004 853

PCFL-LKUP: Look-up Table

Short Description

Function

Description . . - : -
escriptio Note: This instruction is a subfunction of the PCFL instruction. It belongs to the

category Signal Processing.

The LKUP function establishes a look-up table using a linear algorithm to interpolate
between points. LKUP can handle variable point intervals and variable numbers of
points.

854 840USE10100 April 2004

PCFL-LKUP: Look-up Table

Representation: PCFL - LKUP - Look-up Table

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT —— —— OPERATION SUCCESSFUL
LKUP
L ERROR
parameter
block
PCFL
#39
Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = enables specified process control
function
LKUP Selection of the subfunction LKUP
(top node)
parameter 4x INT, UINT First in a block of contiguous holding
block registers where the parameters for the
(middle node) specified subfunction are stored
(For more information, please see
Parameter Block (Middle Node), p. 857.)
39 INT, UINT Length of parameter block for subfunction
(bottom node) LKUP (can not be changed)
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004

855

PCFL-LKUP: Look-up Table

Parameter Description

Mode of The LKUP function establishes a look-up table using a linear algorithm to interpolate
Functioning between points. LKUP can handle variable point intervals and variable numbers of
points.

If the input (x) is outside the specified range of points, the output (y) is clamped to
the corresponding output yO or yn. If the specified parameter block length is too
small or if the number of points is out of range, the function does not check the xn
because the information from that pointer is invalid.

Points to be interpolated are determined by a binary search algorithm starting near
the center of x data. The search is valid for x1 < x < xn. The variable x may occur
multiple times with the same value, the value chosen from the look-up table is the
first instance found.

For example, if the table is:

x y
10.0 1.0
20.0 2.0
30.0 3.0
30.0 3.5
40.0 4.0

then an input of 30.0 finds the first instance of 30.0 and assigns 3.0 as the output.
An input of 31.0 would assign the value 3.55 as the output.

No sorting is done on the contents of the lookup table. Independent variable table
values should be entered in ascending order to prevent unreachable gaps in the
table.

The function returns a DXDONE message when the operation is complete.

856 840USE10100 April 2004

PCFL-LKUP: Look-up Table

Parameter Block The length of the LKUP parameter block is 39 registers.

(Middle Node)

Register Content
Displayed and first implied Input

Second implied Output status
Third implied Input status
Fourth implied Number of point pairs
Fifth and sixth implied Point x1
Seventh and eighth implied Point y1
Ninth and tenth implied Point x2

11th and 12th implied Point y2

33rd and 34th implied Point x8

35th and 36th implied Point y8

37th and 38th implied Output

Output Status

1l2|s|afs|e]7]8]o]10]112]18]1a|15 16

Bit Function

1..9 Not used

10 1 = input clamped, i.e. out of table’s range
11 ! = invalid number of points

12...16 | Standard output bits (flags)

Input Status

‘1’2’3’4‘5‘6‘7‘8’9’10’11’12‘13‘14‘15‘16‘

Bit Function

1.4 Standard input bits (flags)

5..16 Not used

840USE10100 April 2004 857

PCFL-LKUP: Look-up Table

858 840USE10100 April 2004

PCFL-LLAG:
First-order Lead/Lag Filter

132

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the subfunction PCFL-LLAG.

This chapter contains the following topics:

Topic Page

Short Description 860
Representation: PCFL - LLAG - First-Order Lead/Lag Filter 861
Parameter Description 862

840USE10100 April 2004

859

PCFL-LLAG: First-order Lead/Lag Filter

Short Description

Function
Description

Note: This instruction is a subfunction of the PCFL instruction. It belongs to the
category Signal Processing.

The LLAG function provides dynamic compensation for a known disturbance. It
usually appears in a feed-forward algorithm or as a dynamic filter. LLAG passes the
input through a filter comprising a lead term (a numerator) and a lag term (a
denominator) in the frequency domain, then multiplies it by a gain. Lead, lag, gain,
and solution interval must be user-specified.

For best results, use lead and lag terms that are = 4 *At. This will ensure sufficient
granularity in the output response.

LLAG returns a DXDONE message when the operation completes

860

840USE10100 April 2004

PCFL-LLAG: First-order Lead/Lag Filter

Representation: PCFL - LLAG - First-Order Lead/Lag Filter

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT — —— OPERATION SUCCESSFUL
LLAG
. ERROR
parameter
block
PCFL
#20
Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = enables specified process control
function
LLAG Selection of the subfunction LLAG
(top node)
parameter 4x INT, UINT First in a block of contiguous holding
block registers where the parameters for the
(middle node) specified subfunction are stored
(For more information, please see
Parameter Block (Middle Node), p. 862.)
20 INT, UINT Length of parameter block for subfunction
(bottom node) LLAG (can not be changed)
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004

861

PCFL-LLAG: First-order Lead/Lag Filter

Parameter Description

Parameter Block

(Middle Node)

Output Status

Input Status

The length of the LLAG parameter block is 20 registers.

Register

Content

Displayed and first implied

Current Input

Second implied

Output status

Third implied Input status
Fourth implied Time register
Fifth implied Reserved

Sixth and seventh implied

At (in ms) since last solve

Eighth and ninth implied

Solution interval (in ms)

10th and 11th implied Last input
12th and 13th implied Lead term
14th and 15th implied Lag term
16th and 17th implied Filter gain
18th and 19th implied Result

1]2]alals 6|7 |8]9]10]11]12]13]14]15]16

Bit Function

1..8 Not used

9..16 Standard output bits (flags)

1]2]alals 6|7 |8]9]10]11]12]13]14]15]16

Bit Function

1..4 Standard input bits (flags)

5..16 Not used

862

840USE10100 April 2004

PCFL-MODE:
Put Input in Auto or Manual Mode

133

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the subfunction PCFL-MODE.

This chapter contains the following topics:

Topic Page

Short Description 864
Representation: PCFL - MODE - Put Input in Auto or Manual Mode 865
Parameter Description 866

840USE10100 April 2004

863

PCFL-MODE: Put Input in Auto or Manual Mode

Short Description

Function
Description

Note: This instruction is a subfunction of the PCFL instruction. It belongs to the
category Signal Processing.

The MODE function sets up a manual or automatic station for enabling and disabling
data transfers to the next block. The function acts like a BLKM instruction, moving a
value to the output register.

In auto mode, the input is copied to the output. In manual mode, the output is
overwritten by a user entry.

MODE returns a DXDONE message when the operation completes.

864

840USE10100 April 2004

PCFL-MODE: Put Input in Auto or Manual Mode

Representation: PCFL - MODE - Put Input in Auto or Manual Mode

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT — —— OPERATION SUCCESSFUL
MODE
| ERROR
parameter
block
PCFL
#8
Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = enables specified process control
function
MODE Selection of the subfunction MODE
(top node)
parameter 4x INT, UINT First in a block of contiguous holding
block registers where the parameters for the
(middle node) specified subfunction are stored
(For more information, please see
Parameter Block (Middle Node), p. 866.)
8 INT, UINT Length of parameter block for subfunction
(bottom node) MODE (can not be changed)
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004

865

PCFL-MODE: Put Input in Auto or Manual Mode

Parameter Description

Parameter Block The length of the MODE parameter block is 8 registers.

(Middle Node) Register Content
Displayed and first implied Input
Second implied Output status
Third implied Input status
Fourth and fifth implied Manual input
Sixth and seventh implied Output register

Output Status

‘1‘2‘3‘4’5’6’7’8‘9‘10‘11‘12’13’14’15‘16‘

Bit Function
1..10 Not used
11 Echo mode:

1 = manual mode
0 = auto mode

12...16 Standard output bits (flags)

Input Status

‘1‘2‘3‘4’5’6’7’8‘9‘10‘11‘12’13’14’15‘16‘

Bit Function
1.4 Standard input bits (flags)
5 1 = manual mode

0 = auto mode

6..16 Not used

866 840USE10100 April 2004

PCFL-ONOFF:

ON/OFF Values for Deadband 1 34

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the subfunction PCFL-ONOFF.

This chapter contains the following topics:

Topic Page

Short Description 868
Representation: PCFL - ONOFF - Specifies ON/OFF Values for Deadband 869
Parameter Description 870

840USE10100 April 2004

867

PCFL-ONOFF: ON/OFF Values for Deadband

Short Description

Function
Description

Manual Override

Note: This instruction is a subfunction of the PCFL instruction. It belongs to the
category Regulatory Control.

The ONOFF function is used to control the output signal between fully ON and fully
OFF conditions so that a user can manually force the output ON or OFF.
You can control the output via either a direct or reverse configuration:

Configuration IF Input... Then Output...
Direct < (SP - DB) ON

> (SP + DB) OFF
Revers > (SP + DB) ON

< (SP - DB) OFF

Two bits in the input status register (the third implied register in the parameter block)
are used for manual override. When bit 6 is set to 1, manual mode is enforced. In

manual mode, a 0 in bit 7 forces the output OFF, and a 1 in bit 7 forces the output
ON. The state of bit 7 has meaning only in manual mode.

868

840USE10100 April 2004

PCFL-ONOFF: ON/OFF Values for Deadband

Representation: PCFL - ONOFF - Specifies ON/OFF Values for Deadband

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT — —— OPERATION SUCCESSFUL
ONOFF
. ERROR
parameter
block
PCFL
#14
Parameters State RAM Data Type Meaning
Reference

Top input 0x, 1x None ON = enables specified process control

function
ONOFF Selection of the subfunction ONOFF
(top node)
parameter 4x INT, UINT First in a block of contiguous holding
block registers where the parameters for the
(middle node) specified subfunction are stored

(For more information, please see

Parameter Block (Middle Node), p. 870.)
14 INT, UINT Length of parameter block for subfunction
(bottom node) ONOFF (can not be changed)
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004

869

PCFL-ONOFF: ON/OFF Values for Deadband

Parameter Description

Parameter Block The length of the ONOFF parameter block is 14 registers.

(Middle Node) Register

Content

Displayed and first implied

Current Input

Second implied

Output status

Third implied

Input status

Fourth and fifth implied

Set point, SP

Sixth and seventh implied

Deadband (DB) around SP

Eighth and ninth implied

Fully ON (maximum output)

10th and 11th implied

Fully OFF (minimum output)

12th and 13th implied

Output, ON or OFF

Output Status
‘ 1 ‘2 ‘ 3 ‘ 4 ’ 5 ’ 6 ’ 7 ’ 8 ‘ 9 ‘10‘11‘12’13’14’15‘16‘
Bit Function
1..8 Not used
9 1 = DB set to negative number
10 Echo mode:
1 = manual override
0 = auto mode
11 1 = output set to ON
0 = output set to OFF
12...16 | Standard output bits (flags)
870 840USE10100 April 2004

PCFL-ONOFF: ON/OFF Values for Deadband

Input Status

1]2]a|a|s |67 8]0[10]11]12]18]14]15]16]

Bit Function
1..4 Standard input bits (flags)
5 1 = reverse configuration

0 = direct configuration

6 1 = manual override
0 = auto mode

7 1 = force output ON in manual mode
0 = force output OFF in manual mode

8..16 Not used

840USE10100 April 2004 871

PCFL-ONOFF: ON/OFF Values for Deadband

872 840USE10100 April 2004

PCFL-PI: ISA Non Interacting PI

135

At a Glance

Introduction This chapter describes the subfunction PCFL-PI.

What's in this This chapter contains the following topics:

?

Chapter? Topic Page
Short Description 874
Representation: PCFL - PI 875
Parameter Description 876

840USE10100 April 2004 873

PCFL-PI: ISA Non Interacting Pl

Short Description

Function
D ipti — — - . -
escription Note: This instruction is a subfunction of the PCFL instruction. It belongs to the

category Regulatory Control.
The PI function performs a simple proportional-integral operations using floating
point math. It features halt / manual / auto operation modes. It is similar to the PID
and KPID functions but does not contain as many options. It is available for higher-
speed loops or inner loops in cascade strategies.

874 840USE10100 April 2004

PCFL-PI: ISA Non Interacting PI

Representation: PCFL - PI

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT — —— OPERATION SUCCESSFUL
PI
. ERROR
parameter
block
PCFL
#36
Parameters State RAM Data Type Meaning
Reference

Top input 0x, 1x None ON = enables specified process control

function
PI Selection of the subfunction PI
(top node)
parameter 4x INT, UINT First in a block of contiguous holding
block registers where the parameters for the
(middle node) specified subfunction are stored

(For more information, please see

Parameter Block (Middle Node), p. 876.)
36 INT, UINT Length of parameter block for subfunction
(bottom node) PI1 (can not be changed)
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004

875

PCFL-PI: ISA Non Interacting Pl

Parameter Description

Parameter Block

(Middle Node)

The length of the Pl parameter block is 36 registers.

Register Content
General Displayed and first implied | Live input, x
Parameters | gecond implied Output Status
Third implied Error Word
Fourth implied Reserved
Fifth implied Input Status
Inputs Sixth and seventh implied Set point, SP
Eighth and ninth implied Manual output
10th and 11th implied Calculated control difference (error), XD
Outputs 12th implied Previous operating mode
13th and 14th implied Dt (in ms) since last solve
15th and 16th implied Previous system deviation, XD_1
17th and 18th implied Integral part of output Y
19th and 20th implied Previous input, X_1
21st implied Previous operating status
Timing 22nd implied 10 ms clock at time n
Information | 53rq implied Reserved
24th and 25th implied Solution interval (in ms)
Input 26th and 27th implied Proportional rate, KP
Parameters | ogth and 29th implied Reset time, Tl
30th and 31st implied High limit on output Y
32nd and 33rd implied Low limit on output Y
Output 34th and 35th implied Manipulated variable output, Y

876

840USE10100 April 2004

PCFL-PI: ISA Non Interacting PI

Output Status

Error Word

Input Status

1]2]a|a|s |67 8]0[10]11]12]18]14]15]16]

Bit

Function

Error

1 = low limit exceeded

1 = high limit exceeded

Not used

O | IN| =

Standard output bits (flags)

1]2]a|a|s |67 8]0[10]11]12]18]14]15]16]

Bit Function
1.1 Not used
12 ...16 Error Description

Error Description

Bit Meaning

12 13 14 15 16

1 1 1 0 Negative integral time constant
1 1 0 1 High/low limit error (low = high)

‘1’2’3’4‘5‘6‘7‘8’9’10’11’12‘13‘14‘15‘16‘

Bit

Function

Standard input bits (flags)

Not used

1 = Manual mode

1 = Halt mode

.15

Not used

0N 0| =

1 = reverse action for loop output
0 = direct action for loop output

840USE10100 April 2004

877

PCFL-PI: ISA Non Interacting Pl

878 840USE10100 April 2004

PCFL-PID: PID Algorithms

136

At a Glance

Introduction This chapter describes the subfunction PCFL-PID.

What's in this This chapter contains the following topics:

2

Chapter? Topic Page
Short Description 880
Representation: PCFL - PID - Algorithms 881
Parameter Description 882

840USE10100 April 2004 879

PCFL-PID: PID Algorithms

Short Description

Function

Description Note: This instruction is a subfunction of the PCFL instruction. It belongs to the
category Regulatory Control.
The PID function performs ISA non-interacting proportional-integral-derivative (PID)
operations using floating point math. Because it uses FP math (unlike PID2), round-
off errors are negligible.
In the part "General Information" you will find A PID Example, p. 83.

880

840USE10100 April 2004

PCFL-PID: PID Algorithms

Representation: PCFL - PID - Algorithms

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT — —— OPERATION SUCCESSFUL
PID
| ERROR
parameter
block
PCFL
#44
Parameters State RAM Data Type Meaning
Reference

Top input 0x, 1x None ON = enables specified process control

function
PID Selection of the subfunction PID
(top node)
parameter 4x INT, UINT First in a block of contiguous holding
block registers where the parameters for the
(middle node) specified subfunction are stored

(For more information, please see

Parameter Block (Middle Node), p. 882.)
44 INT, UINT Length of parameter block for subfunction
(bottom node) PID (can not be changed)
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004

881

PCFL-PID: PID Algorithms

Parameter Description

Parameter Block

The length of the KPID parameter block is 44 registers.

(Middle Node) Register Content
General Displayed and first implied | Live input, x
Parameters | gecond implied Output Status
Third implied Error Word
Fourth implied Reserved
Fifth implied Input Status
Inputs Sixth and seventh implied Set point, SP
Eighth and ninth implied Manual output
10th and 11th implied Summing junction, Bias
Outputs 12th and 13th implied Error, XD
14th implied Previous operating mode
15th and 16th implied Elapsed time (in ms) since last solve
17th and 18th implied Previous system deviation, XD_1
19th and 20th implied Previous input, X_1
21st and 22nd implied Integral part of output Y, YI
23rd and 24th implied Differential part of output Y, YD
25th and 26th implied Proportional part of output Y, YP
27th implied Previous operating status
Timing 28th implied Current time
Information | ogth implied Reserved
Inputs 30th and 31st implied Solution interval (in ms)
34th and 35th implied Reset time, Tl
36th and 37th implied Derivative action time, TD
38th and 39th implied High limit on output Y
40th and 41st implied Low limit on output Y
42nd and 43rd implied Manipulated control output, Y

882

840USE10100 April 2004

PCFL-PID: PID Algorithms

Output Status

Error Word

1]2]a|a|s |67 8]0[10]11]12]18]14]15]16]
Bit Function

1 Error

2 1 = low limit exceeded

3 1 = high limit exceeded

4.8 Not used

9..16 Standard output bits (flags)

1]2]a|a|s |67 8]0[10]11]12]18]14]15]16]
Bit Function

1.1 Not used

12 ...16 Error Description

Error Description

Bit Meaning

12 13 14 15 16

1 1 1 1 Negative derivative time constant
1 1 1 0 Negative integral time constant

1 1 0 1 High/low limit error (low = high)

840USE10100 April 2004

883

PCFL-PID: PID Algorithms

Input Status

1]2]alals 6|7 |8]9]10]11]12]13]14]15]16

Bit Function

1..4 Standard input bits (flags)

5 Not used

6 1 = Manual mode

7 1 = Halt mode

8 Not used

9 1 = Solve proportional algorithm

10 1 = Solve integral algorithm

11 1 = Solve derivative algorithm

12 1 = solve derivative algorithm based on x
0 = solve derivative algorithm based on xd

13...15 Not used

16 1 = reverse action for loop output

0 = direct action for loop output

884

840USE10100 April 2004

PCFL-RAMP: Ramp to Set Point at
a Constant Rate

137

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the subfunction PCFL-RAMP.

This chapter contains the following topics:

Topic Page

Short Description 886
Representation: PCFL - RAMP - Ramp to Set Point at Constant Rate 887
Parameter Description 888

840USE10100 April 2004

885

PCFL-RAMP: Ramp to Set Point at a Constant Rate

Short Description

Function
Description

Starting the
Ramp

Note: This instruction is a subfunction of the PCFL instruction. It belongs to the
category Signal Processing.

The RAMP function allows you to ramp up linearly to a target set point at a specified

approach rate.

You need to specify:

e The target set point, in the same units as the contents of the input register are
specified

e The sampling rate

e A positive rate toward the target set point, negative rates are illegal

The direction of the ramp depends on the relationship between the target set point
and the input, i.e. if x < SP, the ramp is up; if x > SP, the ramp is down.

You may use a flag to initialize after an undetermined down-time. The function will
store a new sample, then wait for one cycle to collect the second sample.
Calculations will be skipped for one cycle and the output will be left as is, after which
the ramp will resume.

RAMP terminates when the entire ramping operation is complete (over multiple
scans) and returns a DXDONE message.

The following steps need to be done when starting the ramp (up/down) and each
and every time you need to start or restart the ramp.

Step Action
1 Set bit 1 of the standard input bits to "1" (third implied register of the parameter
block).
2 Retoggle the top input (enable input) to the instruction. Ramp will now start to

ramp up/down from the initial value previously configured up/down to the
previously configured setpoint. Monitor the 12th implied register of the
parameter block for floating point value of the ramp value in progress.

886

840USE10100 April 2004

PCFL-RAMP: Ramp to Set Point at a Constant Rate

Representation: PCFL - RAMP - Ramp to Set Point at Constant Rate

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT — —— OPERATION SUCCESSFUL
RAMP
. ERROR
parameter
block
PCFL
#14
Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = enables specified process control
function
RAMP Selection of the subfunction RAMP
(top node)
parameter 4x INT, UINT First in a block of contiguous holding
block registers where the parameters for the
(middle node) specified subfunction are stored
(For more information, please see
Parameter Block (Middle Node), p. 888.)
14 INT, UINT Length of parameter block for subfunction
(bottom node) RAMP (can not be changed)
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004

887

PCFL-RAMP: Ramp to Set Point at a Constant Rate

Parameter Description

Parameter Block The length of the RAMP parameter block is 14 registers.

(Middle Node)

Register

Content

Displayed and first implied

Set point (Input)

Second implied

Output status

Third implied

Input status

Fourth implied

Time register

Fifth implied

Reserved

Sixth and seventh implied

At (in ms) since last solve

Eighth and ninth implied

Solution interval (in ms)

10th and 11th implied

Rate of change (per second) toward set point

12th and 13th implied

Output

Output Status

1]2]alals 6|7 |8]9]10]11]12]13]14]15]16

Bit

Function

1..4

Not used

1 = ramp rate is negative

1 = ramp complete

0 = ramp in progress

1 = ramping down

1 = ramping up

9..16

Standard output bits (flags)

Input Status

1]2]alals 6|7 |8]9]10]11]12]13]14]15]16

Function

Standard input bits (flags)

Bit
1..4
5..16

Not used

888

840USE10100 April 2004

PCFL-RAMP: Ramp to Set Point at a Constant Rate

Top Output
(Operation
Succesfull)

The top output of the PCFL subfunction RAMP goes active at each successive
discrete ramp step up/down. It happens so fast that it appears to be solidly on. This
top output should NOT be used as "Ramp done bit".

Bit 6 of the output status (second impied register of the parameter block) should be
monitored as "Ramp done bit".

840USE10100 April 2004

889

PCFL-RAMP: Ramp to Set Point at a Constant Rate

890 840USE10100 April 2004

PCFL-RATE: Derivative Rate

Calculation over a Specified 1 38

Timeme

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the subfunction PCFL-RATE.

This chapter contains the following topics:

Topic Page
Short Description 892
Representation: PCFL - RATE - Derivative Rate Calculation Over a Specified 893
Time

Parameter Description 894

840USE10100 April 2004

891

PCFL-RATE: Derivative Rate Calculation over a Specified Time

Short Description

Function
Description

Note: This instruction is a subfunction of the PCFL instruction. It belongs to the
category Signal Processing.

The RATE function calculates the rate of change over the last two input values. If
you set an initialization flag, the function records a sample and sets the appropriate
flags.

If a divide-by-zero operation is attempted, the function returns a DXERROR
message.

It returns a DXDONE message when the operation completes successfully.

892

840USE10100 April 2004

PCFL-RATE: Derivative Rate Calculation over a Specified Time

Representation: PCFL - RATE - Derivative Rate Calculation Over a Specified

Time

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT — —— OPERATION SUCCESSFUL
RATE
— ERROR
parameter
block
PCFL
#14
Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = enables specified process control
function
RATE Selection of the subfunction RATE
(top node)
parameter 4x INT, UINT First in a block of contiguous holding
block registers where the parameters for the
(middle node) specified subfunction are stored
(For more information, please see
Parameter Block (Middle Node), p. 894.)
14 INT, UINT Length of parameter block for subfunction
(bottom node) RATE (can not be changed)
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004

893

PCFL-RATE: Derivative Rate Calculation over a Specified Time

Parameter Description

Parameter Block The length of the RATE parameter block is 14 registers.

(Middle Node) Register

Content

Displayed and first implied

Current input

Second implied

Output status

Third implied Input status
Fourth implied Time register
Fifth implied Reserved

Sixth and seventh implied

At (in ms) since last solve

Eighth and ninth implied

Solution interval (in ms)

10th and 11th implied

Last input

12th and 13th implied

Result

Output Status

1]2]alals 6|7 |8]9]10]11]12]13]14]15]16

Bit Function

1..8 Not used

9..16 Standard output bits (flags)

Input Status

1]2]alals 6|7 |8]9]10]11]12]13]14]15]16

Bit Function

1..4 Standard input bits (flags)

5..16 Not used

894

840USE10100 April 2004

PCFL-RATIO:
Four Station Ratio Controller

139

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the subfunction PCFL-RATIO.

This chapter contains the following topics:

Topic Page

Short Description 896
Representation: PCFL - RATIO - Four-Station Ratio Controller 897
Parameter Description 898

840USE10100 April 2004

895

PCFL-RATIO: Four Station Ratio Controller

Short Description

Function
Description

Note: This instruction is a subfunction of the PCFL instruction. It belongs to the
category Regulatory Control.

The RATIO function provides a four-station ratio controller. Ratio control can be
used in applications where one or more raw ingredients are dependent on a primary
ingredient. The primary ingredient is measured, and the measurement is converted
to engineering units via an AIN function. The converted value is used to set the
target for the other ratioed inputs.

Outputs from the ratio controller can provide set points for other controllers. They
can also be used in an open loop structure for applications where feedback is not
required.

896

840USE10100 April 2004

PCFL-RATIO: Four Station Ratio Controller

Representation: PCFL - RATIO - Four-Station Ratio Controller

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT — —— OPERATION SUCCESSFUL
RATIO
L ERROR
parameter
block
PCFL
#20
Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = enables specified process control
function
RATIO Selection of the subfunction RATIO
(top node)
parameter 4x INT, UINT First in a block of contiguous holding
block registers where the parameters for the
(middle node) specified subfunction are stored
For more information. please see
Parameter Block (Middle Node), p. 898.)
20 INT, UINT Length of parameter block for subfunction
(bottom node) RATIO (can not be changed)
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004

897

PCFL-RATIO: Four Station Ratio Controller

Parameter Description

Parameter Block
(Middle Node)

Output Status

The length of the RATIO parameter block is 20 registers.

Register Content
Displayed and first implied Live input
Second implied Output status
Third implied Input status
Fourth and fifth implied Ratio for input 1
Sixth and seventh implied Ratio for input 2
Eighth and ninth implied Ratio for input 3
10th and 11th implied Ratio for input 4
12th and 13th implied Output for input 1
14th and 15th implied Output for input 2
16th and 17th implied Output for input 3
18th and 19th implied Output for input 4

‘1‘2‘3‘4’5’6’7’8‘9‘10‘11‘12’13’14’15‘16‘

Bit Function

1.9 Not used

10 1 = parameter(s) out of range
11 1 = no inputs activated
12...16 | Standard output bits (flags)

898

840USE10100 April 2004

PCFL-RATIO: Four Station Ratio Controller

Input Status

1]2]a|a|s |67 8]0[10]11]12]18]14]15]16]

Bit

Function

N
I

Standard input bits (flags)

1= input 4 active

1= input 3 active

1= input 2 active

1= input 1 active

Ol | N »,

.16

Not used

840USE10100 April 2004

899

PCFL-RATIO: Four Station Ratio Controller

900 840USE10100 April 2004

PCFL-RMPLN:
Logarithmic Ramp to Set Point

140

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the subfunction PCFL-RMPLN.

This chapter contains the following topics:

Topic Page

Short Description 902
Representation: PCFL - RMPLN - Logarithmic Ramp to Set Point 903
Parameter Description 904

840USE10100 April 2004

901

PCFL-RMPLN: Logarithmic Ramp to Set Point

Short Description

Function
Description Note: This instruction is a subfunction of the PCFL instruction. It belongs to the
category Signal Processing.
The RMPLN function allows you to ramp up logarithmically to a target set point at a
specified approach rate. At each successive call, it calculates the output until it is
within a specified deadband (DB). DB is necessary because the incremental
distance the ramp crosses decreases with each solve.
You need to specify:
e The target set point, in the same units as the contents of the input register are
specified
e The sampling rate
e The time constant used for the logarithmic ramp, which is the time it takes to
reach 63.2% of the new set point

For best results, use a t that is =4 *At. This will ensure sufficient granularity in the
output response.
You may use a flag to initialize after an undetermined down-time. The function will
store a new sample, then wait for one cycle to collect the second sample.
Calculations will be skipped for one cycle and the output will be left as is, after which
the ramp will resume.
RMPLN terminates when the input reaches the target set point + the specified DB
and returns a DXDONE message.

902 840USE10100 April 2004

PCFL-RMPLN: Logarithmic Ramp to Set Point

Representation: PCFL - RMPLN - Logarithmic Ramp to Set Point

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT — —— OPERATION SUCCESSFUL
RMPLN
. ERROR
parameter
block
PCFL
#16
Parameters State RAM Data Type Meaning
Reference

Top input 0x, 1x None ON = enables specified process control

function
RMPLN Selection of the subfunction RMPLN
(top node)
parameter 4x INT, UINT First in a block of contiguous holding
block registers where the parameters for the
(middle node) specified subfunction are stored

For more information, please see

Parameter Block (Middle Node), p. 904.)
16 INT, UINT Length of parameter block for subfunction
(bottom node) RMPLN (can not be changed)
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004

903

PCFL-RMPLN: Logarithmic Ramp to Set Point

Parameter Description

Parameter Block The length of the RMPLN parameter block is 16 registers.

(Middle Node)

Register

Content

Displayed and first implied

Set point (Input)

Second implied

Output status

Third implied

Input status

Fourth implied

Time register

Fifth implied

Reserved

Sixth and seventh implied

At (in ms) since last solve

Eighth and ninth implied

Solution interval (in ms)

10th and 11th implied

Time constant, t, (per second) of exponential ramp toward
the target set point

12th and 13th implied

DB (in engineering units)

14th and 15th implied

Output

Output Status

1]2]alals 6|7 |8]9]10]11]12]13]14]15]16

Bit

Function

1..4

Not used

1 = DB or 7 set to negative units

1 = ramp complete

0 = ramp in progress

1 = ramping down

1 = ramping up

9..16

Standard output bits (flags)

Input Status

‘1‘2‘3‘4’5’6’7’8‘9‘10‘11‘12’13’14’15‘16‘

Function

Standard input bits (flags)

Bit
1..4
5..16

Not used

904

840USE10100 April 2004

PCFL-SEL: Input Selection

141

At a Glance

Introduction This chapter describes the subfunction PCFL-SEL.

What's in this This chapter contains the following topics:

2

Chapter? Topic Page
Short Description 906
Representation: PCFL - SEL - High/Low/Average Input Selection 907
Parameter Description 908

840USE10100 April 2004 905

PCFL-SEL: Input Selection

Short Description

Function

Description Note: This instruction is a subfunction of the PCFL instruction. It belongs to the
category Signal Processing.
The SEL function compares up to four inputs and makes a selection based upon
either the highest, lowest, or average value. You choose the inputs to be compared
and the comparison criterion. The output is a copy of the selected input.
SEL returns a DXDONE message when the operation is complete.

906

840USE10100 April 2004

PCFL-SEL: Input Selection

Representation: PCFL - SEL - High/Low/Average Input Selection

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT — —— OPERATION SUCCESSFUL
SEL
. ERROR
parameter
block
PCFL
#14
Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = enables specified process control
function
SEL Selection of the subfunction SEL
(top node)
parameter 4x INT, UINT First in a block of contiguous holding
block registers where the parameters for the
(middle node) specified subfunction are stored
(For more information, please see
Parameter Block (Middle Node), p. 908.)
14 INT, UINT Length of parameter block for subfunction
(bottom node) SEL (can not be changed)
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004

907

PCFL-SEL: Input Selection

Parameter Description

Parameter Block The length of the SEL parameter block is 14 registers.

(Middle Node) Register

Content

Displayed and first implied

Reserved

Second implied

Output status

Third implied

Input status

Fourth and fifth implied Input 1
Sixth and seventh implied Input 2
Eighth and ninth implied Input 3
10th and 11th implied Input 4
12th and 13th implied Output

Output Status
‘ 1 ‘2 ‘ 3 ‘ 4 ’ 5 ’ 6 ’ 7 ’ 8 ‘ 9 ‘10‘11‘12’13’14’15‘16‘
Bit Function
1..9 Not used
10 Invalid selection modes
11 No inputs selected
12...16 | Standard output bits (flags)
908

840USE10100 April 2004

PCFL-SEL: Input Selection

Input Status

1]2]a|a|s |67 8]0[10]11]12]18]14]15]16]
Bit Function
1..4 Standard input bits (flags)
5 1 = enable input 1

0 = disable input 1
6 1 = enable input 2

0 = dyeable input 2
7 1 = enable input 3

0 = dyeable input 3
8 1 = enable input 4

0 = dyeable input 4
9..10 Selection mode
11...16 | Not used

Selection mode

Bit Meaning

9 10

0 0 Select average

0 1 Select high

1 0 Select low

1 1 reserved / invalid

840USE10100 April 2004

909

PCFL-SEL: Input Selection

910 840USE10100 April 2004

PCFL-TOTAL:
Totalizer for Metering Flow

142

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the subfunction PCFL-TOTAL.

This chapter contains the following topics:

Topic Page

Short Description 912
Representation: PCFL - TOTAL - Totalizer for Metering Flow 913
Parameter Description 914

840USE10100 April 2004

911

PCFL-TOTAL: Totalizer for Metering Flow

Short Description

Function
Description

Note: This instruction is a subfunction of the PCFL instruction. It belongs to the
category Regulatory Control.

The TOTAL function provides a material totalizer for batch processing reagents. The
input signal contains the units of weight or volume per unit of time. The totalizer
integrates the input over time.

The algorithm reports three outputs:

e The integration sum

e The remainder left to meter in

e The valve output (in engineering units).

912

840USE10100 April 2004

PCFL-TOTAL: Totalizer for Metering Flow

Representation: PCFL - TOTAL - Totalizer for Metering Flow

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT — —— OPERATION SUCCESSFUL
TOTAL
| ERROR
parameter
block
PCFL
#28
Parameters State RAM Data Type Meaning
Reference

Top input 0x, 1x None ON = enables specified process control

function
TOTAL Selection of the subfunction TOTAL
(top node)
parameter 4x INT, UINT First in a block of contiguous holding
block registers where the parameters for the
(middle node) specified subfunction are stored

(For more information, please see

Parameter Block (Middle Node), p. 915.)
28 INT, UINT Length of parameter block for subfunction
(bottom node) TOTAL (can not be changed)
Top output 0x None ON = operation successful
Bottom output | Ox None ON = error

840USE10100 April 2004

913

PCFL-TOTAL: Totalizer for Metering Flow

Parameter Description

Mode of The function uses up to three different set points:
Functioning e A trickle flow set point

e A target set point

e An auxiliary trickle flow set point

The target set point is for the full amount to be metered in. Here the output will be
turned OFF.

The trickle flow set point is the cut-off point when the output should be decreased
from full flow to a percentage of full flow so that the target set point is reached with
better granularity.

The auxiliary trickle flow set point is optional. It is used to gain another level of
granularity. If this set point is enabled, the output is reduced further to 10% of the
trickle output.

The totalizer works from zero as a base point. The set point must be a positive value

In normal operation, the valve output is set to 100% flow when the integrated value
is below the trickle flow set point. When the sum crosses the trickle flow set point,
the valve flow becomes a programmable percentage of full flow. When the sum
reaches the desired target set point, the valve output is set to 0% flow.

Set points can be relative or absolute. With a relative set point, the deviation
between the last summation and the set point is used. Otherwise, the summation is
used in absolute comparison to the set point.

There is a halt option to stop the system from integrating.

When the operation has finished, the output summation is retained for future use.
You have the option of clearing this sum. In some applications, it is important to save
the sum, e.qg. if the meters or load cells cannot handle the full batch in one charge
and measurements are split up, if there are several tanks to fill for a batch and you
want to keep track of batch and production sums.

914 840USE10100 April 2004

PCFL-TOTAL: Totalizer for Metering Flow

Parameter Block

(Middle Node)

Output Status

The length of the TOTAL parameter block is 28 registers.

Register Content
Displayed and first implied Live input
Second implied Output status

Third implied Input status
Fourth implied Time register
Fifth implied Reserved

Sixth and seventh implied

At (in ms) since last solve

Eighth and ninth implied

Solution interval (in ms)

10th and 11th implied

Last input, X_1

12th and 13th implied

Reset value

14th and 15th implied

Set point, target

16th and 17th implied

Set point, trickle flow

18th and 19th implied

% of full flow for trickle flow set point

20th and 21st implied

Full flow

22nd and 23rd implied

Remaining amount to SP

24th and 25th implied

Resulting sum

26th and 27th implied

Output for final control element

1]2]a|a|s |67 8]0[10]11]12]18]14]15]16]

Bit Function
1..2 Not used
3..4 00=OFF

1 0 = full flow

0 1 = trickle flow

1 = operation done

1 = totalizer running

1 = overshoot past set point by more than 5%

1 = parameter(s) out of range

©| 0| N u

.16 Standard output bits (flags)

840USE10100 April 2004

915

PCFL-TOTAL: Totalizer for Metering Flow

Input Status

‘1‘2‘3‘4’5’6’7’8‘9‘10‘11‘12’13’14’15‘16‘

Bit

Function

1.

Standard input bits (flags)

1 =reset sum

1 = halt integration

N oo

1 = deviation set point
0 = absolute set point

oo

1 = use auxiliary trickle flow set point

9..16

Not used

916

840USE10100 April 2004

PEER: PEER Transaction

143

At a Glance

Introduction This chapter describes the instruction PEER.

What's in this This chapter contains the following topics:

?

Chapter? Topic Page
Short Description 918
Representation: PEER - Modbus Il Identical Transfer 919
Parameter Description 920

840USE10100 April 2004 917

PEER: PEER Transaction

Short Description

Function
Description

Note: This instruction is only available if you have unpacked and installed the DX
Loadables. For further information, see Installation of DX Loadables, p. 109.

The S975 Modbus Il Interface option modules use two loadable function blocks:
MBUS and PEER. The PEER instruction can initiate identical message transactions
with as many as 16 devices on Modbus Il at one time. In a PEER transaction, you
may only write register data.

918

840USE10100 April 2004

PEER: PEER Transaction

Representation: PEER - Modbus Il Identical Transfer

Symbol Representation of the instruction
CONTROL INPUT — — COMPLETE
control block
REPEAT — — ACTIVE
data block
—— ERROR
PEER
Length: 1 - 249 length
Parameter
Description Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None Enable MBUS transaction
Middle input 0x, 1x None Repeat transaction in same scan
control block 4x INT, UINT, First of 19 contiguous registers in the
(top node) WORD PEER control block
(For more information, please see Control
Block (Top Node), p. 920.)
data block 4x INT, UINT First register in a data block to be
(middle node) transmitted by the PEER function
length INT, UINT Length, i.e. the number of holding
(bottom node) registers, of the data block; range:
1...249.
Top output 0x None Transaction complete
Middle output | Ox None Transaction in progress or new transaction
starting
Bottom output | Ox None Error detected in transaction

840USE10100 April 2004

919

PEER: PEER Transaction

Parameter Description

Control Block The 4x register entered in the top node is the first of 19 contiguous registers in the
(Top Node) PEER control block.

Register Function

Displayed Indicates the status of the transactions at each device, the leftmost bit

being the status of device #1 and the rightmost bit the status of device #16:
0 = OK, 1 = transaction error

First implied

Defines the reference to the first 4x register to be written to in the receiving
device; a 0 in this field is an invalid value and will produce an error (the
bottom output will go ON)

Second implied

Time allowed for a transaction to be completed before an error is declared;
expressed as a multiple of 10 ms, e.g. 100 indicates 1,000 ms; the default
timeout is 250 ms

Third implied

The Modbus port 3 address of the first of the receiving devices; address
range: 1 ... 255 (0 = no transaction requested)

Fourth implied

The Modbus port 3 address of the second of the receiving devices; address
range: 1 ... 255 (0 = no transaction requested)

18th implied

The Modbus port 3 address of the 16th of the receiving devices (address
range: 1 ... 255)

920

840USE10100 April 2004

PID2:
Proportional Integral Derivative

144

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the instruction PID2.

This chapter contains the following topics:

Topic Page

Short Description 922
Representation: PID2 - Proportional/Integral/Derivative 923
Detailed Description 924
Parameter Description 927
Run Time Errors 932

840USE10100 April 2004

921

PID2: Proportional Integral Derivative

Short Description

Function The PID2 instruction implements an algorithm that performs proportional-integral-
Description derivative operations. The algorithm tunes the closed loop operation in a manner
similar to traditional pneumatic and analog electronic loop controllers. It uses a rate
gain limiting (RGL) filter on the PV as it is used for the derivative term only, thereby
filtering out higher-frequency PV noise sources (random and process generated).
Formula Proportional Control
My, = K|E + bias
Proportional-Integral Control
t
My = K| E+K,[EAt
0
Proportional-Integral-Derivative Control
t
APV
MV = Kl E + KZJEAt + K3A_t
0
922 840USE10100 April 2004

PID2: Proportional Integral Derivative

Representation: PID2 - Proportional/Integral/Derivative

Symbol

Parameter
Description

Representation of the instruction

MANUAL/AUTO — —— LOOP SOLUTION
source
INTEGRAL PRELOAD — —— HIGH ALARM
destination
DIRECT/REV. ACTION — —— LOW ALARM
PID2
Length: 1 - 255 solution
interval
Parameters State RAM | Data | Meaning
Reference | Type
Top input 0x, 1x None |0 = Manual mode
1 = Auto mode
Middle input 0x, 1x None |0 = Integral preload OFF
1 = Integral preload ON
Bottom input 0x, 1x None | 0 = Output increases as E increases
1 = Output decreases as E decreases
source 4x INT, | First of 21 contiguous holding registers in a source block
(top node) UINT | (For more information, please see Source Block (Top
Node), p. 927.)
destination 4x INT, | First of nine contiguous holding registers used for PID2
(middle node) UINT | calculation. Do not load anything in these registers!
For more information, please see Destination (Middle
Node), p. 930.)
solution interval INT, | Contains a number ranging from 1 ... 255, indicating
(bottom node) UINT | how often the function should be performed.
Top output 0x None | 1 = Invalid user parameter or Loop ACTIVE but not
being solved
Middle output 0x None |1 =PV = high alarm limit
Bottom output 0x None |1 =PV <low alarm limit

840USE10100 April 2004

923

PID2: Proportional Integral Derivative

Detailed Description

Block Diagram

Xn-1

(4y + 6)/8

SP

(4x1 - 4x2)
(4x11 - 4x12)

Derivative
Contribution

X 4095

Proportional
Contribution

Output
Clamp

Integral
Feedback Integral
Contribution A
Q,
Mode Integral
Tioc Clamp
4x20 W
D Al
Ky Ty
600000
Jn-
In-1 >

4x17 4x2
4x18

et

4y +3,+4,+5

924

840USE10100 April 2004

PID2: Proportional Integral Derivative

The elements in the block diagram have the following meaning:

Element Meaning

E Error, expressed in raw analog units

SP Set point, in the range 0 ... 4095

PV Process variable, in the range 0 ... 4095

X Filtered PV

K2 Integral mode gain constant, expressed in 0.01 min™!

K3 Derivative mode gain constant, expressed in hundredths of a minute
RGL Rate gain limiting filter constant, in the range 2 ... 30

Ts Solution time, expressed in hundredths of a second

PB Proportional band, in the range 5 ... 500%

bias Loop output bias factor, in the range O ... 4095

M Loop output

GE Gross error, the proportional-derivative contribution to the loop output
V4 Derivative mode contribution to GE

Qn Unbiased loop output

F Feedback value, in the range O ... 4095

| Integral mode contribution to the loop output

low Anti-reset-windup low SP, in the range 0 ... 4095

Ihigh Anti-reset-windup high SP, in the range 0 ... 4095

K1 100/PB

Note: The integral mode contribution calculation actually integrates the difference
of the output and the integral sum, this is effectively the same as integrating the

error.

840USE10100 April 2004

925

PID2: Proportional Integral Derivative

Proportional
Control

Proportional-
Integral Control

Proportional-

With proportional-only control (P), you can calculate the manipulated variable by
multiplying error by a proportional constant, K1, then adding a bias. See Formula,
p. 922.

However, process conditions in most applications are changed by other system
variables so that the bias does not remain constant; the result is offset error, where
PV is constantly offset from the SP. This condition limits the capability of
proportional-only control.

Note: The value in the integral term (in registers 4y + 3, 4y + 4, and 4y + 5) is
always used, even when the integral mode is not enabled. Using this value is
necessary to preserve bumpless transfer between modes. If you wish to disable
bumpless transfer, these three registers must be cleared.

In manual mode setpoint changes will not take effect unless the above three
registers are cleared and the mode is switched back to automatic. The transfer will
not be bumpless.

To eliminate this offset error without forcing you to manually change the bias, an
integral function can be added to the control equation. See Formula, p. 922.
Proportional-integral control (Pl) eliminates offset by integrating E as a function of
time. K1 is the integral constant expressed as rep/min. As long as E = 0, the
integrator increases (or decreases) its value, adjusting Mv. This continues until the
offset error is eliminated.

You may want to add derivative functionality to the control equation to minimize the

Integral- effects of frequent load changes or to override the integral function in order to get to

Derivative the SP condition more quickly. See Formula, p. 922.

Control
Proportional-integral-derivative (PID) control can be used to save energy in the
process or as a safety valve in the event of a sudden, unexpected change in process
flow. K3 is the derivative time constant expressed as min. DPV is the change in the
process variable over a time period of At.

Example An example to PID2 level control you will find in PID2 Level Control Example.

926

840USE10100 April 2004

PID2: Proportional Integral Derivative

Parameter Description

Source Block
(Top Node)

The 4x register entered in the top node is the first of 21 contiguous holding registers
in a source block. The contents of the fifth ... eighth implied registers determine
whether the operation will be P, PI, or PID:

Operation Fifth Implied Sixth Implied | Seventh Implied | Eighth Implied
P ON ON

Pl ON ON

PID ON ON ON

The source block comprises the following register assignments:

Register | Name Content

Displayed | Scaled PV Loaded by the block each time it is scanned; a linear scaling
is done on register 4x + 13 using the high and low ranges from
registers 4x + 11 and 4x + 12:
Scaled PV = (4x13/4095) * (4x11 - 4x12) + 4x12

First SP You must specify the set point in engineering units; the value

implied must be < value in the 11th implied register and > value in the
12th implied register

Second Mv Loaded by the block every time the loop is solved; it is

implied clamped to a range of 0 ... 4095, making the output compatible
with an analog output module; the manipulated variable
register may be used for further CPU calculations such as
cascaded loops

Third High Alarm Limit | Load a value in this register to specify a high alarm for PV (at

implied or above SP); enter the value in engineering units within the
range specified in the 11th and 12th implied registers

Fourth Low Alarm Limit | Load a value in this register to specify a low alarm for PV (at

implied or below SP); enter the value in engineering units within the
range specified in the 11th and 12th implied registers

Fifth Proportional Load this register with the desired proportional constant in the

implied Band range 5 ... 500; the smaller the number, the larger the
proportional contribution; a valid number is required in this
register for PID2 to operate

Sixth Reset Time Load this register to add integral action to the calculation;

implied Constant enter a value between 0000 ... 9999 to represent a range of

00.00 ... 99.99 repeats/min; the larger the number, the larger
the integral contribution; a value > 9999 stops the PID2
calculation

840USE10100 April 2004

927

PID2: Proportional Integral Derivative

Register | Name Content

Seventh | Rate Time Load this register to add derivative action to the calculation;

implied Constant enter a value between 0000 ... 9999 to represent a range of
00.00 ... 99.99 min; the larger the number, the larger the
derivative contribution; a value > 9999 stops the PID2
calculation

Eighth Bias Load this register to add a bias to the output; the value must

implied be between 000 4095, and added directly to Mv, whether
the integral term is enabled or not

Ninth High Integral Load this register with the upper limit of the output value

implied Windup Limit (between 0 ... 4095) where the anti-reset windup takes effect;
the updating of the integral sum is stopped if it goes above this
value (this is normally 4095)

10th Low Integral Load this register with the lower limit of the output value

implied Windup Limit (between 0 ... 4095) where the anti-reset windup takes effect
(this is normally 0)

11th High Load this register with the highest value for which the

implied Engineering measurement device is spanned, e.g. if a resistance

Range temperature device ranges from 0 ... 500 degrees C, the high

engineering range value is 500; the range must be given as a
positive integer between 0001 ... 9999, corresponding to the
raw analog input 4095

12th Low Engineering | Load this register with the lowest value for which the

implied Range measurement device is spanned; the range must be given as
a positive integer between 0 ... 9998, and it must be less than
the value in the 11th implied register; it corresponds to the raw
analog input 0

13th Raw Analog The logic program loads this register with PV; the

implied Measurement measurement must be scaled and linear in the range 0 ... 4095

14th Pointer to Loop | The value you load in this register points to the register that

implied Counter Register | counts the number of loops solved in each scan; the entry is
determined by discarding the most significant digit in the
register where the controller will count the loops solved/scan,
e.g., if the PLC does the count in register 41236, load 1236
into the 14th implied register; the same value must be loaded
into the 14th implied register in every PID2 block in the logic
program

15th Maximum Solved In a Scan: If the 14th implied register contains a non-

implied Number of zero value, you may load a value in this register to limit the

Loops number of loops to be solved in one scan

928

840USE10100 April 2004

PID2: Proportional Integral Derivative

Register | Name Content

16th Pointer To Reset | The value you load in this register points to the holding register

implied Feedback Input: | that contains the value of feedback (F); drop the 4 from the
feedback register and enter the remaining four digits in this
register; integration calculations depend on the F value being
should F vary from O ... 4095

17th Output Clamp - | The value entered in this register determines the upper limit of

implied High Mv (this is normally 4095)

18th Output Clamp - | The value entered in this register determines the lower limit of

implied Low Mv (this is normally 0)

19th Rate Gain Limit | The value entered in this register determines the effective

implied (RGL) Constant | degree of derivative filtering; the range is from 2 ... 30; the
smaller the value, the more filtering takes place

20th Pointer to The value entered in this register points to the holding register

implied Integral Preload | containing the track input (T) value; drop the 4 from the

tracking register and enter the remaining four digits in this
register; the value in the T register is connected to the input of
the integral lag whenever the auto bit and integral preload bit
are both true

840USE10100 April 2004

929

PID2: Proportional Integral Derivative

Destination
(Middle Node)

The 4y register entered in the middle node is the first of nine contiguous holding
register used for PID2 calculations. You do not need to load anything into these

registers:

Register Name Content

Displayed Loop Status Twelve of the 16 bits in this register are used to define loop
Register status.

First implied | Error (E) Status | This register displays PID2 error codes.
Bits

Second Loop Timer This register stores the real-time clock reading on the

implied Register system clock each time the loop is solved: the difference
between the current clock value and the value stored in
the register is the elapsed time; if elapsed time = solution
interval (10 times the value given in the bottom node of the
PID2 block), then the loop should be solved in this scan

Third implied | For Internal Use | Integral (integer portion)

Fourth implied | For Internal Use | Integral-fraction 1 (1/3 000)

Fifth implied | For Internal Use | Integral-fraction 2 (1/600 000)

Sixth implied | Pv x 8 (Filtered) | This register stores the result of the filtered analog input
(from register 4x14) multiplied by 8; this value is useful in
derivative control operations

Seventh Absolute Value | This register, which is updated after each loop solution,

implied of E contains the absolute value of (SP - PV); bit 8 in register
4y + 1 indicates the sign of E

Eighth implied | For Internal Use | Current solution interval

930

840USE10100 April 2004

PID2: Proportional Integral Derivative

Loop Status
Register

Solution Interval
(Bottom Node)

1]2]a|a|s |67 8]0[10]11]12]18]14]15]16]

Bit Function

—_

Top output status (Node lockout or parameter error

N

Middle output status (High alarm)

Bottom output status (Low alarm)

Loop in AUTO mode and time since last solution = solution interval

Wind-down mod (for REV B or higher)

Loop in AUTO mode but not being solved

4x14 register referenced by 4x15 is valid

O IN| O~

Signof Eind4y + 7:
® 0=+ (plus)

® 1 =-(minus)

9 Rev B or higher

10 Integral windup limit never set

11 Integral windup saturated

12 Negative values in the equation

13 Bottom input status (direct / reverse acting)

14 Middle input status (tracking mode)
e 1 =tracking
e 0 =no tracking

15 Top input status (MAN / AUTO)

16 Bit 16 is set after initial startup or installation of the loop. If you clear the bit, the

following actions take place in one scan:

® The loop status register 4y is reset

® The current value in the real-time clock is stored in the first implied register
(4y+1)

e Values in the third ... fifth registers (4y+2,3) are cleared

® The value in the13th implied register (4x+13) x 8 is stored in the sixth implied
register (4y+6)

® The seventh and eighth implied registers (4y+7,8) are cleared

The bottom node indicates that this is a PID2 function and contains a number
ranging from 1 ... 255, indicating how often the function should be performed. The
number represents a time value in tenths of a second, or example, the number 17
indicates that the PID function should be performed every 1.7 s.

840USE10100 April 2004

931

PID2: Proportional Integral Derivative

Run Time Errors

Error Status Bit

The first implied register of the destination contains the error status bits:

Code | Explanation Check these Registers in the
Source Block (Top Node)
0000 | No errors, all validations OK None
0001 | Scaled SP above 9999 First implied
0002 |High alarm above 9999 Third implied
0003 | Low alarm above 9999 Fourth implied
0004 | Proportional band below 5 Fifth implied
0005 | Proportional band above 500 Fifth implied
0006 | Reset above 99.99 r/min Sixth implied
0007 | Rate above 99.99 min Seventh implied
0008 | Bias above 4095 Eighth implied
0009 | High integral limit above 4095 Ninth implied
0010 |Low integral limit above 4095 10th implied
0011 | High engineering unit (E.U.) scale above 9999 11th implied
0012 |Low E.U. scale above 9999 12th implied
0013 |High E.U. below low E.U. 11th and 12th implied
0014 | Scaled SP above high E.U. First and 11th implied
0015 |.Scaled SP below low E.U. First and 12th implied
0016 | Maximum loops/scan > 9999 15th implied
Note: Activated by maximum loop feature, i.e. only
if 4x15 is not zero.
0017 | Reset feedback pointer out of range 16th implied
0018 | High output clamp above 4095 17th implied
0019 | Low output clamp above 4095 18th implied
0020 | Low output clamp above high output clamp 17th and 18th implied
0021 | RGL below 2 19th implied
0022 | RGL above 30 19th implied
0023 | Track F pointer out of range 20th implied with middle input

Note: Activated only if the track feature is ON, i.e.
the middle input of the PID2 block is receiving power
while in AUTO mode.

ON

932

840USE10100 April 2004

PID2: Proportional Integral Derivative
Code | Explanation Check these Registers in the
Source Block (Top Node)

0024 | Track F pointer is zero 20th implied with middle input

Note: Activated only if the track feature is ON, i.e. | ON

the middle input of the PID2 block is receiving power

while in AUTO mode.
0025 | Node locked out (short of scan time) None

Note: Activated by maximum loop feature, i.e. only

if 4x15 is not zero.

Note: If lockout occurs often and the parameters

are all valid, increase the maximum number of

loops/scan. Lockout may also occur if the counting

registers in use are not cleared as required.
0026 | Loop counter pointer is zero 14th and 15th implied

Note: Activated by maximum loop feature, i.e. only

if 4x15 is not zero.
0027 | Loop counter pointer out of range 14th and 15th implied

840USE10100 April 2004

933

PID2: Proportional Integral Derivative

934 840USE10100 April 2004

Instruction Descriptions (R to 2)

Vi

At a Glance

Introduction

In this part instruction descriptions are arranged alphabetically from R to Z.

What's in this This part contains the following chapters:

Part? Chapter Chapter Name Page
145 R --> T: Register to Table 937
146 RBIT: Reset Bit 941
147 READ: Read 945
148 RET: Return from a Subroutine 951
149 RTTI - Register to Input Table 955
150 RTTO - Register to Output Table 959
151 RTU - Remote Terminal Unit 963
152 SAVE: Save Flash 969
153 SBIT: Set Bit 973
154 SCIF: Sequential Control Interfaces 977
155 SENS: Sense 983
156 Shorts 987
157 SKP - Skipping Networks 991
158 SRCH: Search 995
159 STAT: Status 1001
160 SU16: Subtract 16 Bit 1029
161 SUB: Subtraction 1033
162 SWAP - VME Bit Swap 1037
163 TTR - Table to Register 1041
164 T --> R Table to Register 1045
165 T --> T: Table to Table 1051

840USE10100 April 2004 935

Instruction Descriptions (R to Z)

Chapter Chapter Name Page
166 T.01 Timer: One Hundredth Second Timer 1057
167 TO0.1 Timer: One Tenth Second Timer 1061
168 T1.0 Timer: One Second Timer 1065
169 T1MS Timer: One Millisecond Timer 1069
170 TBLK: Table to Block 1073
171 TEST: Test of 2 Values 1079
172 UCTR: Up Counter 1083
173 VMER - VME Read 1087
174 VMEW - VME Write 1091
175 WRIT: Write 1097
176 XMIT - Transmit 1103
177 XMIT Communication Block 1111
178 XMIT Port Status Block 1123
179 XMIT Conversion Block 1131
180 XMRD: Extended Memory Read 1139
181 XMWT: Extended Memory Write 1145
182 XOR: Exclusive OR 1151

936

840USE10100 April 2004

R --> T: Register to Table

145

At a Glance

Introduction This chapter describes the instruction R — T.

What's in this This chapter contains the following topics:

2

Chapter? Topic Page
Short Description 938
Representation: R — T - Register to Table Move 939
Parameter Description 940

840USE10100 April 2004 937

R --> T: Register to Table

Short Description

Function The R—T instruction copies the bit pattern of a register or of a string of contiguous
Description discretes stored in a word into a specific register located in a table. It can
accommodate the transfer of one register/word per scan.

938 840USE10100 April 2004

R --> T: Register to Table

Representation: R — T - Register to Table Move

Symbol Representation of the instruction
CONTROL INPUT / — — ACTIVE
INCREASE POINTER source
PREVENTS POINTER —— —— POINTER = TABLE LENGTH
FROM INCREASING destination
pointer
RESET POINTER —
RET
Length:
Max. 255 16-bit PLC table length
Max. 999 24-bit PLC
Parameter
Description Parameters State RAM | Data Type | Meaning
Reference
Top input 0x, 1x None ON = copies source data and increments the
pointer value
Middle input 0x, 1x None ON = freezes the pointer value
Bottom input 0x, 1x None ON = resets the pointer value to zero
source 0x, 1x, 3x, | INT,UINT, | Source data to be copied in the current scan
(top node) 4x WORD
destination pointer | 4x INT, UINT | Destination table where source data will be
(middle node) copied in the scan
table length INT, UINT | Number of registers in the destination table,
(bottom node) range: 1 ... 999
Length:
Max. 255 16-bit PLC
Max. 999 24-bit PLC
Top output 0x None Echoes the state of the top input
Middle output 0x None ON = pointer value = table length (instruction

cannot increment any further)

840USE10100 April 2004

939

R --> T: Register to Table

Parameter Description

Top Input

Middle Input

Bottom Input

Source Data
(Top Node)

Destination
Pointer
(Middle Node)

Outputs

The input to the top node initiates the DX move operation.

When the middle input goes ON, the current value stored in the destination pointer
register is frozen while the DX operation continues. This causes new data being
copied to the destination to overwrite the data copied on the previous scan.

When the bottom input goes ON, the value in the destination pointer register is reset
to zero. This causes the next DX move operation to copy source data into the first
register in the destination table.

When using register types 0x or 1x:
e First Ox reference in a string of 16 contiguous coils or discrete outputs
e First 1x reference in a string of 16 discrete inputs

The 4x register entered in the middle node is a pointer to the destination table where
source data will be copied in the scan. The first register in the destination table is the
next contiguous 4x register following the pointer, i.e. if the pointer register is 400027,
then the destination table begins at register 400028.

The value posted in the pointer register indicates the register in the destination table
where the source data will be copied. A value of zero indicates that the source data
will be copied to the first register in the destination table; a value of 1 indicates that
the source data be copied to the second register in the destination table; etc.

Note: The value posted in the destination pointer register cannot be larger than the
table length integer specified in this node.

R—T can produce two possible outputs, from the top and middle nodes. The state
of the output from the top node echoes the state of the top input. The output from

the middle node goes ON when the value in the destination pointer register equals
the specified table length. At this point, the instruction cannot increment any further.

940

840USE10100 April 2004

RBIT: Reset Bit

146

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the instruction RBIT.

This chapter contains the following topics:

Topic Page
Short Description 942
Representation: RBIT - Reset Bit 943

840USE10100 April 2004

941

RBIT: Reset Bit

Short Description

Function The reset bit (RBIT) instruction lets you clear a latched-ON bit by powering the top
Description input. The bit remains cleared after power is removed from the input. This instruction
is designed to clear a bit set by the SBIT instruction.

Note: The RBIT instruction does not follow the same rules of network placement
as Ox-referenced coils do. An RBIT instruction cannot be placed in column 11 of a
network and it can be placed to the left of other logic nodes on the same rungs of
the ladder.

942 840USE10100 April 2004

RBIT: Reset Bit

Representation: RBIT - Reset Bit

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT —— — ACTIVE
register #
Bit number to reset
(1-16) RBIT
bit #
(1...16)
Parameters State RAM Data Type | Meaning
Reference
Top input 0x, 1x None ON = clears the specified bit to 0. The bit
remains cleared after power is removed from
the input
register # 4x WORD Holding register whose bit pattern is being
(top node) controlled
bit # INT, UINT | Indicates which one of the 16 bits is being
(bottom node) cleared
Top output 0x None ON = the specified bit has been cleared to 0

840USE10100 April 2004

943

RBIT: Reset Bit

944 840USE10100 April 2004

READ: Read

147

At a Glance

Introduction This chapter describes the instruction READ.

What's in this This chapter contains the following topics:

2

Chapter? Topic Page
Short Description 946
Representation: READ - Read ASCII Port 947
Parameter Description 948

840USE10100 April 2004 945

READ: Read

Short Description

Function The READ instruction provides the ability to read data from an ASCII input device
Description (keyboard, bar code reader, etc.) into the PLC’s memory via its RIO network. The
connection to the ASCII device is made at an RIO interface.

In the process of handling the messaging operation, READ performs the following

functions:

e Verifies the lengths of variable data fields

e Verifies the correctness of the ASCII communication parameters, e.g. the port
number, the message number

e Performs error detection and recording

e Reports RIO interface status

READ requires two tables of registers: a destination table where retrieved variable
data (the message) is stored, and a control block where comm port and message
parameters are identified.

Further information about formatting messages you will find in Formatting Messages
for ASCII READ/WRIT Operations, p. 91.

946 840USE10100 April 2004

READ: Read

Representation: READ - Read ASCII Port

Symbol Representation of the instruction
CONTROL — — ACTIVE
(off to on) control block
PAUSE OPERATION — —— ERROR (ONE SCAN)
destination
ABORT OPERATION — —— COMPLETE (ONE SCAN)
READ
Length:
table length
Max. 255 16-bit PLC able leng
Max. 999 24-bit PLC
Parameter
Description Parameters State RAM Data Type |Meaning
Reference
Top input 0x, 1x None ON = initiates a READ
Middle input 0x, 1x None ON = pauses READ operation
Bottom input 0x, 1x None ON = abort READ operation
control block 4x INT, UINT, | Control block (first of seven contiguous
(top node) WORD holding registers)
destination 4x INT, UINT, | Destination table
(middle node) WORD
table length INT, UINT | Length of destination table (number of
(bottom node) registers where the message data will be
stored), range: 1 ... 999
Length:
Max. 255 16-bit PLC
Max. 999 24-bit PLC
Top output 0x None Echoes the state of the top input
Middle output 0x None ON = error in communication or operation
has timed out (for one scan)
Bottom output 0x None ON = READ complete (for one scan)

840USE10100 April 2004

947

READ: Read

Parameter Description

Control Block The 4x register entered in the top node is the first of seven contiguous holding
(Top Node) register in the control block.

Register Definition

Displayed Port number and error code

First implied Message number

Second implied Number of registers required to satisfy format

Third implied Count of the number of registers transmitted thus far

Fourth implied Status of the solve

Fifth implied Reserved

Sixth implied Checksum of registers 0 ... 5

948 840USE10100 April 2004

READ: Read

Port Number and
Error Code

1]2]a|a|s |67 8]0[10]11]12]18]14]15]16]

Bit Function

1. PLC error code

5 Not used

6 Input from the ASCII device not compatible with format
7 Input buffer overrun, data received too quickly at RIOP
8 USART error, bad byte received at RIOP

9 ASCII device off-line, check cabling

10 lllegal format, not received properly by RIOP

11 ASCII message terminated early (in keyboard mode
12...16 | Comm port # (1 ... 32)

PLC Error Code

Bit

Meaning

Error in the input to RIOP from ASCII device

Exception response from RIOP, bad data

Sequenced number from RIOP differs from expected value

OO O0|O| =

“ oo |O|DN

o|—=+| O

User register checksum error, often caused by altering
READ registers while the block is active

Invalid port or message number detected

—_

o

User-initiated abort, bottom input energized

—_

No response from drop, communication error

o

Node aborted because of SKP instruction

g

Message area scrambled, reload memory

-]lO| o

Port not configured in the I/O map

e

llegal ASCII request

Unknown response from ASCII port

o | o

- |Oo|N| O

llegal ASCII element detected in user logic

alalalalalalalo|lolo

a|lalalololololw|ala

—_

RIOP in the PLC is down

840USE10100 April 2004

949

READ: Read

Destination The middle node contains the first 4x register in a destination table. Variable data in
(Middle Node) a READ message are written into this table. The length of the table is defined in the
bottom node.

Consider this READ message:

please enter password: AAAAAAAAAA

(Embedded Text) (Variable Data)

Note: An ASCII READ message may contain the embedded text, placed inside
quotation marks, as well as the variable data in the format statement, i.e., the ASCII
message.

The 10-character ASCII field AAAAAAAAAA is the variable data field; variable data
must be entered via an ASCII input device.

950 840USE10100 April 2004

RET: Return from a Subroutine

148

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the instruction RET.

This chapter contains the following topics:

Topic Page
Short Description 952
Representation: RET - Return to Scheduled Logic 953

840USE10100 April 2004

951

RET: Return from a Subroutine

Short Description

Function The RET instruction may be used to conditionally return the logic scan to the node

Description immediately following the most recently executed JSR block. This instruction can be
implemented only from within the subroutine segment, the (unscheduled) last
segment in the user logic program.

Note: If a subroutine does not contain a RET block, either a LAB block or the end-
of-logic (whichever comes first) serves as the default return from the subroutine.

An example to the subroutine handling you will find in Subroutine Handling, p. 107.

952 840USE10100 April 2004

RET: Return from a Subroutine

Representation: RET - Return to Scheduled Logic

Symbol

Parameter
Description

Representation of the instruction

RETURN TO PREVIOUS — —— ERROR
LOGIC RET
00001
Description of the instruction’s parameters
Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = return to previous logic
ON returns the logic scan to the node
immediately following the most recently
executed JSR instruction or to the point
where the interrupt occurred in the logic
scan.
00001 INT, UINT Constant value, can not be changed
Top output 0x None ON = error in the specified subroutine

840USE10100 April 2004

953

RET: Return from a Subroutine

954 840USE10100 April 2004

RTTI - Register to Input Table

149

At A Glance

Introduction

What's in this
Chapter?

This chapter describes the instruction RTTI.

This chapter contains the following topics:

Topic Page
Short Description: RTTI - Register to Input Table 956
Representation: RTTI - Register to Input Table 957

840USE10100 April 2004

955

RTTI - Register to Input Table

Short Description: RTTI - Register to Input Table

Function The Register to Input Table block is one of four 484-replacement instructions. It

Description copies the contents of an input register or a holding register to another input or
holding register. This destination register is pointed to by the input register implied
by the constant in the bottom node. Only one such operation can be accommodated
by the system in each scan.

956 840USE10100 April 2004

RTTI - Register to Input Table

Representation: RTTI - Register to Input Table

Symbol

Parameter
Description

CONTROL INPUT —

Representation of the instruction

— ACTIVE
source
— ERROR
RTTI
destination
offset pointer

Description of the instruction’s parameters

Parameters

State RAM
Reference

Data Type Meaning

Top input

0x, 1x

None Control source

source
(top node)

3X, 4x

INT, UINT The source node (top node) contains the
source register address. The data located
in the source register address will be
copied to the destination address, which is
determined by the destination offset

pointer.

pointer
(bottom node)

(1 ... 254)
(801 ... 832)

INT, UINT The pointer is a 3xxxx implied by a constant
(i.e. 00018 -> 30018) whose contents
indicate the destination. A value of 1 to 254
indicates a holding register (40001 - 40254)
and a value of 801 to 832 indicates an input
register (30001 - 30032). If the value is
outside this range, the operation is not
performed and the ERROR rail is powered.
Note the pointer's value is NOT
automatically increased.

Top output

0x

None Echoes the value of the top input

Bottom output

0x

None ON = error
Pointer value out of range

840USE10100 April 2004

957

RTTI - Register to Input Table

958 840USE10100 April 2004

RTTO - Register to Output Table

150

At A Glance

Introduction

What's in this
Chapter?

This chapter describes the instruction RTTO.

This chapter contains the following topics:

Topic Page
Short Description: RTTO - Register to Output Table 960
Representation: RTTO - Register to Output Table 961

840USE10100 April 2004

959

RTTO - Register to Output Table

Short Description: RTTO - Register to Output Table

Function The Register to Output Table block is one of four 484-replacement instructions. It

Description copies the contents of an input register or a holding register to another input or
holding register. The holding register implied by the constant in the bottom node
points to this destination register. Only one such operation can be accommodated
by the system in each scan.

960 840USE10100 April 2004

RTTO - Register to Output Table

Representation: RTTO - Register to Output Table

Symbol Representation of the instruction
CONTROL INPUT — — COPY
source
— ERROR
RTTO
destination
offset pointer
Parameter Description of the instruction’s parameters
Description Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None Control source
source 3x, 4x INT, UINT The source node (top node) contains the
(top node) source register address. The data located
in the source register address will be
copied to the destination address, which is
determined by the destination offset
pointer.
pointer (1...254) INT, UINT The pointer is a 4xxxx implied by a constant
(bottom node) (801 ... 824) (i.e. 00018 -> 40018) whose contents
indicate the destination. A value of 1 to 254
indicates a holding register (40001 - 40254)
and a value of 801 to 832 indicates an input
register (30001 - 30032). If the value is
outside this range, the operation is not
performed and the ERROR rail is powered.
Note that the pointer's value is NOT
automatically increased.
Top output 0x None Echoes the value of the top input
Bottom output | Ox None ON = error
Pointer value out of range

840USE10100 April 2004 961

RTTO - Register to Output Table

962 840USE10100 April 2004

RTU - Remote Terminal Unit

151

At A Glance

Introduction

What's in this
Chapter?

This chapter describes the instruction RTU.

This chapter contains the following topics:

Topic Page
Short Description: RTU - Remote Terminal Unit 964
Representation: RTU - Remote Terminal Unit 965

840USE10100 April 2004

963

RTU - Remote Terminal Unit

Short Description: RTU - Remote Terminal Unit

Function
Description

The MODBUS Remote Terminal Unit (RTU) block supports the following data baud
rates:

1200
2400
4800
9600
19200

964

840USE10100 April 2004

RTU - Remote Terminal Unit

Representation: RTU - Remote Terminal Unit

Parameter
Description

Register Entries
for Baud Rates

Description of the instructions parameters

Register | Function

4x RTU revision number (read-only)

4x + 1 Fault status field (read-only)

4x + 2 Field not used

4x + 3 Set the Data Baud Rate register
For expanded and detailed information about the register entries for baud rates
please see the section below: Register Entries for Baud Rates.

4x + 4 Set the Data Bits register
For expanded and detailed information about the register entries for data bits
please see the section below: Register Entries for Data Bits

4x +5 Parity register

4x + 6 Stop bit register

4x +7 Field not used

4x + 8 Set the Command Word register

For expanded and detailed information about the register entries for command
words please see the section below: Register Entries for Command Words

The MODBUS Remote Terminal Unit (RTU) block supports the following data baud

rates:
e 1200
e 2400
e 4800
e 9600
e 19200

Below are the register entries for the supported data rates. To configure a data rate,
type the appropriate decimal number (for example 1200) in the data baud rate

register.
Register Entry Baud Rate
1200 1200
2400 2400
4800 4800
9600 9600
19200 19200

840USE10100 April 2004

965

RTU - Remote Terminal Unit

Register Entries = The RTU block supports data bits 7 and 8. Below are the possible register entries
for Data Bits for the data bits field:

Register Entry Data Bit Field
7 7
8 8

Modbus messages can be sent in Modbus RTU format or Modbus ASCII format.

e If messages are sent in Modbus ASCII format, type 7 in the field.

e If messages are sent in Modbus RTU format, type 8.

If you're sending ASCII character messages, this register can be set to 7 or 8 data
bits.

Register Entries The RTU block interprets each bit of the command word as a function to implement
for Command or perform. Below are the bit definitions for the command word register entries.

Words Register Entry Definitions

1 (msb) Not used

Enable RTS/CTS control

Not used

Not used

Not used

Not used

Enable ASCII string messaging

Enable Modbus messaging

Not used

O 0| N OO~ O|DN

o

Not used

—_
—_

Not used

-
N

Not used

-
w

Not used

—
IS

Hang up modem

-
(4]

Dial modem

16 (Isb) Initialize modem

966 840USE10100 April 2004

RTU - Remote Terminal Unit

The following items provide expanded and detailed information about Bits 2, 7, and

e Bit 2 — Enable request-to-send/clear-to-send (RTS/CTS) control

This bit should be set (or true) when a DCE that is connected to the PLC requires

hardware handshaking using RTS/CTS control.

This bit can be used in conjunction with the values contained in the (4xxxx , 13)

start-of-transmission delay register and the (4xxxx + 13) end-of-transmission

delay register. Start-of-transmission delay keeps RTS asserted for 0-9999 ms

before the RTU block sends a message from the PLC port. After the RTU block

sends a message, end-of-transmission delay keeps RTS asserted for 0-9999 ms.

When end-of-transmission delay has expired, the RTU block de-asserts RTS.

Bit 7 — Enable ASCII string messaging

This bit should be set (or true) to send ASCII string messages form the PLC

communication Port #1.

The RTU block can send an ASCII string of up to 512 characters in length. Each

ASCII message must be programmed into contiguous 4x registers of the PLC.

Two characters per register are allowed.

Note: This ASCIl message string should NOT be confused with a Modbus

message sent in ASCII format.

Bit 8 — Enable Modbus messaging

This bit should be set (or true) to send Modbus messages from the PLC

communication Port #1.

Modbus messages can be sent in RTU or ASCII formats.

¢ If sending Modbus messages in RTU format, set the data bits in the (4xxxx +
4) data bits register to 8.

e If sending Modbus message in ASCII format, set the data bits in the (4xxxx +
4) data bits register to 7.

840USE10100 April 2004

967

RTU - Remote Terminal Unit

968 840USE10100 April 2004

SAVE: Save Flash

152

At a Glance

Introduction This chapter describes the instruction SAVE.

What's in this This chapter contains the following topics:

2

Chapter? Topic Page
Short Description 970
Representation: SAVE - Save 971
Parameter Description 972

840USE10100 April 2004 969

SAVE: Save Flash

Short Description

Function
Description Note: This instruction is available with the PLC family TSX Compact, with Quantum
CPUs 434 12/ 534 14 and Momentum CPUs CCC 960 x0/ 980 x0.
The SAVE instruction saves a block of 4x registers to state RAM where they are
protected from unauthorized modification.
970

840USE10100 April 2004

SAVE: Save Flash

Representation: SAVE - Save

Symbol Representation of the instruction
CONTROL INPUT — — ACTIVE
register
L ERROR
1,2,3,4 SAVE not allowed
SAVE
length
Parameter Description of the instruction’s parameters
Description Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None Start SAVE operation: it should remain ON
until the operation has completed
successfully or an error has occurred.
register 4x INT, UINT, First of max. 512 contiguous 4x registers
(top node) WORD to be saved to state RAM
1,2,3,4 (Seel, INT Integer value, which defines the specific
2, 3, 4 (Middle buffer where the block of data is to be
Node), p. 972) saved
(middle node)
length INT Number of words to be saved, range: 1 ...
(bottom node) 512
Top output 0x None ON = SAVE is active
Middle output | Ox None ON = SAVE is not allowed
(See Middle
Output, p. 972)

840USE10100 April 2004 971

SAVE: Save Flash

Parameter Description

1,2,3,4
(Middle Node)

Middle Output

The middle node defines the specific buffer, within state RAM, where the block of
data is to be saved. Four 512 word buffers are allowed. Each buffer is defined by
placing its corresponding value in the middle node, that is, the value 1 represents
the first buffer, value 2 represents the second buffer and so on. The legal values are
1, 2, 3, and 4. When the PLC is started all four buffers are zeroed. Therefore, you
may not save data to the same buffer without first loading it with the instruction
LOAD (See LOAD: Load Flash, p. 665). When this is attempted the middle output
goes ON. In other words, once a buffer is used, it may not be used again until the
data has been removed.

The output from the middle node goes ON when previously saved data has not been
accessed using the LOAD (See LOAD: Load Flash, p. 665) instruction. This
prevents inadvertent overwriting of data in the SAVE buffer.

972

840USE10100 April 2004

SBIT: Set Bit

153

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the instruction SBIT.

This chapter contains the following topics:

Topic Page
Short Description 974
Representation: SBIT - Set Bit 975

840USE10100 April 2004

973

SBIT: Set Bit

Short Description

Function The set bit (SBIT) instruction lets you set the state of the specified bit to ON (1) by
Description powering the top input.

Note: The SBIT instruction does not follow the same rules of network placement
as Ox-referenced coils do. An SBIT instruction cannot be placed in column 11 of a
network and it can be placed to the left of other logic nodes on the same rungs of
the ladder.

974 840USE10100 April 2004

SBIT: Set Bit

Representation: SBIT - Set Bit

Symbol

Parameter
Description

Representation of the instruction

ONSETSBITTO 1 — — ACTIVE
register #
SBIT
bit #
(1...16)
Description of the instruction’s parameters
Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = sets the specified bit to 1. The bit
remains set after power is removed from
the input
register # 4x WORD Holding register whose bit pattern is being
(top node) controlled
bit # INT, UINT Indicates which one of the 16 bits is being
(bottom node) set
Top output 0x None Goes ON, when the specified bit is set and
remains ON until it is cleared (via the RBIT
(See RBIT: Reset Bit, p. 941) instruction)

840USE10100 April 2004

975

SBIT: Set Bit

976 840USE10100 April 2004

SCIF:
Sequential Control Interfaces

154

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the instruction SCIF.

This chapter contains the following topics:

Topic Page

Short Description 978
Representation: SCIF - Sequential Control Interface 979
Parameter Description 981

840USE10100 April 2004

977

SCIF: Sequential Control Interfaces

Short Description

Function
Description

The SCIF instruction performs either a drum sequencing operation or an input
comparison (ICMP) using the data defined in the step data table.

The choice of operation is made by defining the value in the first register of the step
data table (See Step Data Table (Middle Node), p. 981):
e 0 =drum mode:
The instruction controls outputs in the drum sequencing application.
e 1 =ICMP mode:
The instruction reads inputs to ensure that limit switches, proximity switches,
pushbuttons, etc. are properly positioned to allow drum outputs to be fired.

978

840USE10100 April 2004

SCIF: Sequential Control Interfaces

Representation: SCIF - Sequential Control Interface

Symbol Representation of the instruction

CONTROL INPUT — — ACTIVE
step pointer

OPERATION SPECIFIC — —— OPERATION SPECIFIC
step data table

RESET STEP POINTER —— —— ERROR
SCIF
Length: 1 - 255 length
(1...255)

840USE10100 April 2004 979

SCIF: Sequential Control Interfaces

Parameter Description of the instruction’s parameters
Description Parameters State RAM Data Type | Meaning
Reference
Top input 0x, 1x None ON = initiates specified sequence control
operation
Middle input 0x, 1x None Drum mode: step pointer increments to the
next step
ICMP mode: compare status is shown at the
middle output
Bottom input 0x, 1x None Drum mode: ON = reset step pointer to 0
ICMP mode: not used
step pointer 4x INT, UINT | Number of the current step in the step data
(top node) table
step data table | 4x INT, UINT | First register in the step data table
(See Step Data (For expanded and detailed information
Table (Middle please see the section Step Data Table
Node), p. 981) (Middle Node), p. 981.)
(middle node)
length (See INT, UINT | Number of application-specific registers used
Length of Step in the step data table
Data Table
(Bottom Node),
p. 982)
(bottom node)
Top output 0x None Echoes state of the top input
Middle output | Ox None Drum mode goes ON for the last step
Note: When using the middle output, be
aware that when integrating with other logic, if
the step pointer is zero and the middle input is
ON, then the middle output will also be ON.
This condition will cause the step pointer to be
one step out of sequence.
Bottom output | Ox None ON = error is detected
980 840USE10100 April 2004

SCIF: Sequential Control Interfaces

Parameter Description

Step Data Table

(Middle Node)

The 4x register entered in the middle node is the first register in the step data table.
The first seven registers in the table hold constant and variable data required to
solve the instruction:

Register | Register Name Description
Displayed | subfunction type 0 = drum mode; 1 = ICMP mode
(entry of any other value in this register will result in all
outputs OFF)
First masked output data Loaded by SCIF each time the block is solved; the
implied (in drum mode) register contains the contents of the current step data
register masked with the output mask register
raw input data Loaded by the user from a group of sequential inputs to
(in ICMP mode) be used by the block in the current step
Second current step data Loaded by SCIF each time the block is solved; the
implied register contains data from the current step (pointed to
by the step pointer)
Third output mask Loaded by the user before using the block, the contents
implied (in drum mode) will not be altered during logic solving; contains a mask
to be applied to the data for each sequencer step
input mask Loaded by the user before using the block, it contains
(in ICMP mode) a mask to be ANDed with raw input data for each step,
masked bits will not be compared; the masked data are
put in the masked input data register
Fourth masked input data Loaded by SCIF each time the block is solved, it
implied (in ICMP mode) contains the result of the ANDed input mask and raw
input data
not used in drum mode
Fifth compare status Loaded by SCIF each time the block is solved, it
implied (in ICMP mode) contains the result of an XOR of the masked input data
and the current step data; unmasked inputs that are not
in the correct logical state cause the associated
register bit to go to 1, non-zero bits cause a
miscompare and turn ON the middle output from the
SCIF block
not used in drum mode
Sixth start of data table First of K registers in the table containing the user-
implied specified control data

Note: This and the rest of the registers represent
application-specific step data in the process being
controlled.

840USE10100 April 2004

981

SCIF: Sequential Control Interfaces

Length of Step The integer value entered in the bottom node is the length, i.e. the number of
Data Table application-specific registers, used in the step data table. The length can range from
(Bottom Node) 1...255.

The total number of registers required in the step data table is the length + 7. The
length must be = the value placed in the steps used register in the middle node.

982 840USE10100 April 2004

SENS: Sense

155

At a Glance

Introduction This chapter describes the instruction SENS.

What's in this This chapter contains the following topics:

?

Chapter? Topic Page
Short Description 984
Representation: SENS - Logical Bit-Sense 985
Parameter Description 986

840USE10100 April 2004 983

SENS: Sense

Short Description

Function The SENS instruction examines and reports the sense (1 or 0) of a specific bit
Description location in a data matrix. One bit location is sensed per scan.
984

840USE10100 April 2004

SENS: Sense

Representation: SENS - Logical Bit-Sense

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT —— —

Pointer: (999 16-bit PLC)

(max)

INCREASE POINTER — —

(9600 24-bit PLC)

RESET POINTER —— —

Matrix length (max)
255 Registers (4080 bits 16-bit PLC)
600 Registers (9600 bits 24-bit PLC)

ACTIVE
bit location
SENSE BIT (ON/OFF)
data matrix
ERROR
SENS Operation not performed
Pointer > Matrix size
length

Description of the instruction’s parameters

Parameters State RAM | Data Meaning
Reference | Type
Top input 0x, 1x None ON = senses the bit location
Middle input 0x, 1x None Increment bit location by one on next scan
Bottom input | Ox, 1x None Reset bit location to 1
bit location 3X, 4x WORD | Specific bit location to be sensed in the data matrix,
(see p. 986) entered explicitly as an integer or stored in aregister;
(top node) range: 1 ... 9600
Pointer: (999 16-bit PLC)
(max) (9900 24-bit PLC)
data matrix 0x, 4x BOOL, | First word or register in the data matrix
(middle node) WORD
length (See INT, Matrix length max
p. 986) UINT 255 Registers (4080 bits 16-bit PLC)
(bottom node) 600 Registers (9600 bits 24-bit PLC)
Top output 0x None Echoes state of the top input
Middle output | Ox None ON = bit sense is 1
OFF = bit sense is 0
Bottom output | 0x None ON = error: bit location > matrix length

840USE10100 April 2004

985

SENS: Sense

Parameter Description

Bit Location

(Top Node) Note: If the bit location is entered as an integer or in a 3x register, the instruction
will ignore the state of the middle and bottom inputs.

Matrix Length The integer value entered in the bottom node specifies a matrix length, i.e, the

(Bottom Node) number of 16-bit words or registers in the data matrix. The length can range from 1

... 600 in a 24-bit CPU, e.g, a matrix length of 200 indicates 3200 bit locations.

986 840USE10100 April 2004

Shorts

156

At A Glance

Introduction

What's in this
Chapter?

This chapter describes the instruction element Shorts.

This chapter contains the following topics:

Topic Page
Short Description: Shorts 988
Representation: Shorts 989

840USE10100 April 2004

987

Shorts

Short Description: Shorts

Function Shorts are simply straight-line connections between contacts and/or instructions in

Description a ladder logic network. Vertical (|) and horizontal (—) shorts are used to make
connections between rows and columns of logic. To cancel a vertical short, use a
vertical open.

988 840USE10100 April 2004

Shorts

Representation: Shorts

Vertical Shorts Connects contacts or instructions vertically in a network column, or node inputs and
outputs to create either/or conditions. When two contacts are connected by vertical

shorts, power is passed when one or both contacts receive power.

Horizontal Expands logic horizontally along a rung in a ladder logic network
Shorts

840USE10100 April 2004 989

Shorts

990 840USE10100 April 2004

SKP - Skipping Networks

157

At A Glance

Introduction

What's in this
Chapter?

This chapter describes the instruction SKP.

This chapter contains the following topics:

Topic Page
Short Description: SKP - Skipping Networks 992
Representation: SKP - Skipping Networks 993

840USE10100 April 2004

991

SKP - Skipping Networks

Short Description: SKP - Skipping Networks

Function The SKP instruction is a standard instruction in all PLCs. It should be used with
Description caution
The SKP instruction is used to reduce the scan time by not solving a portion of the
logic. The SKP instruction causes the logic scan to skip specified networks in the
program.
The SKP function can be used to
e Bypass seldom used program sequences
e Create subroutines
The SKP instruction allows you to skip a specified number of networks in a ladder
logic program. When it is powered, the SKP operation is performed on every scan.
The remainder of the network in which the instruction appears counts as the first of
the specified number of networks to be skipped. The CPU continues to skip
networks until the total number of networks skipped equals the number specified in
the instruction block or until a segment boundary is reached. A SKP operation
cannot cross a segment boundary.
A SKP instruction can be activated only if you specify in the PLC set-up editor that
skips are allowed. SKP is a one-high nodal instruction.
WARNING
Skipped inputs and outputs
SKP is a dangerous instruction that should be used carefully. If inputs
and outputs that normally effect control are unintentionally skipped (or
not skipped), the result can create hazardous conditions for personnel
and application equipment.
Failure to follow this precaution can result in death, serious injury,
or equipment damage.
CAUTION
Reading values while changing
Use 3xxxx and 4xxxx registers with caution. The processor can read the
value while it's changing.
Failure to follow this precaution can result in injury or equipment
damage.
992 840USE10100 April 2004

SKP - Skipping Networks

Representation: SKP - Skipping Networks

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT —

of

skipped

SKP

networks

Description of the instruction’s parameters

Parameters State RAM Data Type Meaning
Reference

Top input 1x None ON initiates a skip network operation when
it passes power. A SKP operation is
performed on every scan while the input is
ON

of networks 3x, 4x INT, UINT The value entered in the node specifies the

skipped WORD number of networks to be skipped.

(top node) The value can be

o Specified explicitly as an integer
constant in the range 1 through 999
® Stored in a 3xxxx input register
® Stored in a 4xxxx holding register
The node value includes the network that
contains the SKP instruction. The nodal
regions in the network where the SKP
resides that have not already been
scanned will be skipped; this counts as one
of the networks specified to be skipped.
The CPU continues to skip networks until
the total number of networks skipped
equals the value specified.

840USE10100 April 2004

993

SKP - Skipping Networks

994 840USE10100 April 2004

SRCH: Search

158

At a Glance

Introduction This chapter describes the instruction SRCH.

What's in this This chapter contains the following topics:

?

Chapter? Topic Page
Short Description 996
Representation: SRCH - Search 997
Parameter Description 999

840USE10100 April 2004 995

SRCH: Search

Short Description

Function The SRCH instruction searches the registers in a source table for a specific bit
Description pattern.
996

840USE10100 April 2004

SRCH: Search

Representation: SRCH - Search

Symbol Representation of the instruction

CONTROL INPUT — — ACTIVE
source table

START SEARCH AT — — MATCH FOUND
POINTER REGISTER pointer
SRCH
Length: 1 - 100 registers
g 9 table length
Parameter Description of the instruction’s parameters
Description Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = initiates search
Middle input 0x, 1x None OFF = search from beginning
ON = search from last match
source table 3x, 4x INT, UINT, Source table to be searched
(top node) WORD
pointer (See 4x INT, UINT Pointer into the source table
Pointer (Middle
Node), p. 999)
(middle node)
table length INT, UINT Number of registers in the source table;
(bottom node) range: 1 ... 100
Top output 0x None Echoes state of the top input
Middle output | Ox None ON = match found

840USE10100 April 2004 997

SRCH: Search

A SRCH Example

In the following example, we search a source table that contains five registers
(40421 ... 40425) for a specific bit pattern. The pointer register (40430) indicates that
the desired bit pattern is stored in register 40431, and we see that the register
contains a bit value of 3333.

T | 40421 40430 register
source table content

10001 pointer
40421 | =111
404
40430 40500 0422 | - 2990

4{ ‘ SRCH BLKM 40423 | =3333 ' register

10002 | 00005 0001 40424 | =4444 content

40425 | =5555 40431 | =3333

)_

00142

In each scan where P.T. contact 10001 transitions from OFF to ON, the source table
is searched for a bit pattern equivalent to the value 3333. when the math is found,
the middle output passes power to coil 00142.

If N.O. contact 10002 is OFF when the match is found at register 40423, the SRCH
instruction energizes coil 00142 for one scan, then starts the search again in the
next scan at the top of the source table (register 40421). If contact 10002 is ON, the
SRCH instruction energizes coil 00142 for one scan, then starts the search in
register 40424,

Because the top input is a P.T. contact, on any scan where power is not applied to
the top input the pointer value is cleared. We use a BLKM instruction here to sage
the pointer value to register 40500.

998

840USE10100 April 2004

SRCH: Search

Parameter Description

Pointer
(Middle Node)

The 4x register entered in the middle node is the pointer into the source table. It
points to the source register that contains the same value as the value stored in the
next contiguous register after the pointer, e.g. if the pointer register is 400015, then
register 400016 contains a value that the SRCH instruction will attempt to match in
source table.

840USE10100 April 2004

999

SRCH: Search

1000 840USE10100 April 2004

STAT: Status

159

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the instruction STAT.

This chapter contains the following topics:

Topic Page

Short Description 1002
Representation: STAT - Status 1003
Parameter Description 1004
Description of the Status Table 1005
Controller Status Words 1 - 11 for Quantum and Momentum 1009
1/0 Module Health Status Words 12 - 20 for Momentum 1014
1/0 Module Health Status Words 12 - 171 for Quantum 1016
Communication Status Words 172 - 277 for Quantum 1018
Controller Status Words 1 - 11 for TSX Compact and Atrium 1023
1/0 Module Health Status Words 12 - 15 for TSX Compact 1026
Global Health and Communications Retry Status Words 182 ... 184 for TSX Compact | 1027

840USE10100 April 2004

1001

STAT: Status

Short Description

Function The STAT instruction accesses a specified number of words in a status table (See

Description Description of the Status Table, p. 1005) in the PLC’s system memory. Here vital
diagnostic information regarding the health of the PLC and its remote I/O drops is
posted.

This information includes:

e PLC status

e Possible error conditions in the 1/0 modules
e Input-to-PLC-to-output communication status

1002 840USE10100 April 2004

STAT: Status

Representation: STAT - Status

Symbol

Parameter
Description

Representation of the instruction

CONTROL DESTINATION —

destination

STAT

length

—— TOP INPUT

Description of the instruction’s parameters

Parameters State RAM Data Meaning
Reference Type

Top input 0x, 1x None | ON = copies specified number of words from the
status table

destination 0x, 4x INT, First position in the destination block

(See p. 1004) UINT,

(top node) BOOL,

WORD

length (See INT, number of registers or 16-bit words in the

p. 1004) UINT | destination block

(bottom node) The integer value entered in the bottom node
specifies a matrix length - i.e., the number of 16-
bit words or registers in the data matrix. The
length can range from 1 through 255 in a 16-bit
CPU and from 1 through 600 in a 24-bit CPU—
e.g., a matrix length of 200 indicates 3200 bit
locations.
Note: If Oxxxx references are used as the
destination, they cannot be programmed as coils,
only as contacts referencing those coil numbers.
(For expanded and detailed information
regarding table length and PLCs see the section
Length (Bottom Node), p. 1004.)

Top output 0x None | ON = operation successful

840USE10100 April 2004

1003

STAT: Status

Parameter Description

Mode of
Functioning

Destination
Block (Top Node)

Length
(Bottom Node)

With the STAT instruction, you can copy some or all of the status words into a block
of registers or a block of contiguous discrete references.

The copy to the STAT block always begins with the first word in the table up to the
last word of interest to you. For example, if the status table is 277 words long and
you are interested only in the statistics provided in word 11, you need to copy only
words 1 ... 11 by specifying a length of 11 in the STAT instruction.

The reference number entered in the top node is the first position in the destination
block, i.e. the block where the current words of interest from the status table will be
copied.

The number of holding registers or 16-bit words in the destination block is specified
in the bottom node (length).

Note: We recommend that you do not use discretes in the STAT destination node
because of the excessive number required to contain status information.

The integer value entered in the bottom node specifies the number of registers or

16-bit words in the destination block where the current status information will be

written.

The maximum allowable length will differ according to the type of PLC in use and the

type of I/O communications protocol employed.

e For a984A, 984B, or 984X Chassis Mount PLC using the S9071 RIO protocol the
available range of the system status table is 1 ... 75 words

e For PLCs with 16-bit CPUs using the S908 RIO protocol - for example the 38x,
48x, and 68x Slot Mount PLCs - the available range of the system status table is
1...255

e For PLCs with 24-bit CPUs using the S908 RIO protocol - for example the 78x
Slot Mount PLCs, the Quantum PLCs - the available range of the system status
tableis 1 ... 277

e For Compact-984 PLCs the available range of the system status table is 1 ... 184

e For Modicon Micro PLCs the available range of the system status table is 1 ... 56

1004

840USE10100 April 2004

STAT: Status

Description of the Status Table

General The STAT instruction is used to display the Status of Controller and I/O system for
Quantum (See Quantum Overview, p. 1005), Atrium (See TSX Compact and Atrium
Overview, p. 1008), TSX Compact (See TSX Compact and Atrium Overview,

p. 1008) and Momentum (See Momentum Overview, p. 1007).

The first 11 status words are used by Quantum and Momentum in the same way and
by TSX Compact and Atrium in the same way. The following have a different

meaning for Quantum, TSX Compact and Momentum.

Quantum The 277 words in the status table are organized in three sections:
Overview e Controller Status (words 1 ... 11) (See Controller Status Words 1 - 11 for

Quantum and Momentum, p. 1009)
e |/O Module Health (words 12 ... 171) (See I/O Module Health Status Words 12 -
171 for Quantum, p. 1016)
e |/O Communications Health (words 172 ... 277) (See Communication Status

Words 172 - 277 for Quantum, p. 1018)

Words of the status table:

Decimal | Word Content Hex

Word Word

1 Controller Status 01

2 Hot Standby Status 02

3 Controller Status 03

4 RIO Status 04

5 Controller Stop State 06

6 Number of Ladder Logic Segments 06

7 End-of-logic (EOL) Pointer 07

8 RIO Redundancy and Timeout 08

9 ASCII Message Status 09

10 RUN/LOAD/DEBUG Status 0A

11 not used 0B

12 Drop 1, Rack 1 0oC

13 Drop 1, Rack 2 ob

16 Drop 1, Rack 5 OF

17 Drop 2, Rack 1 10

18 Drop 2, Rack 2 11
840USE10100 April 2004 1005

STAT: Status

Decimal | Word Content Hex

Word Word

171 Drop 32, Rack 5 AB

172 S908 Startup Error Code AC

173 Cable A Errors AD

174 Cable A Errors AE

175 Cable A Errors AF

176 Cable B Errors BO

178 Cable B Errors B1

178 Cable B Errors B2

179 Global Communication Errors B3

180 Global Communication Errors B4

181 Global Communication Errors B5

182 Drop 1 Errors/Health Status and Retry Counters (in the TSX Compact 984 | B6
Controllers) (First word)

183 Drop 1 Errors/Health Status and Retry Counters (in the TSX Compact 984 | B7
Controllers) (Second word)

184 Drop 1 Errors/Health Status and Retry Counters (in the TSX Compact 984 | B8
Controllers) (Third word)

185 Drop 2 Errors/Health Status and Retry Counters (in the TSX Compact 984 | B9
Controllers) (First word)

275 Drop 32 Errors/Health Status and Retry Counters (in the TSX Compact | 113
984 Controllers) (First word)

276 Drop 32 Errors/Health Status and Retry Counters (in the TSX Compact | 114
984 Controllers) (Second word)

277 Drop 32 Errors/Health Status and Retry Counters (in the TSX Compact | 115
984 Controllers) (Third word)

1006 840USE10100 April 2004

STAT: Status

Momentum The 20 words in the status table are organized in two sections:
Overview e Controller Status (words 1 ... 11) (See Controller Status Words 1 - 11 for
Quantum and Momentum, p. 1009)
e 1/O Module Health (words 12 ... 20) (See I/O Module Health Status Words 12 - 20
for Momentum, p. 1014)
Words of the status table:

Decimal Word Word Content Hex Word
1 Controller Status 01
2 Hot Standby Status 02
3 Controller Status 03
4 RIO Status 04
5 Controller Stop State 06
6 Number of Ladder Logic Segments 06
7 End-of-logic (EOL) Pointer 07
8 RIO Redundancy and Timeout 08
9 ASCII Message Status 09
10 RUN/LOAD/DEBUG Status 0A
11 not used 0B
12 Local Momentum 1/O Module Health 0C
13 1/0 Bus Module Health oD
14 1/0 Bus Module Health OE
15 1/0 Bus Module Health OF
16 1/0 Bus Module Health 10
17 1/0 Bus Module Health 11
18 I/0 Bus Module Health 12
19 1/0 Bus Module Health 13
20 I/0 Bus Module Health 14

840USE10100 April 2004 1007

STAT: Status

TSX Compact The 184 words in the status table are organized in three sections:
and Atrium e Controller Status (words 1 ... 11) (See Controller Status Words 1 - 11 for TSX
Overview Compact and Atrium, p. 1023)

e |/O Module Health (words 12 ... 15) (See I/O Module Health Status Words 12 - 15
for TSX Compact, p. 1026)

e Not used (16 ... 181)

e Global Health and Communications retry status (words 182 ... 184) (See Global
Health and Communications Retry Status Words 182 ... 184 for TSX Compact,

p. 1027)
Words of the status table:

Decimal Word | Word Content Hex Word
1 CPU Status 01

2 not used 02

3 Controller Status 03

4 not used 04

5 CPU Stop State 06

6 Number of Ladder Logic Segments 06

7 End-of-logic (EOL) Pointer 07

8 not used 08

9 not used 09

10 RUN/LOAD/DEBUG Status 0A

11 not used 0B

12 1/0 Health Status Rack 1 oC

13 I/O Health Status Rack 2 oD

14 I/0O Health Status Rack 3 OE

15 I/0O Health Status Rack 4 OF

16 ... 181 not used 10...B5
182 Health Status B6

183 1/O Error Counter B7

184 PAB Bus Retry Counter B8

1008 840USE10100 April 2004

STAT: Status

Controller Status Words 1 - 11 for Quantum and Momentum

Controller Status

(Word 1)

Hot Standby
Status (Word 2)

Word 1 displays the following aspects of the PLC status:

‘1’2’3’4‘5‘6‘7‘8’9’10’11’12‘13‘14‘15‘16‘

Bit Function
1-5 Not used
6 1 = enable constant sweep
7 1 = enable single sweep delay
8 1 = 16 bit user logic
0 = 24 bit user logic
9 1 = AC power on
10 1 = RUN light OFF
11 1 = memory protect OFF
12 1 = battery failed

13-16 Not used

Word 2 displays the Hot Standby status for 984 PLCs that use S911/R911 Hot

Standby Modules:

‘1’2’3’4‘5‘6‘7‘8’9’10’11’12‘13‘14‘15‘16‘

Bit Function

1 1 =S8911/R911 present and healthy
2-10 Not used

11 0 = controller toggle set to A

1 = controller toggle set to B

12 0 = controllers have matching logic
1 = controllers do not have matching logic

13, 14 Remote system state:
0 1 = Off line (1 dec)
10 = primary (2 dec)
11 = standby (3 dec)

15,16 Local system state:

0 1 = Off line (1 dec)
1 0 = primary (2 dec)
11 = standby (3 dec)

840USE10100 April 2004

1009

STAT: Status

Controller Status

(Word 3)

Word 3 displays more aspects of the controller status:

‘1‘2‘3‘4’5’6’7’8‘9‘10‘11‘12’13’14’15‘16‘

Bit Function

1 1 = first scan

2 1 = start command pending

3 1 = constant sweep time exceeded
4 1 = Existing DIM AWARENESS
5-12 Not used

13-16 Single sweeps

RIO Status Word 4 is used for IOP information:
(Word 4)
112|3|4|5|6|7|8|]910(11 12|13 |14 |15 16
Bit Function
1 1 =10P bad
2 1 = 10P time out
3 1 = 10P loop back
4 1 = IOP memory failure
5-12 Not used
13-16 00 = 10 did not respond
01 = no response
02 = failed loopback
1010

840USE10100 April 2004

STAT: Status

Controller Stop
State (Word 5)

Word 5 displays the PLC’s stop state conditions:

1]2]a|a|s |67 8]0[10]11]12]18]14]15]16]

Bit | Function

1 1 = peripheral port stop

2 Extended memory parity error (for chassis mount controllers) or traffic cop/S908 error
(for other controllers)
If the bit = 1 in a 984B controller, an error has been detected in extended memory; the
controller will run, but the error output will be ON for XMRD/XMWT functions
If the bit = 1 for any other controller than a chassis mount, then either a traffic cop
error has been detected or the S908 is missing from a multi-drop configuration.

3 1 = controller in DIM AWARENESS

4 1 = illegal peripheral intervention

5 1 = segment scheduler invalid

6 1 = start of node did not start segment

7 1 = state RAM test failed

8 1 = invalid traffic cop

9 1 = watchdog timer expired

10 |1 =real time clock error

11 | CPU logic solver failed (for chassis mount controllers) or Coil Use TABLE (for other
controllers)
If the bit = 1 in a chassis mount controller, the internal diagnostics have detected CPU
failure.
If the bit = 1 in any controller other than a chassis mount, then the Coil Use Table does
not match the coils in user logic.

12 |1 =I0P failure

13 |1 =invalid node

14 |1 =logic checksum

15 |1 = coil disabled in RUN mode (see Caution below)

16 |1 =bad config

CAUTION

Using a Quantum or 984-684E/785E PLC

If you are using a Quantum or 984-684E/785E PLC, bit 15 in word 5 is never set.
These PLCs can be started and run with coils disabled in RUN (optimized)
mode. Also all the bits in word 5 must be set to 0 when one of these PLCs is
running.

Failure to follow this precaution can result in injury or equipment damage.

840USE10100 April 2004

1011

STAT: Status

Controller Stop
State (Word 6)

Controller Stop
State (Word 7)

RIO Redundancy
and Timeout
(Word 8)

ASCII Message
Status (Word 9)

Word 6 displays the number of segments in ladder logic; a binary number is shown:

‘1‘2‘3‘4’5’6’7’8‘9‘10‘11‘12’13’14’15‘16‘

Bit

Function

1-16

Number of segments (expressed as a decimal number)

Word 7 displays the address of the end-of-logic (EOL) pointer:

1]2]s|als 6|7 8] 9]10]1]12]13]14]15]16

Bit

Function

1-16

EOL pointer address

Word 8 uses its four least significant bits to display the remote I/O timeout constant:

tl2fs]a]s]e]7]8] 010 1n|2|1s|1al1s|16

Bit Function
1-12 Not used
13-16 RIO timeout constant

Word 9 uses its four least significant bits to display ASCII message status:

tl2fs]a]s]e]7]8] 010 1n|2|1s|1al1s|16

Bit Function

1..12 Not used

13 1 = Mismatch between numbers of messages and pointers
14 1 = Invalid message pointer

15 1 = Invalid message

16 1 = Message checksum error

1012

840USE10100 April 2004

STAT: Status

RUN/LOAD/
DEBUG Status
(Word 10)

Word 11

Word 10 uses its two least significant bits to display RUN/LOAD/DEBUG status:

‘1’2’3’4‘5‘6‘7‘8’9’10’11’12‘13‘14‘15‘16‘

Bit Function
1..14 Not used
15,15

0 0 = Debug (0 dec)
0 1 =Run (1 dec)
1 0=Load (2 dec)

This word is not used.

840USE10100 April 2004

1013

STAT: Status

I/0 Module Health Status Words 12 - 20 for Momentum

1/0 Module Status words 12 ... 20 display I/O module health status.

Health Status 1 word is reserved for each of up to 1 Local drop, 8 words are used to represent the
health of up to 128 I/O Bus Modules

Local Momentum Word 12 displays the Local Momentum I/O Module health:
1/0 Module

Health ‘1 ‘2‘3‘4’5’6’7’8‘9‘10‘11‘12’13’14’15‘16‘
Bit Function
1 1 = Local Module
2-16 Not used
1014

840USE10100 April 2004

STAT: Status

Momentum I/O
Bus Module
Health

Word 13 through 20 display the health status for Momentum I/O Bus Modules as

follows:

Word 1/0 Bus Modules
13 1..16

14 17 ... 32

15 33 ...48

16 49 ... 64

17 65 ... 80

18 81 ...96

19 97 ... 112

20 113 ... 128

Each Word display the Momentum 1/O Bus Module health as follows:

1l2|s|afs|e]7]8]o]10]112]1s]1a|15|16

o)
=

Function

1 = Module 1

1 = Module 2

= Module 3

= Module 4

= Module 5

= Module 6

= Module 7

(N OO O[] IN|=

= Module 8

©

—_
o

= Module 10

—_
—_

= Module 11

—_
N

= Module 12

-
w

= Module 13

—
IS

= Module 14

-
(é)]

= Module 15

—_
[¢)]

1
1
1
1
1
1
1 = Module 9
1
1
1
1
1
1
1

= Module 16

840USE10100 April 2004

1015

STAT: Status

/0 Module Health Status Words 12 - 171 for Quantum

RIO Status Status words 12 ... 20 display I/O module health status.

Words Five words are reserved for each of up to 32 drops, one word for each of up to five
possible racks (I/O housings) in each drop. Each rack may contain up to 11 1/0
modules; bits 1 ... 11 in each word represent the health of the associated /0 module
in each rack.

‘1‘2‘3‘4’5’6’7’8‘9‘10‘11‘12’13’14’15‘16‘

Bit Function
1 =Slot 1
1=Slot 2
1=Slot3
1 =Slot 4
1=Slot5
1=Slot6
1=Slot7
1=Slot8
1=Slot9
1 =Slot 10
1
1
1
1
1
1

—_

O 0N~ O|DN

o

e
—_

= Slot 11
= Slot 12
= Slot 13
= Slot 14
= Slot 15
= Slot 16

-
N

-
w

—
IS

-
4]

16

Four conditions must be met before an I/O module can indicate good health:

e The slot must be traffic copped

e The slot must contain a module with the correct personality

e Valid communications must exist between the module and the RIO interface at
remote drops

e Valid communications must exist between the RIO interface at each remote drop
and the 1/O processor in the controller

1016 840USE10100 April 2004

STAT: Status

Status Words for The status of the 32 Element Pushbutton Panels and PanelMate units on an RIO

the MMI Operator network can also be monitored with an 1/O health status word. The Pushbutton

Panels Panels occupy slot 4 in an 1/O rack and can be monitored at bit 4 of the appropriate
status word. A PanelMate on RIO occupies slot 1 in rack 1 of the drop and can be
monitored at bit 1 of the first status word for the drop.

Note: The ASCII Keypad’s communication status can be monitored with the error
codes in the ASCII READ/WRIT blocks.

840USE10100 April 2004 1017

STAT: Status

Communication Status Words 172 - 277 for Quantum

DIO Status Status words 172 ... 277 contain the 1/O system communication status. Words 172
... 181 are global status words. Among the remaining 96 words, three words are
dedicated to each of up to 32 drops, depending on the type of PLC.

Word 172 stores the Quantum Startup Error Code. This word is always 0 when the
system is running. If an error occurs, the controller does not start-it generates a stop
state code of 10 (word 5 (See Controller Stop State (Word 5), p. 1011)).
Quantum Start-up Error Codes

Code Error Meaning (Where the error has occurred)
01 BADTCLEN Traffic Cop length

02 BADLNKNUM Remote 1/O link number

03 BADNUMDPS Number of drops in Traffic Cop

04 BADTCSUM Traffic Cop checksum

10 BADDDLEN Drop descriptor length

11 BADDRPNUM I/O drop number

12 BADHUPTIM Drop holdup time

13 BADASCNUM ASCII port number

14 BADNUMODS Number of modules in drop

15 PRECONDRP Drop already configured

16 PRECONPRT Port already configured

17 TOOMNYOUT More than 1024 output points

18 TOOMNYINS More than 1024 input points

20 BADSLTNUM Module slot address

21 BADRCKNUM Module rack address

22 BADOUTBC Number of output bytes

23 BADINBC Number of input bytes

25 BADRF1MAP First reference number

26 BADRF2MAP Second reference number

27 NOBYTES No input or output bytes

28 BADDISMAP Discrete not on 16-bit boundary

30 BADODDOUT Unpaired odd output module

31 BADODDIN Unpaired odd input module

32 BADODDREF Unmatched odd module reference

33 BAD3X1XRF 1x reference after 3x register

34 BADDMYMOD Dummy module reference already used

1018 840USE10100 April 2004

STAT: Status

Code Error Meaning (Where the error has occurred)
35 NOT3XDMY 3x module not a dummy

36 NOT4XDMY 4x module not a dummy

40 DMYREAL1X Dummy, then real 1x module

41 REALDMY1X Real, then dummy 1x module

42 DMYREAL3X Dummy, then real 3x module

43 REALDMY3X Real, then dummy 3x module

Status of Cable A Words 173 ... 175 are Cable A error words:
Word 173

1]2]a|a|s |67 8]0]10]11]12]18]14]15]16]

Bit Function

1..8 Counts framing errors

9..16 Counts DMA receiver overruns
Word 174

‘1’2’3’4‘5‘6‘7‘8’9’10’11’12‘13‘14‘15‘16‘

Bit Function

1..8 Counts receiver errors

9..16 Counts bad drop receptions

Word 175

1]2]a|a|s |67 8]0[10]11]12]18]14]15]16]

Bit Function

1 1 = Short frame

2 1 = No end-of- frame
3..12 Not used

13 1 =CRC error

14 1 = Alignment error
15 1 =Overrun error

16 Not used

840USE10100 April 2004 1019

STAT: Status

Status of Cable B

Words 176 ... 178 are Cable A error words:
Word 176

tl2fs]a]s]e]7]8]0 10| 1n|2|1s|1al1s|16

Bit Function

1..8 Counts framing errors

9..16 Counts DMA receiver overruns
Word 177

‘1‘2‘3‘4’5’6’7’8‘9‘10‘11‘12’13’14’15‘16‘

Bit Function

1..8 Counts receiver errors

9-...16 Counts bad drop receptions

Word 178

1]2]alals 6|7 |8]9]10]11]12]13]14]15]16

Bit Function

1 1 = Short frame

2 1 = No end-of- frame
3..12 Not used

13 1 =CRC error

14 1 = Alignment error
15 1 =Overrun error

16 Not used

1020

840USE10100 April 2004

STAT: Status

Status of Global
Communication
(Words 179 ...
181)

Status of Remote
I/0 (Words 182...
277)

Word 179 displays global communication status:

1]2]a|a|s |67 8]0[10]11]12]18]14]15]16]

Bit

Function

1 = Comm health

1 = Cable A status

1 = Cable B status

Not used

.8

Lost communication counter

OO IND| =

.. 16

Cumulative retry counter

Word 180 is the global cumulative error counter for Cable A:

1]2]a|a|s |67 8]0|10]11]12]18]14]15]16]

Bit Function
1..8 Counts detected errors
9..162 Counts No responses

Word 181 is the global cumulative error counter for Cable B:

‘1’2’3’4‘5‘6‘7‘8’9’10’11’12‘13‘14‘15‘16‘

Bit Function
1..8 Counts detected errors
9..162 Counts No responses

Words 182 ... 277 are used to describe remote 1/O drop status; three status words
are used for each drop.

The first word in each group of three displays communication status for the
appropriate drop:

1]2]a|a|s |67 8]0|10]11]12]18]14]15]16]

Bit

Function

1

1 = Communication health

1 = Cable A status

1 = Cable B status

Not used

Lost communication counter

ol o~ IN

Cumulative retry counter

840USE10100 April 2004

1021

STAT: Status

The second word in each group of three is the drop cumulative error counter on
Cable A for the appropriate drop:

‘1‘2‘3‘4’5’6’7’8‘9‘10‘11‘12’13’14’15‘16‘

Bit

Function

1..8

At least one error in words 173 ...175

9...162 Counts No responses

The third word in each group of three is the drop cumulative error counter on Cable
B for the appropriate drop:

RIE

|s|a|s|6]|7 8]0 10| i|s|uls|e

Bit

Function

1..8

At least one error in words 176 ...178

9..162

Counts No responses

Note: For PLCs where drop 1 is reserved for local I/O, status words 182 ... 184 are
used as follows:

Word 182 displays local drop status:

RIE

|a|a|s|e|7 |80 10]1]12]13]1a]15]16

Bit

Function

1
2..8

1 = All modules healthy

Always 0

9..162

Number of times a module has been seen as unhealthy; counter rolls over at 255

Word 183 is a 16-bit error counter, which indicates the number of times a module

has been

accessed and found to be unhealthy. Rolls over at 65535.

Word 184 is a 16-bit error counter, which indicates the number of times a
communication error occurred while accessing an 1/0 module. Rolls over at 65535.

1022

840USE10100 April 2004

STAT: Status

Controller Status Words 1 - 11 for TSX Compact and Atrium

CPU Status Word 1 displays the following aspects of the CPU status:
(Word 1) ‘1’2’3’4‘5‘6‘7‘8’9’10’11’12‘13‘14‘15‘16‘

Bit Function

1-5 Not used

6 1 = enable constant sweep

7 1 = enable single sweep delay

8 1 =16 bit user logic

0 = 24 bit user logic

9 1 = AC power on

10 1 = RUN light OFF

11 1 = memory protect OFF

12 1 = battery failed

13-16 Not used
Word 2 This word is not used.

Controller Status Word 3 displays aspects of the controller status:

ord 3

(Word 3) 1]2]a|a|s |67 8]0[10]11]12]18]14]15]16]
Bit Function
1 1 = first scan
2 1 = start command pending
3 1 = scan time has exceed constant scan target
4 1 = existing DIM AWARENESS
5-12 Not used
13-16 Single sweeps

Word 4 This word is not used.

840USE10100 April 2004

1023

STAT: Status

CPU Stop State

Word 5 displays the CPU’s stop state conditions:

(Word 5) ‘1‘2‘3‘4’5’6’7’8‘9‘10‘11‘12’13’14’15‘16‘

Bit Function

1 1 = peripheral port stop

2 1 = XMEM parity error

3 1 = DIM AWARENESS

4 1 = illegal peripheral intervention

5 1 = invalid segment scheduler

6 1 = no start-of-network (SON) at the start of a segment

7 1 = state RAM test failed

8 1 = no end of logic (EOL), (bad Tcop)

9 1 = watch dog timer has expired

10 1 = real time clock error

11 1 = CPU failure

12 Not used

13 1 = invalid node in ladder logic

14 1 = logic checksum error

1 1 = coil disabled in RUN mode

16 1 = bad PLC setup
Number of Word 6 displays the number of segments in ladder logic; a binary number is shown.
Segments This word is confirmed during power up to be the number of EOS (DOIO) nodes plus
in program 1 (for the end of logic nodes), if untrue, a stop code is set, causing the run light to be
(Word 6) off:

1]2]s]als|e|7 8] 9]10]11]12]13]1a]15]16

Bit Function

1-16 Number of segments in the current ladder logic program (expressed as a

decimal number)

1024

840USE10100 April 2004

STAT: Status

Address of the
End of Logic
Pointer (Word 7)

Word 8, Word 9

RUN/LOAD/
DEBUG Status
(Word 10)

Word 11

Word 7 displays the address of the end-of-logic (EOL) pointer:

1]2]a|a|s |67 8]0[10]11]12]18]14]15]16]

Bit

Function

1-16

EOL pointer address

These words are not used.

Word 10 uses its two least significant bits to display RUN/LOAD/DEBUG status:

‘1’2’3’4‘5‘6‘7‘8’9’10’11’12‘13‘14‘15‘16‘

Bit Function
1..14 Not used
15,16 0 0 = Debug (0 dec)

0 1 =Run (1 dec)
10 =Load (2 dec)

This word is not used.

840USE10100 April 2004

1025

STAT: Status

I/0 Module Health Status Words 12 - 15 for TSX Compact

TSX Compactl/O Words 12 ... 15 are used to display the health of the A120 I/O modules in the four
Module Health racks:

Word Rack No.
12 1
13 2
14 3
15 4

Each word contains the health status of up to five A120 I/O modules. The most
significant (left-most) bit represents the health of the module in Slot 1 of the rack:

1]2]s]als|e|7 8] 9]10]11]12]13]1a]15]16

Bit Function
1 1 =Slot 1
1=Slot 2
1=Slot3
1 =Slot 4
1=Slot5
.. 16 Not used

(o) N6, BN SR IOV I \V)

If a module is I/O Mapped and ACTIVE, the bit will have a value of "1". If a module
is inactive or not I/O Mapped, the bit will have a value of "0".

Note: Slots 1 and 2 in Rack 1 (Word 12) are not used because the controller itself
uses those two slots.

1026 840USE10100 April 2004

STAT: Status

Global Health and Communications Retry Status Words 182 ... 184 for TSX

Compact

Overview

Words 16 ... 181

Health Status
(Word 182)

1/0 Error
Counter
(Word 183)

PAB Bus Retry
Counter
(Word 184)

There are three words that contain health and communication information on the
installed 1/0 modules. If monitored with the Stat block, they are found in Words 182
through 184. This requires that the length of the Stat block is a minimum of 184
(Words 16 through 181 are not used).

These words are not used.

Word 182 increments each time a module becomes bad. After a module becomes
bad, this counter does not increment again until that module becomes good and
then bad again.

1l2|s|afs|e]7]8]o]10]1n12]18]1a|15 16

Bit Function

1 1 = All modules healthy

2.9 Not used

10...16 "Module went unhealthy" counter

This counter is similar to the above counter, except this word increments every scan
that a module remains in the bad state.

Diagnostics are performed on the communications through the bus. This word
should normally be all zeroes. If after 5 retries, a bus error is still detected, the
controller will stop and error code 10 will be displayed. An error could occur if there
is a short in the backplane or from noise. The counter rolls over while running. If the
retries are less than 5, no bus error is detected.

840USE10100 April 2004

1027

STAT: Status

1028 840USE10100 April 2004

SU16: Subtract 16 Bit

160

At a Glance

Introduction

This chapter describes the instruction SU16.

What's in this This chapter contains the following topics:
?
Chapter? Topic Page
Short Description 1030
Representation: SU16 - 16-bit Subtraction 1031
840USE10100 April 2004 1029

SU16: Subtract 16 Bit

Short Description

Function The SU16 instruction performs a signed or unsigned 16-bit subtraction (value 1 -
Description value 2) on the top and middle node values, then posts the signed or unsigned
difference in a 4x holding register in the bottom node.

1030 840USE10100 April 2004

SU16: Subtract 16 Bit

Representation: SU16 - 16-bit Subtraction

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT

— TOP VALUE > MIDDLE VALUE

Value 1 (+ result)
Max. Value
65535
Value 2 — TOP VALUE = MIDDLE VALUE
alue (zero result)
Max. Value
65535
SIGNED — — TOP VALUE < MIDDLE VALUE
SuU16
(- result)
difference
Description of the instruction’s parameters
Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = enables value 1 - value 2
Bottom input 0x, 1x None ON = signed operation
OFF = unsigned operation
value 1 3x, 4x INT, UINT Minuend, can be displayed explicitly as an
(top node) integer (range 1 ... 65 535) or stored in a
register
value 2 3x, 4x INT, UINT Subtrahend, can be displayed explicitly as
(middle node) an integer (range 1 ... 65 535) or stored in
a register
difference 4x INT, UINT Difference
(bottom node)
Top output 0x None ON = value 1 > value 2
Middle output | Ox None ON = value 1 = value 2
Bottom output | Ox None ON = value 1 < value 2

840USE10100 April 2004

1031

SU16: Subtract 16 Bit

1032 840USE10100 April 2004

SUB: Subtraction

161

At a Glance

Introduction

This chapter describes the instruction SUB.

What's in this This chapter contains the following topics:
?
Chapter? Topic Page
Short Description 1034
Representation: SUB - Subtraction 1035
840USE10100 April 2004 1033

SUB: Subtraction

Short Description

Function The SUB instruction performs a signed or unsigned 16-bit subtraction (value 1 -
Description value 2) on the top and middle node values, then posts the signed or unsigned
difference in a 4x holding register in the bottom node.

Note: SUB is often used as a comparator where the state of the outputs identifies
whether value 1 is greater than, equal to, or less than value 2.

1034 840USE10100 April 2004

SUB: Subtraction

Representation: SUB - Subtraction

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT — — TOP VALUE > MIDDLE VALUE
value 1 (+ result)
M — TOP VALUE = MIDDLE VALUE
ax.
lue 2 zero result
999 16-bit PLC vaue ()
9999 24-bit PLC
65535-785L
— TOP VLUE < MIDDLE VALUE
Max. a
SUB (- result)
999 16-bit PLC
9999 24-bit PLC difference
65535-785L
Description of the instruction’s parameters
Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = enables value 1 - value 2
value 1 3x, 4x INT, UINT Minuend, can be displayed explicitly as an
(top node) integer or stored in a register
Max. 255 16-bit PLC
Max. 999 24-bit PLC
Max. 65535-785L
value 2 3x, 4x INT, UINT Subtrahend, can be displayed explicitly as
(middle node) an integer or stored in a register
Max. 255 16-bit PLC
Max. 999 24-bit PLC
Max. 65535-785L
difference 4x INT, UINT Difference
(bottom node)
Top output 0x None ON = value 1 > value 2
Middle output | Ox None ON = value 1 = value 2
Bottom output | Ox None ON = value 1 < value 2

840USE10100 April 2004

1035

SUB: Subtraction

1036 840USE10100 April 2004

SWAP - VME Bit Swap

162

At A Glance

Introduction

This chapter describes the instruction SWAP.

What's in this This chapter contains the following topics:
?
Chapter? Topic Page
Short Description: SWAP - VME Bit Swap 1038
Representation: SWAP - VME Bit Swap 1039
840USE10100 April 2004 1037

SWAP - VME Bit Swap

Short Description: SWAP - VME Bit Swap

Function The SWAP block allows the user to issue one of three different swap commands:
Description e Swap high and low bits of a 16-bit word.

e Swap high and low words of a 32-bit double word.

e Swap (reverse) bits within a register's low byte.

‘ Note: Available only on the Quantum VME-424/X controller.

1038 840USE10100 April 2004

SWAP - VME Bit Swap

Representation: SWAP - VME Bit Swap

Symbol

Parameter
Description

CONTROL INPUT —

Representation of the instruction

value

register

SWAP

of registers

ACTIVE

ERROR

COMPLETE

Description of the instruction’s parameters

Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON enables SWAP operation
value INT, UINT, Contains a constant from 1 to 3, which
(top node) WORD specifies what type of swap to perform:
1. Swap high and low bits of a 16-bit word.
2. Swap high and low words of a 32-bit
double word.
3. Swap (reverse) bits within a register's
low byte.
register 3x%, 4x INT, UINT, Contains the register on which the swap is
(middle node) WORD to be performed
of registers INT, UINT, Contains a constant that indicates how
(bottom node) WORD many registers are to be swapped, starting
with the source register.
Top output 0x None Echoes the state of the top input
Middle output 0x None Error
Bottom output | Ox None Swap completed successfully

840USE10100 April 2004

1039

SWAP - VME Bit Swap

1040 840USE10100 April 2004

TTR - Table to Register

163

At A Glance

Introduction

This chapter describes the instruction TTR.

What's in this This chapter contains the following topics:
?
Chapter? Topic Page
Short Description: TTR - Table to Register 1042
Representation: TTR - Table to Register 1043
840USE10100 April 2004 1041

TTR - Table to Register

Short Description: TTR - Table to Register

Function
Description

The Table to Register block is one of four 484-replacement instructions.
It copies the contents of a source (input or holding) register to a holding register
implied by the constant in the bottom node. This source register is pointed to by the

input or holding register specified in the top node. Only one such operation can be
accommodated by the system in each scan.

Note: Available only on the 984-351 and 984-455.

1042

840USE10100 April 2004

TTR - Table to Register

Representation: TTR - Table to Register

Symbol

Parameter
Description

CONTROL INPUT —

Representation of the instruction

— COPY
source
—— ERROR
TTR
destination
offset pointer

Description of the instruction’s parameters

Parameters

State RAM
Reference

Data Type Meaning

Top input

0x, 1x

None Control source

source
(top node)

3X, 4x

INT, UINT The source node (top node) contains the
source register address. The data located
in the source register address will be
copied to the destination address, which is
determined by the destination offset

pointer.

destination
(bottom node)

(1 ... 254)
(801 ... 824)

INT, UINT The pointer is a 3xxxx or 4xxxx whose
contents indicate the source. A value of 1 to
254 indicates a holding register (40001 -
40254) and a value of 801 to 832 indicates
an input register (30001 - 30032). If the
value is outside this range, the operation is
not performed and the ERROR rail is

powered.

Top output

0x

None Passes power when top input receives
power

Bottom output

0x

None Pointer value out of range

840USE10100 April 2004

1043

TTR - Table to Register

1044 840USE10100 April 2004

T --> R Table to Register

164

At a Glance

Introduction This chapter describes the instruction T—R.

What's in this This chapter contains the following topics:

?

Chapter? Topic Page
Short Description 1046
Representation: T — R - Table to Register Move 1047
Parameter Description 1049

840USE10100 April 2004 1045

T --> R: Table to Register

Short Description

Function The T—R instruction copies the bit pattern of a register or 16 contiguous discretes
Description in a table to a specific holding register. It can accommodate the transfer of one
register per scan. It has three control inputs and produces two possible outputs.

1046 840USE10100 April 2004

T --> R: Table to Register

Representation: T — R - Table to Register Move

Symbol Representation of the instruction
CONTROL INPUT/IN- —— —— ACTIVE
CREASE POINTER source table
PREVENTS POINTER —— —— POINTER = TABLE LENGTH
FROM INCREASING pointer

RESET POINTER —
T ER

Table length
Max. 255 16-bit PLC table length
999 24-bit PLC

840USE10100 April 2004 1047

T --> R: Table to Register

Parameter Description of the instruction’s parameters
Description Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = copies source data and increments
the pointer value
Middle input 0x, 1x None ON = freezes the pointer value
(See Middle
Input, p. 1049)
Bottom input 0x, 1x None ON = resets the pointer value to zero
(See Bottom
Input, p. 1049)
source table 0x, 1%, 3x, 4x | INT, UINT, First register or discrete reference in the
(top node) WORD source table. A register or string of
contiguous discretes from this table will be
copied in a scan.
pointer (See 4x INT, UINT Pointer to the destination where the
Pointer (Middle source data will be copied
Node), p. 1049)
(middle node)
table length INT, UINT Length of the source table: number of
(bottom node) registers that may be copied; range: 1 ...
999
Length:
Max. 255 16-bit PLC
Max. 999 24-bit PLC
Top output 0x None Echoes the state of the top input
Middle output | Ox None ON = pointer value = table length
(instruction cannot increment any further)
1048 840USE10100 April 2004

T --> R: Table to Register

Parameter Description

Middle Input

Bottom Input

Pointer
(Middle Node)

When the middle input goes ON, the current value stored in the pointer register is
frozen while the DX operation continues. This causes the same table data to be
written to the destination register on each scan.

When the bottom input goes ON, the value in the pointer is reset to zero. This causes
the next DX move operation to copy the first destination register in the table.

The 4x register entered in the middle node is a pointer to the destination where the
source data will be copied. The destination register is the next contiguous 4x register
after the pointer. For example, if the middle node displays a pointer of 400100, then
the destination register for the T—R copy is 400101.

The value stored in the pointer register indicates which register in the source table
will be copied to the destination register in the current scan. A value of 0 in the
pointer indicates that the bit pattern in the first register of the source table will be
copied to the destination; a value of 1 in the pointer register indicates that the bit
pattern in the second register of the source table will be copied to the destination
register; etc.

840USE10100 April 2004

1049

T --> R: Table to Register

1050 840USE10100 April 2004

T --> T: Table to Table

165

At a Glance

Introduction This chapter describes the instruction T—T.

What's in this This chapter contains the following topics:

2

Chapter? Topic Page
Short Description 1052
Representation: T — T - Table to Table Move 1053
Parameter Description 1055

840USE10100 April 2004 1051

T --> T: Table to Table

Short Description

Function The T—T instruction copies the bit pattern of a register or of 16 discretes from a

Description position within one table to an equivalent position in another table of registers. It can
accommodate the transfer of one register per scan. It has three control inputs and
produces two possible outputs.

1052 840USE10100 April 2004

T --> T: Table to Table

Representation: T — T - Table to Table Move

Symbol Representation of the instruction
CONTROL INPUT/IN- —— —— ACTIVE
CREASE POINTER source table
PREVENTS POINTER — —— POINTER = TABLE LENGTH
FROM INCREASING pointer

RESET POINTER —

TET
Table length

Max. 255 16-bit PLC
999 24-bit PLC
65535 *PLC

table length

*Available on the following
e E685/785 PLCs

e L785PLCs

e Quantum Series PLCs

840USE10100 April 2004 1053

T --> T: Table to Table

Parameter Description of the instruction’s parameters
Description Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = copies source data and increments
the pointer value
Middle input 0x, 1x None ON = freezes the pointer value
(See Middle
Input, p. 1055)
Bottom input 0x, 1x None ON = resets the pointer value to zero
(See Bottom
Input, p. 1055)
source table 0x, 1%, 3x, 4x | INT, UINT, First register or discrete reference in the
(top node) WORD source table. A register or string of
contiguous discretes from this table will be
copied in a scan.
pointer (See 4x INT, UINT Pointer into both the source and
Pointer (Middle destination table
Node), p. 1055)
(middle node)
table length INT, UINT Length of the source and the destination
(bottom node) table (must be equal in length)
Range:
Max. 255 16-bit PLC
Max. 999 24-bit PLC
Max. 65535 785L
Top output 0x None Echoes the state of the top input
Middle output | Ox None ON = pointer value = table length
(instruction cannot increment any further)
1054 840USE10100 April 2004

T --> T: Table to Table

Parameter Description

Middle Input

Bottom Input

Pointer
(Middle Node)

When the input to the middle node goes ON, the current value stored in the pointer
register is frozen while the DX operation continues. This causes new data being
copied to the destination to overwrite the data copied on the previous scan.

When the input to the bottom node goes ON, the value in the pointer register is reset
to zero. This causes the next DX move operation to copy source data into the first
register in the destination table.

The 4x register entered in the middle node is a pointer into both the source and
destination tables, indicating where the data will be copied from and to in the current
scan. The first register in the destination table is the next contiguous 4x register
following the pointer. For example, if the middle node displays a a pointer reference
of 400100, then the first register in the destination table is 400101.

The value stored in the pointer register indicates which register in the source table
will be copied to which register in the destination table. Since the length of the two
tables is equal and T—T copy is to the equivalent register in the destination table,
the current value in the pointer register also indicates which register in the
destination table the source data will be copied to.

A value of 0 in the pointer register indicates that the bit pattern in the first register of
the source table will be copied to the first register of the destination table; a value of
1 in the pointer register indicates that the bit pattern in the second register of the
source table will be copied to the second register of the destination register; etc.

840USE10100 April 2004

1055

T --> T: Table to Table

1056 840USE10100 April 2004

T.01 Timer:
One Hundredth Second Timer

166

At a Glance

Introduction

This chapter describes the instruction T.01 Timer.

What's in this This chapter contains the following topics:
?
Chapter? Topic Page
Short Description 1058
Representation: T.01 - One Hundredth of a Second Timer 1059
840USE10100 April 2004 1057

T.01 Timer: One Hundredth Second Timer

Short Description

Function The T.01 instruction measures time in hundredth of a second intervals. It can be
Description used for timing an event or creating a delay. T.01 has two control inputs and can
produce one of two possible outputs.

1058 840USE10100 April 2004

T.01 Timer: One Hundredth Second Timer

Representation: T.01 - One Hundredth of a Second Timer

Symbol Representation of the instruction
CONTROL INPUT — — TIMER = PRESET
Max. 999 16-bit PLC timer preset
9999 24-bit PLC
65535 - 785L
ENABLE/RESET — — TIMER < PRESET
T.01
accumulated
time
Parameter Description of the instruction’s parameters
Description Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None OFF — ON = initiates the timer operation:
time accumulates in hundredths-of-a-
second when top and bottom input are ON
Bottom input 0x, 1x None OFF = accumulated time reset to 0
ON = timer accumulating
timer preset 3x, 4x INT, UINT Preset value (number of hundredth-of-a-
(top node) second increments), can be displayed
explicitly as an integer or stored in a
register
Range:
Max. 255 16-bit PLC
Max. 999 24-bit PLC
Max. 65535 785L
accumulated 4x INT, UINT Accumulated time count in hundredth-of-
time a-second increments.
(bottom node)
Top output 0x None ON = accumulated time = timer preset
Bottom output | Ox None ON = accumulated time < timer preset

840USE10100 April 2004

1059

T.01 Timer: One Hundredth Second Timer

1060 840USE10100 April 2004

TO0.1 Timer:

One Tenth Second Timer 1 67

At a Glance

Introduction

This chapter describes the instruction T0.1 Timer.

What's in this This chapter contains the following topics:
?
Chapter? Topic Page
Short Description 1062
Representation: T0.1 - One Tenth of a Second Timer 1063
840USE10100 April 2004 1061

TO.1 Timer: One Tenth Second Timer

Short Description

Function The TO0.1 instruction measures time in tenth-of-a-second increments. It can be used
Description for timing an event or creating a delay. T0.1 has two control inputs and can produce
one of two possible outputs.
Note: If you cascade T0.1 timers with presets of 1, the timers will time-out together;
to avoid this problem, change the presets to 10 and substitute a T.01 timer (See
T.01 Timer: One Hundredth Second Timer, p. 1057).
1062

840USE10100 April 2004

T0.1 Timer: One Tenth Second Timer

Representation: T0.1 - One Tenth of a Second Timer

Symbol Representation of the instruction
CONTROL INPUT — —— TIMER = PRESET
Max. 999 16-bit PLC timer preset
9999 24-bit PLC
65535 - 785L
ENABLE/RESET —— —— TIMER < PRESET
T0.1
accumulated
time
Parameter Description of the instruction’s parameters
Description Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None OFF — ON = initiates the timer operation:
time accumulates in tenth-of-a-second
when top and bottom input are ON
Bottom input 0x, 1x None OFF = accumulated time reset to 0
ON = timer accumulating
timer preset 3x, 4x INT, UINT Preset value (number of tenth-of-a-second
(top node) increments), can be displayed explicitly as
an integer or stored in a register
Range:
Max. 255 16-bit PLC
Max. 999 24-bit PLC
Max. 65535 785L
accumulated 4x INT, UINT Accumulated time count in tenth-of-a-
time second increments.
(bottom node)
Top output 0x None ON = accumulated time = timer preset
Bottom output | Ox None ON = accumulated time < timer preset

840USE10100 April 2004

1063

TO.1 Timer: One Tenth Second Timer

1064 840USE10100 April 2004

T1.0 Timer: One Second Timer

168

At a Glance

Introduction

This chapter describes the instruction T1.0 Timer.

What's in this This chapter contains the following topics:
?
Chapter? Topic Page
Short Description 1066
Representation: T1.0 - One Second Timer 1067
840USE10100 April 2004 1065

T1.0 Timer: One Second Timer

Short Description

Function The T1.0 timer instruction measures time in one-second increments. It can be used
Description for timing an event or creating a delay. T1.0 has two control inputs and can produce
one of two possible outputs.
Note: If you cascade T1.0 timers with presets of 1, the timers will time-out together;
to avoid this problem, change the presets to 10 and substitute a T0.1 timer (See
T0.1 Timer: One Tenth Second Timer, p. 1061).
1066

840USE10100 April 2004

T1.0 Timer: One Second Timer

Representation: T1.0 - One Second Timer

Symbol Representation of the instruction
CONTROL INPUT — —— TIMER = PRESET
Max. 999 16-bit PLC timer preset
9999 24-bit PLC
65535 - 785L
ENABLE / RESET — —— TIMER < PRESET
T1.0
accumulated
time
Parameter Description of the instruction’s parameters
Description Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None OFF — ON = initiates the timer operation:
time accumulates in seconds when top
and bottom input are ON
Bottom input 0x, 1x None OFF = accumulated time reset to 0
ON = timer accumulating
timer preset 3x, 4x INT, UINT Preset value (number of one second
(top node) increments), can be displayed explicitly as
an integer or stored in a register
Range:
Max. 255 16-bit PLC
Max. 999 24-bit PLC
Max. 65535 785L
accumulated 4x INT, UINT Accumulated time count in one-second
time increments.
(bottom node)
Top output 0x None ON = accumulated time = timer preset
Bottom output | Ox None ON = accumulated time < timer preset

840USE10100 April 2004

1067

T1.0 Timer: One Second Timer

1068 840USE10100 April 2004

T1MS Timer:
One Millisecond Timer

169

At a Glance

Introduction

What's in this
Chapter?

This chapter describes the instruction T1MS Timer.

This chapter contains the following topics:

Topic Page
Short Description 1070
Representation: TIMS - One Millisecond Timer 1071
Example 1072

840USE10100 April 2004

1069

T1MS Timer: One Millisecond Timer

Short Description

Function The T1MS timer instruction measures time in one-millisecond increments. It can be
Description used for timing an event or creating a delay.

Note: The T1MS instruction is available only on the B984-102, the Micro 311, 411,
512, and 612, and the Quantum 424 02.

1070 840USE10100 April 2004

T1MS Timer: One Millisecond Timer

Representation: TIMS - One Millisecond Timer

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT —

Preset value
Max. 999 (in ms.)

ENABLE/RESET —

timer preset

accumulated
time

TiMS

#1

—— TIMER = PRESET

—— TIMER < PRESET

Description of the instruction’s parameters

Parameters State RAM Data Type Meaning
Reference

Top input 0x, 1x None ON = initiates the timer operation: time
accumulates in milliseconds when top and
middle input are ON

Middle input 0x, 1x None OFF = accumulated time reset to 0
ON = timer accumulating

timer preset 3%, 4x INT, UINT Preset value (number of millisecond

(top node) increments the timer can accumulate), can
be displayed explicitly as an integer (range
1...999) or stored in a register

accumulated 4x INT, UINT Accumulated time count in millisecond

time increments.

(middle node)

#1 INT, UINT Constant value of #1

(bottom node)

Top output 0x None ON = accumulated time = timer preset

Middle output | Ox None ON = accumulated time < timer preset

840USE10100 April 2004

1071

T1MS Timer: One Millisecond Timer

Example

A Millisecond
Timer Example

Here is the ladder logic for a real-time clock with millisecond accuracy:

100 O
000001
—,/}——#00055 10 O
000001 oo000z
™S o8
1 — 60 O
000003
~|ucTr
4 400053 | [g0
000002 000004
/ UCTR
| [k00052 | | 24
000003 ocGhos
_|uctr
—/ 400051
000004
—/
000005

The T1MS instruction is programmed to pass power at 100 ms intervals; it is
followed by a cascade of four up-counters (See UCTR: Up Counter, p. 1083) that
store the time respectively in hundredth-of-a-second units, tenth-of-a-second units,
one- second units, one-minute units, and one-hour units.

When logic solving begins, the accumulated time value begins incrementing in
register 40055 of the T1MS block. After 100 one-ms increments, the top output
passes power and energizes coil 00001. At this point, the value in register 40055 in
the timer is reset to 0. The accumulated count value in register 40054 in the first
UCTR block increments by 1, indicating that 100 ms have passed. Because the
accumulated time countin T1MS no longer equals the timer preset, the timer begins
to re-accumulate time in ms.

When the accumulated count in register 40054 of the first UCTR instruction
increments to 10, the top output from that instruction block passes power and
energizes coil 00002. The value in register 40054 then resets to 0, and the
accumulated count in register 40053 of the second UCTR block increments by 1.
As the times accumulate in each counter, the time of day can be read in five holding
registers as follows:

Register Unit of Time Valid Range
40055 Thousandths-of-a-second 0..100
40054 Tenths-of-a-second 0..10
40053 Seconds 0..60
40052 Minutes 0..60
40051 Hours 0..24

1072

840USE10100 April 2004

TBLK: Table to Block

170

At a Glance

Introduction This chapter describes the instruction TBLK.

What's in this This chapter contains the following topics:

?

Chapter? Topic Page
Short Description 1074
Representation: TBLK - Table-to-Block Move 1075
Parameter Description 1077

840USE10100 April 2004 1073

TBLK: Table to Block

Short Description

Function The TBLK (table-to-block) instruction combines the functions of TR (See T --> R

Description Table to Register, p. 1045) and the BLKM (See BLKM: Block Move, p. 135) in a
single instruction. In one scan, it can copy up to 100 contiguous 4x registers from a
table to a destination block. The destination block is of a fixed length. The block of
registers being copied from the source table is of the same length, but the overall
length of the source table is limited only by the number of registers in your system
configuration.

1074 840USE10100 April 2004

TBLK: Table to Block

Representation: TBLK - Table-to-Block Move

Symbol Representation of the instruction

CONTROL INPUT —

source table

| OPERATION SUCCESSFUL

HOLD POINTER —

pointer

— ERROR

RESET POINTER —

TBLK

block length

840USE10100 April 2004

1075

TBLK: Table to Block

Parameter Description of the instruction’s parameters
Description Parameters State RAM Data | Meaning
Reference Type
Top input 0x, 1x None | ON = initiates move operation
Middle input 0x, 1x None | ON = hold pointer
(See Middle The inputs to the middle and bottom node can be
Input, p. 1077) used to control the value in the pointer so that size
of the source table can be controlled.
Important: You should use external logic in
conjunction with the middle or bottom input to
confine the value in the destination pointer to a
safe range.
When the input to the middle node is ON, the
value in the pointer register is frozen while the
TBLK operation continues. This causes the same
source data block to be copied to the destination
table on each scan.
Bottom input 0x, 1x None | ON = reset pointer to zero
(See Bottom
Input, p. 1077)
source table 4x INT, First holding register in the source table
(See Source UINT, | The 4xxxx register entered in the top node is the
Table (Top WOR | first holding register in the source table.
Node), p. 1077) D Note: The source table is segmented into a series
(top node) of register blocks, each of which is the same
length as the destination block. Therefore, the size
of the source table is a multiple of the length of the
destination block, but its overall size is not
specifically defined in the instruction. If left
uncontrolled, the source table could consume all
the 4xxxx registers available in the PLC
configuration.
pointer (See 4x INT, Pointer to the source block, destination block
Pointer (Middle UINT
Node), p. 1077)
(middle node)
block length INT, Number of registers of the destination block and of
(bottom node) UINT | the blocks within the source table; range: 1 ... 100
Top output 0x None | ON = move successful
Middle output | Ox None | ON = error / move not possible
1076 840USE10100 April 2004

TBLK: Table to Block

Parameter Description

Middle Input

Bottom Input

Source Table
(Top Node)

Pointer
(Middle Node)

When the middle input is ON, the value in the pointer register is frozen while the
TBLK operation continues. This causes the same source data block to be copied to
the destination table on each scan.

When the bottom input is ON, the pointer value is reset to zero. This causes the
TBLK operation to copy data from the first block of registers in the source table.

CAUTION

Confine the value in the destination pointer to a safe range.

You should use external logic in conjunction with the middle and the
bottom inputs to confine the value in the destination pointer to a safe
range.

Failure to follow this precaution can result in injury or equipment
damage.

The 4x register entered in the top node is the first holding register in the source table.

Note: The source table is segmented into a series of register blocks, each of which
is the same length as the destination block. Therefore, the size of the source table
is a multiple of the length of the destination block, but its overall size is not
specifically defined in the instruction. If left uncontrolled, the source table could
consume all the 4x registers available in the PLC configuration.

The 4x register entered in the middle node is the pointer to the source block. The
first register in the destination block is the next contiguous register after the pointer.
For example, if the pointer is register 400107, then the first register in the destination
block is 400108.

The value stored in the pointer indicates which block of data from the source table
will be copied to the destination block. This value specifies a block number within the
source table.

840USE10100 April 2004

1077

TBLK: Table to Block

1078 840USE10100 April 2004

TEST: Test of 2 Values

171

At a Glance

Introduction

This chapter describes the instruction TEST.

What's in this This chapter contains the following topics:
?
Chapter? Topic Page
Short Description 1080
Representation: TEST - Test of 2 Values 1081
840USE10100 April 2004 1079

TEST: Test of 2 Values

Short Description

Function The TEST instruction compares the signed or unsigned size of the 16-bit values in
Description the top and middle nodes and describes the relationship via the block outputs.
1080

840USE10100 April 2004

TEST: Test of 2 Values

Representation: TEST - Test of 2 Values

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT —

— TOP VALUE > MIDDLE VALUE

value 1
Max. value: 65535
| TOP VALUE = MIDDLE VALUE
value 2
Max. value: 65535
SIGNED — — TOP VALUE < MIDDLE VALUE
TEST
#1
Description of the instruction’s parameters
Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON = compares value 1 and value 2
Bottom input 0x, 1x None ON = signed operation
OFF = unsigned operation
value 1 3x, 4x INT, UINT Value 1, can be displayed explicitly as an
(top node) integer (range 1 ... 65 535) or stored in a
register
value 2 3x, 4x INT, UINT Value 2, can be displayed explicitly as an
(middle node) integer (range 1 ... 65 535) or stored in a
register
1 INT, UINT Constant value, cannot be changed
(bottom node)
Top output 0x None ON = value 1 > value 2
Middle output | Ox None ON = value 1 = value 2
Bottom output | Ox None ON = value 1 < value 2

840USE10100 April 2004

1081

TEST: Test of 2 Values

1082 840USE10100 April 2004

UCTR: Up Counter

172

At a Glance

Introduction

This chapter describes the instruction UCTR.

What's in this This chapter contains the following topics:
?
Chapter? Topic Page
Short Description 1084
Representation: UCTR - Up Counter 1085
840USE10100 April 2004 1083

UCTR: Up Counter

Short Description

Function The UCTR instruction counts control input transitions from OFF to ON up from zero
Description to a counter preset value.

1084 840USE10100 April 2004

UCTR: Up Counter

Representation: UCTR - Up Counter

Symbol

Parameter
Description

Representation of the instruction

CONTROL —
Preset Value: 999 16-bit PLC

(max) 9999 24-bit PLC
65535 - *PLC
ENABLE/RESET COUNT —
VALUE

counter preset

UCTR

accumulated

OUTPUT CONDITION
UCTR: count = preset

OUTPUT CONDITION
UCTR: count < preset

count
*Available on the following
e E685/785 PLCs
e L785PLCs
e Quantum Series PLCs
Description of the instruction’s parameters
Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None OFF — ON = initiates the counter
operation
Bottom input 0x, 1x None OFF = reset accumulator to 0
ON = counter accumulating
counter preset | 3x, 4x INT, UINT Preset value, can be displayed explicitly
(top node) as an integer or stored in a register
Preset value:
Max. 255 16-bit PLC
Max. 999 24-bit PLC
Max. 65535 785L
accumulated 4x INT, UINT Count value (actual value); which
count increments by one on each transition from
(bottom node) OFF to ON of the top input until it reaches
the specified counter preset value.
Top output 0x None ON = accumulated count = counter preset
Bottom output | Ox None ON = accumulated count < counter preset

840USE10100 April 2004

1085

UCTR: Up Counter

1086 840USE10100 April 2004

VMER - VME Read

173

At A Glance

Introduction This chapter describes the instruction VMER.

What's in this This chapter contains the following topics:

?

Chapter? Topic Page
Short Description: VMER - VME Read 1088
Representation: VMER - VME Read 1089
Parameter Description: VMER - VME Read 1090

840USE10100 April 2004 1087

VMER - VME Read

Short Description: VMER - VME Read

Function The VME Read block allows the user to read data from devices on the VME bus. If
Description Byte Swap is active, the high byte is exchanged with the low byte of a word after it
is read from the VME bus. If Word Swap is enabled, the upper word is exchanged
with the lower word of a double after it is read. An error will occur if both inputs are
enabled at once.
Note: Available only on the Quantum VME-424/X controller.
1088

840USE10100 April 2004

VMER - VME Read

Representation: VMER - VME Read

Symbol Representation of the instruction
CONTROL INPUT — — ACTIVE
register
BYTE SWAP — — ERROR
pointer
WORD SWAP — — COMPLETE
VMER
value
(1...255)
Parameter Description of the instruction’s parameters
Description Parameters | State RAM | Data Type | Meaning
Reference
Top input 0x, 1x None ON enables read
Middle input | Ox, 1x None ON = byte swap
Bottom input | Ox, 1x None ON = word swap
register 4x INT, UINT, | There are five control registers in the top node.
(top node) WORD They are allotted as follows:
4x - VME Address modifier code (39, 3A, 3D, 3E,
29, or 2D
4x+1 to 4x+4 - The VME Control Block
(For expanded and detailed information please see
the table named VME Control Block, p. 1090.)
pointer 4x INT, UINT | A pointer to the first destination register.
(middle node) WORD (For expanded and detailed information please see
the table named Error Code Status, p. 1090.)
value INT, UINT | A constant specifying the number of destination
(bottom node) WORD registers to which data is transferred. This constant
can be from 1 to 255.
Top output 0x None ON when the top input receives power
Middle output | Ox None ON When an error occurs
Bottom output | Ox None On when the read is complete

840USE10100 April 2004

1089

VMER - VME Read

Parameter Description: VMER - VME Read

VME Control This is the VME control block.
Block Register Description
Displayed VME Address modifier code

First implied

Error code status
Please see Error Code Status Table

Second implied

Length of data to be read/written

Third implied VME Device address (low byte)
Fourth implied VME Device address (high byte)
Error Code This is the Error Code Status table.
Status Error Description
01 Bad word count. Must be an even number of words
02 Bad length, greater than 255
03 Bad data length. Length was 0 or greater than 255
04 Bad address modifier in first control block
05 Bad command in top node of SWAP block
06 Bad VME bus interface
07 VME bus address doesn’t exist
08 VME 486 timeout
09 ME bus interface has not been configured
10 Both BYTE and WORD swap inputs have been selected
11 Match the type implied by the AM code (A16 or A2)
1090 840USE10100 April 2004

VMEW - VME Write

174

At A Glance

Introduction This chapter describes the instruction VMEW.

What's in this This chapter contains the following topics:

?

Chapter? Topic Page
Short Description: VMEW - VME Write 1092
Representation: VMEW - VME Write 1093
Parameter Description: VMEW - VME Write 1095

840USE10100 April 2004 1091

VMEW - VME Write

Short Description: VMEW - VME Write

Function The VME Write block allows the user to write data to devices on the VME bus. If
Description BYTE SWAP is active, the high byte is exchanged with the low byte of a word before
it is written to the VME bus. If WORD SWAP is active, the upper word is exchanged
with the lower word of a double before it is written. An error will occur if both inputs
are enabled at once.
Note: Available only on the Quantum VME-424/X controller.
1092

840USE10100 April 2004

VMEW - VME Write

Representation: VMEW - VME Write

Symbol Representation of the instruction
CONTROL INPUT — — ACTIVE
register
BYTE SWAP — — ERROR
pointer
WORD SWAP — — COMPLETE
VMEW
value
(1...255)

840USE10100 April 2004 1093

VMEW - VME Write

Parameter Description of the instruction’s parameters
Description Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None ON enables read
Middle input 0x, 1x None ON = byte swap
Bottom input 0x, 1x None ON = word swap
register 4x INT, UINT There are five control registers in the top
(top node) WORD node. They are allotted as follows:
4x - High Byte: VME Address modifier code
(39, 3A, 3D, 3E, 29, or 2D
4x - Low Byte: Data bus size
4x + 1 to 4x + 4 - The VME Control Block
(For expanded and detailed information
please see the table named VME Control
Block, p. 1095.)
pointer 3X, 4x INT, UINT A pointer to the first destination register.
(middle node) WORD (For expanded and detailed information
please see the table named Error Code
Status, p. 1095.)
value INT, UINT A constant specifying the number of
(bottom node) WORD destination registers to which data is
transferred. This can be from 1 to 255.
Top output 0x None ON when the top input receives power
Passes power when top input receives
power
Middle output 0x None ON when an error occurs
Bottom output | Ox None ON when write is complete
1094 840USE10100 April 2004

VMEW - VME Write

Parameter Description: VMEW - VME Write

VME Control This is the VME control block.
Block Register Description
Displayed VME Address modifier code

First implied

Error code status
Please see Error Code Status Table

Second implied

Length of data to be read/written

Third implied

VME Device address (low byte)

Fourth implied

VME Device address (high byte)

Error Code This is the Error Code Status table.
Status Error Description
01 Bad word count. Must be an even number of words
02 Bad length, greater than 255
03 Bad data length. Length was O or greater than 255
04 Bad address modifier in first control block
05 Bad command in top node of SWAP block
06 Bad VME bus interface
07 VME bus address doesn’t exist
08 VME 486 timeout
09 ME bus interface has not been configured
10 Both BYTE and WORD swap inputs have been selected
11 Match the type implied by the AM code (A16 or A2)

840USE10100 April 2004

1095

VMEW - VME Write

1096 840USE10100 April 2004

WRIT: Write

175

At a Glance

Introduction This chapter describes the instruction WRIT.

What's in this This chapter contains the following topics:

2

Chapter? Topic Page
Short Description 1098
Representation: WRIT - Write ASCII Port 1099
Parameter Description 1100

840USE10100 April 2004 1097

WRIT: Write

Short Description

Function The WRIT instruction sends a message from the PLC over the RIO communications
Description link to an ASCII display (screen, printer, etc.).
In the process of sending the messaging operation, WRIT performs the following
functions:
e Verifies the correctness of the ASCII communication parameters, e.g. the port
number, the message number
e Verifies the lengths of variable data fields
e Performs error detection and recording
e Reports RIO interface status
WRIT requires two tables of registers: a source table where variable data (the
message) is copied, and a control block where comm port and message parameters
are identified.
Further information about formatting messages you will find in Formatting Messages
for ASCII READ/WRIT Operations, p. 91.
1098 840USE10100 April 2004

WRIT: Write

Representation: WRIT - Write ASCII Port

Symbol

Parameter
Description

Representation of the instruction

CONTROL INPUT —

PAUSE OPERATION —

ABORT OPERATION ——

Table length
Max. 255

source

— ACTIVE

control block

| ERROR (ONE SCAN)

WRIT

table length

| COMPLETE (ONE SCAN)

Description of the instruction’s parameters

Parameters State RAM | Data Meaning
Reference | Type

Top input 0x, 1x None ON = initiates a WRIT

Middle input 0x, 1x None ON = pauses WRIT operation

Bottom input 0x, 1x None ON = abort WRIT operation

source (See 3x, 4x INT, Source table

p. 1100) UINT,

(top node) WORD

control block 4x INT, ASCII Control block (first of seven contiguous

(See p. 1100) UINT, | holding registers)

(middle node) WORD | (For expanded and detailed information please see
the section Control Block (Middle Node), p. 1100.)

table length INT, Length of source table (number of registers where

(bottom node) UINT the message data will be stored), range: 1 ... 255

Top output 0x None Echoes the state of the top input

Middle output | Ox None ON = error in communication or operation has timed
out (for one scan)

Bottom output | Ox None ON = WRIT complete (for one scan)

840USE10100 April 2004

1099

WRIT: Write

Parameter Description

Source Table
(Top Node)

Control Block
(Middle Node)

The top node contains the first 3x or 4x register in a source table whose length is
specified in the bottom node. This table contains the data required to fill the variable

field in a message.

Consider the following WRIT message

vessel #1 temperature is:

111

The 3-character ASCII field 111 is the variable data field; variable data are loaded,
typically via DX moves, into a table of variable field data.

The 4x register entered in the middle node is the first of seven contiguous holding

register in the control block.

Register Definition
Displayed Port Number and Error Code, p. 1101
First implied Message number

Second implied

Number of registers required to satisfy format

Third implied Count of the number of registers transmitted thus far
Fourth implied Status of the solve

Fifth implied Reserved

Sixth implied Checksum of registers 0 ... 5

1100

840USE10100 April 2004

WRIT: Write

Port Number and
Error Code

Port Number and Error Code

1]2]a|a|s |67 8]0[10]11]12]18]14]15]16]

Bit Function

1. PLC error code (see table below)

5 Not used

6 Input from the ASCII device not compatible with format
7 Input buffer overrun, data received too quickly at RIOP
8 USART error, bad byte received at RIOP

9 lllegal format, not received properly by RIOP

10 ASCII device off-line, check cabling

11 ASCII message terminated early (in keyboard mode
12...16 | Comm port # (1 ... 32)

PLC Error Code

Bit

Meaning

Error in the input to RIOP from ASCII device

Exception response from RIOP, bad data

Sequenced number from RIOP differs from expected value

OO O0|O| =

- |lOojo|O|DN

o|—=+| O

User register checksum error, often caused by altering
READ registers while the block is active

Invalid port or message number detected

e

o

User-initiated abort, bottom input energized

—_

'y

No response from drop, communication error

Node aborted because of SKP instruction

Message area scrambled, reload memory

- |lOoO| o

Port not configured in the I/O map

o|o|jo| o

lllegal ASCII request

Unknown response from ASCII port

—_

o | o

lllegal ASCII element detected in user logic

alalalalalalalo|lolo

—_

RIOP in the PLC is down

840USE10100 April 2004

1101

WRIT: Write

1102 840USE10100 April 2004

XMIT - Transmit

176

At A Glance

Introduction

This chapter describes the instruction XMIT - Transmit.

What's in this This chapter contains the following topics:
?
Chapter? Topic Page
General Description: XMIT - Transmit 1104
XMIT Modbus Functions 1105
840USE10100 April 2004 1103

XMIT - Transmit

General Description: XMIT - Transmit

Overview

The XMIT (Transmit) function block sends Modbus messages from a "master" PLC
to multiple slave PLCs or sends ASCII character strings from the PLC's Modbus
slave port#1 or port#2 to ASCII printers and terminals. XMIT sends these messages
over telephone dial up modems, radio modems, or simply direct connection.

For more detailed information on the XMIT function block, see the section named
XMIT Modbus Functions, p. 1105.

XMIT comes with three modes: communication, port status, and conversion.
These modes are described in the following sections.

e XMIT Communication Block, p. 1111

e XMIT Port Status Block, p. 1123

e XMIT Conversion Block, p. 1131

XMIT performs general ASCII input functions in the communication mode including
simple ASCII and terminated ASCII. You may use an additional XMIT block for
reporting port status information into registers while another XMIT block performs
the ASCII communication function. You may import and export ASCII or binary data
into your PLC and convert it into various binary data or ASCII to send to DCE
devices based upon the needs of your application.

The block has built in diagnostics, which ensure no other XMIT blocks are active in
the PLC. Within the XMIT block a control table allows you to control the
communications link between the PLC and Data Communication Equipment (DCE)
devices attached to Modbus port #1 or port#2 of the PLC. The XMIT block does not
activate the port LED when it's transmitting data.

Note: The Modbus protocol is a "master/slave" protocol and designed to have only
one master when polling multiple slaves. Therefore, when using the XMIT block in
a network with multiple masters, contention resolution, and collision avoidance is
your responsibility and may easily be addressed through ladder logic
programming.

1104

840USE10100 April 2004

XMIT - Transmit

XMIT Modbus Functions

At a Glance The XMIT function block supports the following Modbus function codes:.
e 01..06
e 08
e 15and 16
e 20 and 21
For Modbus messages, the MSG_OUT array has to contain the Modbus definition
table. The Modbus definition table for Modbus function code: 01, 02, 03, 04, 05, 06,
15 and 16 is five registers long and you must set XMIT_SET.MessageLen to 5 for
successful XMIT operation. The Modbus definition table is shown in the table below

Modbus For Modbus messages, the MSG_OUT array has to contain the Modbus definition
Function Codes table. The Modbus definition table for Modbus function code: 01, 02, 03, 04, 05, 06,
01...06 15 and 16 is five registers long and you must set XMIT_SET.MessageLen to 5 for

successful XMIT operation. The Modbus definition table is shown in the table below.
Modbus Definition Table Function Codes (01 ... 06, 15 and 16)

Content Description

Modbus XMIT supports the following function codes:
function code 01 = Read multiple coils (0x)
(MSG_OUT[1]) |02 = Read multiple discrete inputs (1x)

03 = Read multiple holding registers (4x)
04= Read multiple input registers (3x)

05 = Write single coil (0x)

06 = Write single holding registers (4x)

15 = Write multiple coils (0x)

16 = Write multiple holding registers (4x)

Quantity Enter the amount of data you want written to the slave PLC or read from
(MSG_OUT[2)]) |the slave PLC. For example, enter 100 to read 100 holding registers from
the slave PLC or enter 32 to write 32 coils to a slave PLC. There is a size
limitation on quantity that is dependent on the PLC model. Refer to
Appendix A for complete details on limits.

Slave PLC Enter the slave Modbus PLC address. Typically the Modbus address
address range is 1 ... 247. To send a Modbus message to multiple PLCs, enter 0
(MSG_OUT[3]) | forthe slave PLC address. This is referred to as Broadcast Mode.
Broadcast Mode only supports Modbus function codes that writes data
from the master PLC to slave PLCs. Broadcast Mode does NOT support
Modbus function codes that read data from slave PLCs.

840USE10100 April 2004 1105

XMIT - Transmit

Content

Description

Slave PLC data
area
(MSG_OUTI[4])

For a read command, the slave PLC data area is the source of the data.
For a write command, the slave PLC data area is the destination for the
data. For example, when you want to read coils (00300 ... 00500) from a
slave PLC, enter 300 in this field. When you want to write data from a
master PLC and place it into register (40100) of a slave PLC, enter 100 in
this field. Depending on the type of Modbus command (write or read), the
source and destination data areas must be as defined in the Source and
Destination Data Areas table below.

Master PLC
data area
(MSG_OUTI[5])

For a read command, the master PLC data area is the destination for the
data returned by the slave. For a write command, the master PLC data
area is the source of the data. For example, when you want to write coils
(00016 ... 00032) located in the master PLC to a slave PLC, enter 16 in the
field. When you want to read input registers (30001 ... 30100) from a slave
PLC and place the data into the master PLC data area (40100 ... 40199),
enter 100 in this field. Depending on the type of Modbus command (write
or read), the source and destination data areas must be as defined in the
Source and Destination Data Areas table below.

Source and Destination Data Areas for Function Codes (01 ... 06, 15 and 16)

Function Code

Master PLC Data Area Slave PLC Data Area

03 (Read multiple 4x)

4x (destination) 4x (source)

04 (Read muiltiple 3x)

4x (destination 3x (source)

01 (Read multiple 0x)

0x (source)

02 (Read multiple 1x)

)
0x (destination)
)

0x (destination

1x (source)

16 (Write multiple 4x

4x (source)

4x (destination

)
15 (Write multiple 0x)

0x (source

0x (destination

05 (Write single 0x)

0x (destination

06 (Write single 4x)

)

))

0x (source))
))

4x (source 4x (destination

When you want to send 20 Modbus messages out of the PLC, you must transfer 20
Modbus definition tables one after another into MSG_OUT after each successful
operation of XMIT, or you may program 20 separate XMIT blocks and then activate
them one at a time through user logic.

1106

840USE10100 April 2004

XMIT - Transmit

Modbus
Function Code
(08)

The Modbus definition table for Modbus function code: 08 is five registers long and
you must set XMIT_SET.Messagelen to 5. For Modbus messages, the MSG_OUT
array has to contain the Modbus definition. The Modbus definition table is shown in

the table below.

Modbus Definition Table Function Codes (08)

Content

Description

Modbus
function code
(MSG_OUTI[1))

XMIT supports the following function code:
08 = Diagnostics

Diagnostics
(MSG_OUTI[2))

Enter the diagnostics subfunction code decimal value in this filed to perform
the specific diagnostics function desired. The following diagnostic
subfunctions are supported:

function data
field content
(MSG_OUT[4])

Code Description

00 Return query data

01 Restart comm option

02 Return diagnostic register

03 Change ASCII input delimiter

04 Force listen only mode

05 ...09 Reserved

10 Clear counters

(& diagnostics registers in 384, 484)

11 Return bus messages count

12 Return bus comm error count

13 Return bus exception error count

14 ... 15 Not supported

16 Return slave NAK count

17 Return slave busy count

18 Return bus Char overrun count

19.. 21 Not supported
Slave PLC Enter the slave Modbus PLC address. Typically the Modbus address range
address is 1 ... 247. Function code 8 dose NOT support Broadcast Mode (Address
(MSG_OUTI[3]) | 0)
Diagnostics You must enter the decimal value needed for the data area of the specific

diagnostic subfunction. For subfunctions 02, 04, 10, 11,12, 13,16, 17 and
18 this value is automatically set to zero. For subfunctions 00, 01, and 03
you must enter the desired data field value. For more details, refer to
Modicon Modbus Protocol Reference Guide (PI-MBUS-300).

Master PLC
data area
(MSG_OUT[5])

For all subfunctions, the master PLC data area is the destination for the
data returned by the slave. You must specify a 4x register that marks the
beginning of the data area where the returned data is placed. For example,
to place the data into the master PLC data area starting at (40100), enter
100 in this field. Subfunction 04 does NOT return a response. For more
details, refer to Modicon Modbus Protocol Reference Guide (PI-MBUS-
300).

840USE10100 April 2004

1107

XMIT - Transmit

Modbus

Function Codes

For Modbus messages, the MSG_OUT array has to contain the Modbus definition
table. The Modbus definition table for Modbus function codes: 20 and 21 is six

(20, 21) registers long and you must you must set XMIT_SET.MessagelLen to 6 for
successful XMIT operation. The Modbus definition table is shown in the table below.
Modbus Definition Table Function Codes (20, 21)

Content Description

Modbus XMIT supports the following function codes:

function code | 20 = Read general reference (6x)

(MSG_OUT[1]) | 21 = Write general reference (6x)

Quantity Enter the amount of data you want written to the slave PLC or read from the

(MSG_OUTI[2)) | slave PLC. For example, enter 100 to read 100 holding registers from the
slave PLC or enter 32 to write 32 coils to a slave PLC. There is a size
limitation on quantity that is dependent on the PLC model. Refer to
Appendix A for complete details on limits.

Slave PLC Enter the slave Modbus PLC address. Typically the Modbus address range

address is 1 ... 247. Function code 20 and 21 do NOT support Broadcast Mode

(MSG_OUTI3]) | (Address 0).

Slave PLC For aread command, the slave PLC data area is the source of the data. For

data area a write command, the slave PLC data area is the destination for the data.

(MSG_OUTI[4]) | For example, when you want to read registers (600300 ... 600399) from a
slave PLC, enter 300 in this field. When you want to write data from a
master PLC and place it into register (600100) of a slave PLC, enter 100 in
this field. Depending on the type of Modbus command (write or read), the
source and destination data areas must be as defined in the Source and
Destination Data Areas table below. The lowest extended register is
addressed as register "zero" (600000). The lowest holding register is
addressed as register "one" (400001).

Master PLC For a read command, the master PLC data area is the destination for the

data area data returned by the slave. For a write command, the master PLC data area

(MSG_OUTI5]) | is the source of the data. For example, when you want to write registers
(40016 ... 40032) located in the master PLC to 6x registers in a slave PLC,
enter 16 in the filed. When you want to read 6x registers (600001 ... 600100)
from a slave PLC and place the data into the master PLC data area (40100
... 40199), enter 100 in this field. Depending on the type of Modbus
command (write or read), the source and destination data areas must be as
defined in the Source and Destination Data Areas table below. The lowest
extended register is addressed as register "zero" (600000). The lowest
holding register is addressed as register "one" (400001).

File number Enter the file number for the 6x registers to be written to or read from. (1 ...

(MSG_OUT(s6]) | 10) depending on the size of the extended register data area. 600001 is
60001 file 1 and 690001 is 60001 file 10 as viewed by the Reference Data
Editor.

1108 840USE10100 April 2004

XMIT - Transmit

Source and Destination Data Areas for Function Codes (20, 21)

Function Code

Master PLC Data Area

Slave PLC Data Area

20 (Read general reference
6Xx)

4x (destination)

6x (source)

21 (Write general reference

6x)

4x (source)

6x (destination)

When you want to send 20 Modbus messages out of the PLC, you must transfer 20
Modbus definition tables one after another into MSG_OUT after each successful

operation of XMIT, or you may program 20 separate XMIT blocks and then activate
them one at a time through user logic.

840USE10100 April 2004

1109

XMIT - Transmit

1110 840USE10100 April 2004

XMIT Communication Block

177

At A Glance

Introduction This chapter describes the instruction XMIT Communication Block.

What's in this This chapter contains the following topics:

?

Chapter? Topic Page
Short Description: XMIT Communication Block 1112
Representation: XMIT Communication Block 1113
Parameter Description: Middle Node - Communication Control Table 1115
Parameter Description: XMIT Communication Block 1119
Parameter Description: XMIT Communications Block 1121

840USE10100 April 2004 1111

XMIT Communication Block

Short Description: XMIT Communication Block

Function The purpose of the XMIT communication block is to receive and transmit ASCII
Description messages and Modbus Master messages using your PLC ports.

The XMIT instruction block will not operate correctly if:

e The NSUP and XMIT loadables are not installed

e The NSUP loadable is installed after the XMIT loadable

e The NSUP and XMIT loadables are installed in a Quantum PLC with an out-of-

date executive (older than version 2.10 or 2.12)
For an overview of the XMIT instruction please see General Description: XMIT -
Transmit, p. 1104.

1112 840USE10100 April 2004

XMIT Communication Block

Representation: XMIT Communication Block

Symbol

Representation of the instruction

START —

port
#0001
or
#0002

—— OPERATION IS ACTIVE

ABORT —

register

—— OPERATION TERMINATED
UNSUCCESSFULLY

XMIT

constant =
#0016

—— OPERATION SUCCESSFUL

840USE10100 April 2004

1113

XMIT Communication Block

Parameter
Description

Description of the instruction’s parameters

Parameters

State RAM
Reference

Data
Type

Meaning

Top input

0x, 1x

None

ON begins an XMIT operation and START should
remain ON until the operation has completed
successfully or an error has occurred.

Middle input

0x, 1x

None

ON aborts any active XMIT operation and forces the
port to slave mode. The abort code (121) is placed into
the fault status register. The port remains closed as
long as this input is ON.

Note: To reset an XMIT fault and clear the fault register,
the top input must go OFF for at least one PLC scan.

port #0001
or #0002
(top node)

4x

INT,
UINT,
WORD

The top node must contain one of the following
constants either (#0001) to select PLC port #1, or
(#0002) to select PLC port #2.

Note: The loadable version DOES accept 4xxxx
registers in the top node, whereas the built-in does
NOT.

register
(middle
node)

4x

INT,
UINT,
WORD

The 4xxxx register entered in the middle node is the first
in a group of sixteen (16) contiguous holding registers
that comprise the control block, as shown in the
Communication Control Table.

(For expanded and detailed information on this node
please see the Communication Control Table, p. 1115
in the Parameter Description: Middle Node - XMIT
Communication Block.)

Important: DO NOT modify the address in the middle
node of the XMIT block or delete the address from the
block while the program is active. This action locks up
the port preventing communications.

#0016
(bottom
node)

INT,
UINT,
WORD

The bottom node must contain a constant equal to
(#0016). This is the number of registers used by the
XMIT instruction.

Top output

Ox

None

ON while an XMIT operation in progress.
Passes power while an XMIT operation is in progress.

Middle
output

Ox

None

ON when XMIT has detected an error or was issued an
abort.

Passes power when XMIT has detected an error or
when an XMIT operation was aborted.

Bottom
output

Ox

None

ON for one scan only when an XMIT operation has
been successfully completed.

Passes power when an XMIT operation has been
successfully completed.

Note: The START input must remain ON until the
OPERATION SUCCESSFUL has turned OFF.

1114

840USE10100 April 2004

XMIT Communication Block

Parameter Description: Middle Node - Communication Control Table

Communication
Control Table

This table represents the first in a group of 16 contiguous holding registers that
comprise the control block.

Register | Name

Description

No Valid
Entries

Revision
Number

4XXXX

Displays the current revision number of XMIT
block.

This number is automatically loaded by the block
and the block over writes any other number
entered into this register.

Read Only

4xxxx + 1 | Fault Status

This field displays a fault code generated by the
XMIT port status block.

(For expanded and detailed information please
see the Fault Status Table, p. 1119 in the
Parameter Description: XMIT Communication
Block section).

Read Only

Available to
User

AXXXX + 2

The XMIT block does not use this register.
However, it may be used in ladder logic as a
pointer. An efficient way to use the XMIT block is
to place a pointer value of a TBLK instruction into
this register.

Read/Write

4xxxx + 3 | Data Rate

XMIT supports the following data rates: 50, 75,
110, 134, 150, 300, 600, 1200, 1800, 2000, 2400,
3600, 4800, 7200, 9600 and 19200.

To configure a data rate, enter its decimal number
into this field. When an invalid data rate is entered,
the block displays an illegal configuration error
(error code 127) in the Fault Status (4xxxx + 1)
register.

Read/Write

4xxxx + 4 | Data Bits

XMIT supports the following data bits: 7 and 8.
To configure a data bit size, enter its decimal
number into this register.

Note: Modbus messages may be sent in ASCII
mode or RTU mode. ASCII mode requires 7 data
bits, while RTU mode requires 8 data bits. When
sending ASCII character message you may use
either 7 or 8 data bits. When an invalid data bit is
entered, the block displays an illegal configuration
error (error code 127) in the Fault Status (4xxxx +
1) register.

Read/Write

840USE10100 April 2004

1115

XMIT Communication Block

Register | Name Description No Valid
Entries

4xxxx + 5 | Parity Bits XMIT supports the following parity: none, odd and | Read/Write
even. Enter a decimal of either: 0 = no parity, 1 =
odd parity, or 2 = even parity. When an invalid
parity is entered, the block displays an illegal
configuration error (error code 127) in the Fault
Status (4xxxx + 1) register.

4xxxx + 6 | Stop Bits XMIT supports one or two stop bits. Enter a Read/Write
decimal of either: 1 = one stop bit, or 2 = two stop
bits. When an invalid stop bit is entered, the block
displays an illegal configuration error (error code
127) in the Fault Status (4xxxx + 1) register.

4xxxx + 7 | Available to | The XMIT block does not use this register. Read/Write
User However, it may be used in ladder logic as a
pointer. An efficient way to use the XMIT block is
to place a pointer value of a TBLK instruction into
this register.

4xxxx + 8 | Command (16-digit binary number) Read/Write
Word The XMIT interprets each bit of the command
word as a function to perform. If bit 7 and 8 are on
simultaneously or if any two or more of bits 13, 14,
15 or 16 are on simultaneously or if bit 7 is not on
when bits 13, 14, 15, or 16 are on error 129 will be
generated.

For expanded and detailed information please see
the Command Word Communication Functions
Table, p. 1121 in the Parameter Description:
XMIT Communications Block section.

1116 840USE10100 April 2004

XMIT Communication Block

Register

Name

Description

No Valid
Entries

4AXXXX + 9

Message
Pointer Word

(message pointer)

Values are limited by the range of 4x registers

configured.

The message table consists of either

® ASCII characters
For ASCII character strings, the pointer is the
register offset to the first register of the ASCII
character string. Each register holds up to two
ASCII characters. Each ASCII string may be
up to 1024 characters in length. For example,
when you want to send 10 ASCII messages
out of the PLC, you must program 10 ASCII
characters strings into 4xxxx registers of the
PLC and then through ladder logic set the
pointer to the start of each message after each
successful operation of XMIT.

® Modbus Function Codes
For expanded and detailed information please
see the section XMIT Modbus Functions,
p. 1105

Enter a pointer that points to the beginning of the

message table.

Read/Write

4xxxx + 10

Message
Length

(0-512)

Enter the length of the current message. When
XMIT is sending Modbus messages for function
codes 01, 02, 03, 04, 05, 06, 08, 15 and 16, the
length of the message is automatically set to five.
When XMIT is receiving Terminated ASCII input
the length of the message must be set to five or an
error results. When XMIT is sending Modbus
messages for function codes twenty and twenty- -
one, the length of the message is automatically
set to six. When XMIT is sending ASCII
messages, the length may be 1 through 1024
ASCII characters per message.

Read/Write

4xxxx + 11

Response
Timeout (ms)

(0 - 65535 milliseconds)

Enter the time value in milliseconds (ms) to
determine how long XMIT waits for a valid
response message from a slave device (PLC,
modem, etc.). In addition, the time applies to
ASCII transmissions and flow control operations.
When the response message is not completely
formed within this specified time, XMIT issues a
fault. The valid range is 0 through 65535 ms. The
timeout is initiated after the last character in the
message is sent.

Read/Write

840USE10100 April 2004

1117

XMIT Communication Block

Register

Name

Description

No Valid
Entries

4xxxx + 12

Retry Limit

(0 - 65535 milliseconds)

Enter the quantity of retries to determine how
many times XMIT sends a message to get a valid
response from a slave device (PLC, modem, etc.).
When the response message is not completely
formed within this specified time, XMIT issues a
fault and a fault code. The valid range is O ...
65535 # of retries. This field is used in conjunction
with response time-out (4xxxx + 11).

Read/Write

4xxxx + 13

Start of
Transmission
Delay (ms)

(0 - 65535 milliseconds)

Enter the time value in milliseconds (ms) when
RTS/CTS control is enabled, to determine how
long XMIT waits after CTS is received before it
transmits a message out of the PLC port #1. Also,
you may use this register even when RTS/CTS is
NOT in control. In this situation, the entered time
value determines how long XMIT waits before it
sends a message out of the PLC port #1. You may
use this as a pre message delay timer. The valid
range is 0 through 65535 ms.

Read/Write

4xxxx + 14

End of
Transmission
Delay (ms)

(0 - 65535 milliseconds)

To determine how long XMIT keeps an RTS
assertion once the message is sent out of the PLC
port #1, enter the time value in milliseconds (ms)
when RTS/CTS control is enabled, After the time
expires, XMIT ends the RTS assertion. Also, you
may use this register even when RTS/CTS is NOT
in control. In this situation, the entered time value
determines how long XMIT waits after it sends a
message out of the PLC port #1. You may use this
as a post message delay timer. The valid range is
0 through 65535 ms.

Read/Write

4xxxx + 15

Current Retry

The value displayed here indicates the current
number of retry attempts made by the XMIT block

Read Only

1118

840USE10100 April 2004

XMIT Communication Block

Parameter Description: XMIT Communication Block

Fault Status
Table

The following is a list of the fault codes generated by the XMIT port status block (4x

+1).

Fault Code | Fault Description

1 Modbus exception -- lllegal function

2 Modbus exception -- lllegal data address

3 Modbus exception -- lllegal data value

4 Modbus exception -- Slave device failure

5 Modbus exception -- Acknowledge

6 Modbus exception -- Slave device busy

7 Modbus exception -- Negative acknowledge
8 Modbus exception -- Memory parity error

9 through 99

Reserved

100

Slave PLC data area cannot equal zero

101 Master PLC data area cannot equal zero

102 Coil (0x) not configured

103 Holding register (4xxxx) not configured

104 Data length cannot equal zero

105 Pointer to message table cannot equal zero

106 Pointer to message table is outside the range of configured holding registers
(4xxxx)

107 Transmit message timeout
(This error is generated when the UART cannot complete a transmission in 10
seconds or less. This error bypasses the retry counter and will activate the
error output on the first error.)

108 Undefined error

109 Modem returned ERROR

110 Modem returned NO CARRIER

111 Modem returned NO DIALTONE

112 Modem returned BUSY

113 Invalid LRC checksum from the slave PLC

114 Invalid CRC checksum from the slave PLC

115 Invalid Modbus function code

116 Modbus response message time-out

117 Modem reply timeout

840USE10100 April 2004

1119

XMIT Communication Block

Fault Code | Fault Description

118 XMIT could not gain access to PLC communications port #1 or port #2
119 XMIT could not enable PLC port receiver

120 XMIT could not set PLC UART

121 User issued an abort command

122 Top node of XMIT not equal to zero, one or two

123 Bottom node of XMIT is not equal to seven, eight or sixteen
124 Undefined internal state

125 Broadcast mode not allowed with this Modbus function code
126 DCE did not assert CTS

127 lllegal configuration (data rate, data bits, parity, or stop bits)
128 Unexpected response received from Modbus slave

129 lllegal command word setting

130 Command word changed while active

131 Invalid character count

132 Invalid register block

133 ASCII input FIFO overflow error

134 Invalid number of start characters or termination characters

1120 840USE10100 April 2004

XMIT Communication Block

Parameter Description: XMIT Communications Block

Command Word This table describes the function performed as XMIT interprets each bit of the
Communication command word.

Functions Table

(4x + 8) Command Word Function Command word bits | Command word bits
that must be setto 1 | that must be setto 0
Terminated ASCII input (Bit 5=1) 2,3,9,10,11,12 6,7,8,13,14,15,16
Simple ASCII input (Bit 6=1) 2,3,9,10,11,12 5,7,8,13,14,15,16
Simple ASCII output (Bit 7=1) 2,3,9,10,11,12 5,6,8,13,14,15,16
Modem output (Bit 7=1) 2,3,13,14,15,16 5,6,8,9,10,11,12

(plus one, but ONLY
one, of the following bits
issetto 1: 13,14,15 or
16, while the other three
bits must be set to 0)

Modbus master messaging output 2,3 5,6,7,9,10,11,12,13,14,
(Bit 8=1) 15,16

Enable ASCII receive input FIFO ONLY |2,3,10,11,12 5,6,7,8,13,14,15,16
(Bit 9=1)

840USE10100 April 2004 1121

XMIT Communication Block

1122 840USE10100 April 2004

XMIT Port Status Block

178

At A Glance

Introduction This chapter describes the instruction XMIT Port Status Block.

What's in this This chapter contains the following topics:

?

Chapter? Topic Page
Short Description: XMIT Port Status Block 1124
Representation: XMIT Port Status Block 1125
Parameter Description: Middle Node - XMIT Conversion Block 1127

840USE10100 April 2004 1123

XMIT Port Status Block

Short Description: XMIT Port Status Block

Function The XMIT port status block shows the current port status, Modbus slave activity,
Description ASCII input FIFO and flow control information that may be used in ladder logic for
some applications. The XMIT port status block is totally passive. It does not take,
release, or control the PLC port.
For an overview of the XMIT instruction please see General Description: XMIT -
Transmit, p. 1104.

1124 840USE10100 April 2004

XMIT Port Status Block

Representation: XMIT Port Status Block

Symbol

Representation of the instruction

START —

port
#0001
or
#0002

register

— OPERATION TERMINATED
UNSUCCESSFULLY

XMIT

constant =
#0007

— OPERTION SUCCESSFUL

840USE10100 April 2004

1125

XMIT Port Status Block

Parameter
Description

Description of the instruction’s parameters

Parameters

State RAM
Reference

Data Type

Meaning

Top input

0x, 1x

None

ON begins an XMIT operation and it should
remain ON until the operation has
completed successfully or an error has
occurred.

port #0001 or
#0002
(top node)

4x

INT, UINT
WORD

Must contain one of the following constants
either (#0001) to select PLC port #1, or
(#0002) to select PLC port #2.

Note: The loadable version DOES accept
4xxxx registers in the top node, whereas
the built-in does NOT.

register
(middle node)

4x

INT, UINT,
WORD

The 4xxxx register entered in the middle
node is the first in a group of seven (7)
contiguous holding registers that comprise
the port status display block, as shown in
the Port Status Display Table, p. 1127 in
the Parameter Description: Middle Node -
XMIT Conversion Block section.
Important: DO NOT modify the address in
the middle node of the XMIT block or delete
the address from the block while the block
is active. This action locks up the port
preventing communications.

constant =
#0007
(bottom node)

INT, UINT,
WORD

Must contain a constant equal to (#0007).
This is the number of registers used by the
XMIT port status instruction.

Middle output

Ox

None

ON when XMIT has detected an error or
was issued an abort.

Bottom output

Ox

None

ON when an XMIT operation has been
successfully completed.

1126

840USE10100 April 2004

XMIT Port Status Block

Parameter Description: Middle Node - XMIT Conversion Block

Explanation of

This section expands and details information relevant to the middle node. There are

This Section six (6) units in this section.
e Port Status Display Table
e Fault Code Generation Table
e Status Generation Table
e Port Ownership Table
e Input FIFO Status Table
e Input FIFO Length Table
Port Status This table represents the first in a group of seven (7) contiguous holding registers
Display Table that comprise the port status block.
Register | Name Description No Valid
Entries
AXXXX Revision Displays the current revision number of XMIT | Read Only
Number block.
This number is automatically loaded by the
block and the block over writes any other
number entered into this register.
4xxxx + 1 | Fault Status This field displays a fault code generated by the | Read Only
XMIT port status block.
(For expanded and detailed information please
see the Fault Code Generation Table below.)
4xxxx + 2 | Slave login This register displays the status of two items | Read Only
status/ generated by the XMIT port status block.
Slave port active | The two items are the slave login status and the
status slave port active status.
Ladder logic may be able to use this
information to reduce or avoid collisions on a
multi master Modbus network.
(For expanded and detailed information please
see the Status Generation Table below.
4xxxx + 3 | Slave This register displays the number of slave Read Only
transaction transactions generated by the XMIT port status
counter block. The counter increases every time the
PLC Modbus slave port receives another
command from the Modbus master. Ladder
logic may be able to use this information to
reduce or avoid collisions on a multi master
Modbus network.
840USE10100 April 2004 1127

XMIT Port Status Block

Register | Name Description No Valid
Entries
4xxxx + 4 | Port State This register displays ownership of the port and | Read Only
its state. It is generated by the XMIT port status
block.

(For expanded and detailed information please
see the Port Ownership Table below.)

4xxxx + 5 | Input FIFO The register displays the status of seven items | Read Only
status bits related to the input FIFO. It is generated by the
XMIT port status block.

(For expanded and detailed information please
see the Input FIFO Table below.)

4xxxx + 6 | Input FIFO This register displays the current number of Read Only
length characters present in the ASCII input FIFO.
The register may contain other values based on
the state of the input FIFO and if the length is
empty or overflowing. It is generated by the
XMIT port status block.

(For expanded and detailed information please
see the Input FIFO Length Table below.

Fault Code This table describes the fault codes generated by the XMIT port status block in the
Generation Table (4x + 1) register.
Fault Code Fault Description
118 XMIT could not gain access to PLC communications port #1 or port #2.
122 Top node of XMIT not equal to zero, one or two.
123 Bottom node of XMIT is not equal to seven, eight or sixteen.

1128 840USE10100 April 2004

XMIT Port Status Block

Status

Generation Table

Port Ownership

Table

This table describes the slave login status and the slave port active status generated
by the XMIT port status block for the (4x + 2) register.

(4x + 2 high byte) (4x + 2 low byte)

Slave Login Status

Slave Port Active Status

Yes - When a programming device is currently
logged ON to this PLC slave port.

response.

Yes - When observed port is owned by the
PLC and currently receiving a Mod-bus
command or transmitting a Mod-bus

No - When a programming device is currently
NOT logged ON to this PLC slave port.
Note: A Modbus master can send commands

but, not be logged ON response.

No - When observed port is NOT owned by
the PLC and currently receiving Mod-bus
command or transmitting a Mod-bus

This table describes the port’s ownership and state for the (4x + 4) register.

Owns Port Active State Value
PLC PLC Modbus slave 0
XMIT Tone dial modem 1
XMIT Hang up modem 2
XMIT Modbus messaging 3
XMIT Simple ASCII output 4
XMIT Pulse dial modem 5
XMIT Initialize modem 6
XMIT Simple ASCII input 7
XMIT Terminated ASCII input 8
XMIT ASCII input FIFO is ON, but no XMIT function is active 9

840USE10100 April 2004

1129

XMIT Port Status Block

Input FIFO Status
Table

This table describes the status bits related to the input FIFO for the (4x + 5) register.

Bit # Definition Yes /1 No /0

1-3 Reserved

4 Port owned by ... XMIT PLC

5-7 Reserved

8 ASCII output transmission ... | Blocked by receiving Unblocked by receiving
device device

9 ASCII input received ... New character No new character

10 ASCIl input FIFO is ... Empty Not empty

11 ASCIl input FIFO is ... Overflowing (error) Not overflowing (error)

12 ASCIl input FIFO is ... On Off

13-15 | Reserved

16 ASCII input reception ... XMIT blocked sending | XMIT unblocked

device

sending device

Input FIFO This table describes the current number of characters present in the ASCII input
Length Table FIFO for the (4x + 6) register.

WHEN Input FIFO THEN Length

= OFF =0

= ON and Empty =0

= ON and Overflowing =512
1130 840USE10100 April 2004

XMIT Conversion Block

179

At A Glance

Introduction This chapter describes the instruction XMIT Conversion Block.

What's in this This chapter contains the following topics:

?

Chapter? Topic Page
Short Description: XMIT Conversion Block 1132
Representation: XMIT Conversion Block 1133
Parameter Description: XMIT Conversion Block 1135

840USE10100 April 2004 1131

XMIT Conversion Block

Short Description: XMIT Conversion Block

Function
Description

The purpose of the XMIT conversion block is to take data and convert it into other
usable forms based upon your application needs. The convert block performs
eleven (11) different functions or options. Some functions include ASCII to binary,
integer to ASCII, byte swapping, searching ASCII strings, and others. This block
allows internal conversions using 4xxxx source blocks to 4xxxx destination blocks.
For an overview of the XMIT instruction please see General Description: XMIT -
Transmit, p. 1104.

1132

840USE10100 April 2004

XMIT Conversion Block

Representation: XMIT Conversion Block

Symbol

Representation of the instruction

START —

constant
#0001

register

—— OPERATION TERMINATED
UNSUCCESSFULLY

XMIT

constant =
#0008

—— OPERTION SUCCESSFUL

840USE10100 April 2004

1133

XMIT Conversion Block

Parameter
Description

Description of the instruction’s parameters

Parameters

State RAM
Reference

Data Type

Meaning

Top input

0x, 1x

None

ON begins an XMIT operation and it should
remain ON until the operation has
completed successfully or an error has
occurred.

Note: To reset an XMIT fault and clear the
fault register, the top input must go OFF for
at least one PLC scan.

constant #0001
(top node)

4x

INT, UINT
WORD

The top node must contain a constant
(#0000) since conversions do not deal with
the PLC’s port.

The loadable version DOES accept 4xxxx
registers in the top node, whereas the built-
in does NOT.

register
(middle node)

4x

INT, UINT,
WORD

The 4xxxx register entered in the middle
node is the first in a group of eight (8)
contiguous holding registers that comprise
the control block, as shown in the
Conversion Block Control Table, p. 1135
found in the Parameter Description: XMIT
Conversion Block section.

Important: DO NOT modify the address in
the middle node of the XMIT block or delete
the address from the program while the
block is active. This action locks up the port
preventing communications.

constant =
#0008
(bottom node)

INT, UINT,
WORD

The bottom node must contain a constant
equal to (#0008). This is the number of
registers used by the XMIT conversion
instruction.

Middle output

Ox

None

ON when XMIT has detected an error or
was issued an abort.

Bottom output

Ox

None

ON when an XMIT operation has been
successfully completed.

1134

840USE10100 April 2004

XMIT Conversion Block

Parameter Description: XMIT Conversion Block

Explanation of
This Section

Conversion
Block Control
Table

This section expands and details information relevant to the middle node. There are
four (4) units in this section.

e Conversion Block Control Table

e Fault Code Generation Table

e Data Conversion Control Bits Table
e Data Conversion Opcodes Table

This table represents the first in a group of eight (8) contiguous holding registers that
comprise the port status block.

Register

Name

Description

No Valid
Entries

4XXXX

XMIT Revision
Number

Displays the current revision number of XMIT
block.

This number is automatically loaded by the block
and the block over writes any other number
entered into this register.

Read Only

AxXXXX + 1

Fault Status

This field displays a fault code generated by the
XMIT port status block.

(For expanded and detailed information please
see the Fault Code Generation Table below.)

Read Only

AXXXX + 2

Available to
User

0 (May be used as pointers for instructions such
as TBLK))

The XMIT conversion block does not use this
register. However, it may be used in ladder logic
as a pointer. An efficient way to use the XMIT
block is to place a pointer value of a TBLK
instruction into this register.

Read/Write

4AXXXX + 3

Data
Conversion
Control Bits

This 16 bit word relates to the Data Conversion
(4xxxx + 3) word. These bits provide additional
control options based on which of the eleven
conversions you select.

(For expanded and detailed information please
see Data Conversion Control Bits Table below.

Read/Write

840USE10100 April 2004

1135

XMIT Conversion Block

Register | Name Description No Valid
Entries
4xxxx + 4 | Data Select the type of conversion you want to perform | Read/Write
Conversion from the list of eleven options listed in the Data
Opcodes Conversion Opcodes Table below.

After picking the type of conversion refer to Data
Conversion Control Bits (4xxxx + 4) and the Data
Conversion Control Bits Table for additional
control options that relate to the specific
conversion type selected.

4xxxx + 5 | Source Enter the 4xxxx register desired. Read/Write
Register This is the first register in the source block that is
read. Ensure you select where you want the
READ to begin (high or low byte).

4xxxx + 6 | Destination Enter the 4xxxx register desired. Read/Write
Register This is the first register in the source block that is
read. Ensure you select where you want the
READ to begin (high or low byte).

The selection beside this register in the DX zoom
is the same as bit16 in (4xxxx + 3).

4xxxx + 7 | ASCII String Enter the search area. This register defines the | Read/Write
Character search area.

Count When either automatic advance source (Bit 13)
or automatic advance destination (Bit 14) are ON
and no ASCII character is detected, the block
automatically adjusts the character count.

1136 840USE10100 April 2004

XMIT Conversion Block

Fault Code

Generation Table

Data Conversion

Control Bits
Table

This table describes the fault codes generated by the XMIT conversion block in the
(4x + 1) register.

Fault Code Fault Description

122 Top node of XMIT is not equal to zero, one or two
123 Bottom node of XMIT is not equal to seven, eight or sixteen
131 Invalid character count

135 Invalid destination register block

136 Invalid source register block

137 No ASCII number present

138 Multiple sign characters present

139 Numerical overflow detected

140 String mismatch error

141 String not found

142 Invalid error check detected

143 Invalid conversion opcode

This table describes the control options available based upon the conversion
selected in the (4x + 3) register.

Bit # | Definition 1= 0=
2 CRC 16 seed 0x0000 OxFFFF
3 Error check type LRC 8 CRC 16
4 Error check Validate Append
7 Conversion case Upper to Lower | Lower to Upper
8 Case sensitivity No Yes
9 Format leading Zeros Blanks
10 Output format Fixed Variable
11 Conversion type Unsigned Signed
12 Conversion word 32-bit 16-bit
13 Automatic advance source pointer (points to the | Yes No
next character after the last character purged)
14 Automatic advance destination pointer (pointsto | Yes No
the next character after the last character purged)
15 Begin reading ASCII at source beginning with ... | Low byte High byte
(normal)
16 Begin saving ASCII at destination beginning with | Low byte High byte
(normal)

840USE10100 April 2004

1137

XMIT Conversion Block

Data Conversion

This table describes the eleven (11) functions or options for performing conversions

Opcodes Table using the data conversion opcodes in the (4x + 4) register.

Opcode Action Data Type
(4xxxx block
lllegal opcode Displayed when | Not applicable
illegal opcode is
detected.
(1 Hex) Converted to 16-bit or 32-bit signed or unsigned
Received ASCII decimal character binary integer
string
(2 Hex) Converted to 16-bit or 32-bit unsigned binary
Received ASCII hex character string integer
(3 Hex) Converted to 16-bit unsigned binary integer array
Received ASCII hex character string
(4 Hex) Converted to ASCII decimal character string for
16-bit or 32-bit signed or unsigned transmission
integer
(5 Hex) Converted to ASCII hex character string for
16-bit or 32-bit unsigned binary transmission
integer
(6 Hex) Converted to ASCII hex character string for
16-bit unsigned integer array transmission
(7 Hex) Swapped to ASCII destination register block
High and low bytes from saved
ASCII source register block
(8 Hex) Copied to ASCII destination register block with
ASCII string from source register or without case conversion
block
(9 Hex) Compared to ASCII string defined in destination
ASCII source register block register block with or without case
sensitivity

(10 Hex) Search for ASCII string defined in destination
ASCII source register block block with or without case sensitivity
(11 Hex) Validated or ASCII string in source register block
Error check 8-bit LRC or 16-bit CRC | Appended on

1138 840USE10100 April 2004

XMRD: Extended Memory Read

180

At a Glance

Introduction This chapter describes the instruction XMRD.

What's in this This chapter contains the following topics:

?

Chapter? Topic Page
Short Description 1140
Representation: XMRD - Extended Memory Read 1141
Parameter Description 1142

840USE10100 April 2004 1139

XMRD: Extended Memory Read

Short Description

Function The XMRD instruction is used to copy a table of 6x extended memory registers to a
Description table of 4x holding registers in state RAM.
1140

840USE10100 April 2004

XMRD: Extended Memory Read

Representation: XMRD - Extended Memory Read

Symbol

Parameter
Description

CONTROL INPUT ——

ENABLE CLEAR OFFSET —

ENABLE ABORT IF ERROR —

Representation of the instruction

— ACTIVE
control block
I ERROR
destination
—— COMPLETE (ONE SCAN)
XMRD
#1

Description of the instruction’s parameters

Parameters State RAM | Data Meaning
Reference | Type
Top input 0x, 1x None ON = activates read operation
Middle input 0x, 1x None OFF = clears offset to 0
ON = does not clear offset
Bottom input 0x, 1x None OFF = abort on error
ON = do not abort on error
control block 4x INT, First of six contiguous holding registers in the
(See p. 1142) UINT, extended memory
(top node) WORD | (For expanded and detailed information please see
the section Control Block (Top Node), p. 1142.)
destination 4x INT, The first 4x holding register in a table of registers
(middle node) UINT, |that receive the transferred data from the 6x
WORD | extended memory storage registers
1 INT, Contains the constant value 1, which cannot be
(bottom node) UINT changed
Top output 0x None Read transfer active
Middle output | Ox None Error condition detected
Bottom output | Ox None ON = operation complete

840USE10100 April 2004

1141

XMRD: Extended Memory Read

Parameter Description

Control Block

The 4x register entered in the top node is the first of six contiguous holding registers

(Top Node) in the extended memory control block.

Reference Register Name Description

Displayed status word Contains the diagnostic information about extended
memory (see Status Word of the Control Block, p. 1143)

First implied | file number Specifies which of the extended memory files is
currently in use (range: 1 ... 10)

Second start address Specifies which 6x storage register in the current file is

implied the starting address; 0 = 60000, 9999 = 69999

Third implied | count Specifies the number of registers to be read or written in
a scan when the appropriate function block is powered;
range: 0 ... 9999, not to exceed nhumber specified in max
registers (fifth implied)

Fourth implied | offset Keeps a running total of the number of registers
transferred thus far

Fifth implied | max registers Specifies the maximum number of registers that may be
transferred when the function block is powered (range:
0 ... 9999)

If you are in multi-scan mode, these six registers should be unique to this function

block.

1142 840USE10100 April 2004

XMRD: Extended Memory Read

Status Word of Status Word of the Control Block
the Control Block

1]2]a|a|s |67 8]0[10]11]12]18]14]15]16]

Bit Function
1 1 = power-up diagnostic error
2 1 = parity error in extended memory
3 1 = extended memory does not exist
4 0 = transfer not running
1 = busy
5 0 = transfer in progress
1 = transfer complete
6 1 = file boundary crossed
7 1 = offset parameter too large
8-9 Not used
10 1 = nonexistent state RAM
11 Not used
12 1 = maximum registers parameter error
13 1 = offset parameter error
14 1 = count parameter error
15 1 = starting address parameter error
16 1 = file number parameter error

840USE10100 April 2004 1143

XMRD: Extended Memory Read

1144 840USE10100 April 2004

XMWT: Extended Memory Write

181

At a Glance

Introduction This chapter describes the instruction XMWT.

What's in this This chapter contains the following topics:

?

Chapter? Topic Page
Short Description 1146
Representation: XMWT - Extended Memory Write 1147
Parameter Description 1148

840USE10100 April 2004 1145

XMWT: Extended Memory Write

Short Description

Function The XMWT instruction is used to write data from a block of input registers or holding
Description registers in state RAM to a block of 6x registers in an extended memory file.
1146

840USE10100 April 2004

XMWT: Extended Memory Write

Representation: XMWT - Extended Memory Write

Symbol

Parameter
Description

CONTROL INPUT ——

ENABLE CLEAR OFFSET —

ENABLE ABORT IF ERROR —

Representation of the instruction

source

—— ACTIVE

control block

— ERROR

XMWT

—— COMPLETE (ONE SCAN)

Description of the instruction’s parameters

Parameters State RAM | Data Meaning
Reference | Type

Top input 0x, 1x None ON = activates write operation

Middle input 0x, 1x None OFF = clears offset to 0
ON = does not clear offset

Bottom input 0x, 1x None OFF = abort on error
ON = do not abort on error

source 3X, 4x INT, The first 3x or 4x register in a block of contiguous

(top node) UINT, |source registers, i.e. input or holding registers,

WORD | whose contents will be written to 6x extended

memory registers

control block 4x INT, First of six contiguous holding registers in the

(See p. 1148) UINT, |extended memory

(middle node) WORD | (For detailed information please see the section
Control Block (Middle Node), p. 1148.)

1 INT, Contains the constant value 1, which cannot be

(bottom node) UINT changed

Top output 0x None Write transfer active

Middle output 0x None Error condition detected

Bottom output | Ox None ON = operation complete

840USE10100 April 2004

1147

XMWT: Extended Memory Write

Parameter Description

Control Block
(Middle Node)

The 4x register entered in the middle node is the first of six contiguous holding
registers in the extended memory control block.

Reference Register Name

Description

Displayed status word

Contains the diagnostic information about extended
memory (see Status Word of the Control Block, p. 1149)

First implied | file number

Specifies which of the extended memory files is
currently in use (range: 1 ... 10)

Second start address
implied

Specifies which 6x storage register in the current file is
the starting address; 0 = 60000, 9999 = 69999

Third implied | count

Specifies the number of registers to be read or written in
a scan when the appropriate function block is powered;
range: 0 ... 9999, not to exceed nhumber specified in max
registers (fifth implied)

Fourth implied | offset

Keeps a running total of the number of registers
transferred thus far

Fifth implied | max registers

Specifies the maximum number of registers that may be
transferred when the function block is powered (range:
0 ... 9999)

If you are in multi-scan mode, these six registers should be unique to this function

block.

1148

840USE10100 April 2004

XMWT: Extended Memory Write

Status Word of Status Word of the Control Block
the Control Block

1]2]a|a|s |67 8]0[10]11]12]18]14]15]16]

Bit Function
1 1 = power-up diagnostic error
2 1 = parity error in extended memory
3 1 = extended memory does not exist
4 0 = transfer not running
1 = busy
5 0 = transfer in progress
1 = transfer complete
6 1 = file boundary crossed
7 1 = offset parameter too large
8-9 Not used
10 1 = nonexistent state RAM
11 Not used
12 1 = maximum registers parameter error
13 1 = offset parameter error
14 1 = count parameter error
15 1 = starting address parameter error
16 1 = file number parameter error

840USE10100 April 2004 1149

XMWT: Extended Memory Write

1150 840USE10100 April 2004

XOR: Exclusive OR

182

At a Glance

Introduction This chapter describes the instruction XOR.

What's in this This chapter contains the following topics:

?

Chapter? Topic Page
Short Description 1152
Representation: XOR - Boolean Exclusive Or 1153
Parameter Description 1155

840USE10100 April 2004 1151

XOR: Exclusive OR

Short Description

Function The XOR instruction performs a Boolean Exclusive OR operation on the bit patterns
Description in the source and destination matrices.
The XORed bit pattern is then posted in the destination matrix, overwriting its
previous contents:

source / L L L L destination
bits g TXOR—l TXOR—l TXOR—l TXOR—l 5 bis

0 0 0 1 1 0 1 1

WARNING

XOR will override any disabled coils within the destination matrix
without enabling them.

This can cause personal injury if a coil has disabled an operation for
maintenance or repair because the coil’s state can be changed by the
XOR operation.

Failure to follow this precaution can result in death, serious injury,
or equipment damage.

1152 840USE10100 April 2004

XOR: Exclusive OR

Representation: XOR - Boolean Exclusive Or

Symbol Representation of the instruction

CONTROL INPUT — — ACTIVE
source matrix

destination
matrix
MATRIX SIZE —
XOR
Length: 1 - 1_00 registers length
(16 - 1600 bits)
Parameter Description of the instruction’s parameters
Description Parameters State RAM Data Type Meaning
Reference
Top input 0x, 1x None Initiates XOR
source matrix | 0x, 1%, 3x, 4x | BOOL, First reference in the source matrix
(top node) WORD
destination 0x, 4x BOOL, First reference in the destination matrix
matrix WORD
(middle node)
length INT, UINT Matrix length; range 1 ... 100 registers.
(bottom node)
Top output 0x None Echoes state of the top input

840USE10100 April 2004 1153

XOR: Exclusive OR

An XOR Example

When contact 10001 passes power, the source matrix formed by the bit pattern in
registers 40600 and 40601 is XORed with the destination matrix formed by the bit
pattern in registers 40608 and 40609, overwriting the original destination bit pattern.

source matrix
40600 = 1111111100000000 40601 = 1111111100000000
‘{ “‘ 40600
10001 Original destination matrix
40608 40608 = 1111111111111111 40609 = 0000000000000000
XOR
00002 XORed destination matrix
40608 = 0000000011111111 40609 = 1111111100000000

Note: If you want to reatin the original destination bit pattern of registers 40608 and
40609, copy the information into another table using a BLKIM before performing

the XOR operation.

1154

840USE10100 April 2004

XOR: Exclusive OR

Parameter Description

Matrix Length The integer entered in the bottom node specifies the matrix length, i.e. the number
(Bottom Node) of registers or 16-bit words in the two matrices. The matrix length can be in the range
1...100. A length of 2 indicates that 32 bits in each matrix will be XORed.

840USE10100 April 2004 1155

XOR: Exclusive OR

1156 840USE10100 April 2004

Appendices

Optimizing RIO Performance with the Segment Scheduler

Purpose This section shows you how to optimize your RIO using the segment scheduler.
What's in this The appendix contains the following chapters:
ix?
Appendix? Chapter Chapter Name Page
A Appendix A 1159
1157

840USE10100 April 2004

Appendices

1158 840USE10100 April 2004

Appendix A

A

Optimizing RIO Peformance with the Segment Scheduler

Purpose This appendix shows you how to optimize RIO performance using the segment
scheduler.

What's in this This chapter contains the following topics:

Chapter? Topic Page
Scan Time 1160
How to Measure Scan Time 1164
Maximizing Throughput 1165
Order of Solve 1167
Using Segment Scheduler to Improve Ciritical /O Throughput 1168
Using Segment Scheduler to Improve System Performance 1169
Using Segment Scheduler to Improve Communication Port Servicing 1170
Sweep Functions 1171

840USE10100 April 2004 1159

Appendices

Scan Time

Overview The time it takes the PLC to solve the logic program and update the physical system

is called scan time . It comprises the time it takes the PLC to:
Solve all scheduled logic ie..logic solve time
Service the 1/O drops

Service the communication ports and option processors
Execute intersegment transfer (IST) and system diagnostics

Logic Solve Time Logic solve time is the time it takes the CPU to solve the elements and instructions
used in the logic program. It is a part of the total scan time that is independent of I/
O service time and system overhead time. Logic solve time is measured in ms/K
words of user logic. Various PLC models have different logic solve times, as shown

below:

Logic Solve Time

PLC Models

PLC Types

0.75 ms/Kwords

984A, 984B, 984X

Chassis-mount

1.0 ms/Kwords

E984-685/-785, L984-785

Slot-mount

CPU11302, CPU11303, CPU21304

Quantum Series

1.5 ms/Kwords AT-984, MC-984 Hosr -based
0984-780/-785 Slot-mount

2.0 ms/Kwords Q984 Host-based
0984-685 Slot-mount

2.5 ms/Kwords 110CPU51x and 110CPU61x Micro

3.0 ms/Kwords 984-385, 984-485, 984-680 Slot mount

4.25 ms/Kwords 984-A12x, 984-A13x, 984-A14x Compact
110CPU311 and 110CPU411 Micro

5.0 ms/Kwords 984-380/-381, 984-480 Slot-mount

1160

840USE10100 April 2004

Appendices

The following illustration shows how logic solve time fits in the overall scan time
function:

Segment 1
N
Service
Outputs
Read
Inputs
Segment 2 / IST
[= Logic Solve Time
Service = Other Elements of
Outputs Scan Time
One Scan Read
Inputs
Segment 3 /// IST
Service
Outputs
Read
Inputs
IST
Overhead
v

840USE10100 April 2004

1161

Appendices

Servicing the /O In order to handle system throughput efficiently, the PLC coordinates the solution of
logic segments via its CPU and the servicing of I/O drops via its 1/O processor.
Typically a logic segment is coordinated with a particular /O drop—for example, the
logic networks in segment 2 correspond to the real-world 1/O points at drop 2. Inputs
are read during the previous segment and outputs are written during the
subsequent segment.
This method of 1/O servicing assures that the most recent input status is available
for logic solve and that outputs are written as soon as possible after logic solve. It
ensures predictability between the PLC and the process it is controlling.

Segment 1
N
Service
Outputs
Read
Drop 2
Inputs
Segment 2 / IST
= |/O Service Time
i for Drop 2
Outputs = Other Elements of
Scan Time
One Scan Read
Inputs
Segment 3 / IST
Service
Drop 2
Outputs
Read
Inputs
IST
Overhead
Yy

1162 840USE10100 April 2004

Appendices

Overhead

An intersegment transfer (IST) occurs between each segment. At this time, the 1/0
processor and the state RAM exchange data; previous inputs are transferred to
state RAM and the next outputs are transferred to the I/O processor. The logic scan
and I/O servicing for each segment are coordinated in this fashion. Using direct
memory access (DMA), ISTs typically take less than 1 ms/segment.

At the end of each scan, input messages to the Modbus communication ports are
serviced. The maximum time allotted for comm port servicing is 2.5 ms/scan; typical
servicing times are less than 1 ms/scan. If the PLC is using any option processors
(C986 Coprocessors or D908 Distributed Communications Processors), they are
also serviced at the end of each scan and typically require less than 1 ms/scan.
System diagnostics take from 1 ... 2 ms/scan to run, depending on PLC type.

Segment 1
R
Service
Outputs
Read
Inputs
Segment 2 /// IST
1= o0verhead
Service Support Time
Outputs = Other Elements of
Scan Time
One Scan Read
Inputs
Segment 3 /// IST
Service
Outputs
Read
Inputs
IST
Overhead
v

840USE10100 April 2004

1163

Appendices

How to Measure Scan Time

Overview

The following ladder logic circuit can be used in your application program to evaluate
system scan time:

-

01000

00500
01000

UCTR
—] o 00999

10001
| T.01
| 40003
10001
L 40002
100
DIV
40005

The up-counter counts 1000 scans as it transitions 500 times. When the counter has
transitioned 500 times, the T.01 timer turns OFF and stores the number of
hundredths of seconds it has taken for the counter to transition 500 times (1000
scans) in register 40003.

The value stored in 40002/40003 in the DIV block is then divided by 100 and the
result—which represents logic solve time in ms is stored in register 40005.

Note: 10001 is controlled via a DISABLE or a hard-wired input; ifyou are running
the program in optimized mode, a hard-wired input isrequired to toggle 10001.

Note: The maximum amount of time allowed for a scan is 250 ms; if the scan has
not completed in that amount of time, a watchdog timer in the CPU stops the
application and sends a timeout error message to the programming panel display.
The maximum limit on scan time protects the PLC from entering into an infinite
loop.

1164

840USE10100 April 2004

Appendices

Maximizing Throughput

Overview

The Ideal
Throughput
Situation

The PLC architecture simultaneously solves logic and services 1/O drops to optimize
system throughput. Throughput is the time it takes for a signal received at a field
sensing device to be sent as an input to the PLC, processed in ladder logic, and
returned as an output signal to a field working device. Throughput time may be
longer or shorter than a single scan; it gives you a realistic measure of the system’s
actual performance.

If the default segment scheduler is in place, the system automatically solves the
logic starting at segment 1 and moving sequentially through segment n. Throughput
is optimized when logic referring to real-world 1/O is contained in the segment that
corresponds to that I/O drop.For instance, if you are using I/O in drop 1 of a three-
drop system to control a pushbutton that starts a motor, the ideal condition is for
logic segment 1 to contain all the appropriate logic:

PLC
10001 Segment 1
/0 | .
Drop1 4@ 10001 00001
00001
o)
Drop2
o)
Drop3

When all logic segments are coordinated with all physical I/O drops in this manner,
the throughput for a given logic segment can be less than one scan. Here is how it
can be traced in our scan time model:

840USE10100 April 2004

1165

Appendices

Segment 1
D Service
Drop 3
Outputs
Read
Inputs
Segment 2 / IST
Service
Outputs
Read
S 1
can Drop 3
Inputs
Segment 3 / IST
Service
Outputs
Read
Inputs
IST
Overhead
AF Segment 1
Service
Drop 3
Outputs
Scan 2
Read
l Inputs

Event A

Event B

Event C

Event D

Event E

The model tracks throughput for drop 3. Throughput in this best case example is

about 75% of total scan time. Five benchmark events are shown:

e Event A, where the inputs from drop 3 are available to the 1/O processor.

Event B, where the 1/O processor transfers data to state RAM.
Event C, where the segment 3 logic networks are solved.

[]
[]
e Event D, where data is transferred from state RAM to the I/O processor
e Event E, where the output data is written to the input modules at drop 3

1166

840USE10100 April 2004

Appendices

Order of Solve

Overview

You specify the number of segments and 1/O drops with the configurator editor in
your panel software package. The default order-of-solve condition is segment 1
through segment n consecutively and continuously, once per scan, with the
corresponding I/O drops serviced in like order. You are able to change the order of
solve using the segment scheduler editor in your panel software package.

There may be times when you can modify the order of solve to improve overall
system performance. The segment scheduler can be used effectively to:

e Improve throughput for critical 1/0

e Improve overall system performance

e Optimize the servicing of communication ports

840USE10100 April 2004

1167

Appendices

Using Segment Scheduler to Improve Critical /O Throughput

Overview Suppose that your logic program is three segments long and that segment 3
contains logic that is critical to your application, for example, monitoring a proximity
switch to verify part presence. Segments 1 and 2 are running noncritical logic such
as part count analysis and statistic gathering. The program is running in the standard
order-of-solve mode, and you are finding that the PLC is not able to read critical
inputs with the frequency desired, thereby causing unacceptable system delay.
Using the segment scheduler editor, you can improve the throughput for the critical
I/O at drop 3 by scheduling segment 3 to be solved two (or more) times in the same

scan.
Here is an example of a rescheduled logic program, again using our scan time
model:
Segment 1
kS Service
Drop 3
Outputs
Read
Drop 3
Inputs
Segment 3 IST
Service
Drop 1
Outputs
Read
Drop 2
Inputs
One Scan Segment 2 IST
Service
Drop 3
Outputs
Read
Drop 3
Inputs
Segment 3 / IST
Service
Drop 2
Outputs
Read
Drop 1
Inputs
IST
Overhead
v

By rescheduling the order-of-solve table, you actually increase the scan time, but
more importantly you improve throughput for the critical I/O supported by logic in
segment 3. Throughput is the better measure of system performance.

1168 840USE10100 April 2004

Appendices

Using Segment Scheduler to Improve System Performance

Overview When certain areas of a ladder logic program do not need to be solved continually

on every scan. For example, an alarm handling routine, a data analysis routine, or
some diagnostic message routines can be designated as controlled segments by
the segment scheduler editor. Based on the status of an I/O or internal reference, a
controlled segment may be scheduled to be skipped, thereby reducing scan time
and improving overall system throughput.
For example, suppose that you have some alarm handling logic in segment 2 of a
three-segment logic program. You can use the segment scheduler editor to control
segment 2 based on the status of a coil 00056—if the coil is ON, segment 2 logic will
be activated in the scan, and if the coil is OFF the segment will not be solved in the
scan.

840USE10100 April 2004 1169

Appendices

Using Segment Scheduler to Improve Communication Port Servicing

Overview When you find that the frequency of standard end-of-scan servicing of
communication ports, option processors, or system diagnostics is inadequate for
your application requirements, you can increase service frequency by inserting one
or more reset watchdog timer routines in the order-of-solve table. Each time this
routine is encountered by the CPU, it causes all communication ports to be serviced
and causes the system diagnostics to be run.

1170 840USE10100 April 2004

Appendices

Sweep Functions

Overview

Constant Sweep

Single Sweep

Sweep functions allow you to scan a logic program at fixed intervals. They do not
make the PLC solve logic faster or terminate scans prematurely.

Constant Sweep allows you to set target scan times from 10 ... 200 ms (in multiples
of 10). A target scan time is the time between the start of one scan and the start of
the next; it is not the time between the end of one scan and the beginning of the next.
Constant Sweep is useful in applications where data must be sampled at constant
time intervals. If a Constant Sweep is invoked with a time lapse smaller than the
actual scan time, the time lapse is ignored and the system uses its own normal scan
rate. The Constant Sweep target scan time encompasses logic solving, 1/0 and
Modbus port servicing, and system diagnostics. If you set a target scan of 40 ms and
the logic solving, I/O servicing, and diagnostics require only 30 ms, the PLC will wait
10 ms on each scan.

The Single Sweep function allows your PLC to execute a fixed number of scans
(from 1 ... 15) and then to stop solving logic but continue servicing I/O. This function
is useful for diagnostic work; it allows solved logic, moved data, and performed
calculations to be examined for errors.

WARNING

The Single Sweep function should not be used to debug controls on
machine tools, processes, or material handling systems when they are
active. Once a specified number of scans has been solved, all outputs
are frozen in their last state. Since no logic solving is taking place, the
PLCignores all input information. This can result in unsafe, hazardous,
and destructive operation of the machine or process connected to the
PLC.

Failure to follow this precaution can result in death, serious injury,
or equipment damage.

840USE10100 April 2004

1171

Appendices

1172 840USE10100 April 2004

Glossary

A

active window

Actual parameter

Addresses

ANL_IN

ANL_OUT

ANY

The window, which is currently selected. Only one window can be active at any one
given time. When a window is active, the heading changes color, in order to
distinguish it from other windows. Unselected windows are inactive.

Currently connected Input/Output parameters.

(Direct) addresses are memory areas on the PLC. These are found in the State RAM
and can be assigned input/output modules.

The display/input of direct addresses is possible in the following formats:

Standard format (400001)

Separator format (4:00001)

Compact format (4:1)

IEC format (QW1)

ANL_IN stands for the data type "Analog Input" and is used for processing analog
values. The 3x References of the configured analog input module, which is specified
in the 1/0 component list is automatically assigned the data type and should
therefore only be occupied by Unlocated variables.

ANL_OUT stands for the data type "Analog Output" and is used for processing
analog values. The 4x-References of the configured analog output module, which is
specified in the I/O component list is automatically assigned the data type and
should therefore only be occupied by Unlocated variables.

In the existing version "ANY" covers the elementary data types BOOL, BYTE, DINT,
INT, REAL, UDINT, UINT, TIME and WORD and therefore derived data types.

840USE10100 April 2004

XXXV

Glossary

ANY_BIT In the existing version, "ANY_BIT" covers the data types BOOL, BYTE and WORD.

ANY_ELEM In the existing version "ANY_ELEM" covers the elementary data types BOOL,
BYTE, DINT, INT, REAL, UDINT, UINT, TIME and WORD.

ANY_INT In the existing version, "ANY_INT" covers the data types DINT, INT, UDINT and
UINT.

ANY_NUM In the existing version, "ANY_NUM" covers the data types DINT, INT, REAL, UDINT
and UINT.

ANY_REAL In the existing version "ANY_REAL" covers the data type REAL.

Application The window, which contains the working area, the menu bar and the tool bar for the

window application. The name of the application appears in the heading. An application
window can contain several document windows. In Concept the application window
corresponds to a Project.

Argument Synonymous with Actual parameters.

ASCIl mode American Standard Code for Information Interchange. The ASCII mode is used for
communication with various host devices. ASCII works with 7 data bits.

Atrium The PC based controller is located on a standard AT board, and can be operated
within a host computer in an ISA bus slot. The module occupies a motherboard
(requires SA85 driver) with two slots for PC104 daughter boards. From this, a
PC104 daughter board is used as a CPU and the others for INTERBUS control.

B

Back up data file
(Concept EFB)

Base 16 literals

The back up file is a copy of the last Source files. The name of this back up file is
"backup??.c" (it is accepted that there are no more than 100 copies of the source
files. The first back up file is called "backup00.c". If changes have been made on the
Definition file, which do not create any changes to the interface in the EFB, there is
no need to create a back up file by editing the source files (Objects — Source). If a
back up file can be assigned, the name of the source file can be given.

Base 16 literals function as the input of whole number values in the hexadecimal
system. The base must be denoted by the prefix 16#. The values may not be
preceded by signs (+/-). Single underline signs (_) between figures are not
significant.

XXXVi

840USE10100 April 2004

Glossary

Base 8 literal

Basis 2 literals

Binary
connections

Bit sequence

BOOL

Bridge

BYTE

Example
16#F_F or 16#FF (decimal 255)
16#E_0 or 16#EO (decimal 224)

Base 8 literals function as the input of whole number values in the octal system. The
base must be denoted by the prefix 3.63kg. The values may not be preceded by
signs (+/-). Single underline signs (_) between figures are not significant.

Example
8#3_1111 or 84377 (decimal 255)
8#34_1111 or 8#340 (decimal 224)

Base 2 literals function as the input of whole number values in the dual system. The
base must be denoted by the prefix 0.91kg. The values may not be preceded by
signs (+/-). Single underline signs (_) between figures are not significant.

Example
2#1111_1111 or 2#11111111 (decimal 255)
2#1110_1111 or 2#11100000 (decimal 224)

Connections between outputs and inputs of FFBs of data type BOOL.

A data element, which is made up from one or more bits.

BOOL stands for the data type "Boolean". The length of the data elements is 1 bit
(in the memory contained in 1 byte). The range of values for variables of this type is
0 (FALSE) and 1 (TRUE).

A bridge serves to connect networks. It enables communication between nodes on
the two networks. Each network has its own token rotation sequence — the token is
not deployed via bridges.

BYTE stands for the data type "Bit sequence 8". The input appears as Base 2 literal,
Base 8 literal or Base 1 16 literal. The length of the data element is 8 bit. A numerical
range of values cannot be assigned to this data type.

Cache

The cache is a temporary memory for cut or copied objects. These objects can be
inserted into sections. The old content in the cache is overwritten for each new Cut
or Copy.

840USE10100 April 2004

XXXVii

Glossary

Call up

Coil

Compact format
(4:1)

Connection

Constants

Contact

The operation, by which the execution of an operation is initiated.

A coil is a LD element, which transfers (without alteration) the status of the horizontal
link on the left side to the horizontal link on the right side. In this way, the status is
saved in the associated Variable/ direct address.

The first figure (the Reference) is separated from the following address with a colon
(:), where the leading zero are not entered in the address.

A check or flow of data connection between graphic objects (e.g. steps in the SFC
editor, Function blocks in the FBD editor) within a section, is graphically shown as a
line.

Constants are Unlocated variables, which are assigned a value that cannot be
altered from the program logic (write protected).

A contact is a LD element, which transfers a horizontal connection status onto the
right side. This status is from the Boolean AND- operation of the horizontal
connection status on the left side with the status of the associated Variables/direct
Address. A contact does not alter the value of the associated variables/direct
address.

Data transfer
settings

Data types

Settings, which determine how information from the programming device is
transferred to the PLC.

The overview shows the hierarchy of data types, as they are used with inputs and
outputs of Functions and Function blocks. Generic data types are denoted by the
prefix "ANY".
e ANY_ELEM
e ANY_NUM
ANY_REAL (REAL)
ANY_INT (DINT, INT, UDINT, UINT)
e ANY_BIT (BOOL, BYTE, WORD)
e TIME
e System data types (IEC extensions)
e Derived (from "ANY" data types)

XXXViii

840USE10100 April 2004

Glossary

DCP 1/O station

DDE (Dynamic
Data Exchange)

Decentral
Network (DIO)

Declaration

Definition
data file
(Concept EFB)

Derived data type

Derived Function
Block (DFB)

With a Distributed Control Processor (D908) a remote network can be set up with a
parent PLC. When using a D908 with remote PLC, the parent PLC views the remote
PLC as a remote I/O station. The D908 and the remote PLC communicate via the
system bus, which results in high performance, with minimum effect on the cycle
time. The data exchange between the D908 and the parent PLC takes place at 1.5
Megabits per second via the remote 1/O bus. A parent PLC can support up to 31
(Address 2-32) D908 processors.

The DDE interface enables a dynamic data exchange between two programs under
Windows. The DDE interface can be used in the extended monitor to call up its own
display applications. With this interface, the user (i.e. the DDE client) can not only
read data from the extended monitor (DDE server), but also write data onto the PLC
via the server. Data can therefore be altered directly in the PLC, while it monitors
and analyzes the results. When using this interface, the user is able to make their
own "Graphic-Tool", "Face Plate" or "Tuning Tool", and integrate this into the
system. The tools can be written in any DDE supporting language, e.g. Visual Basic
and Visual-C++. The tools are called up, when the one of the buttons in the dialog
box extended monitor uses Concept Graphic Tool: Signals of a projection can be
displayed as timing diagrams via the DDE connection between Concept and
Concept Graphic Tool.

A remote programming in Modbus Plus network enables maximum data transfer
performance and no specific requests on the links. The programming of a remote
net is easy. To set up the net, no additional ladder diagram logic is needed. Via
corresponding entries into the Peer Cop processor all data transfer requests are
met.

Mechanism for determining the definition of a Language element. A declaration
normally covers the connection of an Identifier with a language element and the
assignment of attributes such as Data types and algorithms.

The definition file contains general descriptive information about the selected FFB
and its formal parameters.

Derived data types are types of data, which are derived from the Elementary data
types and/or other derived data types. The definition of the derived data types
appears in the data type editor in Concept.

Distinctions are made between global data types and local data types.

A derived function block represents the Call up of a derived function block type.
Details of the graphic form of call up can be found in the definition " Function block
(Item)". Contrary to calling up EFB types, calling up DFB types is denoted by double
vertical lines on the left and right side of the rectangular block symbol.

840USE10100 April 2004

XXXiX

Glossary

DINT

Direct display

The body of a derived function block type is designed using FBD language, but only
in the current version of the programming system. Other IEC languages cannot yet
be used for defining DFB types, nor can derived functions be defined in the current
version.

Distinctions are made between local and global DFBs.

DINT stands for the data type "double integer". The input appears as Integer literal,
Base 2 literal, Base 8 literal or Base 16 literal. The length of the data element is 32
bit. The range of values for variables of this data type is from —2 exp (31) to 2 exp
(81) —1.

A method of displaying variables in the PLC program, from which the assignment of
configured memory can be directly and indirectly derived from the physical memory.

Document A window within an Application window. Several document windows can be opened

window at the same time in an application window. However, only one document window
can be active. Document windows in Concept are, for example, sections, the
message window, the reference data editor and the PLC configuration.

Dummy An empty data file, which consists of a text header with general file information, i.e.
author, date of creation, EFB identifier etc. The user must complete this dummy file
with additional entries.

DX Zoom This property enables connection to a programming object to observe and, if
necessary, change its data value.

E

Elementary Identifier for Functions or Function blocks, whose type definitions are not formulated

functions/ in one of the IEC languages, i.e. whose bodies, for example, cannot be modified with

function blocks
(EFB)

the DFB Editor (Concept-DFB). EFB types are programmed in "C" and mounted via
Libraries in precompiled form.

x|

840USE10100 April 2004

Glossary

EN/ENO (Enable
|/ Error display)

If the value of EN is "0" when the FFB is called up, the algorithms defined by the FFB
are not executed and all outputs contain the previous value. The value of ENO is
automatically set to "0" in this case. If the value of EN is "1" when the FFB is called
up, the algorithms defined by the FFB are executed. After the error free execution of
the algorithms, the ENO value is automatically set to "1". If an error occurs during
the execution of the algorithm, ENO is automatically set to "0". The output behavior
of the FFB depends whether the FFBs are called up without EN/ENO or with EN=1.
If the EN/ENO display is enabled, the EN input must be active. Otherwise, the FFB
is not executed. The projection of EN and ENO is enabled/disabled in the block
properties dialog box. The dialog box is called up via the menu commands Objects
— Properties... or via a double click on the FFB.

Error When processing a FFB or a Step an error is detected (e.g. unauthorized input value
or a time error), an error message appears, which can be viewed with the menu
command Online — Event display... . With FFBs the ENO output is set to "0".
Evaluation The process, by which a value for a Function or for the outputs of a Function block
during the Program execution is transmitted.
Expression Expressions consist of operators and operands.
F

FFB (functions/
function blocks)

Field variables

FIR filter

Formal
parameters

Collective term for EFB (elementary functions/function blocks) and DFB (derived
function blocks)

Variables, one of which is assigned, with the assistance of the key word ARRAY
(field), a defined Derived data type. A field is a collection of data elements of the
same Data type.

Finite Impulse Response Filter

Input/Output parameters, which are used within the logic of a FFB and led out of the
FFB as inputs/outputs.

840USE10100 April 2004

xli

Glossary

Function (FUNC)

Function block
(item) (FB)

Function block
dialog (FBD)

Function block
type

Function counter

A Program organization unit, which exactly supplies a data element when executing.
A function has no internal status information. Multiple call ups of the same function
with the same input parameter values always supply the same output values.
Details of the graphic form of function call up can be found in the definition " Function
block (Item)". In contrast to the call up of function blocks, the function call ups only
have one unnamed output, whose name is the name of the function itself. In FBD
each call up is denoted by a unique number over the graphic block; this number is
automatically generated and cannot be altered.

A function block is a Program organization unit, which correspondingly calculates
the functionality values, defined in the function block type description, for the output
and internal variables, when it is called up as a certain item. All output values and
internal variables of a certain function block item remain as a call up of the function
block until the next. Multiple call up of the same function block item with the same
arguments (Input parameter values) supply generally supply the same output
value(s).

Each function block item is displayed graphically by a rectangular block symbol. The
name of the function block type is located on the top center within the rectangle. The
name of the function block item is located also at the top, but on the outside of the
rectangle. An instance is automatically generated when creating, which can
however be altered manually, if required. Inputs are displayed on the left side and
outputs on the right of the block. The names of the formal input/output parameters
are displayed within the rectangle in the corresponding places.

The above description of the graphic presentation is principally applicable to
Function call ups and to DFB call ups. Differences are described in the
corresponding definitions.

One or more sections, which contain graphically displayed networks from Functions,
Function blocks and Connections.

A language element, consisting of: 1. the definition of a data structure, subdivided
into input, output and internal variables, 2. A set of operations, which is used with
the elements of the data structure, when a function block type instance is called up.
This set of operations can be formulated either in one of the IEC languages (DFB
type) orin "C" (EFB type). A function block type can be instanced (called up) several
times.

The function counter serves as a unique identifier for the function in a Program or
DFB. The function counter cannot be edited and is automatically assigned. The
function counter always has the structure: .n.m

n = Section number (number running)
m = Number of the FFB object in the section (number running)

xlii

840USE10100 April 2004

Glossary

G

Generic data
type

Generic literal
Global derived
data types
Global DFBs

Global macros

Groups (EFBs)

A Data type, which stands in for several other data types.
If the Data type of a literal is not relevant, simply enter the value for the literal. In this
case Concept automatically assigns the literal to a suitable data type.

Global Derived data types are available in every Concept project and are contained
in the DFB directory directly under the Concept directory.

Global DFBs are available in every Concept project and are contained in the DFB
directory directly under the Concept directory.

Global Macros are available in every Concept project and are contained in the DFB
directory directly under the Concept directory.

Some EFB libraries (e.g. the IEC library) are subdivided into groups. This facilitates
the search for FFBs, especially in extensive libraries.

1/0 component
list

IEC 61131-3

IEC format (QW1)

The I/O and expert assemblies of the various CPUs are configured in the 1/0
component list.

International norm: Programmable controllers — part 3: Programming languages.

In the place of the address stands an IEC identifier, followed by a five figure address:
o %0x12345 = %Q12345

® %1x12345 = %112345

® %3x12345 = %IW12345

® %4x12345 = %QW12345

840USE10100 April 2004

xliii

Glossary

IEC name
conventions
(identifier)

lIR filter

Initial step
(starting step)

Initial value

Input bits (1x
references)

Input parameters
(Input)

Input words (3x
references)

Instantiation

Instruction (IL)

An identifier is a sequence of letters, figures, and underscores, which must start with
a letter or underscores (e.g. name of a function block type, of an item or section).
Letters from national sets of characters (e.g. 6,0, é, 6) can be used, taken from
project and DFB names.

Underscores are significant in identifiers; e.g. "A_BCD" and "AB_CD" are
interpreted as different identifiers. Several leading and multiple underscores are not
authorized consecutively.

Identifiers are not permitted to contain space characters. Upper and/or lower case
is not significant; e.g. "ABCD" and "abcd" are interpreted as the same identifier.
Identifiers are not permitted to be Key words.

Infinite Impulse Response Filter

The first step in a chain. In each chain, an initial step must be defined. The chain is
started with the initial step when first called up.

The allocated value of one of the variables when starting the program. The value
assignment appears in the form of a Literal.

The 1/0 status of input bits is controlled via the process data, which reaches the CPU
from an entry device.

Note: The x, which comes after the first figure of the reference type, represents a
five figure storage location in the application data store, i.e. if the reference 100201
signifies an input bit in the address 201 of the State RAM.

When calling up a FFB the associated Argument is transferred.

An input word contains information, which come from an external source and are
represented by a 16 bit figure. A 3x register can also contain 16 sequential input bits,
which were read into the register in binary or BCD (binary coded decimal) format.
Note: The x, which comes after the first figure of the reference type, represents a
five figure storage location in the user data store, i.e. if the reference 300201
signifies a 16 bit input word in the address 201 of the State RAM.

The generation of an ltem.

Instructions are "commands" of the IL programming language. Each operation
begins on a new line and is succeeded by an operator (with modifier if needed) and,
if necessary for each relevant operation, by one or more operands. If several
operands are used, they are separated by commas. A tag can stand before the
instruction, which is followed by a colon. The commentary must, if available, be the
last element in the line.

xliv

840USE10100 April 2004

Glossary

Instruction
(LL984)

Instruction list

(L)

INT

Integer literals

INTERBUS (PCP)

Item name

When programming electric controllers, the task of implementing operational coded
instructions in the form of picture objects, which are divided into recognizable
contact forms, must be executed. The designed program objects are, on the user
level, converted to computer useable OP codes during the loading process. The OP
codes are deciphered in the CPU and processed by the controller’s firmware
functions so that the desired controller is implemented.

IL is a text language according to IEC 1131, in which operations, e.g. conditional/
unconditional call up of Function blocks and Functions, conditional/unconditional
jumps etc. are displayed through instructions.

INT stands for the data type "whole number". The input appears as Integer literal,
Base 2 literal, Base 8 literal or Base 16 literal. The length of the data element is 16
bit. The range of values for variables of this data type is from —2 exp (15) to 2 exp

(15) —1.

Integer literals function as the input of whole number values in the decimal system.
The values may be preceded by the signs (+/-). Single underline signs (_) between
figures are not significant.

Example
-12, 0, 123_456, +986

To use the INTERBUS PCP channel and the INTERBUS process data
preprocessing (PDP), the new 1/O station type INTERBUS (PCP) is led into the
Concept configurator. This I/O station type is assigned fixed to the INTERBUS
connection module 180-CRP-660-01.

The 180-CRP-660-01 differs from the 180-CRP-660-00 only by a clearly larger 1/0
area in the state RAM of the controller.

An Identifier, which belongs to a certain Function block item. The item name serves
as a unique identifier for the function block in a program organization unit. The item
name is automatically generated, but can be edited. The item name must be unique
throughout the Program organization unit, and no distinction is made between
upper/lower case. If the given name already exists, a warning is given and another
name must be selected. The item name must conform to the IEC name conventions,
otherwise an error message appears. The automatically generated instance name
always has the structure: FBI_n_m

FBI = Function block item
n = Section number (number running)
m = Number of the FFB object in the section (number running)

840USE10100 April 2004

xlv

Glossary

J
Jump Element of the SFC language. Jumps are used to jump over areas of the chain.
K
Key words Key words are unique combinations of figures, which are used as special syntactic
elements, as is defined in appendix B of the IEC 1131-3. All key words, which are
used in the IEC 1131-3 and in Concept, are listed in appendix C of the IEC 1131-3.
These listed keywords cannot be used for any other purpose, i.e. not as variable
names, section names, item names etc.
L

Ladder Diagram
(LD)

Ladder Logic 984
(LL)

Landscape
format

Ladder Diagram is a graphic programming language according to IEC1131, which
optically orientates itself to the "rung" of a relay ladder diagram.

In the terms Ladder Logic and Ladder Diagram, the word Ladder refers to execution.
In contrast to a diagram, a ladder logic is used by engineers to draw up a circuit (with
assistance from electrical symbols),which should chart the cycle of events and not
the existing wires, which connect the parts together. A usual user interface for
controlling the action by automated devices permits ladder logic interfaces, so that
when implementing a control system, engineers do not have to learn any new
programming languages, with which they are not conversant.

The structure of the actual ladder logic enables electrical elements to be linked in a
way that generates a control output, which is dependant upon a configured flow of
power through the electrical objects used, which displays the previously demanded
condition of a physical electric appliance.

In simple form, the user interface is one of the video displays used by the PLC
programming application, which establishes a vertical and horizontal grid, in which
the programming objects are arranged. The logic is powered from the left side of the
grid, and by connecting activated objects the electricity flows from left to right.

Landscape format means that the page is wider than it is long when looking at the
printed text.

Xlvi

840USE10100 April 2004

Glossary

Language
element

Library

Literals

Local derived
data types

Local DFBs

Local link

Local macros

Local network

nodes

Located variable

Each basic element in one of the IEC programming languages, e.g. a Step in SFC,
a Function block item in FBD or the Start value of a variable.

Collection of software objects, which are provided for reuse when programming new
projects, or even when building new libraries. Examples are the Elementary function
block types libraries.

EFB libraries can be subdivided into Groups.

Literals serve to directly supply values to inputs of FFBs, transition conditions etc.
These values cannot be overwritten by the program logic (write protected). In this
way, generic and standardized literals are differentiated.

Furthermore literals serve to assign a Constant a value or a Variable an Initial value.
The input appears as Base 2 literal, Base 8 literal, Base 16 literal, Integer literal, Real
literal or Real literal with exponent.

Local derived data types are only available in a single Concept project and its local
DFBs and are contained in the DFB directory under the project directory.

Local DFBs are only available in a single Concept project and are contained in the
DFB directory under the project directory.

The local network link is the network, which links the local nodes with other nodes
either directly or via a bus amplifier.

Local Macros are only available in a single Concept project and are contained in the
DFB directory under the project directory.

The local node is the one, which is projected evenly.

Located variables are assigned a state RAM address (reference addresses 0x,1Xx,
3x, 4x). The value of these variables is saved in the state RAM and can be altered
online with the reference data editor. These variables can be addressed by symbolic
names or the reference addresses.

Collective PLC inputs and outputs are connected to the state RAM. The program
access to the peripheral signals, which are connected to the PLC, appears only via
located variables. PLC access from external sides via Modbus or Modbus plus
interfaces, i.e. from visualizing systems, are likewise possible via located variables.

840USE10100 April 2004

xlvii

Glossary

Macro

Multi element

Macros are created with help from the software Concept DFB.

Macros function to duplicate frequently used sections and networks (including the
logic, variables, and variable declaration).

Distinctions are made between local and global macros.

Macros have the following properties:

e Macros can only be created in the programming languages FBD and LD.

e Macros only contain one single section.

e Macros can contain any complex section.

e From a program technical point of view, there is no differentiation between an
instanced macro, i.e. a macro inserted into a section, and a conventionally
created macro.

Calling up DFBs in a macro

Variable declaration

Use of macro-own data structures

Automatic acceptance of the variables declared in the macro

Initial value for variables

Multiple instancing of a macro in the whole program with different variables
The section name, the variable name and the data structure name can contain up
to 10 different exchange markings (@0 to @9).

Man Machine Interface

Variables, one of which is assigned a Derived data type defined with STRUCT or

variables ARRAY.
Distinctions are made between Field variables and structured variables.
N
Network A network is the connection of devices to a common data path, which communicate

Network node

with each other via a common protocol.

A node is a device with an address (164) on the Modbus Plus network.

xlviii

840USE10100 April 2004

Glossary

Node address

The node address serves a unique identifier for the network in the routing path. The
address is set directly on the node, e.g. with a rotary switch on the back of the
module.

(o)

Operand
Operator
Output
parameters

(Output)

Output/discretes
(Ox references)

An operand is a Literal, a Variable, a Function call up or an Expression.
An operator is a symbol for an arithmetic or Boolean operation to be executed.

A parameter, with which the result(s) of the Evaluation of a FFB are returned.

An output/marker bit can be used to control real output data via an output unit of the
control system, or to define one or more outputs in the state RAM. Note: The x,
which comes after the first figure of the reference type, represents a five figure
storage location in the application data store, i.e. if the reference 000201 signifies
an output or marker bit in the address 201 of the State RAM.

Output/marker An output/marker word can be used to save numerical data (binary or decimal) in
words (4x the State RAM, or also to send data from the CPU to an output unit in the control
references) system. Note: The x, which comes after the first figure of the reference type,
represents a five figure storage location in the application data store, i.e. if the
reference 400201 signifies a 16 bit output or marker word in the address 201 of the
State RAM.
P

Peer processor

PLC

Program

Program cycle

The peer processor processes the token run and the flow of data between the
Modbus Plus network and the PLC application logic.

Programmable controller

The uppermost Program organization unit. A program is closed and loaded onto a
single PLC.

A program cycle consists of reading in the inputs, processing the program logic and
the output of the outputs.

840USE10100 April 2004

xlix

Glossary

Program
organization unit

Programming
device

Programming
redundancy
system (Hot
Standby)

Project

Project data bank

Prototype data
file (Concept
EFB)

A Function, a Function block, or a Program. This term can refer to either a Type or
an ltem.

Hardware and software, which supports programming, configuring, testing,
implementing and error searching in PLC applications as well as in remote system
applications, to enable source documentation and archiving. The programming
device could also be used for process visualization.

A redundancy system consists of two identically configured PLC devices, which
communicate with each other via redundancy processors. In the case of the primary
PLC failing, the secondary PLC takes over the control checks. Under normal
conditions the secondary PLC does not take over any controlling functions, but
instead checks the status information, to detect mistakes.

General identification of the uppermost level of a software tree structure, which
specifies the parent project name of a PLC application. After specifying the project
name, the system configuration and control program can be saved under this name.
All data, which results during the creation of the configuration and the program,
belongs to this parent project for this special automation.

General identification for the complete set of programming and configuring
information in the Project data bank, which displays the source code that describes
the automation of a system.

The data bank in the Programming device, which contains the projection information
for a Project.

The prototype data file contains all prototypes of the assigned functions. Further, if
available, a type definition of the internal status structure is given.

REAL

REAL stands for the data type "real". The input appears as Real literal or as Real
literal with exponent. The length of the data element is 32 bit. The value range for
variables of this data type reaches from 8.43E-37 to 3.36E+38.

Note: Depending on the mathematic processor type of the CPU, various areas
within this valid value range cannot be represented. This is valid for values nearing
ZERO and for values nearing INFINITY. In these cases, a number value is not
shown in animation, instead NAN (Not A Number) oder INF (INFinite).

840USE10100 April 2004

Glossary

Real literal

Real literal with
exponent

Reference

Register in the
extended
memory (6x
reference)

RIO (Remote 1/0)

RP (PROFIBUS)

Real literals function as the input of real values in the decimal system. Real literals
are denoted by the input of the decimal point. The values may be preceded by the
signs (+/-). Single underline signs (_) between figures are not significant.

Example
-12.0, 0.0, +0.456, 3.14159_26

Real literals with exponent function as the input of real values in the decimal system.
Real literals with exponent are denoted by the input of the decimal point. The
exponent sets the key potency, by which the preceding number is multiplied to get
to the value to be displayed. The basis may be preceded by a negative sign (-). The
exponent may be preceded by a positive or negative sign (+/-). Single underline
signs (_) between figures are not significant. (Only between numbers, not before
or after the decimal poiont and not before or after "E", "E+" or "E-")

Example

-1.34E-12 or -1.34e-12
1.0E+6 or 1.0e+6
1.234E6 or 1.234e6

Each direct address is a reference, which starts with an ID, specifying whether it
concerns an input or an output and whether it concerns a bit or a word. References,
which start with the code 6, display the register in the extended memory of the state
RAM.

Ox area = Discrete outputs

1x area = Input bits

3x area = Input words

4x area = Output bits/Marker words

6x area = Register in the extended memory

Note: The x, which comes after the first figure of each reference type, represents
a five figure storage location in the application data store, i.e. if the reference
400201 signifies a 16 bit output or marker word in the address 201 of the State
RAM.

6x references are marker words in the extended memory of the PLC. Only LL984
user programs and CPU 213 04 or CPU 424 02 can be used.

Remote I/O provides a physical location of the 1/0 coordinate setting device in
relation to the processor to be controlled. Remote inputs/outputs are connected to
the consumer control via a wired communication cable.

RP = Remote Peripheral

840USE10100 April 2004

Glossary

RTU mode

Rum-time error

Remote Terminal Unit
The RTU mode is used for communication between the PLC and an IBM compatible
personal computer. RTU works with 8 data bits.

Error, which occurs during program processing on the PLC, with SFC objects (i.e.
steps) or FFBs. These are, for example, over-runs of value ranges with figures, or
time errors with steps.

SA85 module

Section

Separator format
(4:00001)

Sequence
language (SFC)

Serial ports

Source codedata
file (Concept
EFB)

Standard format
(400001)

The SA85 module is a Modbus Plus adapter for an IBM-AT or compatible computer.

A section can be used, for example, to describe the functioning method of a
technological unit, such as a motor.

A Program or DFB consist of one or more sections. Sections can be programmed
with the IEC programming languages FBD and SFC. Only one of the named
programming languages can be used within a section.

Each section has its own Document window in Concept. For reasons of clarity, it is
recommended to subdivide a very large section into several small ones. The scroll
bar serves to assist scrolling in a section.

The first figure (the Reference) is separated from the ensuing five figure address by
a colon ().

The SFC Language elements enable the subdivision of a PLC program organiza-
tional unit in a number of Steps and Transitions, which are connected horizontally
by aligned Connections. A number of actions belong to each step, and a transition
condition is linked to a transition.

With serial ports (COM) the information is transferred bit by bit.

The source code data file is a usual C++ source file. After execution of the menu
command Library — Generate data files this file contains an EFB code framework,
in which a specific code must be entered for the selected EFB. To do this, click on
the menu command Objects — Source.

The five figure address is located directly after the first figure (the reference).

840USE10100 April 2004

Glossary

Standardized
literals

State RAM

Statement (ST)

Status bits

Step

Step name

Structured text

(ST

If the data type for the literal is to be automatically determined, use the following
construction: 'Data type name’#'Literal value’.

Example

INT#15 (Data type: Integer, value: 15),
BYTE#00001111 (data type: Byte, value: 00001111)
REAL#23.0 (Data type: Real, value: 23.0)

For the assignment of REAL data types, there is also the possibility to enter the
value in the following way: 23.0.
Entering a comma will automatically assign the data type REAL.

The state RAM is the storage for all sizes, which are addressed in the user program
via References (Direct display). For example, input bits, discretes, input words, and
discrete words are located in the state RAM.

Instructions are "commands" of the ST programming language. Instructions must be
terminated with semicolons. Several instructions (separated by semi-colons) can
occupy the same line.

There is a status bit for every node with a global input or specific input/output of Peer
Cop data. If a defined group of data was successfully transferred within the set time
out, the corresponding status bit is set to 1. Alternatively, this bit is set to 0 and all
data belonging to this group (of 0) is deleted.

SFC Language element: Situations, in which the Program behavior follows in
relation to the inputs and outputs of the same operations, which are defined by the
associated actions of the step.

The step name functions as the unique flag of a step in a Program organization unit.
The step name is automatically generated, but can be edited. The step hame must
be unique throughout the whole program organization unit, otherwise an Error
message appears.

The automatically generated step name always has the structure: S_n_m

S = Step
n = Section number (number running)
m = Number of steps in the section (number running)

ST is a text language according to IEC 1131, in which operations, e.g. call up of
Function blocks and Functions, conditional execution of instructions, repetition of
instructions etc. are displayed through instructions.

840USE10100 April 2004

Glossary

Structured
variables

SY/MAX

Symbol (Icon)

Variables, one of which is assigned a Derived data type defined with STRUCT
(structure).

A structure is a collection of data elements with generally differing data types (
Elementary data types and/or derived data types).

In Quantum control devices, Concept closes the mounting on the 1/O population SY/
MAX 1/0 modules for RIO control via the Quantum PLC with on. The SY/MAX
remote subrack has a remote I/O adapter in slot 1, which communicates via a
Modicon S908 R I/O system. The SY/MAX 1/0O modules are performed when
highlighting and including in the 1/0 population of the Concept configuration.

Graphic display of various objects in Windows, e.g. drives, user programs and
Document windows.

Template data
file (Concept
EFB)

TIME

Time span
literals

Token

Traffic Cop

The template data file is an ASCII data file with a layout information for the Concept
FBD editor, and the parameters for code generation.

TIME stands for the data type "Time span". The input appears as Time span literal.
The length of the data element is 32 bit. The value range for variables of this type
stretches from 0 to 2exp(32)-1. The unit for the data type TIME is 1 ms.

Permitted units for time spans (TIME) are days (D), hours (H), minutes (M), seconds
(S) and milliseconds (MS) or a combination thereof. The time span must be denoted
by the prefix t#, T#, time# or TIME#. An "overrun" of the highest ranking unit is
permitted, i.e. the input T#25H15M is permitted.

Example
t#14MS, T#14.7S, time#18M, TIME#19.9H, t#20.4D, T#25H15M,
time#5D14H12M18S3.5MS

The network "Token" controls the temporary property of the transfer rights via a
single node. The token runs through the node in a circulating (rising) address
sequence. All nodes track the Token run through and can contain all possible data
sent with it.

The Traffic Cop is a component list, which is compiled from the user component list.
The Traffic Cop is managed in the PLC and in addition contains the user component
list e.g. Status information of the I/O stations and modules.

liv

840USE10100 April 2004

Glossary

Transition The condition with which the control of one or more Previous steps transfers to one

or more ensuing steps along a directional Link.
U

UDEFB User defined elementary functions/function blocks
Functions or Function blocks, which were created in the programming language C,
and are available in Concept Libraries.

UDINT UDINT stands for the data type "unsigned double integer". The input appears as
Integer literal, Base 2 literal, Base 8 literal or Base 16 literal. The length of the data
element is 32 bit. The value range for variables of this type stretches from 0 to
2exp(32)-1.

UINT UINT stands for the data type "unsigned integer". The input appears as Integer
literal, Base 2 literal, Base 8 literal or Base 16 literal. The length of the data element
is 16 bit. The value range for variables of this type stretches from 0 to (2exp16)-1.

Unlocated Unlocated variables are not assigned any state RAM addresses. They therefore do

variable not occupy any state RAM addresses. The value of these variables is saved in the
system and can be altered with the reference data editor. These variables are only
addressed by symbolic names.

Signals requiring no peripheral access, e.g. intermediate results, system tags etc,
should primarily be declared as unlocated variables.
\'
Variables Variables function as a data exchange within sections between several sections and

between the Program and the PLC.

Variables consist of at least a variable name and a Data type.

Should a variable be assigned a direct Address (Reference), it is referred to as a
Located variable. Should a variable not be assigned a direct address, it is referred
to as an unlocated variable. If the variable is assigned a Derived data type, it is
referred to as a Multi-element variable.

Otherwise there are Constants and Literals.

840USE10100 April 2004

Glossary

Vertical format

Vertical format means that the page is higher than it is wide when looking at the
printed text.

w

Warning

WORD

When processing a FFB or a Step a critical status is detected (e.g. critical input value
or a time out), a warning appears, which can be viewed with the menu command
Online — Event display... . With FFBs the ENO output remains at "1".

WORD stands for the data type "Bit sequence 16". The input appears as Base 2
literal, Base 8 literal or Base 1 16 literal. The length of the data element is 16 bit. A
numerical range of values cannot be assigned to this data type.

Ivi

840USE10100 April 2004

Index

Numerics
3x or 4x register

entering in equation network, 62

A

ABS, 69
AD16, 117
ADD, 121
Add 16 Bit, 117
Addition, 121
AD16, 117
ADD, 121
Advanced Calculations, 790
algebraic expression
equation network, 58
algebraic notation
equation network, 55
Analog Input, 797
Analog Output, 809
Analog Values, 77
AND, 125
ARCCOS, 69
ARCSIN, 69
ARCTAN, 69
argument
equation network, 70
limits, 71
arithmetic operator, 64
ASCII Functions
READ, 945
WRIT, 1097

assignment operator, 64
Average Weighted Inputs Calculate, 813

Base 10 Antilogarithm, 291

Base 10 Logarithm, 395

BCD, 131

benchmark performance
equation network, 75

Binary to Binary Code, 131

Bit Control, 763

Bit pattern comparison
CMPR, 179

Bit Rotate, 147

bitwise operator, 64

BLKM, 135

BLKT, 139

Block Move, 135

Block Move with Interrupts Disabled, 143

Block to Table, 139

BMDI, 143

boolean, 61

BROT, 147

C

Calculated preset formula, 819
Central Alarm Handler, 803
Changing the Sign of a Floating Point
Number, 313

Check Sum, 173

840USE10100 April 2004

Ivii

Index

CHS, 165
CKSM, 173
Closed Loop Control, 77
CMPR, 179
coll
equation network, 57
Coils, 99
Communications
MSTR, 709
COMP, 191
Compare Register, 179
Complement a Matrix, 191
Comprehensive ISA Non Interacting
PID, 839
conditional expression
equation network, 55, 66
conditional operator, 64
Configure Hot Standby, 165
constant
equation network, 55
constant data
entering in equation network, 63
equation network, 62
floating point, 62
long (32-bit), 62
LSB (least signifcant byte), 62
Contacts, 99
Convertion
BCD to binary, 131
binary to BCD, 131
COS, 69
COSD, 69
Counters / Timers
T.01 Timer, 1057
T0.1 Timer, 1061
T1.0 Timer, 1065
T1MS Timer, 1069
UCTR, 1083
Counters/Timers
DCTR, 215

D

data
equation network, 61
variable, 61
data conversions
equation network, 72
Data Logging for PCMCIA Read/Write
Support, 235
data type
boolean, 61
equation network, 60
floating point variable, 61
signed 16-bit variable, 61
signed long (32-bit) variable, 61
suffix, 60
unsigned 16-bit variable, 61
unsigned long (32-bit) variable, 61
DCTR, 215
Derivative Rate Calculation over a Specified
Time, 891
DIOH, 219
discrete reference
entering in equation network, 62
equation network, 61
variable data, 61
Distributed /O Health, 219
DIV, 229
Divide, 229
Divide 16 Bit, 257
DLOG, 235
Double Precision Addition, 277
Double Precision Division, 359
Double Precision Multiplication, 407
Double Precision Subtraction, 453
Down Counter, 215
DRUM, 251
DRUM Sequencer, 251
DV1ie6, 257

Iviii

840USE10100 April 2004

Index

E

EMTH, 271
EMTH Subfunction

EMTH-ADDDP, 277

EMTH-ADDFP, 283, 287

EMTH-ANLOG, 291
EMTH-ARCOS, 297
EMTH-ARSIN, 303
EMTH-ARTAN, 307
EMTH-CHSIN, 313
EMTH-CMPFP, 319
EMTH-CMPIF, 325
EMTH-CNVDR, 331
EMTH-CNVFI, 337
EMTH-CNVIF, 343
EMTH-CNVRD, 349
EMTH-COS, 355
EMTH-DIVDP, 359
EMTH-DIVFI, 365
EMTH-DIVFP, 369
EMTH-DIVIF, 373
EMTH-ERLOG, 377
EMTH-EXP, 383
EMTH-LNFP, 389
EMTH-LOG, 395
EMTH-LOGFP, 401
EMTH-MULDP, 407
EMTH-MULFP, 413
EMTH-MULIF, 417
EMTH-PI, 423
EMTH-POW, 427
EMTH-SINE, 431
EMTH-SQRFP, 437
EMTH-SQRT, 441
EMTH-SQRTP, 447
EMTH-SUBDP, 453
EMTH-SUBFI, 459
EMTH-SUBFP, 463
EMTH-SUBIF, 467
EMTH-TAN, 471

EMTH-ADDDP, 277
EMTH-ADDFP, 283
EMTH-ADDIF, 287

EMTH-ANLOG, 291
EMTH-ARCOS, 297

EMTH-ARSIN, 303
EMTH-ARTAN, 307
EMTH-CHSIN, 313
EMTH-CMPFP, 319
EMTH-CMPIF, 325
EMTH-CNVDR, 331
EMTH-CNVFI, 337
EMTH-CNVIF, 343
EMTH-CNVRD, 349
EMTH-COS, 355
EMTH-DIVDP, 359
EMTH-DIVFI, 365
EMTH-DIVFP, 369
EMTH-DIVIF, 373
EMTH-ERLOG, 377
EMTH-EXP, 383
EMTH-LNFP, 389
EMTH-LOG, 395
EMTH-LOGFP, 401
EMTHMULDP, 407
EMTH-MULFP, 413
EMTH-MULIF, 417
EMTH-PI, 423
EMTH-POW, 427
EMTH-SINE, 431
EMTH-SQRFP, 437
EMTH-SQRT, 441
EMTH-SQRTP, 447
EMTH-SUBDP, 453
EMTH-SUBFI, 459
EMTH-SUBFP, 463
EMTH-SUBIF, 467
EMTH-TAN, 471
enable contact
equation network, 57
horizontal open, 57
horizontal short, 57
normally closed, 57
normally open, 57
Engineering Unit Conversion and
Alarms, 495
equation
exponential notation, 63

840USE10100 April 2004

lix

Index

equation network
ABS, 69
algebraic expression, 58
algebraic notation, 55
ARCCOS, 69
ARCSIN, 69
ARCTAN, 69
argument, 70
argument limits, 71
arithmetic operator, 64
assignment operator, 64
benchmark performance, 75
bitwise operator, 64
conditional expression, 55, 66
conditional operator, 64
constant, 55
constant data, 62
content, 58
COS, 69
COSD, 69
create, 56
data conversions, 72
data type, 60
discrete reference, 61
enable contact, 57
entering 3x or 4x register, 62
entering constant data, 63
entering function, 70
entering parentheses, 68
entering variable data, 62
EXP, 69
exponentiation operator, 64
FIX, 69
FLOAT, 69
format, 59
group expressions in nested layers of

parentheses, 55
infix notation, 56
input offset, 56
input type, 56
LN, 69
LOG, 69
logic editor, 55
logical expression, 55
math operator, 55
mathematical function, 69
mathematical operation, 64
nested parentheses, 68
operator precedence, 67
output coil, 57
overview, 55, 56
parentheses, 64, 68
registers consumed, 61
relational operator, 64
result, 58
roundoff differences, 74
SIN, 69
SIND, 69
single expression, 66
size, 58
SQRT, 69
suffix, 60
TAN, 69
TAND, 69
unary operator, 64
use, 56
value, 60
variable, 55
variable data, 61
words consumed, 58, 61, 62
ESI, 475
EUCA, 495
Exclusive OR, 1151
EXP, 69
exponentiation operator, 64
Extended Math, 271
Extended Memory Read, 1139
Extended Memory Write, 1145

840USE10100 April 2004

Index

F

Fast I/O Instructions

BMDI, 143

ID, 623

IE, 627

IMIO, 631

IMOD, 637

ITMR, 647
FIN, 509
First In, 509
First Out, 513
First-order Lead/Lag Filter, 859
FIX, 69
FLOAT, 69
Floating Point - Integer Subtraction, 459
Floating Point Addition, 283
Floating Point Arc Cosine of an Angle
(in Radians), 297
Floating Point Arc Tangent of an Angle
(in Radians), 307
Floating Point Arcsine of an Angle
(in Radians), 303
Floating Point Common Logarithm, 401
Floating Point Comparison, 319
Floating Point Conversion of Degrees to
Radians, 331
Floating Point Conversion of Radians to
Degrees, 349
Floating Point Cosine of an Angle
(in Radians), 355
Floating Point Divided by Integer, 365
Floating Point Division, 369
Floating Point Error Report Log, 377
Floating Point Exponential Function, 383
Floating Point Multiplication, 413
Floating Point Natural Logarithm, 389
Floating Point Sine of an Angle
(in Radians), 431
Floating Point Square Root, 437, 441
Floating Point Subtraction, 463
Floating Point Tangent of an Angle
(in Radians), 471
Floating Point to Integer, 519
Floating Point to Integer Conversion, 337
floating point variable, 61

Formatted Equation Calculator, 829
Formatting Messages, 91
Four Station Ratio Controller, 895
FOUT, 513
FTOI, 519
function
ABS, 69
ARCCOS, 69
ARCSIN, 69
ARCTAN, 69
argument, 70
argument limits, 71
COS, 69
COSD, 69
entering in equation network, 70
EXP, 69
FIX, 69
FLOAT, 69
LN, 69
LOG, 69
SIN, 69
SIND, 69
SQRT, 69
TAN, 69
TAND, 69

G

group expressions in nested layers of
parentheses
equation network, 55

H

History and Status Matrices, 585
HLTH, 585
horizontal open

equation network, 57
horizontal short

equation network, 57
Hot standby

CHS, 165

840USE10100 April 2004

Ix

Index

| Interrupt Enable, 627
Interrupt Handling, 105
IBKR, 607 Interrupt Module Instruction, 637
IBKW, 611 .
ICMP. 615 Interrupt Timer, 647
’ ISA Non Interacting PI, 873
ID, 623
ITMR, 647
IE, 627 ITOF, 653
IMIO, 631 ’
Immediate I/O, 631
IMOD, 637 J
Indirect Block Read, 607 JSR, 657

Indirect Block Write, 611
infix notation

equation network, 56
Input Compare, 615 L
input offset

equation network, 56
Input Selection, 905
input type

equation network, 56
Installation of DX Loadables, 109
Instruction

Coils, Contacts and Interconnects, 99
Instruction Groups, 41

ASCII Communication Instructions, 43

Coils, Contacts and Interconnects, 54

Counters and Timers Instructions, 44

Fast I/O Instructions, 45

Loadable DX, 46

Math Instructions, 47

Matrix Instructions, 49

Miscellaneous, 50

Move Instructions, 51

Overview, 42

Skips/Specials, 52

Special Instructions, 53
Integer - Floating Point Subtraction, 467
Integer + Floating Point Addition, 287
Integer Divided by Floating Point, 373
Integer to Floating Point, 653
Integer x Floating Point Multiplication, 417
Integer-Floating Point Comparison, 325
Integer-to-Floating Point Conversion, 343
Integrate Input at Specified Interval, 835
Interconnects, 99
Interrupt Disable, 623

Jump to Subroutine, 657

LAB, 661
Label for a Subroutine, 661
Limiter for the Pv, 845

Ixii 840USE10100 April 2004

Index

LL984

AD16, 117

ADD, 121

AND, 125

BCD, 131

BLKM, 135

BLKT, 139

BMDI, 143

BROT, 147

CHS, 165

CKSM, 173

Closed Loop Control / Analog Values, 77
CMPR, 179

Coils, Contacts and Interconnects, 99
COMP, 191

DCTR, 215

DIOH, 219

DIV, 229

DLOG, 235

DRUM, 251

DV16, 257

EMTH, 271
EMTH-ADDDP, 277
EMTH-ADDFP, 283
EMTH-ADDIF, 287
EMTH-ANLOG, 291
EMTH-ARCOS, 297
EMTH-ARSIN, 303
EMTH-ARTAN, 307
EMTH-CHSIN, 313
EMTH-CMPFP, 319
EMTH-CMPIF, 325
EMTH-CNVDR, 331
EMTH-CNVFI, 337
EMTH-CNVIF, 343
EMTH-CNVRD, 349
EMTH-COS, 355
EMTH-DIVDP, 359
EMTH-DIVFI, 365
EMTH-DIVFP, 369
EMTH-DIVIF, 373
EMTH-ERLOG, 377
EMTH-EXP, 383
EMTH-LNFP, 389
EMTH-LOG, 395
EMTH-LOGFP, 401

EMTH-MULDP, 407
EMTH-MULFP, 413
EMTH-MULIF, 417
EMTH-PI, 423
EMTH-POW, 427
EMTH-SINE, 431
EMTH-SQRFP, 437
EMTH-SQRT, 441
EMTH-SQRTP, 447
EMTH-SUBDP, 453
EMTH-SUBFI, 459
EMTH-SUBFP, 463
EMTH-SUBIF, 467
EMTH-TAN, 471
ESI, 475

EUCA, 495

FIN, 509

Formatting Messages for ASCII

840USE10100 April 2004

Ixiii

Index

READ/WRIT Operations, 91

FOUT, 513
FTOI, 519
HLTH, 585
IBKR, 607
IBKW, 611
ICMP, 615
ID, 623

IE, 627
IMIO, 631
IMOD, 637

Interrupt Handling, 105

ITMR, 647

ITOF, 653

JSR, 657

LAB, 661

LOAD, 665

MAP 3, 669

MBIT, 685

MBUS, 689
MRTM, 699
MSTR, 709
MU16, 755

MUL, 759

NBIT, 763

NCBT, 767
NOBT, 771

NOL, 775

OR, 783

PCFL, 789
PCFL-AIN, 797
PCFL-ALARM, 803
PCFL-AOUT, 809
PCFL-AVER, 813
PCFL-CALC, 819
PCFL-DELAY, 825
PCFL-EQN, 829
PCFL-INTEG, 835
PCFL-KPID, 839
PCFL-LIMIT, 845
PCFL-LIMV, 849
PCFL-LKUP, 853
PCFL-LLAG, 859
PCFL-MODE, 863
PCFL-ONOFF, 867
PCFL-PI, 873

PCFL-PID, 879
PCFL-RAMP, 885
PCFL-RATE, 891
PCFL-RATIO, 895
PCFL-RMPLN, 901
PCFL-SEL, 905
PCFL-TOTAL, 911
PEER, 917

PID2, 921
R-->T,937

RBIT, 941

READ, 945

RET, 951

SAVE, 969

SBIT, 973

SCIF, 977

SENS, 983
SRCH, 995
STAT, 1001
Su1e6, 1029

SUB, 1033

Subroutine Handling, 107

T.01 Timer, 1057
T-->R, 1045
T-->T, 1051

TO0.1 Timer, 1061
T1.0 Timer, 1065
T1MS Timer, 1069
TBLK, 1073
TEST, 1079
UCTR, 1083
WRIT, 1097
XMRD, 1139
XMWT, 1145
XOR, 1151

LN, 69

LOAD, 665
Load Flash, 665
Load the Floating Point Value of "Pi", 423

Ixiv

840USE10100 April 2004

Index

Loadable DX
CHS, 165
DRUM, 251
ESI, 475
EUCA, 495
HLTH, 585
ICMP, 615
Installation, 109
MAP 3, 669
MBUS, 689
MRTM, 699
NOL, 775
PEER, 917

LOG, 69

Logarithmic Ramp to Set Point, 901

logic editor
equation network, 55, 56
Logical And, 125
logical expression
equation network, 55
Logical OR, 783
Look-up Table, 853
LSB (least significant byte)
constant data, 62

MAP 3, 669
MAP Transaction, 669
Master, 709
Math
AD16, 117
ADD, 121
BCD, 131
DIV, 229
DV1e6, 257
FTOI, 519
ITOF, 653
MU16, 755
MUL, 759
SuU16, 1029
SUB, 1033
TEST, 1079
math coprocessor
roundoff differences, 74

math operator
equation network, 55

mathematical function
ABS, 69
ARCCOS, 69
ARCSIN, 69
ARCTAN, 69
argument, 70
argument limits, 71
COS, 69
COSD, 69

entering in equation network, 70

equation network, 69

EXP, 69

FIX, 69

FLOAT, 69

LN, 69

LOG, 69

SIN, 69

SIND, 69

SQRT, 69

TAN, 69

TAND, 69
mathematical operation

arithmetic operator, 64

assignment operator, 64

bitwise operator, 64

conditional operator, 64

equation network, 64

exponentiation operator, 64

parentheses, 64

relational operator, 64

unary operator, 64
Matrix

AND, 125

BROT, 147

CMPR, 179

COMP, 191

MBIT, 685

NBIT, 763

NCBT, 767, 771

OR, 783

RBIT, 941

SBIT, 973

SENS, 983

XOR, 1151

840USE10100 April 2004

Ixv

Index

MBIT, 685
MBUS, 689
MBUS Transaction, 689

Miscellaneous

CKSM, 173

DLOG, 235

EMTH, 271
EMTH-ADDDP, 277
EMTH-ADDFP, 283
EMTH-ADDIF, 287
EMTH-ANLOG, 291

EMTH-ARCOS, 297, 355

EMTH-ARSIN, 303
EMTH-ARTAN, 307
EMTH-CHSIN, 313
EMTH-CMPFP, 319
EMTH-CMPIF, 325
EMTH-CNVDR, 331
EMTH-CNVFI, 337
EMTH-CNVIF, 343
EMTH-CNVRD, 349
EMTH-DIVDP, 359
EMTH-DIVFI, 365
EMTH-DIVFP, 369
EMTH-DIVIF, 373
EMTH-ERLOG, 377
EMTH-EXP, 383
EMTH-LNFP, 389
EMTH-LOG, 395
EMTH-LOGFP, 401
EMTH-MULDP, 407
EMTH-MULFP, 413
EMTH-MULIF, 417
EMTH-PI, 423
EMTH-POW, 427
EMTH-SINE, 431
EMTH-SQRFP, 437
EMTH-SQRT, 441
EMTH-SQRTP, 447
EMTH-SUBDP, 453
EMTH-SUBFI, 459
EMTH-SUBFP, 463
EMTH-SUBIF, 467
EMTH-TAN, 471
LOAD, 665

MSTR, 709

SAVE, 969

SCIF, 977

XMRD, 1139

Ixvi

840USE10100 April 2004

Index

XMWT, 1145
mixed data types
equation network, 72
Modbus Functions, 1105
Modbus Plus
MSTR, 709
Modbus Plus Network Statistics
MSTR, 740
Modify Bit, 685
Move
BLKM, 135
BLKT, 139
FIN, 509
FOUT, 513
IBKR, 607
IBKW, 611
R-->T,937
SRCH, 995
T-->R, 1045
T-->T, 1051
TBLK, 1073
MRTM, 699
MSTR, 709
Clear Local Statistics, 723
Clear Remote Statistics, 729
CTE Error Codes for SY/MAX and TCP/
IP Ethernet, 754
Get Local Statistics, 721
Get Remote Statistics, 727
Modbus Plus and SY/MAX Ethernet
Error Codes, 747
Modbus Plus Network Statistics, 740
Peer Cop Health, 731
Read CTE (Config Extension Table), 736
Read Global Data, 726
Reset Option Module, 734
SY/MAX-specific Error Codes, 749
TCP/IP Ethernet Error Codes, 751
TCP/IP Ethernet Statistics, 745
Write CTE (Config Extension Table), 738
Write Global Data, 725
MU186, 755
MUL, 759
Multiply, 759
Multiply 16 Bit, 755
Multi-Register Transfer Module, 699

N

NBIT, 763

NCBT, 767

nested layer
parentheses, 55

nested parentheses
equation network, 68

Network Option Module for Lonworks, 775

NOBT, 771

NOL, 775

Normally Closed Bit, 767

normally closed contact
equation network, 57

Normally Open Bit, 771

normally open contact
equation network, 57

o)

ON/OFF Values for Deadband, 867
One Hundredth Second Timer, 1057
One Millisecond Timer, 1069
One Second Timer, 1065
One Tenth Second Timer, 1061
operator combinations

equation network, 72
operator precedence

equation network, 67
OR, 783
output coil

equation network, 57

P

parentheses
entering in equation network, 68
equation network, 55
nested, 68
nested layer, 55
using in equation network, 68
PCFL, 789
PCFL Subfunctions
General, 79
PCFL-AIN, 797
PCFL-ALARM, 803

840USE10100 April 2004

Ixvii

Index

PCFL-AOUT, 809
PCFL-AVER, 813
PCFL-CALC, 819
PCFL-DELAY, 825
PCFL-EQN, 829
PCFL-INTEG, 835
PCFL-KPID, 839
PCFL-LIMIT, 845
PCFL-LIMV, 849
PCFL-LKUP, 853
PCFL-LLAG, 859
PCFL-MODE, 863
PCFL-ONOFF, 867
PCFL-PI, 873
PCFL-PID, 879
PCFL-RAMP, 885
PCFL-RATE, 891
PCFL-RATIO, 895
PCFL-RMPLN, 901
PCFL-SEL, 905
PCFL-Subfunction
PCFL-AIN, 797

PCFL-ALARM, 803

PCFL-AOUT, 809
PCFL-AVER, 813
PCFL-CALC, 819

PCFL-DELAY, 825

PCFL-EQN, 829

PCFL-INTEG, 835

PCFL-KPID, 839
PCFL-LIMIT, 845
PCFL-LIMV, 849
PCFL-LKUP, 853
PCFL-LLAG, 859

PCFL-MODE, 863
PCFL-ONOFF, 867

PCFL-PI, 873
PCFL-PID, 879

PCFL-RAMP, 885

PCFL-RATE, 891

PCFL-RATIO, 895
PCFL-RMPLN, 901

PCFL-SEL, 905

PCFL-TOTAL, 911

PCFL-TOTAL, 911
PEER, 917

PEER Transaction, 917
PID Algorithms, 879
PID Example, 83
PID2, 921
PID2 Level Control Example, 87
PLCs
roundoff differences, 74
scan time, 75
precedence
equation network, 67
Process Control Function Library, 789
Process Square Root, 447
Process Variable, 78
Proportional Integral Derivative, 921
Put Input in Auto or Manual Mode, 863

Q

Quantum PLCs
roundoff differences, 74

R

R-->T, 937
Raising a Floating Point Number to an
Integer Power, 427
Ramp to Set Point at a Constant Rate, 885
RBIT, 941
READ, 945
MSTR, 719
Read, 945
READ/WRIT Operations, 91
Register to Table, 937
registers consumed
equation network, 61
variable data, 61
Regulatory Control, 790
relational operator, 64
Reset Bit, 941
result
equation network, 58
RET, 951
Return from a Subroutine, 951
roundoff differences
equation network, 74

Ixviii

840USE10100 April 2004

Index

S

SAVE, 969
Save Flash, 969
SBIT, 973
SCIF, 977
Search, 995
SENS, 983
Sense, 983
Sequential Control Interfaces, 977
Set Bit, 973
Set Point Vaiable, 78
signed 16-bit variable, 61
signed long (32-bit) variable, 61
SIN, 69
SIND, 69
single expression
equation network, 66
Skips / Specials
RET, 951
Skips/Specials
JSR, 657
LAB, 661

Special
DIOH, 219
PCFL, 789
PCFL-, 809
PCFL-AIN, 797
PCFL-ALARM, 803
PCFL-AVER, 813
PCFL-CALC, 819
PCFL-DELAY, 825
PCFL-EQN, 829
PCFL-KPID, 839
PCFL-LIMIT, 845
PCFL-LIMV, 849
PCFL-LKUP, 853
PCFL-LLAG, 859
PCFL-MODE, 863
PCFL-ONOFF, 867
PCFL-PI, 873
PCFL-PID, 879
PCFL-RAMP, 885
PCFL-RATE, 891
PCFL-RATIO, 895
PCFL-RMPLN, 901
PCFL-SEL, 905
PCFL-TOTAL, 911
PCPCFL-INTEGFL, 835
PID2, 921
STAT, 1001

SQRT, 69

SRCH, 995

STAT, 1001

Status, 1001

SuU16, 1029

SUB, 1033

Subroutine Handling, 107

Subtract 16 Bit, 1029

Subtraction, 1033

suffix
data type, 60
equation network, 60

Support of the ESI Module, 475

840USE10100 April 2004

Ixix

Index

T

T.01 Timer, 1057

T-->R, 1045

T-->T, 1051

T0.1 Timer, 1061

T1.0 Timer, 1065

T1MS Timer, 1069

Table to Block, 1073

Table to Register, 1045

Table to Table, 1051

TAN, 69

TAND, 69

TBLK, 1073

TCP/IP Ethernet Statistics
MSTR, 745

TEST, 1079

Test of 2 Values, 1079

Time Delay Queue, 825

Totalizer for Metering Flow, 911

U

UCTR, 1083

unary operator, 64

unsigned 16-bit variable, 61
unsigned long (32-bit) variable, 61
Up Counter, 1083

Vv

value

equation network, 60
variable

equation network, 55

variable data
boolean, 61
discrete reference, 61
entering in equation network, 62
equation network, 61
floating point variable, 61
registers consumed, 61
signed 16-bit variable, 61
signed long (32-bit) variable, 61
unsigned 16-bit variable, 61
unsigned long (32-bit) variable, 61
words consumed, 61

Velocity Limiter for Changes in the Pv, 849

w

word
maximum in an equation network, 58
words consumed
constant data, 62
equation network, 61
variable data, 61
WRIT, 1097
Write, 1097
MSTR, 717

X

XMRD, 1139
XMWT, 1145
XOR, 1151

Ixx

840USE10100 April 2004

	Table of Contents
	Safety Information
	About the Book
	Instruction Descriptions (O to Q)
	OR: Logical OR
	PCFL: Process Control Function Library
	PCFL-AIN: Analog Input
	PCFL-ALARM: Central Alarm Handler
	PCFL-AOUT: Analog Output
	PCFL-AVER: Average Weighted Inputs Calculate
	PCFL-CALC: Calculated preset formula
	PCFL-DELAY: Time Delay Queue
	PCFL-EQN: Formatted Equation Calculator
	PCFL-INTEG: Integrate Input at Specified Interval
	PCFL-KPID: Comprehensive ISA Non Interacting PID
	PCFL-LIMIT: Limiter for the Pv
	PCFL-LIMV: Velocity Limiter for Changes in the Pv
	PCFL-LKUP: Look-up Table
	PCFL-LLAG: First-order Lead/Lag Filter
	PCFL-MODE: Put Input in Auto or Manual Mode
	PCFL-ONOFF: ON/OFF Values for Deadband
	PCFL-PI: ISA Non Interacting PI
	PCFL-PID: PID Algorithms
	PCFL-RAMP: Ramp to Set Point at a Constant Rate
	PCFL-RATE: Derivative Rate Calculation over a Specified Timeme
	PCFL-RATIO: Four Station Ratio Controller
	PCFL-RMPLN: Logarithmic Ramp to Set Point
	PCFL-SEL: Input Selection
	PCFL-TOTAL: Totalizer for Metering Flow
	PEER: PEER Transaction
	PID2: Proportional Integral Derivative
	Instruction Descriptions (R to Z)
	R --> T: Register to Table
	RBIT: Reset Bit
	READ: Read
	RET: Return from a Subroutine
	RTTI - Register to Input Table
	RTTO - Register to Output Table
	RTU - Remote Terminal Unit
	SAVE: Save Flash
	SBIT: Set Bit
	SCIF: Sequential Control Interfaces
	SENS: Sense
	Shorts
	SKP - Skipping Networks
	SRCH: Search
	STAT: Status
	SU16: Subtract 16 Bit
	SUB: Subtraction
	SWAP - VME Bit Swap
	TTR - Table to Register
	T --> R Table to Register
	T --> T: Table to Table
	T.01 Timer: One Hundredth Second Timer
	T0.1 Timer: One Tenth Second Timer
	T1.0 Timer: One Second Timer
	T1MS Timer: One Millisecond Timer
	TBLK: Table to Block
	TEST: Test of 2 Values
	UCTR: Up Counter
	VMER - VME Read
	VMEW - VME Write
	WRIT: Write
	XMIT - Transmit
	XMIT Communication Block
	XMIT Port Status Block
	XMIT Conversion Block
	XMRD: Extended Memory Read
	XMWT: Extended Memory Write
	XOR: Exclusive OR
	Appendices
	Appendix A
	Glossary
	Index

