
DOK-

Modicon
Micro Controllers
Ladder Logic
Manual
890 USE 146 00 Ver 1.0

September, 1997

Schneider Automation, Inc.
One High Street
North Andover, Massachusetts 01845

890 USE 146 00 iiiPreface

Preface
The data and illustrations in this book
are not binding. We reserve the right to
modify our products in line with our
policy of continuous product improve-
ment. Information in this document is
subject to change without notice and
should not be construed as a commit-
ment by Schneider Automation, Inc. SA
assumes no responsibility for any errors
that may appear in this document.

No part of this document may be re-
produced in any form or by any means,
electronic or mechanical, without the
express written permission of Schneid-
er Automation, Inc. All rights reserved.

Modbus is a trademark of
Schneider Automation, Inc.

MODSOFT Lite is a registered trade-
mark of Schneider Automation, Inc.

IBM is a registered trademark of
International Business Machines
Corporation.

Copyright  1997 by Schneider Au-
tomation, Inc. All rights reserved.

Version 1.0 November, 1997

890 USE 146 00

Contents

Chapter 1 Ladder Logic Operating System
for the Modicon Micro PLCs 1.

Modicon Micro Programmable Logic Controllers 2.
Theory of Operation 2. .
System Performance 3. .

Memory Allocation 4. .
User Data Memory 4. .
System Configuration Memory 5. .
User Program Memory 7. .

Memory Backup 8. .
Optional Backup Techniques 8. .
Using Flash for Backup 8. .
PLC Power-up Procedures 8. .
Storing a PLC with User Logic Saved to Flash 9.

PLC Operating Modes 10. .
The I/O Expansion Link 10. .
A120 I/O Expansion 11. .

The Ladder Logic Instruction Set 12. .

Chapter 2 Start-up Procedures 15.
Getting Started 16. .

Applying Power 16. .
Autoconfiguration Parameters 18. .

Autoconfiguring a PLC in Single Operating Mode 18.
Autoconfiguring a PLC in Parent Operating Mode 19.
Autoconfiguring a PLC in Child Operating Mode 20.
Some Autoconfiguration Examples 21. .

Autoconfigured Communication Ports 24. .
The RS-485 Port 24. .
The RS-232 Port(s) 24. .

890 USE 146 00

Modifying the Configuration Parameters 26.
The Number of References 26. .
The Number of Logic Segments 27. .
RS-232 Port Communication Parameters 27.
RS-485 Port Communication Parameters 29.

Addressing I/O Locations 30. .
Fixed I/O Locations 30. .
Representing Fixed Analog Data 32. .

Addressing A120 I/O 36. .
An Example: A Micro PLC with One Rack of A120 I/O 36.

Addressing I/O on an Expansion Link 38. .
The Parent PLC 38. .
A Child PLC 39. .
An Example: An Expansion Link with all Fixed I/O

Controlled by the Parent 39. .
Splitting Fixed I/O between Parent and Child PLCs 41.

An Example: Splitting I/O 42. .
Generalized Data Transfer 44. .
PLC Operations 46. .

Chapter 3 Essentials of Ladder Logic
Programming 47. .

Segments and Networks 48. .
Ladder Logic Segments 48. .
Ladder Logic Networks 48. .
Placing Relay Logic and Instructions in a Network 48.
How Ladder Logic Is Solved 49. .

Relay Logic Elements 50. .
Relay Contacts 50. .
Normal and Memory-retentive Coils 51. .
Vertical and Horizontal Shorts 51. .

Application Example:
A Motor Start/Stop Circuit 53. .

Chapter 4 Counters and Timers 55.
Counter Instructions 56. .
Timer Instructions 57. .
Application Example: A Real-time Clock with a

millisecond Timer 58. .

890 USE 146 00

Chapter 5 Basic Math Instructions 59.
Integer Math Instructions 60. .
Application Example: Fahrenheit-to-Centigrade Conversion 62. . .

Chapter 6 Data Management Instructions 63.
Moving Register and Table Data 64. .
Building a FIFO Stack 66. .
Searching a Table 68. .
Moving a Block of Data 69. .

Chapter 7 Data Manipulation Instructions 71.
Boolean Logic Instructions 72. .
An Application Example: Simple Table Averaging 75.
Bit Complementing in a Data Matrix 76. .
Bit Comparison in a Data Matrix 77. .
Sensing and Manipulating Bits in a Data Matrix 78.

Chapter 8 Simple ASCII Communications 81.
ASCII Communication via Ladder Logic 82.
The COMM Instruction 83. .
Data Formats 85. .

ASCII Character Format 85. .
Integer (1 ... 4) Format 85. .
Hex (1 ... 4) Format 86. .
Flush Input Buffer Format 86. .
Flush Input Byte Format 86. .

ASCII Character Codes 87. .
Application Example: Using the HHP as an

ASCII Display Terminal 89. .

Chapter 9 The Sequence Control
Interface Function 93. .

SCIF Instruction 94. .
Application Example: Time-stepping with SCIF Blocks 96.

890 USE 146 00

Chapter 10 Subroutine Instructions 103.
Ladder Logic Subroutine Instructions 104. .
The Interrupt and Counter/Timer Inputs 106.

Hardware Interrupt Operation 106. .
Interrupt User Logic Considerations 107. .
The High Speed Counter Input 109. .

The CTIF Instruction 110. .
A CTIF Application Example 112. .

Chapter 11 Other Standard Instructions 117.
Skipping Networks 118. .
Checking the Health Status of the PLC 119. .
Sweep Instructions 126. .

Chapter 12 Enhanced Instruction Set
Available on Select Micro PLC Models 127.

Block↔Table Move Instructions 128. .
The Checksum Instruction 128. .
The Proportional-Integral-Derivative Instruction 129.
Extended Math Instructions 133. .

Appendix A Updating the Operating
System in Flash 145. .

Appendix B Troubleshooting 149. .

Index 157. .

Ladder Logic Operating System890 USE 146 00 1

Chapter 1
Ladder Logic Operating
System for the Micro PLCs

The Modicon Micro Programmable Logic Controllers

Memory Allocation

Memory Backup

Choosing a PLC Operating Mode

The Ladder Logic Instruction Set

Ladder Logic Operating System2 890 USE 146 00

Modicon Micro Programmable Logic
Controllers
A programmable logic controller (PLC)
is a solid-state device with digital pro-
cessing capabilities designed for real-
time control of industrial and manufac-
turing applications. A PLC comprises
input and output (I/O) units and a cen-
tral processing unit (CPU).

The Modicon Micro PLCs are fixed I/O
devices. The input and output compo-
nents are built into the same physical
box with the CPU. The package pro-
vides a small, light-weight, low-cost, and
self-contained solution for a wide range
of control applications.

Theory of Operation

The block diagram below shows the
major components of a Micro PLC. The
PLC monitors the state of field devices

by receiving signals from its inputs,
solves a user logic program stored in its
CPU, and then directs further field de-
vice activity by sending control signals
to its outputs.

Inputs
The inputs are located in a terminal
block across the top of the PLC. Inputs
are field-wired to sensing devices in
your application such as pushbuttons,
selector switches, motor starter con-
tacts, thumbwheels, or limit switches. If
an input senses that a field sensor is
closed, the input converts the field volt-
age to a logic-level signal understood
by the CPU that describes the state of
the sensor—a logic 1 indicates an ON
or CLOSED state, and a logic 0 indi-
cates an OFF or OPEN state.

Inputs

MemoryProcessor

Power Supply

Outputs

Field sensing devices

Field switching devices

CPU

AC or DC
power source

Flash
Memory

Ladder Logic Operating System890 USE 146 00 3

CPU
Within the CPU are the digital proces-
sor, memory, and power supply. These
components interact to solve application
logic and pass control signals to the
outputs. The CPU reads the converted
input data, executes the user logic pro-
gram stored in its memory, then writes
the appropriate output signals to the
field switching devices. The process of
reading input signals, solving logic
based on the states of the inputs, and
then updating the output devices is
called scanning.

Flash Memory
Also contained in the CPU is a Flash
Memory component where the PLC’s
operating system resides. The contents
of Flash are nonvolatile—they do not re-
quire battery backup.

The operating system residing in Flash
is a collection of supervisory programs
that give the PLC its identity by:

Defining the language in which the
application program is written—i.e.,
ladder logic

Allocating the CPU’s memory re-
sources for specific purposes

Determining the structure in which
the PLC stores and handles data

The ladder logic operating system de-
fines the functional capabilities of the
Modicon Micro PLCs. Those capabili-
ties are the primary focus of this book.

Outputs
The outputs are located in the terminal
block across the bottom of the PLC.
Outputs switch the supplied control volt-
age that energizes or de-energizes the
field switching devices in your applica-
tion. If an output is turned ON by the
CPU, the control voltage is switched to
activate the addressed device.

System Performance

Scan Time
The time it takes for the CPU to solve
the ladder logic program and to update
all the I/O under its control is called
scan time. Scan time comprises logic
solve time, I/O servicing time, and the
time it takes to perform system over-
head tasks.

The maximum amount of time allowed
for the PLC to scan a user logic pro-
gram one time is 250 ms. If the scan
has not completed in that amount of
time, a watchdog timer in the CPU
stops the application and sends a time-
out error message to the programming
panel. This maximum scan time limit
prevents the PLC from entering infinite
loops in the logic program.

Logic Solve Time
The time it takes the CPU to solve the
control logic in the program, indepen-
dent of any service or administrative
time, is called logic solve time.

Logic solve time for the 110CPU311
and 110CPU411 Micro PLCs is
4.25 ms/K nodes of ladder logic

Logic solve time for the 110CPU512
and 110CPU612 Micro PLCs is
2.5 ms/K nodes of ladder logic

Programming Note for 512XX
and 612XX Controllers

In very small user logic test situations
(e.g., using a contact to switch a coil as
a fast oscillator), in Single or Child
mode operation, the fast scantime [2.5
milliseconds per 1000 nodes pro-
grammed in a 512/612 Micro] may
inhibit correct operation of the internal
hardware output LED circuit and the
internal output device circuit.

Ladder Logic Operating System4 890 USE 146 00

Both circuits react independently to user
logic, so the LED may not reflect actual
output operation.

The more logic that is programmed, the
longer the scantime will be; and both
LEDs and output circuits will then show
the correct programmed response.

Consult the hardware manual provided
with your unit to determine the response

or switching time of the output device.
[For example, the internal output relay
has a maximum switching rate of 5 Hz.]

When the Micro is set up as a parent,
this hardware restriction should not be
seen, since each added Child Micro in
the Parent configuration adds 3
milliseconds to the scantime.

Memory Allocation
The ladder logic operating system de-
termines the way memory resources in
a Modicon Micro PLC are allocated. It
divides available system memory into
three classes:

User data memory—for variable data
that changes during program
execution

System configuration memory—for
storing system data tables such as
the I/O map and PLC setup values

User program memory—where the
ladder logic program is created and
edited

User Data Memory

The PLC relates each input and output
signal in the control process to a refer-
ence number that is stored in a user
data memory table and can be used in
the ladder logic program. (The user
data memory table is sometimes re-
ferred to as the state RAM table.)

110CPU311 and 110CPU411 PLCs
have 512 words of user data memory

110CPU512 and 110CPU61200/03
PLCs have 2048 words of user data
memory

110CPU61204 PLC has 8192 words
of user data memory

Note The execution buffer in the
61204 is large enough to load the
XMIT and/or Gas loadable without
reducing the 8K of available user
logic.

Reference Numbering
For ladder logic programming, the Modi-
con Micro PLCs use a reference num-
bering system to handle input/output in-
formation and internal logic. Each
reference number has a leading digit
that identifies the I/O data type; the
leading digit is followed by a string of
four digits that defines that I/O point’s
unique location in user data memory.

There are four reference types:

Ladder Logic Operating System890 USE 146 00 5

I/O Reference Numbering System

0xxxx A discrete output (or coil). A 0x reference
can be used to drive real output data through
an output unit in the control system or it can
be used to set one or more coils in state
RAM. A specific 0x reference may be used
only once as a coil in a logic program, but that
coil status may be used multiple times to drive
contacts in the program

1xxxx

Reference
Number Description

A discrete input. The ON/OFF status of a
1x reference is controlled by field data sent
to the CPU from an input unit. It can be
used to drive contacts in a logic program

3xxxx An input register. A 3x register holds infor-
mation represented by A 16-bit number and
received from an external source—e.g., a
thumbwheel, an analog signal, data from a
high speed counter. A 3x register can also
hold 16 consecutive discrete input signals,
which may be entered into the register in
binary or binary coded decimal (BCD)
format.

4xxxx An output or holding register. A 4x register
may be used to store numerical data (binary
or decimal) in state RAM or to send the data
from the CPU to an output unit in the control
system.

Note:The x following the leading character in each refer-
ence type represents a four-digit address location in user
data memory—e.g., the reference 40201 indicates that
the reference is a 16-bit output or holding register located
at address 201 in state RAM.

Each word in user data memory is 16
bits long. The (ON/OFF) state of each
discrete I/O point is represented by the
1 or 0 value assigned to an individual
bit in a word (16 0x or 1x references
per word).

For I/O mapping, physical input point #1
is mapped to the lowest numbered in-
ternal input in the first group of 16,
physical input #2 to the next highest in-
ternal input, etc., as shown here:

Physical input points

User data
memory references

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

10001 10016. .

Discrete outputs are mapped similarly
according to their groupings:

Physical outputs for a 12-point group

User data
memory references

01 02 03 04 05 06 07 08 09 10 11 12

00001 00012.

Physical outputs for an 8 -point group

User data
memory references

01 02 03 04 05 06 07 08

00001 00008.

Physical outputs for a 4-point group

User data
memory references

01 02 03 04 05 06 07 08 09 10 11 12

00001 00004. . .

In the case of analog I/O, each input
channel and each output channel is
mapped to a full word in user data
memory (3x registers for inputs and 4x
registers for outputs).

System Configuration Memory

The PLC configuration is a key piece of
overhead contained in system memory.
The information contained in the config-
uration determines such things as:

The operating mode of the PLC—
i.e., single, parent, or child

The parameters under which the
PLC’s communication ports can
operate

The ranges of available 0x, 1x, 3x,
and 4x references available for pro-
gramming

The number of I/O locations sup-
ported by the PLC

Note The 61204 requires Mod-
soft, or Modsoft Lite version 2.5 or
higher.

With your programming panel software,
you can access the configuration and
specify many of these parameters.

Ladder Logic Operating System6 890 USE 146 00

System configuration memory is pre-
assigned to support the following default
PLC configuration:

Default PLC Setup Values

Parameter
311 / 411 512 / 612

Number of
1x inputs

Number of
0x outputs

Number of
3x inputs

Number of
4x outputs

Number of I/O
locations

Number of
segments of
ladder logic

1024 1536

256 512

400 1872

32 48

55

2 (one for stan-
dard ladder log-
ic and one for
interrupts and
subroutines)

2 (one for stan-
dard ladder log-
ic and one for
interrupts and
subroutines)

110CPU Model

These default values make use of all
the memory available for PLC setup.
You may replicate pieces of system
configuration memory to suit the I/O re-
quirements in a specific application.

Ladder Logic Operating System890 USE 146 00 7

For example, if you are using a
110CPU31101 PLC and your application
requires 35 register inputs instead of
the default 32 registers, you could re-
assign the extra three words from else-
where in the setup table. Say the appli-
cation does not require all 1024 discrete
outputs—you could specify 976 discrete
outputs in the PLC setup table, then re-
allocate the extra 48 bits as the three
additional (16-bit) input register words.

Note The total amount of mem-
ory configured for PLC setup
cannot exceed the sum of the val-
ues shown in the table of default
PLC setup values.

User Program Memory

Depending on the model PLC you are
using, the amount of memory available
for ladder logic programming is:

1024 words (for 110CPU311 and
110CPU411 PLCs)

2048 word (for 110CPU512 and
110CPU61200/03 PLCs)

8192 word (110CPU61204 PLC)

These are the total amounts of memory
available for program logic. However,
certain optional PLC functionality—e.g.,
additional loadable instructions—con-
sume some of the memory set aside for
user programming.

User program memory is divided into
two segments. The first is where all
ladder logic for standard application
control resides. The second is reserved
for subroutine logic, which can be called
either by an instruction called JSR in
ladder logic or by a high-speed interrupt
input (available on 110CPU411,
110CPU512, and 110CPU612 PLCs.)

Note For more information about
subroutines, see Chapter 10.

Here are the loadable instructions that
can be used with the Modicon Micro
PLCs and the amount of user program
memory that each consumes:

EARS

EUCA

Loadable
Name

Size
(Words) Opcode Function

760*

160*

user-
defined

5F

1F

Default

Lets you custom
design your own
DX loadable

FNxx 5F

For developing an
early alarm
reporting system

An engineering
unit conversion
algorithm

Sends Modbus
messages from
master to multiple
slaves or sends
ASCII strings
from Modbus port
to ASCII printers

XMIT 1E

Gxxx 1F Measures gas
flow rate meeting
AGA 3 and AGA
8 requirements

*

*

* These values will vary with the 61204.

For more information on these loadable
instructions, refer to the following
Modicon technical publications:

Event Alarm Reporting System
User Guide (GM-EARS-001)

EUCA Loadable Function Block
User Guide (GM-EUCA-001)

Custom Loadable Support
Software Programming Manual
(GM-CLSS-001)

XMIT Loadable Function Block
User Guide (840 USE 113 00)

Gas Loadable Function Block User
Guide (890 USE 137 00)

Ladder Logic Operating System8 890 USE 146 00

Memory Backup
User data memory, user program
memory, and system configuration
memory can be backed up in any of
three different ways:

With an optional (110XCP98000)
lithium battery

With an optional (110XCP99000)
battery capacitor

In a reserved area in the PLC’s
Flash

Optional Backup Techniques

If a lithium battery assembly or battery
capacitor assembly is used, it automati-
cally backs up the current memory val-
ues in the event of a power loss. When
power is restored, the PLC comes back
up operational with the configuration
and program values that were present
at the time power was lost.

The lithium battery safely backs up
memory data for one year. The battery
capacitor can back up a typical user
logic program for up to 72 hours (see
the installation manual distributed with
your PLC for more details).

Using Flash for Backup

A portion of the Flash memory in all
Modicon Micro PLCs is reserved for
storing the system configuration, user
logic, and user data memory, except for
the 61204. Because of limitations of
Flash storage capabilities in the 61204,
a battery is linked to the hardware.
This feature allows you to back up your
configuration and user logic even if you
do not use a battery or battery capaci-
tor.

To store the memory in Flash, you must
issue a save to Flash command from
your panel software. The values in
memory at the time you issue the save

are the only memory values stored in
Flash. A save to Flash operation is al-
lowed only in a PLC after it has been
configured and while it is stopped—i.e.,
not scanning ladder logic.

If memory is restored to the PLC from
Flash backup after a power loss, the
values that were current at the time of
your last save operation will be re-
stored.

PLC Power-up Procedures

When the PLC receives power, it first
checks system configuration memory to
see if a valid configuration exists. If a
valid configuration has been saved via
the optional battery backup, these val-
ues will be present in user data
memory. The PLC will configure itself
with these values and be ready to
operate.

If the PLC does not detect a valid con-
figuration in user data memory, it will
check the Flash backup. If a valid con-
figuration has been saved in Flash, the
PLC will configure itself with these val-
ues and be ready to operate.

If the PLC cannot find a valid configura-
tion in memory or in Flash, it will power
up in an unconfigured condition. You
need to connect a programming panel
to the PLC and configure it before it can
be programmed or before it can solve
logic.

Ladder Logic Operating System890 USE 146 00 9

Storing a PLC with User Logic Saved to Flash

Note If you have saved a logic
program to Flash in a PLC and
are taking that PLC out of service,
remember that all values stored in
Flash are nonvolatile.

The PLC will immediately start using the
stored program when it is powered up
again sometime in the future. Potential
problems could occur should the PLC
be put in long-term storage, then in-
stalled in a new application.

If you are not sure how the PLC will be
used in the future, you might want to
clear logic from Flash before you take it
out of service. To do this:

Step 1. Delete all the networks in the
logic program.

Step 2. Set all the PLC’s configura-
tion parameters to their
default values.

Step 3. Make sure the PLC is
stopped.

Step 4. Then use your panel software
to save to Flash.

Ladder Logic Operating System10 890 USE 146 00

PLC Operating Modes
A Modicon Micro PLC can be confi-
gured to operate in one of three modes:

Single mode—operating as a stand-
alone programmable control system,
managing its own fixed I/O resources
(and, in the case of the 110CPU512
and 110CPU612 PLCs, able to man-
age additional A120 I/O resources)

Parent mode—operating as the one
PLC on an I/O expansion link whose
CPU can manage the fixed I/O re-
sources of all the PLCs on that link

Child mode—operating as a PLC on
an I/O expansion link, allowing some
or all of its fixed I/O resources to be
accessed and managed by the par-
ent PLC on the link

The I/O Expansion Link

An I/O expansion link comprises a par-
ent PLC and 1 ... 4 child PLCs con-
nected via standard six-position tele-
phone cables. Each cable has an RJ11
connector on both ends. PLC-to-PLC
connections are made at the RS-485
(exp link) port on each unit.

Only one PLC on the link can be confi-
gured as the parent. All other PLCs on
the link must be configured as child
PLCs. A PLC in single operating mode
cannot be used on an expansion link.

Each child PLC is uniquely addressed
with a child ID # in the range #1 ... #4.
The fixed I/O resources of the child
PLCs can be accessed and controlled
by logic running in the parent.

Note It is your responsibility as a
user to make sure that each child
PLC is given a unique child ID
number. The child ID assignment
is made by connecting the pro-
gramming panel to the child and

entering the number as part of the
child’s configuration.

I/O expansion is accomplished via seri-
al, point-to-point connections between
the parent and child PLCs, as shown
below.

RS-485 port

Parent PLC

Child # 1

Child # 2

Child # 3

Child # 4

An I/O Expansion Network

110XCA10100/
043502929
Y—connector

RJ11
direct connect

RJ11
direct connect

120Ω termination

120Ω termination

110XCA10100/
043502929
Y—connector

110XCA10100/
043502929
Y—connector

Ladder Logic Operating System890 USE 146 00 11

A120 I/O Expansion

110CPU512 and 110CPU612 PLCs are
equipped with a 30-pin expansion port
that allows the units to communicate
with racks of A120 I/O. This port is
dedicated to A120 I/O communications.

Note 110CPU311 and
110CPU411 PLCs do not support
A120 I/O expansion.

With A120 I/O expansion, 2 ... 4 racks
are interconnected along a parallel bus
physically mounted on DIN rail. The
PLC itself is always configured as rack
1, and the A120 I/O housing are confi-
gured as racks 2 ... 4.

A120 I/O expansion can be employed
by the PLC in any of its three operating
modes.

A120 I/O can be accessed only by the
PLC to which it is connected. This
means that the ladder logic program
driving the A120 I/O and all the
associated A120 I/O mapping must be
stored in the PLC to which the the A120
I/O is connected.

Note If a child PLC on a serial
I/O expansion link uses A120 I/O
expansion, the A120 I/O asso-
ciated with that child cannot be
accessed by the parent on the
link. The child must be indepen-
dently programmed with its own
ladder logic, PLC configuration,
and I/O map to handle that A120
I/O.

Rack 1 Rack 2 Rack 3 Rack 4

Single-mode
512/612 PLC

or

Parent-mode PLC

Child-mode PLC

Single-mode PLC

Parent
512/612 PLC

Child-mode PLC

Rack 2 Rack 3 Rack 4

(Parallel) A120 I/O expansion

(Parallel) A120 I/O expansion

(Serial) I/O
expansion link

Rack 2 Rack 3 Rack 4

Child
512/612 PLC

Rack 1

Rack 1

Ladder Logic Operating System12 890 USE 146 00

The Ladder Logic Instruction Set
The ladder logic operating system,
which resides in a Modicon Micro PLC’s
Flash RAM, contains the instruction set
listed below. Note that some models of

the Micro have an enhanced instruction
set with functionality not available on
the lower end models.

Standard Ladder Logic Instructions (available on all Micro PLCs)

Instruction Description

A normally open (N.O.) contact

Relay Logic

A normally closed (N.C.) contact

A positive transitional contact

A negative transitional contact

M()
() A normal coil

A memory-retentive coil

Counters

UCTR An up counter from 0 to a specified preset

DCTR A down counter to 0 from a specified preset

Timers

T1.0 A timer that increments in seconds

T0.1 A timer that increments in tenths of a second

T.01 A timer that increments in hundredths of a second

T1MS A timer that increments in ms

Data Move

R→T A register-to-table move

T→R A table-to-register move

T→T A table-to-table move

BLKM A block move

FIN A first-in operation to a queue

FOUT A first-out operation from a queue

SRCH A table search for a bit pattern in one of the registers

Integer Math

ADD Addition

SUB Subtraction or greater than/less than operations

MUL Multiplication

DIV Division

Ladder Logic Operating System890 USE 146 00 13

Standard Ladder Logic Instructions (continued)

Instruction Description

Data Matrix

AND A logical AND of two matrices

OR A logical OR of two matrices

XOR A logical exclusive OR of two matrices

COMP A logical complement of the bit pattern in a matrix

CMPR A logical compare of the bit patterns in two matrices

MBIT A bit modify—i.e., changing the current (1, 0) value of the bit

SENS A bit sense—i.e., reporting the current (1, 0) value of the bit

BROT A bit rotation—i.e., shifting the bit positions left or right in a matrix

ASCII

COMM An ASCII read or write communication operation

Sequencing

SCIF Drum sequencing and input comparison operations

Subroutines

JSR
Jumps the logic scan from control logic to a ladder logic
subroutine programmed in the last segment

LAB Labels the entry location for the called subroutine in the last segment

RET Returns the logic scan to its previous place in logic prior to the JSR

Other

STAT Checks and reports the health of the PLC and its I/O

SKP Causes the logic scan to skip specified networks in the program

CTIF Sets up the high-speed inputs for interrupt and
counter/timer operations

Enhanced Ladder Logic Instructions (available in specified
110CPU512 and 110CPU612 Models only)

Instruction Description

A block-to-table moveBLKT

A table-to-block moveTBLK

Performs CRC-16, LRC, straight, or binary checksum operationsCKSM

Performs proportional-integral-derivative control functionsPID2

Performs extended math functions such as square root, process
square root, log, antilog, and floating point operationsEMTH

890 USE 146 00 15Start-up Procedures

Chapter 2
Start-up
Procedures

Getting Started

Autoconfiguration Parameters

Autoconfigured Communication Ports

Modifying the Configuration Parameters

Addressing I/O Locations

Addressing A120 I/O

Addressing I/O on an Expansion Link

Splitting I/O between Parent and Child PLCs

Generalized Data Transfer

PLC Operations

Start-up Procedures16 890 USE 146 00

Getting Started

Pass

Fail System is
unconfigurable

(see Appendix B)

Start-up tests
performed

automatically

PLC checks system
config memory for
configuration

STEP 1. Apply Power

Can’t find a
valid config

PLC checks Flash
RAM for a

configuration

PLC powers up
as an unconfigured

machine

Can’t find a
valid config

STEP 2. Connect a programming
panel and configure the PLC

continued in flowchart 2

Finds a valid
config

Flowchart 1

PLC under power
and unconfigured

PLC is configured
and READY

(page 26)

Applying Power

As soon as you apply power to a Modi-
con Micro PLC, it will attempt to start
operating. The operating system tries
to retrieve any previously stored config-
uration data from memory backup.

Starting a Previously Configured PLC
If the PLC has been started before and
has had a configuration (and possibly a
logic program) saved in its memory, it
will immediately start operating using
the stored values.

If the PLC has an optional battery back-
up, it will find the previous configuration
parameters in its system configuration
memory and the previous user logic val-
ues in its user program memory. Con-
figuration and user logic may alterna-
tively be saved to the PLC’s Flash RAM
if you are not using a battery backup.

As the flowchart above shows, the oper-
ating system checks the PLC’s system
configuration memory first. If it finds a

890 USE 146 00 17Start-up Procedures

valid configuration stored there, it uses
those values to operate. If it does not
find a valid configuration in system con-
figuration memory, it checks the PLC’s
Flash RAM for a valid configuration. If
it finds a valid configuration stored
there, it uses those values to operate.

If the previous condition of the PLC was
in RUN mode, the PLC will begin scan-
ning its logic immediately. You do not
need to connect a programming panel
to it.

If the previous condition of the PLC was
in STOPPED mode, you will need to
connect a programming panel to one of
the Comm ports on the PLC in order to
start it.

Starting an Unconfigured PLC
If the operating system cannot find a
valid configuration in the PLC’s Flash or
in its system configuration memory, it
will power up as an unconfigured ma-
chine. A PLC will power up unconfi-
gured the first time it is ever been
started or when its configuration values
have been cleared or corrupted.

You need to configure the PLC before
you can write a logic program or service
the I/O.

Configuring a Modicon Micro PLC
Step 1. Connect a programming pan-

el, such as MODSOFT Lite or
the HHP*, to an RS-232
comm port on the PLC.

Step 2. Using the panel’s menuing
system, go to the configura-
tion editor. (The path to the
configuration editor will vary
depending on the panel you
are using, but it is a high-
level screen that can be
reached with minimal
keystrokes.)

Step 3. Make sure that the panel
knows which PLC model type
(e.g., a 110CPU31101, a
110CPU51200) it is about to
configure. The HHP* dis
plays this information auto
matically at startup; MOD
SOFT Lite prompts you to
select the model type from a
list.

Step 4. Select the desired operating
mode for the PLC you want
to configure. The operating
mode can be either single,
parent, or child.

Step 5. Transfer the configuration
parameters from the panel
to the PLC.

Result. The panel automatically con-
figures the PLC with a full set
of valid parameters based on
the model and operating
mode you specify. At this
point, the PLC is configured.

* The 520VPU19200 HHP does not
support the 61204.

Start-up Procedures18 890 USE 146 00

Autoconfiguration Parameters
Based on the PLC model type and PLC
operating mode that you specify, the
panel automatically configures the PLC
with a full set of valid parameters.
These autoconfiguration parameters are
shown in the following three tables.

Autoconfiguring a PLC in
Single Operating Mode

If you configure a PLC in single operat-
ing mode, the autoconfigured parame-
ters shown below are all you need to
begin your ladder logic programming.

Autoconfiguration Parameters for a Single Mode Micro PLC

Parameter 311 / 411 512 / 612

Number of 0x references

Number of 1x references

Number of 3x references

Number of 4x references

Number of ladder logic
segments

RS-232 port
(comm 1)

RS-232 port
(comm 2)

RS-485 port
(exp. link)

1024 1536

256 512

32 48

400 1872

2 (the first for control logic
and the second for
subroutines)

2 (the first for control logic
and the second for
subroutines)

N/A

Dedicated ASCII
8-bit ASCII communications,
9600 baud, even parity,
1 STOP bit

Dedicated Modbus mode:
8-bit RTU communications,
9600 baud, even parity,
1 STOP bit, Modbus address #1

Dedicated Modbus mode:
8-bit RTU communications,
9600 baud, even parity,
1 STOP bit, Modbus address #1

Dedicated Modbus mode:
8-bit RTU communications,
9600 baud, even parity,
1 STOP bit,

Modbus address #1

Dedicated ASCII
8-bit ASCII communications,
9600 baud, even parity,
1 STOP bit

110CPU Models

890 USE 146 00 19Start-up Procedures

Autoconfiguring a PLC in Parent Operating Mode

If you specify parent operating mode,
you must specify the number of child
PLCs that will be allowed on the I/O ex-
pansion link. The number must be in
the range 1 ... 4.

Once you have specified this number,
the PLC is ready to be programmed.

Autoconfiguration Parameters for a Parent Mode PLC

Parameter 311 / 411 512 / 612

Number of 0x references

Number of 1x references

Number of 3x references

Number of 4x references

Number of ladder logic
segments

RS-232 port
(comm 1)

RS-232 port
(comm 2)

RS-485 port
(exp. net)

1024 1536

256 512

32 48

400 1872

2 (the first for control logic
and the second for
subroutines)

2 (the first for control logic
and the second for
subroutines)

N/A

Modbus/ASCII toggling mode:
8-bit RTU/8-bit ASCII
communications, 9600 baud,
even parity, 1 STOP bit,

Modbus address #1

Dedicated Modbus mode:
8-bit RTU communications,
9600 baud, even parity,
1 STOP bit, Modbus address #1

I/O expansion network:
9-bit data communications,
125 ,000 baud, 1 STOP bit

Modbus/ASCII toggling mode:
8-bit RTU/8-bit ASCII
communications, 9600 baud,

even parity, 1 STOP bit,
Modbus address #1

I/O expansion network:
9-bit data communications,
125 ,000 baud, 1 STOP bit

Number of child PLCs
on the I/O expansion link must be user-specified must be user-specified

110CPU Models

Start-up Procedures20 890 USE 146 00

Autoconfiguring a PLC in Child Operating Mode

If you specify child operating mode, you
must assign a child ID number to the
PLC. The number must be in the range
1 ... 4, and it must be unique to the par-
ticular child you are configuring with re-
spect to all other child PLCs to be
placed on the I/O expansion link.

Once you have specified the child ID #,
the PLC is ready to be programmed.

Autoconfiguration Parameters for a Child Mode PLC

Parameter 311 / 411 512 / 612

Number of 0x references

Number of 1x references

Number of 3x references

Number of 4x references

Number of ladder logic
segments

RS-232 port
(comm 1)

RS-232 port
(comm 2)

RS-485 port
(exp. net)

1024 1536

256 512

32 48

400 1872

2 (the first for control logic
and the second for
subroutines)

2 (the first for control logic
and the second for
subroutines)

N/A

Modbus/ASCII toggling mode:
8-bit RTU/8-bit ASCII
communications, 9600 baud,

even parity, 1 STOP bit,
Modbus address #1

Dedicated Modbus mode:
8-bit RTU communications,
9600 baud, even parity,
1 STOP bit, Modbus address #1

Modbus/ASCII toggling mode:
8-bit RTU/8-bit ASCII
communications, 9600 baud,
even parity, 1 STOP bit,

Modbus address #1

I/O expansion network:
9-bit data communications,
125 ,000 baud, 1 STOP bit

I/O expansion network:
9-bit data communications,
125 ,000 baud, 1 STOP bit

Child ID # must be user-specified must be user-specified

110CPU Models

890 USE 146 00 21Start-up Procedures

Some Autoconfiguration Examples

Let’s look at some MODSOFT Lite con-
figuration overview screens and talk
about the meaning of the displayed pa-
rameters. Below we show three
screens for a 110CPU51200 PLC, confi-
gured in each of its three operating
modes. MODSOFT Lite examples are
used here to illustrate conceptual issues
related to PLC configuring. MODSOFT

Lite is not the only programming soft-
ware available for configuring a Micro;
these examples are used because the
individual screens contain more values
than those in the HHP*. For a thorough
description of MODSOFT Lite or HHP*
editing procedures, refer to the pro-
gramming manual provided with your
software package.

Screen 1. 110CPU51200 PLC with Autoconfigured Single-mode Parameters

Screen 2. 110CPU51200 PLC with Autoconfigured Parent-mode Parameters

Start-up Procedures22 890 USE 146 00

Screen 3. 110CPU51200 PLC with Autoconfigured Child-mode Parameters

PLC Operating Mode
The operating mode is described in the
PLC Type entry in the top left data field
of the screens. MICRO-S indicates
single mode; MICRO-P indicates parent
mode; and MICRO-C indicates child
mode.

Child ID #
The child ID # must be specified for a
PLC that is configured in child operating
mode. The MODSOFT Lite configura-
tion defaults to an ID of 1. When you
are configuring more than one child on
an I/O expansion link, you need to
make sure that each has a unique ID#
in the range 1 ... 4.

This parameter does not apply to parent
and single PLCs. For PLCs in either of
these modes, the Micro Child ID is
specified as NONE.

0x, 1x, 3x, and 4x Reference Ranges
The range of internal memory refer-
ences is the same in all modes. The
autoconfigured range assignments are
the maximum number of references
available for 110CPU51200 model.

Note The range of references is
smaller for 110CPU311 and
110CPU411 models.

Number of Ladder Logic Segments
The autoconfigured number of ladder
logic segments is 2. The first segment
is available for normal control logic, and
the second segment is available for
subroutine logic.

Number of Child PLCs
If the PLC is configured in parent oper-
ating mode, you must specify the num-
ber of child PLCs that it can access on
the I/O expansion link. The MODSOFT
Lite configuration defaults to 1. If you
want the ability to put more than one
child on the link, change this parameter.

This parameter does not apply to single
and child PLCs. For PLCs in either of
these modes, the Number of Children
is specified as 0.

I/O Locations
An I/O location is a unit of I/O asso-
ciated with a particular type of Micro
PLC. These I/O locations, which are
described in more detail later in this

890 USE 146 00 23Start-up Procedures

chapter, include the fixed I/O built into
the PLC and any A120 I/O modules
connected to the PLC over the parallel
expansion port.

Note Only 110CPU512 and
110CPU612 models support A120
I/O; 110CPU311 and 110CPU411
models do not.

The 110CPU512 models all default to
18 I/O locations. This number allows
you to support three or four fixed I/O lo-
cations—the discrete I/O, the high-
speed inputs, and the generalized data
transfer capability (more on these lat-
er)—as well as up to 15 slots of A120 I/
O.

Note 110CPU311 and
110CPU411 models will default to
a much smaller number of I/O lo-
cations because these units do
not support A120 I/O.

The Battery Coil
The operating system automatically sets
aside reference 00081 as the battery
coil. This coil operates much like the
batt low LED on the PLC in that it turns
ON when the optional battery needs to
be replaced. You can tie this coil to an
external alarm or display that warns you
of the need for battery replacement.

When the battery coil goes ON, the bat-
tery should be replaced within 14 days.

The Timer Register
The operating system automatically sets
aside output register 40011 as a free-
running timer. This register is available
to you for 10 millisecond applications in
a ladder logic.

The Time of Day Clock
The operating system automatically re-
serves a block of eight contiguous out-
put registers (40012 ... 40019) to store
data from the PLC’s time of day clock
(in the 110CPU411, 110CPU512, and
110CPU612 models). You need to ini-
tialize the clock in order to use it.

The 16 bits in each register are used to
store the following information:

Register 40012—the control register:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 = an error
1 = all clock values have been set

1 = clock values are being read
1 = clock values are being set

not used

Register 40013—the day of the week
(Sunday = 1, Monday = 2, etc.)

Register 40014—the month of the
year (Jan. = 1, Dec. = 12)

Register 40015—day of the month
(1 ... 31)

Register 40016—year (0 ... 99)

Register 40017—hour in military time
(0 ... 23)

Register 40018—minute (0 ... 59)

Register 40019—second ((0 ... 59)

For example, if you read the TOD clock
at 9:25:30 on Thursday, March 18,
1993, the block of register will display
the following information:

40012 = 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

40013 = 5 (decimal format)

40014 = 3 (decimal format)

40015 = 18 (decimal format)

40016 = 93 (decimal format)

40017 = 9 (decimal format)

40018 = 25 (decimal format)

40019 = 30 (decimal format)

Start-up Procedures24 890 USE 146 00

Autoconfigured Communication Ports

The RS-485 Port

For a parent or child PLC, the RS-485
(exp link) port must be used for inter-
connecting units on the I/O expansion
link. In both these operating modes,
the autoconfigured port parameters are
set and cannot be changed.

For a single PLC, the exp link port can-
not be set for I/O expansion; it must be
either used for ASCII communications
or disabled. The autoconfigured param-
eters for this port in single mode are for
ASCII communications.

Note Only one communication
port can be set to perform ASCII
communication functions.

The RS-232 Port(s)

The 110CPU512 and 110CPU612 Micro
PLCs have two RS-232 communication
ports, while the 110CPU311 and
110CPU411 models have only one.
The autoconfigured parameters as-
signed to these ports depend on both
the model and the operating mode of
the PLC.

If a PLC is in parent or child operating
mode, the panel software auto-
configures one of the RS-232 ports to a
mode that supports communications be-
tween the PLC and either an ASCII in-
put/output device or a Modbus master
device.

Note Modbus is the protocol that
handles ladder logic programming
communications between a pro-
gramming panel and the PLC.
The programming panel is consid-
ered the Modbus master device,
and the PLC is considered the
Modbus slave device.

In Modbus/ASCII toggling mode, the
RS-232 port uses its DSR line to inform

the PLC whether an ASCII device or a
Modbus master device is connected.

When an ASCII device—e.g., a print-
er or a character display monitor—is
attached to comm 1, the DSR line
becomes INACTIVE and the port
communicates 8-bit ASCII data

When a Modbus master device—
e.g., the HHP* or a computer running
MODSOFT Lite—is connected to
comm 1, the DSR line becomes
ACTIVE, and the port communicates
8-bit RTU data

If the PLC is a 110CPU311 or
110CPU411 model in parent or child
mode, Modbus/ASCII toggle mode is
autoconfigured on the comm 1 port. If
the PLC is a 110CPU512 or
110CPU612 model in parent or child
mode, Modbus/ASCII toggle mode is
autoconfigured on the comm 2 port,
and the comm 1 port is autoconfigured
for dedicated Modbus communications.

* The 520VPU19200 HHP does not
support the 61204.

890 USE 146 00 25Start-up Procedures

Comm 2 of the 61204 is a Modbus
slave port in the default condition, the
same as in other versions of the 612
and 512. But this port is also capable
of control by the XMIT block which,
when enabled, permits the port to be a
temporary master in either ASCII or
RTU mode. Refer to the XMIT Load-
able Function Block User Guide (840
USE 113 00). Comm2 can only support
one communication function block at a
time. For example, either the Comm or
XMIT block. If both the Comm and
XMIT blocks are active, the XMIT block
will operate properly while the Comm
block will not.

In single-mode PLCs, the RS-232 ports
are always autoconfigured for dedicated
Modbus communications. This is be-
cause the RS-485 port is autoconfi-
gured for ASCII, and only one port on
the PLC can be support ASCII commu-
nications.

All RS-232 ports are autoconfigured for
9600 baud communications, which en-
ables you to attach a programming pan-
el to the PLC at any RS-232 port. De-
vices that do not communicate via the
Modbus protocol cannot be used at a
dedicated Modbus port.

Note If you are using 9600 baud
on one RS-232 port, you should
not exceed 2400 baud on the oth-
er RS-232 port.

Start-up Procedures26 890 USE 146 00

Modifying the Configuration Parameters

Do you want to
modify current
config parameters?

continued in flowchart 3

STEP 3. Connect
programming
panel and modify
configuration pa-
rameters

STEP 4. Connect program-
ming panel and modify I/O
map parameters

Yes

No

Do you want to
modify current
I/O map settings?

No

Yes

PLC is configured
Flowchart 2

(see page 46)

Depending on the programming panel
you are using, you may be able to
change many of the autoconfiguration
settings for a PLC. The HHP* allows
you to change only a few auto-
configured parameters, whereas MOD-
SOFT Lite gives you a great deal of
flexibility in setting up the configuration.

Caution If you are using an
HHP* to make changes to an
existing PLC configuration,
you will erase all ladder logic,
I/O map, and ASCII message
data currently stored in PLC
memory.

The Number of References

With MODSOFT Lite you can change
the mix of references in your configura-

tion. However, you cannot increase the
total register count.

For example, if your application requires
32 more 0x references, you can add 32
to the available total if you decrease the
number of 1x references by 32 or if you
decrease the the number of 3x or 4x
references by 2 (3x and 4x registers
contain 16 bits; 0x and 1x references
are single bits).

* The 520VPU19200 HHP does not
support the 61204.

890 USE 146 00 27Start-up Procedures

The Number of Logic
Segments

The autoconfigured value of 2 should
not be changed even if you do not plan
to use subroutines. The second seg-
ment will never be scanned unless it is
called by a JSR instruction or by a
hardwired interrupt.

RS-232 Port Communication
Parameters

The RS-232 ports can be set to operate
in either of two modes—Modbus or sim-
ple ASCII. In Modbus mode, the port is
a slave to the Modbus master device
that is connected to it; this device is
generally a programming panel. In sim-
ple ASCII mode, the port is read or writ-
ten using ladder logic (see Chapter 7
for a description of the ASCII COMM
ladder logic instruction).

Modbus mode Simple ASCII mode

RS-232 Port

8-bit RTU
protocol 7-bit ASCII

protocol
7-bit ASCII
protocol

8-bit ASCII
protocol

Modbus Mode
In Modbus mode, the port can commu-
nicate using either an 8-bit remote ter-
minal unit (RTU) protocol or a 7-bit
ASCII protocol. On the comm 1
RS-232 port, RTU can be supported
only at 9600 baud, and ASCII can be
supported only at 2400 baud. The
comm 1 port is also restricted to Even
parity and 1 STOP bit for RTU and
ASCII. The Modbus address of the port
can be set in the range 1 ... 247.

Note A Micro PLC can be a
node on a Modbus network by as-
signing it a unique Modbus net-
work address. If the PLC is not
on a Modbus network, the default
address of 1 should be kept. If
the PLC is on a Modbus network,
its address must be unique with
respect to all other nodes on the
network, in the range 1 ... 247.
(See the Modicon Modbus
Protocol Reference Guide,
PI-MBUS-300, for details.)

If your PLC has a comm 2 RS-232 port,
there are more optional port parameters
available to you in Modbus mode:

Optional Comm Parameters for the comm 2 Port

Baud

Comm mode

Parity check

STOP bits

Modbus address

7-bit ASCII, 8-bit RTU

Odd, Even, None

1, 2

1 ... 247

50, 75, 110, 134, 150, 300, 600,
1200, 1800, 2000, 2400, 3600,
4800, 7200, 9600, 19200

Note Comm1 and Comm2
(RJ45) RS--232 MUST not ex-
ceed12,000 combined baud rate,
while using the (RJ11) RS--485
parent/child communication port.
When you violate this rule the par-
ent/child communications are dis-
rupted. We support both Comm1
and Comm 2 at 9600 baud rate
without any concerns when the
PLC is running in single mode.

The following two combinations of
RS-232 port parameters are not sup-
ported on the comm1 or exp link ports
for simple ASCII communications:

7-bit ASCII with 1 STOP bit and no
parity

8-bit ASCII with 2 STOP bits and
even or odd parity

Start-up Procedures28 890 USE 146 00

Simple ASCII Mode
In simple ASCII mode, an RS-232 port
can communicate only with an ASCII
protocol, utilizing either 7-bit or 8-bit
resolution. RTU communications are
not permitted in Simple ASCII mode.

An RS-232 port in simple ASCII mode
can be given any of the following port
parameters:

Optional Comm Parameters for Simple ASCII

Baud

Comm mode

Parity check

STOP bits

1200, 2400, 4800, 9600

7-bit ASCII, 8-bit ASCII

Odd, Even, None

1, 2

Modem Communication Capabilities
The comm 1 port and comm2 port
(where available) on your Modicon
Micro PLC are equipped with circuitry
that supports modem hand-shaking sig-
nals. In order support modem commu-
nications, the port on the PLC must be
in dedicated Modbus mode and a spe-
cial adapter must be used on the mo-
dem end of the cable connection.

Caution Because of the spe-
cial way the DSR line func-
tions when the port is in the
Modbus/ASCII toggling mode,
the comm 1 port cannot com-
municate over a modem when
it is set in this mode.

Four adapter kits are available from Mo-
dicon with the parts you will need to
customize an adapter for your modem:

RJ45-to-D-shell Adapter Kits

110XCA20301

110XCA20302

110XCA20401

110XCA20402

RJ45-to-9-pin D-shell, male

RJ45-to-9-pin D-shell, female

RJ45-to-25-pin D-shell, male

RJ45-to-25-pin D-shell, female

Part NumberAdapter Description

If you want to set up the unit for modem
communications, place the comm port
in dedicated Modbus mode, and set its

port parameters to accommodate the
modem—e.g., 2400 baud, ASCII mode.

890 USE 146 00 29Start-up Procedures

RS-485 Port Communication
Parameters

If the exp net RS-485 port is used as
the dedicated ASCII port (the case only
if the PLC is in single operating mode),
the following communication parameters
are available:

Optional Comm Parameters for the exp net Port

Baud

Comm mode

Parity check

STOP bits

1200, 2400, 4800, 9600

7-bit ASCII, 8-bit ASCII

Odd, Even, None

1, 2

If the RS-485 port is used for I/O ex-
pansion—i.e., if the PLC is in parent or
child operating mode—then the auto-
configured port parameters are fixed
and cannot be modified.

Start-up Procedures30 890 USE 146 00

Addressing I/O Locations
The I/O map is a table in the PLC’s sys-
tem configuration memory that links ref-
erence numbers in the PLC’s user data
memory (0x, 1x, 3x, and 4x) to actual
field inputs and outputs.

Fixed I/O Locations

A Modicon Micro PLC has five fixed I/O
locations reserved for it in the I/O map
editor.

Location 1 for addressing fixed dis-
crete input and output resources

Location 2 for addressing counter/
interrupt inputs

Location 3 for addressing timer/
counter inputs

Location 4 for addressing fixed ana-
log inputs and outputs

Location 5 for addressing the transfer
registers for a generalized data
transfer operation between a parent
and child PLC

Some of these locations may not be
used for all PLC models—e.g., location
4 is reserved for fixed analog I/O which
is available only in the 110CPU612s.
When not used, a reserved fixed I/O lo-
cation in the I/O map must be left emp-
ty—it cannot be used to address anoth-
er type of I/O.

When you look at the I/O map in your
panel software, the types of I/O points
in each fixed I/O location are specified
by an alphanumeric location type. The
table below shows the standard location
types for the fixed resources on all
models of Micro PLCs.

I/O Location Location Type

16 ... 24 VDC in / 12 relay out MIC128

16 ... 115 VAC in / 8 triac out
4 relay out

MIC131

MIC13416 ... 230 VAC in / 8 triac out
4 relay out

16 ... 24 VDC in / 12 FET out MIC137

Discrete (1)

Counter / Interrupt (2) 8-bit counter/interrupt in MIC140

Analog (4)

All output channels
have 12-bit resolution

4 in (0 ... 10, 12-bit), 2 out MIC141

4 in (1 ... 5, 12-bit), 2 out MIC142

4 in (+ 10, 12-bit), 2 out MIC143

4 in (0 ... 10, 15-bit), 2 out MIC144

4 in (1 ... 5, 14-bit), 2 out MIC145

4 in (+ 10, 16-bit), 2 out MIC146

Timer / Counter (3) MIC14716-bit timer/Current count value

Generalized
Data Transfer (5)

MIC1481 word in, 1 word out

MIC1492 words in, 2 words out

MIC1504 words in, 4 words out

MIC1518 words in, 8 words out

31100, 41100
51200, 61200, 61204

31101, 41101, 51201

31102, 41102, 51202

31103, 41103,
51203, 61203

I/O Map Location Types for Fixed I/O
110CPU Model

All 411, 512, and
612 Models

612 Models only

All Models,
set to Parent

mode

Fixed Resources

N/A in 311 Models

890 USE 146 00 31Start-up Procedures

The operating system reserves the first
twelve 0x references and the first six-
teen 1x references (00001 ... 00016 and
10001 ... 10016) for the fixed discrete
I/O resident on the unit.

For example, the fixed resources of a
110CPU51201 PLC in single operating
mode would be addressed as follows:

Location type MIC131 in the first loca-
tion to specify the discrete I/O points;
the 115 VAC inputs are addressed to
references 10001 ... 10016, the triac
outputs are addressed to references
00001 ... 00008, the relay outputs
are addressed to references 00009
... 00012

Location type MIC140 in the second
location to specify the high-speed in-

terrupt/counter inputs, which are ad-
dressed to references 10081 ...
10088

Location type MIC147 in the third lo-
cation to specify the high-speed
timer/counter input, which is ad-
dressed to register 30001

The last two locations, for analog I/O
and generalized data transfer, are not
available in this I/O map. Only
110CPU612 PLCs support analog I/O,
and only parent and child PLCs support
generalized data transfer.

Below is a sample I/O map screen from
MODSOFT Lite illustrating the way the
discrete addressing is displayed:

Start-up Procedures32 890 USE 146 00

Representing Fixed Analog Data

The 612 model Micro PLCs support four
channels of fixed analog inputs and two
channels of fixed analog outputs.

The Analog Input Channels
Each of the four input channels is ad-
dressed to a word in user data memory,

followed by a fifth status word. Bits in
the status word signal warning and out-
of--range conditions in the input chan-
nels. The format of the status word is
shown on page 32.

Word 5 Fixed Analog Input Status

1 2 3 54 7 8 9 10 11 1312 14 15 16

If the bit is set to 1, the condition is TRUE

6

Channel 3 out of range

Channel 4 out of range Channel 1 warning

Channel 2 warning

Channel 3 warning

Channel 4 warningChannel 1 out of range

Channel 2 out of range

The analog input device in the PLC pro-
vides 16 bits of resolution. You may
specify how this 16 bits is to be inter-
preted based on the I/O location identi-
fier—i.e., the MIC number—you select in
the I/O map screen.

The six tables that follow show the
range of fixed analog input representa-
tions available to you:

MIC141 Analog Input Signals
(with 12-bit resolution)

Voltage
Data Count
(Decimal)

Operating
Results

0 0
.
.
.

.

.

.

5 2048
.
.
.

.

.

.

9.9976 4095

Recommended
operating range

Greater than
9.9976 and
less than
10.24

4095 with channel
warning bit set in

he status word
High warning

range

Less than 0

0 with channel
out-of-range and

warning bits set in
status word

Under range

Greater than
or equal to

10.24

4095 with channel
out-of-range bit
set in he status

word

Over range

890 USE 146 00 33Start-up Procedures

4095 with the channel
out-of-range an warning

bits set in the status
word

MIC142 Analog Input Signals (with 12-bit resolution)

Voltage
Data Count
(Decimal)

Operating
Results

1.00 0
.
.
.

.

.

.

3.00 2048
.
.
.

.

.

.

4.999 4095

Recommended
operating range

Greater than
4.999 and less
than 5.12

4095 with the channel
warning bit set in the

status word

Over range

Current
(mA)

4.00

12.00

19.996

.

.

.

.

.

.

Under rangeLess than
.52

Less than
2.08

0 with the channel out-
of-range and warning
bits set in status word

High warning
range

Greater than
or equal to
+5.12

Greater than
19.996 and less
than 20.480

Greater than
or equal to
20.480

Greater than or
equal to .52
and less than
1.00

0 with the channel
warning bit set in the

status word
Low warning

range

Greater than or
equal to 2.08
and less than
4.00

MIC143 Analog Input Signals (with 12-bit resolution)

Voltage
Data Count
(Decimal)

Operating
Results

--10 0
.
.
.

.

.

.

0 2048
.
.
.

.

.

.

+9.995 4095

Recommended
operating range

Greater than or
equal to +10.24

Over range

Under rangeLess than or
equal to --10.24

0 with the channel out-of-
range and warning bits

set in the status word

4095 with the channel out-of-
range and warning bits set in

the status word

Less than --10.00
and greater than
--10.24

0 with the channel warning
bit set in the status word

Low warning
range

Greater than +9.995
and less than +10.24

4095 with the channel warning
bit set in the status word

High warning
range

Start-up Procedures34 890 USE 146 00

32,767 (7FFF hex)
with the channel
out-of-range and

warning bits set in
the status word

MIC144 Analog Input Signals
(with 15-bit resolution)

Voltage
Data Count
(Decimal)

Operating
Results

0 0
.
.
.

.

.

.

5
16,000

(3E80 hex)
.
.
.

.

.

.

10 32,000

Recommended
operating range

Greater than
10.00 and
less than
10.2397

High warning
range

32,001 ... 32,766
(7D01 ... 7FFE hex)

with the channel
warning bit set in

the status word

Less than 0
0 with the channel
out-of-range and
warning bits set in
the status word

Under range

(7D00 hex)

Over range
Greater than
10.2397

MIC146 Analog Input Signals
(with 16-bit resolution)

Voltage
Data Count
(Decimal)

Operating
Results

--10 768
.
.
.

.

.

.

0 32,768
.
.
.

.

.

.

+10 64,768

Recommended
operating range

Greater than
+10.23970

Over range

Under range
Less than
or equal
to --10.24

0 with the channel
out-of-range and

warning bits set in
the status word

65,535 with the
channel’s over-
range bit set in
the status word

Greater than
+10.00 and
less than
+10.23970

64,769 ... 65,534
(FD01 ... FFFE hex)
with the channel
warning bit set in
the status word

High warning
range

Low warning
range

Less than
--10.00 and
greater than
--10.24

1 ... 767 with the
channel warning bit

set in the status
word

MIC145 Analog Input Signals (with 14-bit resolution)

Voltage
Data Count
(Decimal)

Operating
Results

1 0
.
.
.

.

.

.

3 6400 (1900 hex)
.
.
.

.

.

.

5 12,800 (3200 hex)

Recommended
operating range

Greater than
or equal to

5.12

13,184 (3380 hex) with the
channel out-of-range and

warning bits set in the
status word

Over range

Current
(mA)

4

12

20

.

.

.

.

.

.

Under rangeLess than
.52

2.08 0 with the channel under-range
and warning bits set in the

status word

Greater than
or equal to .52
and less than
1.00

Greater than
or equal to
2.08 and less
than 4.00

0 with the channel warning bit
set in the status word

Low warning
range

Greater than
or equal to

20.48

Greater than
5.00 and less
than 5.12

12,801 ... 13,183
(3201 ... 337F hex) with

the channel out-of-range
bit set in the status word

Greater than
20.00 and less
than 20.48

High warning
range

890 USE 146 00 35Start-up Procedures

Each fixed analog input is available for
reading approximately once every 50
ms. Therefore reading all four channels
requires approximately 200 ms.

The Analog Output Channels
Each of the two output channels is also
addressed to a word in the PLC’s user
data memory. The resolution of the
fixed analog outputs is always 12 bits.

Analog Output Signals
(with 12-bit resolution)

Voltage
Data Count
(Decimal)

Operating
Results

0 0
.
.
.

.

.

.

5 2047
.
.
.

.

.

.

9.9975 4095

Operating
Range

Current
(mA)

4

12

19.996

.

.

.

.

.

.

Start-up Procedures36 890 USE 146 00

Addressing A120 I/O
110CPU512 or 110CPU612 models may
use an optional A120 I/O expansion ca-
pability. When A120 I/O is used, it also
needs to be I/O mapped in that PLC’s
system configuration memory.

You must edit the I/O map via panel
software to address A120 I/O. Each
A120 I/O module is assigned a location
in the rack where it is housed.

Each physical rack connected to the
PLC—racks #2, #3 and #4—can have
up to five I/O locations in it. As many
as 20 A120 I/O modules (locations) can
be addressed in a Micro PLC’s I/O map.
The first five locations are reserved for
fixed I/O capabilities, and locations 06
... 20 are for A120 I/O modules. The
PLC reserves the following references
for expanded I/O addressing:

References 00017 ... 00080 for ad-
dressing discrete A120 output points

References 10017 ... 10080 for ad-
dressing discrete A120 input points

References 30002 ... 30005 and
30011 ... 30030 for addressing
register/analog inputs from A120 I/O

References 40003 ... 40010 are re-
served for mapping register outputs
from A120 I/O

Note These reserved references
may be used for addressing fixed
I/O resources in other PLCs on an
I/O expansion link if they are not
used for A120 I/O addressing.

An Example: A Micro PLC
with One Rack of A120 I/O

The following example uses two I/O
map screens from MODSOFT Lite. The
system being I/O mapped comprises a
110CPU51200 PLC and one rack of five
A120 I/O modules—two BDAP212s and
three BDAP216s.

The PLC uses only one of its discrete
I/O points for this application. There-
fore, a total of six I/O locations are used
in this configuration—MIC128 for the
fixed I/O points, and five locations for
the A120 I/O modules.

Screen 1 shows the I/O map for fixed
I/O resources of the 110CPU51200
PLC. This PLC is considered rack #1
with respect to A120 I/O expansion.
Note that only locations 1, 2, and 3 in
rack #1 can be accessed.

Note In MODSOFT Lite, each
rack is I/O mapped on a separate
screen. You can move forward
and backward through the
screens—i.e., through the racks—
by pushing <PgUp> and <PgDn>.

The A120 I/O in rack 2 is I/O addressed
in the I/O map shown in screen 2. The
A120 input points have been mapped to
references 10017 ... 10032 and the out-
put points to 00017 ... 00080 in the
PLC’s user data memory.

Altogether, this configuration uses 56
discrete inputs, 80 discrete outputs, and
one counter/timer register input.

890 USE 146 00 37Start-up Procedures

Screen 1. I/O Map for the Fixed I/O Locations (Rack 1)

Screen 2. I/O Map for A120 I/O Locations (Rack 2)

Start-up Procedures38 890 USE 146 00

Addressing I/O on an Expansion Link
An I/O expansion link is created by
daisy chaining up to five Micro PLCs to-
gether via cable connections at their
RS-485 ports. One PLC must be confi-
gured as the parent, and the remaining
units must be configured as child PLCs.

The Parent PLC

The parent PLC can address all its own
fixed I/O resources as well as any fixed

I/O resources residing in the child
PLCs.

The fixed I/O locations of the parent
PLC are automatically addressed for
you. References for mapping additional
I/O points from the parent are available
as follows:

Physical
Inputs

Physical
Outputs

References (in
User Data Memory)

00001 ... 00012 Local fixed discrete
outputs (12)

00017 ... 00080
Reserved (A120 or
child-based discretes)

00081 Battery OK
coil

10001 ... 10016

10017 ... 10080

Local fixed
discrete inputs (16)

10081 ... 10088Local interrupt/
counter inputs (8)

Reserved (A120 or
child-based discretes)

Reserved
(child-based
interrupt/timers)

Local timer/
counter input (1)

30001

10089 ... 10120

Reserved
(child-based
timers/counters)

30002 ... 30005

30006 ... 30010Local fixed
analog inputs (4)

Reserved
(child-based
analog inputs)

30011 ... 30030

Local fixed
analog outputs (2)40001 ... 40002

40003 ... 40010 Reserved (child-based
analog outputs)

40011 10 ms timer

40012 ... 40019 Time-of-day clock

890 USE 146 00 39Start-up Procedures

A Child PLC

When you select child operating mode
for a PLC, the ladder logic operating
system assumes by default that all the
fixed I/O points available on that PLC
will be controlled by the parent on the
network. Therefore, no values are as-
signed to the I/O map of a child PLC in
its default state.

The fixed I/O locations in the child can
be mapped in a screen associated with
the parent’s I/O map.

Note Any A120 I/O connected to
a child PLC must be addressed by
the child. A120 I/O in a child can-
not be accessed or controlled by
the parent over the I/O expansion
link.

An Example: An Expansion
Link with all Fixed I/O
Controlled by the Parent

The system being configured in the fol-
lowing example consists of two

110CPU51200 PLCs, a parent and one
child, on an I/O expansion link. The ex-
ample shows three I/O map screens
from MODSOFT Lite.

When you configure the parent, make
sure that it is set for at least one child.
The operating system will not allow the
parent to access any of the child’s I/O
resources unless you have specified the
existence of that child in the parent’s
configuration.

Screens 1 and 2 show the I/O maps for
the fixed I/O locations in the parent and
child that will be controlled by refer-
ences in the parent’s memory. Both I/O
map screens are accessed while the
programming panel is connected to the
parent.

Screen 1. I/O Map for the Fixed I/O Points in the Parent

Start-up Procedures40 890 USE 146 00

Screen 2. I/O Map for the Fixed I/O Points in the Child Accessed by the Parent

Notice that the location types used in
the I/O map for the child place all the
available fixed discrete input and relay
output locations of the child under the
control of the parent. MIC128 maps all
16 of the child’s 24 VDC inputs to refer-
ences 10017 ... 10032 in the parent’s
memory and the 12 relay outputs to ref-
erences 00017 ... 00032 in the parent’s

user data memory; MIC140 maps the
high-speed inputs to references
10033 ... 10040 in the parent’s user
data memory.

As a result, the I/O map screen that ap-
pears when the programming panel
(see screen 3 below) is attached to the
child shows no location types in it:

Screen 3. I/O Map for the Fixed I/O Points in the Child

890 USE 146 00 41Start-up Procedures

Splitting Fixed I/O between Parent and Child
PLCs
A child PLC has the option of splitting
its fixed I/O resources with the parent—
i.e., the child retains control over some
of its own fixed I/O while the parent
controls the rest. When fixed I/O re-
sources are split, the I/O points con-
trolled by the child must be addressed
in the child’s I/O map, and the I/O
points controlled by the parent must be
addressed in the parent’s I/O map.

The key to splitting I/O is choosing the
proper location types (see the table be-

low) and placing them in the I/O map
screens of the parent and child.

For example, if a child has 12 fixed FET
outputs, you can I/O address one PLC’s
I/O map with a location type of MIC138
(putting 8 FET outputs under its control)
and the other I/O map with a location
type of MIC139 (putting the remaining
four FET outputs under the other PLC’s
control).

I/O Type
Location
Type

16 ... 24 VDC in / 12 relay out

16 ... 24 VDC in / 8 relay out

16 ... 24 VDC in / 4 relay out

MIC128

MIC129

MIC130

16 ... 115 VAC in / 8 triac out
4 relay out

MIC131

16 ... 115 VAC in / 8 triac out MIC132

16 ... 115 VAC in / 4 relay out MIC133

MIC13416 ... 230 VAC in / 8 triac out
4 relay out

16 ... 230 VAC in / 8 triac out MIC135

16 ... 230 VAC in / 4 relay out MIC136

16 ... 24 VDC in / 12 FET out MIC137

16 ... 24 VDC in / 8 FET out MIC138

16 ... 24 VDC in / 4 FET out MIC139

Discrete

Counter / Interrupt 8-bit counter/interrupt in MIC140

Analog (for 612
Models only)

All output chan-
nels have 12-bit
resolution

4 in (0 ... 10, 12-bit), 2 out MIC141

4 in (1 ... 5, 12-bit), 2 out MIC142

4 in (+ 10, 12-bit), 2 out MIC143

4 in (0 ... 10, 15-bit), 2 out MIC144

4 in (1 ... 5, 14-bit), 2 out MIC145

4 in (+ 10), 2 out MIC146

Timer / Counter MIC14716-bit timer/Current count value

Generalized
Data Transfer

MIC1481 word in, 1 word out

MIC1492 words in, 2 words out

MIC1504 words in, 4 words out

MIC1518 words in, 8 words out

110CPU Models

31100, 41100, 51200, 61200, 61204

31101, 41101, 51201

31102, 41102, 51202

31103, 41103, 51203, 61203

All 512 & 612 Models

61200, 61203, 61204

Default is NONE for all models

I/O Map Location Types for Fixed I/O

Start-up Procedures42 890 USE 146 00

Both PLCs will read the same input
data. Shared input data will not cause
conflicts between the parent and child,
and, therefore, the same fixed inputs
can be mapped in both the parent and
the child.

However, having both PLCs write the
same output data can introduce errors.
If the same outputs are mapped in both
PLCs, the system will log an error
against the parent, and it will be marked
unhealthy in the PLC status table.

An Example: Splitting I/O

The following example shows two I/O
map screens from MODSOFT Lite.
They show how the 12 fixed relay out-
puts of a 110CPU51200 PLC configured
as a child can be split between it and its
parent.

Screen 1 below is the map of the child
I/O to be accessed by the parent. This

I/O map screen is created while the pro-
gramming panel is connected to the
parent PLC. The location type for the
discrete I/O is MIC129, indicating that
the parent can access eight of the
child’s fixed relay outputs.

Screen 1: Child I/O accessed by the parent

8 relay outputs accessed by the parent
and mapped to references 00017 ... 00024

890 USE 146 00 43Start-up Procedures

Screen 2 is the map of the child I/O that
remains under the control of the child.
This I/O map is created while the pro-
gramming panel is connected to the

child PLC. The location type for the
discrete I/O is MIC130, indicating that
the child maintains control over four of
its fixed relay outputs.

Screen 2: Fixed I/O resources controlled by the child

4 relay outputs controlled by the parent
and mapped to references 00025 ... 00032

Start-up Procedures44 890 USE 146 00

Generalized Data Transfer
The I/O expansion link is fundamentally
a capability for accessing systemwide
I/O resources for a logic program run-
ning in a single PLC—the parent. How-
ever, because each child PLC on the
link has the ability to store its own user
logic program and service its own I/O
and communication ports, a certain
amount of coprocessing can occur in
the various CPUs on the link.

Generalized data transfer is a tool that
allows the parent and child PLCs on the
link to share non-control data. It utilizes
the cable connections of the expansion
link to pass data to and from each oth-
er.

The parent can share generalized data
with any and all child PLCs; a child can
share generalized data only with the
parent.

The parent and child PLCs on an I/O
expansion network can bidirectionally
transfer a selectable number of non-
control data words over the I/O expan-
sion network. Fixed I/O location #5 on
all Modicon Micro PLCs is reserved for
this generalized data transfer capability.

You can select either the input/output
words to be reserved in the User Data
Memory of the parent and child PLCs
by specifying one of the following loca-
tion types in the I/O maps of the parent
and child:

MIC148, specifying one input word (of
1x or 3x references) and one output
word (of 0x or 4x references)

MIC149, specifying two input words
(of 1x or 3x references) and two
output words (of 0x or 4x references)

MIC150, specifying four input words
(of 1x or 3x references) and four
output words (of 0x or 4x references)

MIC151, specifying eight input words
(of 1x or 3x references) and eight
output words (of 0x or 4x references)

To set up a generalized data transfer
between a parent and child PLC, you
must specify the same location type in
the I/O maps of the child and of the par-
ent. When the programming panel is
connected to the parent PLC, specify
the generalized data transfer location
type in the I/O map that describes the
fixed I/O resources of the child, not in
the I/O map that describes the fixed I/O
resources of the parent.

890 USE 146 00 45Start-up Procedures

Here is an illustration of the generalized
data transfer process:

Parent PLC Child #1 PLC

User Data Memory User Data MemoryI/O Map I/O Map

location 1

location 5 MIC149

location 1

location 5 MIC149

for Child #1 resources

location 1

location 5 not used

its own fixed resources

30050
30051

Input words

30050
30051

40050
40051

Input words
Output words

40050
40051

Output words

Programming Note for 512XX
and 612XX Controllers

In very small user logic test situations
(e.g., using a contact to switch a coil as
a fast oscillator), in Single or Child
mode operation, the fast scantime [2.5
milliseconds per 1000 nodes pro-
grammed in a 512/612 Micro] may
inhibit correct operation of the internal
hardware output LED circuit and the
internal output device circuit.

Both circuits react independently to user
logic, so the LED may not reflect actual
output operation.

The more logic that is programmed, the
longer the scantime will be; and both
LEDs and output circuits will then show
the correct programmed response.

Consult the hardware manual provided
with your unit to determine the response
or switching time of the output device.
[For example, the internal output relay
has a maximum switching rate of 5 Hz.]

When the Micro is set up as a parent,
this hardware restriction should not be
seen, since each added Child Micro in
the Parent configuration adds 3
milliseconds to the scantime.

Start-up Procedures46 890 USE 146 00

PLC Operations

PLC is
running

Configuration and I/O map
meet application needs

Do you want to edit
user logic ?

STEP 5. Connect
a programming
panel and enter
logic edit mode

STEP 6. Connect a
programming panel
and enter reference
data mode

Yes

No

Do you want to
monitor reference

data ?

No

Yes

Flowchart 3

If the PLC is
stopped, do you
want to start it ?

STEP 7. Connect a
programming panel,
enter operations
mode, and put the
PLC in RUN mode

Yes

No

Edit ladder
logic program

Monitor reference
data

Do you want to
monitor power

flow ?

STEP 5. Connect a pro-
gramming panel and enter
logic edit mode; power
flow is shown when the
PLC is running

PLC will scan logic and ser-
vice I/O and comm ports

Yes

No
PLC will scan logic and

service I/O and comm ports

Once the PLC has been configured for
its desired operating mode and the I/O
locations have been addressed in the
I/O map, you can:

Create or edit your ladder logic
program

Monitor and edit reference data

Start and stop the PLC

Monitor power flow in a running
application program

In the next chapters, we will look closely
at the ladder logic instruction set and
how it can be used to create application
programs.

890 USE 146 00 47Ladder Logic Programming

Chapter 3
Essentials of Ladder Logic
Programming

Segments and Networks

Standard Ladder Logic Elements

Application Example: A Motor Start/Stop Circuit

Standard Modicon Micro PLC Instructions

Instructions Available on Select Models of the Modicon Micro PLCs

Ladder Logic Programming48 890 USE 146 00

Segments and Networks

Ladder Logic Segments

All the ladder logic required to control
your application is stored in a logic seg-
ment in user memory. If you are calling
subroutines as part of your application,
the subroutine logic must be placed in a
separate segment.

The Modicon Micro PLCs give you a
configuration with two segments in it.
Segment 1 is where all normally sched-
uled ladder logic used to control the
application is stored. Segment 2 is
where all subroutine logic is stored.
Subroutines logic is scanned only when
it is called, either from the ladder logic
or from an external event that triggers
an interrupt. Therefore segment 2 is
not solved as part of the regular logic
scan.

Ladder Logic Networks

Each segment is composed of a group
of contiguous networks. Each network
is a small, clearly defined ladder dia-

gram bounded on the left by a power
rail and on the right by a rail that, by
convention, is not displayed. The lad-
der is seven rungs high by eleven col-
umns wide.

The intersection of each rung and col-
umn in the network is called a node—
each network contains 77 nodes.

There is no prescribed limit on the num-
ber of networks that can be put in a
segment—overall program size is lim-
ited by the amount of user program
memory available in the CPU and by
the time it takes for the CPU to scan
the ladder logic program.

Placing Relay Logic and
Instructions in a Network

Each time you use an relay logic
element—e.g., a contact, a coil, a hori-
zontal short—in ladder logic, the ele-
ment consumes one node in the logic
network.

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

Ladder Logic Network Structure

Power
Rail

NOTE Only coils can
be shown in column 11

890 USE 146 00 49Ladder Logic Programming

An instruction in ladder logic may con-
sume one, two, or three nodes in a net-
work, depending on the instruction type.
A counter instruction, for example, is a
two-high nodal instruction—it consumes
two contiguous nodes that must be one
over the other. An ADD instruction, on
the other hand, is a three-high nodal in-
struction consuming three contiguous
nodes stacked over each other.

How Ladder Logic Is Solved

A Modicon Micro PLC scans the ladder
logic program sequentially in the follow-
ing order:

Segment by segment

Network 1 through network n se-
quentially within each segment

Node by node within each network,
starting in the upper left node of the
ladder and moving top to bottom,
then left to right

Network 1

Network 2

Next Network

Power Flow in and between Ladder Logic Networks

Ladder Logic Programming50 890 USE 146 00

Relay Logic Elements

There are three general types of relay
logic elements used in ladder logic pro-
gramming—contacts, coils, and shorts.

Each relay logic element consumes one
node in a ladder network.

Relay Contacts

Contacts are used to pass or inhibit
power flow in a ladder logic program.
Four kinds of contacts may be used:

The normally open (N.O.) contact,
which passes power when its refer-
enced coil or input is ON:

OFF

OFF

ON

ON

OFF

OFF

N.O. Contact

Power Flow

The normally closed (N.C.) contact,
which passes power when its refer-
enced coil or input is OFF:

OFF

ON

ON

OFF

OFF

ON

N.C. Contact

Power Flow

The positive transitional contact,
which passes power for only one

scan as the contact or coil transitions
from OFF to ON:

OFF

OFF

ON

ON

OFF

Positive
Transitional

Contact

Power Flow

One
Scan

The negative transitional contact,
which passes power for only one
scan as the contact or coil transitions
from ON to OFF:

OFF

ON

ON

OFF

OFF

Negative
Transitional

Contact

Power Flow

One
Scan

The symbols used in ladder logic to rep-
resent contact types are shown in the
table below.

Element Function

N.O. Contact

Symbol

N.C. Contact

Positive
Transitional
Contact

Negative
Transitional
Contact

Passes power when
its referenced coil or
input is ON

Passes power when
its referenced coil or
input is OFF

Passes power for one
scan as the contact or
coil transitions from
OFF to ON

Passes power for one
scan as the contact or
coil transitions from
ON to OFF

Memory Utilization

Can be referenced to a logic coil
in a 0x register or to a discrete
input in a 1x register

Can be referenced to a logic coil
in a 0x register or to a discrete
input in a 1x register

Can be referenced to a logic coil
in a 0x register or to a discrete
input in a 1x register

Can be referenced to a logic coil
in a 0x register or to a discrete
input in a 1x register

890 USE 146 00 51Ladder Logic Programming

Normal and Memory-retentive Coils

Element FunctionSymbol

Normal
Coil

Memory-
retentive
Coil

M

Turns OFF when
power is removed

Coil comes back in
the same state when
power is restored for
one scan

Memory Utilization

A discrete output value represented by a
0x reference number; may be used
internally in the logic program or
externally to a discrete output

A discrete output value represented by a
0x reference number; may be used
internally in the logic program or
externally to a discrete output

()

()

A coil is a discrete output value repre-
sented by a 0x reference bit. Because
output values are updated in state RAM
by the CPU, a coil may be used inter-
nally in the logic program or externally
via the I/O map to a discrete output unit
in the control system.

A coil is either ON or OFF, depending
on power flow. When a coil is ON, it ei-
ther passes power to a discrete output
circuit or changes the state of an inter-
nal relay contact in state RAM.

There are two types of coils—normal
coils and memory-retentive coils. When
power is applied or restored to a normal
coil, any value previously held by the
coil is cleared prior to the first logic
scan of the PLC. With a memory-reten-
tive coil, the value previously held by
the coil is retained for one scan, then
the logic takes control.

Displaying Coils in a Network
A ladder network can contain a maxi-
mum of seven coils. No logic elements
except coils are allowed in the eleventh
column. If a coil appears on a rung in a
column other than 11, no other logic
element can be placed to the right of
the coil on that rung.

Vertical and Horizontal Shorts

Shorts are simply straight-line connec-
tions between instruction blocks and/or
contacts in a ladder logic network.

A vertical short connects contacts or in-
struction blocks one above the other in
a network column. Vertical shorts can
also be used to connect inputs or out-
puts to create either/or conditions such
as the one illustrated below. When two
contacts are connected by a vertical
short, power is passed when one or
both contact(s) receive power. A verti-
cal short does not consume any user
memory.

Horizontal shorts are used to expand a
rung in a ladder logic network without
breaking the power flow. Each horizon-
tal short used in a program consumes
one word of user logic memory.

On the following page are two examples
of how horizontal and vertical shorts
can be used together with relay con-
tacts to create ladder logic.

The first example is a simple either/or
condition—the top rung of ladder con-
tains two N.O. contacts (10001 and
10002), and the lower rung contains a
single contact (10003) followed by a
horizontal short. A vertical short con-
nects the two rungs after the second
column. Power can pass through the
network to energize coil 00001 when
either contacts 10001 and 10002 are
energized or when contact 10003 is
energized.

Ladder Logic Programming52 890 USE 146 00

The second example shows an Exclu-
sive-OR circuit built with similar contacts
and shorts. This circuit can be used to
prevent coil 00001 from energizing
when two conditions, represented by
contact 10001 and contact 10002, are
activated simultaneously.

In both examples, the vertical shorts,
which do not consume any user pro-
gram memory, are treated as part of the
node in which contact 10002 is
programmed.

Example 1: Either/Or Relay Logic

10002 0000110001

10003

Example 2: Exclusive-OR Relay Logic

10002 0000110001

10001 10002

890 USE 146 00 53Ladder Logic Programming

Application Example:
A Motor Start/Stop Circuit

R1

LT

M1

C1

C2

MOTOR
START PB MOTOR

STOP PB OL1
MOTOR START

RELAY

PUMP
MOTOR

L1 L2

MOTOR START
AUXILIARY CONTACT

START
MOTOR

OL1

Above is an example of a standard
across-the-line electrical diagram for a
pushbutton-activated motor start/stop
circuit.

Pushing the motor start pb energizes
motor control relay R1 and closes con-
tact C2 to start motor M1. The auxiliary
contacts on motor control relay C1 also
close, allowing the motor start/stop cir-
cuit to be latched ON. Two things can
cause relay R1 to drop out:

An overload (OL1) on motor M1

The motor stop pb is pushed

Now let’s look at an implementation of
the same circuit using contacts, coils,
and shorts in a ladder logic network.

We see in the illustration below that the
sequence of operation remains essen-
tially the same when the motor start/
stop circuit is designed for the PLC.
The big difference is that all the I/O
points are wired directly to input/output
units built into the PLC system and the
actual control is programmed in ladder
logic in the PLC.

The ladder logic implementation allows
greater flexibility of control and de-
creased development time, since all the
hard-wiring between points of control is
done electronically.

R1

C1

START

STOP
LT

10002 0000110001

10003 00002

10004I
N
P
U
T

OL1

O
U
T-
P
U
T

Field Inputs

Ladder Logic

Field Outputs

890 USE 146 00 55Counters and Timers

Chapter 4
Counters and
Timers

Counter Instructions

Timer Instructions

Application Example: A Real-time Clock with a millisecond Timer

Counters and Timers56 890 USE 146 00

Counter Instructions
Two counter instructions are provided.
The up-counter (UCTR) counts up from
0 to a preset value, and the down-

counter (DCTR) counts down from a
preset value to 0. Both are two-high
nodal instructions.

Up-counter

UCTR

I

I

O

O

Top:
ON initiates
counter

Top:
counter preset

Top:
count = preset3x, 4x, or

K*

4x

Counts up from 0 to
a preset value

Bottom:
0 = reset
1 = enabled

Bottom:
accumulated
count

Bottom:
count < preset

Down-counter

DCTR

I

I

O

O

Top:
ON initiates
counter

Top:
counter preset

Top:
count = 03x, 4x, or

K*

4x

Counts down from a
preset value to 0

Bottom:
0 = reset
1 = enabled

Bottom:
accumulated
count

Bottom:
count > preset

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

*K is an integer constant in the range 1 ... 999.

A Simple Up-counter Example
When contact 10027 is energized, the
top input to UCTR receives power;
since contact 00077 is also receiving
power, the instruction is enabled. Each
time contact 10027 transitions from OFF
to ON, the accumulated count incre-
ments by 1. When the value reaches
100, the top output passes power—coil
00077 is energized, and coil 00055 is
de-energized. Contact 00077 loses
power when coil 00077 is energized,
and the accumulated count is reset to 0
on the next scan. On the next scan,
coil 00077 is de-energized; contact
00077 is re-energized and the UCTR is
enabled.

0007710027

00077 00055

100

40007
UCTR

890 USE 146 00 57Counters and Timers

Timer Instructions
The four timer instructions can be used
to time events or create delays in an
application. The first three are two-high

nodal instructions, and the millisecond
timer is a three-high instruction.

One-second
timer

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

Timer increments
at intervals of one
second

T1.0

I

I

O

O4x

Top:
ON when bot-
tom input = 1

Top:
timer preset

Top:
time = preset

Bottom:
0 = reset
1 = enabled

Bottom:
accumulated
time

Bottom:
time < preset

3x, 4x, or
K*

Tenth-of-a
second timer

Timer increments
at intervals of 0.1 s

T0.1

I

I

O

O4x

Top:
ON when bot-
tom input = 1

Top:
timer preset

Top:
time = preset

Bottom:
0 = reset
1 = enabled

Bottom:
accumulated
time

Bottom:
time < preset

3x, 4x, or
K*

Hundredth-of
a-second timer

Timer increments
at intervals of 0.01 s

T.01

I

I

O

O4x

Top:
ON when bot-
tom input = 1

Top:
timer preset

Top:
time = preset

Bottom:
0 = reset
1 = enabled

Bottom:
accumulated
time

Bottom:
time < preset

3x, 4x, or
K*

Millisecond
timer

Timer increments
at intervals of 1 ms

T1MS

I

I

O

O

0001

Top:
ON when
middle input = 1

Top:
timer preset

Top:
time = preset

Middle:
0 = reset
1 = enabled

Middle:
accumulated
time

Middle:
time < preset

3x, 4x, or
K*

*K is an integer constant in the range 1 ... 999.

4x

Bottom:
Always set to a
constant value
of 1

A One-second Timer Example
Here contact 10002 is closed—i.e., the
timer is enabled—and the value con-
tained in register 40040 is 0. Coil
00108 is ON and 00107 is OFF. When
contact 10001 is closed, the count ac-
cumulates in register 40040 at one-se-
cond intervals until 5 is reached; coil
00107 goes ON and 00108 goes OFF.
When contact 10002 is opened, the val-
ue in register 40040 is reset to 0, coil
00107 goes OFF, and 00108 goes ON.

0010710001

10002 00108

5

40040
T1.0

Counters and Timers58 890 USE 146 00

Application Example: A Real-time Clock with
a millisecond Timer

100

40055

T1MS

00001

00001

00003

00002

10

40054
UCTR

60

40053
00002

00004

UCTR

1

00003

60

40052
UCTR

00005

24

40051
UCTR

00004

00005

This example shows the ladder logic for
a real-time clock with millisecond accu-
racy. The T1MS instruction is pro-
grammed to pass power at 100 ms in-
tervals; it is followed by a cascade of
four up-counters that store the the time
respectively in hundredth-of-a-second
units, tenth-of-a-second units, one-
second units, one-minute units, and
one-hour units.

When logic solving begins, the accumu-
lated time value begins incrementing in
register 40055 of the T1MS block. After
ten one-millisecond increments, the top
output passes power and energizes coil
00001.

At this point, the value in register 40053
in the timer is reset to 0. The accumu-
lated count value in register 40054 in
the first UCTR block increments by 1,
indicating that 10 ms have passed.

Because the accumulated time count in
T1MS no longer equals the timer pre-
set, the timer begins to re-accumulate
time in ms.

When the accumulated count in register
40054 of the first UCTR instruction in-
crements to 10, the top output from that
instruction block passes power and en-
ergizes coil 00002. The value in regis-
ter 40054 then resets to 0, and the ac-
cumulated count in register 40051 of
the second UCTR block increments by
1.

As the times accumulate in each count-
er, the time of day can be read in five
holding registers as follows:

Register Unit of Time

40055

40054

hundredths-of-a-second (0 ... 10)

40053

tenths-of-a-second (0 ... 10)

40052

seconds (0 ... 60)

minutes (0 ... 60)

40051 hours (0 ... 24)

890 USE 146 00 59Basic Math Instructions

Chapter 5
Basic Math
Instructions

Integer Math Instructions

Application Example: Fahrenheit-to-Centigrade Conversion

Basic Math Instructions60 890 USE 146 00

Integer Math Instructions
Standard addition, subtraction, multipli-
cation, and division instructions are pro-
vided for calculating integer math opera-

tions. Each of the four instructions is a
three-high nodal instruction.

I O

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

I O

O

O

I O

I

I

O

O

O

Integer
Addition

Absolute (no
signs in the
values) Integer
Subtraction

Integer
Multiplication

Integer
Division with
remainder

3x, 4x, or
K*

3x, 4x, or
K*

3x, 4x, or
K*

3x, 4x, or
K*

3x, 4x, or
K*

3x, 4x, or
K*

3x, 4x, or
K*

3x, 4x, or
K*

ADD
4x

Top:
ON enables a
(val 1) + (val 2)
operation

Top:
value 1

Middle:
value 2

Bottom:
sum

Top:
sum > 9999 Adds the values in the

top and middle nodes,
then stores the result
in a 4x register in the
bottom node

Top:
ON enables a
(val 1) -- (val 2)
operation

Top:
value 1

Middle:
value 2

Bottom:
difference

Top:
val 1 > val 2

Middle:
val 1 = val 2

Bottom:
val 1 < val 2

Subtracts the middle
node value from the
top node value and
stores the difference
in a 4x register in the
bottom node

SUB
4x

*K is an integer constant in the range 1 ... 999.

MUL
4x

Top:
ON enables a
(val 1) x (val 2)
operation

Top:
value 1

Middle:
value 2

Bottom:
product (high
order digits)

Top:
echos the
top input

DIV
4x

Multiplies the values
in the top and middle
nodes, then stores the
product in two contig-
uous 4x registers

Top:
ON enables a
(val 1) / (val 2)
operation

Middle:
0 = fractional

remainder
1 = decimal

remainder

Top:
value 1**

Middle:
value 2

Bottom:
result
(remainder in
reg 4x + 1)

Top:
division
successful

Middle:
if result > 9999
a value of 0 is
returned

Bottom:
value 2 = 0

Divides the top node
value by the middle
node value, then
stores the result in
the 4x register in the
bottom node and the
remainder in register
4x + 1

** If value 1 of the DIV instruction is stored 3x or 4x registers, then the register shown in the top node is the first
of two contiguous registers. The high-order half of value 1 is stored in the displayed register (3x or 4x) and
the low-order half of value 1 is stored in the next contiguous register (3x + 1 or 4x + 1).

890 USE 146 00 61Basic Math Instructions

The MUL and DIV blocks require that
two contiguous registers be used in the
bottom node. The first of the two regis-
ters is seen in the block, and the pres-
ence of the second register is implicit.

In the MUL instruction block, the high-
order portion of the calculated product
is stored in the first bottom-node regis-
ter and the low-order portion of the
product is stored in the second bottom-
node register.

In the DIV instruction block, the quotient
is stored in the first bottom-node regis-
ter and the remainder is stored in the
second bottom-node register. If you do
not use a constant as the top-node val-
ue in a DIV instruction, then it the value
must be placed in two contiguous 3x or
4x registers. The high-order half of the
value is stored in the displayed register,
and the low-order half of the value is
stored in the implied register.

For example, if the top-node value is
105 and it were to be placed in two
contiguous registers, 40025 and 40026,
instead of being given as a constant,
then register 40025 would contain all
zeros and register 40026 would contain
the value 105.

A DIV Example
Here is an example of a DIV operation
where the top-node value, 105, is di-
vided by the middle-node value, 25.
The quotient (4) is stored in register
40271, and the remainder (5) is stored
in register 40272.

10001

10002

105

40271
DIV

25

When the middle input—contact
10002—is open, the remainder is ex-
pressed as a fraction (0005); when con-
tact 10002 is closed, the remainder is
expressed as a decimal (2000).

Basic Math Instructions62 890 USE 146 00

Application Example:
Fahrenheit-to-Centigrade Conversion
This example implements the formula

°C = (°F -- 32) x 5/9
When the top input to the SUB instruc-
tion block receives power, the value in
the middle node, 32, is subtracted from
the value stored in register 40007,
some number of degrees Fahrenheit.
The difference is placed in register
41201.

The top input to the MUL instruction
block then receives power, regardless of
whether the subtraction result is posi-
tive, negative, or 0. In the case where
the subtraction result is negative, coil
00011 is energized to indicate a nega-
tive value.

The value in the top-node register of the
MUL block—register 41201—is then
multiplied by 5 and the product is
placed in register 41202 and implicit
register 41203.

The top node in the DIV instruction
block is then energized, and the value
in registers 41202 and 41203 is divided
by 9. The quotient, which is the tem-
perature conversion in degrees Centi-
grade, is stored in register 40001 (and
the remainder in implicit register 40002).

40007

41201
SUB

00011

32

Note: The vertical short to coil 00011 (indicating a
negative value) must be placed to the left of the vertical
shorts that link the three SUB block output.

41201

41202
MUL

5

41202

40001
DIV

9

890 USE 146 00 63Data Management Instructions

Chapter 6
Data Management Instructions

Moving Register and Table Data

Building a FIFO Stack

Searching a Table

Moving a Block of Data

Data Management Instructions64 890 USE 146 00

Moving Register and Table Data
Three standard instruction blocks are
provided for moving the data stored in
registers and in tables of registers:

A register-to-table (R→T) DX move

A table-to-register (T→R) DX move

A table-to-table (T→T) DX move

A Modicon Micro PLC system can ac-
commodate the transfer of one register
per scan for each instruction in a ladder
logic program.

Each is a three-high nodal instruction.

I O

Instruction Inputs
(I)

Nodes Outputs

(O)

FunctionStructure

I O

O

I O

Register-to-
table move

0x, 1x, *
3x, or 4x

4x

R→T
K**

Top:
source register

Middle:
pointer to the
target register
(4x + 1) in the
destination table

Bottom:
Table length*

Top:
echos the
top input

** K is an integer constant in the range 1 ... 255.

I

I

O

Top:
ON moves data
and increments
pointer

Middle:
ON freezes the
pointer

Bottom:
ON resets the
pointer to 0

Middle:
pointer = table

length

Copies a 16-bit pat-
tern in a source regis-
ter to a register in the
destination table; the
destination register is
pointed to by the 4x
register in the middle
node

Table-to-register
move

I

I

0x, 1x, *
3x, or 4x

4x

T→R
K**

Top:
source table

Middle:
pointer to the
destination
register (4x + 1)

Bottom:
Table length*

Top:
echos the
top input

Top:
ON moves data
and increments
pointer

Middle:
ON freezes the
pointer

Bottom:
ON resets the
pointer to 0

Middle:
pointer = table

length

Copies the bit pattern
of a register in the
source table to a
destination register
(register 4x + 1 in the
middle node)

Table-to-table
move OI

I

0x, 1x, *
3x, or 4x

4x

T→T
K**

Top:
source table

Bottom:
Table length*

Top:
echos the
top input

Top:
ON moves data
and increments
pointer

Middle:
ON freezes the
pointer

Bottom:
ON resets the
pointer to 0

Middle:
pointer = table

length

Middle:
pointer to the
target register
(4x + 1) in the
destination table

Copies the bit pattern
of a register in the
source table to a
register in the same
position in a destina-
tion table; the
destination register is
pointed to by the 4x
register in the middle
node

* If you use a 0x or 1x reference, it must be given as a multiple of 16 + 1 (1, 17, 33, etc.), and it implies
the use of 16 discrete bits (1 ... 16, 17 ... 32, 33 ... 48, etc.).

890 USE 146 00 65Data Management Instructions

10001

10002 00135

30001

5
R→T

10003

40340

The ladder logic example shown above
moves the value stored in register
30001 into a destination table of five
holding registers, 40341 ... 40345. One
30001 register value is moved into one
of the table registers in every scan.

The pointer to the destination table—re-
gister 40340—is specified in the middle
node of the register-to-table instruction
block, and the number of holding regis-
ters in the table, 5, is specified in the
bottom node.

When contact 10001 transitions ON for
the first time, the current contents of
register 30001 are copied to register
40341, the first of five contiguous regis-
ters in the destination table. The first
table in the destination register is al-
ways the next contiguous register after
the pointer reference number given in
the middle node of the instruction block.
When this DX move takes place, the
value in the pointer register increments
from 0 to 1.

In the next scan of contact 10001, the
contents of register 30001 are copied
into register 40432, the second register
in the destination table; the value in the
pointer register increments from 1 to 2.

This process continues until the con-
tents of register 30001 are copied into
register 40345 in the table and the
pointer value has incremented to 5. At
this point, the middle output from the
block passes power and energizes coil
00135.

No further register-to-table moves are
possible while the value of the pointer
equals the table length specified in the
bottom node of the block.

Pointer

Source
Register

Destination
Table

40340

40341

40342

40343

40344

40345

30001
1st transition

2nd transition

3rd transition

4th transition

5th transition

If, after the second transition of contact
10001, contact 10002 were to become
energized, the pointer value would be
frozen-i.e., it could not be incremented
or decremented—and subsequent tran-
sitions of contact 10001 would cause
the current value in register 30001 to be
copied to register 40343.

If contact 10003 is energized, the value
of the pointer is reset to 0.

Data Management Instructions66 890 USE 146 00

Building a FIFO Stack
Instruction Inputs

(I)
Nodes Outputs

(O)
FunctionStructure

I O

O

O

I O

O

O

First-in to
a queue stack

0x, 1x, *
3x, or 4x

4x

FIN
K**

Top:
ON inserts a bit
pattern in the
top of the stack

Middle:
pointer to the
register in the
stack where the
source bits will
be inserted
Bottom:
stack length*

Top:
echos the
top input

Middle:
stack is full

Bottom:
stack is
empty

Copies a 16-bit pat-
tern into a register at
the top of a stack; the
table begins at regis-
ter 4x + 1 of the
middle node

First-out of
a queue stack

0x or 4x

4x

FOUT
K**

Top:
ON removes
the bit pattern
from the bottom
of the stack

Top:
echos the
top input

Middle:
stack is full

Bottom:
stack is
empty

Top:
pointer to the
source register
in the stack

Middle:
destination register
where source bits
will be moved

Bottom:
stack length*

Moves the bit pattern
in the bottom register
of the stack to a des-
tination register out of
the stack

** K is an integer constant in the range 1 ... 255.

Top:
The source
register in the
stack

* If you use a 0x or 1x reference, it must be given as a multiple of 16 + 1 (1, 17, 33, etc.), and it implies
the use of 16 discrete bits (1 ... 16, 17 ... 32, 33 ... 48, etc.).

The two instructions above let you
queue data into a first-in/first-out stack.
The FIN instruction copies the bit pat-
tern of a register or of 16 discretes into
a register at the top of a table (or stack)
of holding registers.

111 111

Source
FIN

Stack

222 222

Source
FIN

Stack

111

333 333

Source
FIN

Stack

111

222

890 USE 146 00 67Data Management Instructions

The FOUT instruction moves the bit pat-
tern down through the stack, then out of
the stack and into a destination table.

Warning FOUT will override
any disabled coils in a desti-
nation table without enabling
them. If a coil has been dis-
abled for repair or mainte-
nance, there is the potential
for injury, since that coil’s
state can change as a result of
the FOUT operation.

When you are running a FIFO stack in
ladder logic, the FOUT instruction
should be executed in each scan before
the FIN instruction so that the oldest
data in the stack can be cleared to the
destination table before the newest data
is queued into the stack. If the FIN
block is executed first, an attempt to en-
ter data into a filled stack is ignored.

Destination

FOUT

Stack

333

222

111 111

444

333

Source
FIN

Stack

222

444

Data Management Instructions68 890 USE 146 00

Searching a Table
The SRCH instruction allows you to
search a table of registers for a specific
bit pattern contained in one of the table

registers. SRCH is a three-high nodal
instruction.

I O

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

Table search

3x or 4x

4x

SRCH
K*

Top:
first register in
the source table

Middle:
4x pointer to the
location in the
table of the regis-
ter holding the
value searched
for; the next reg-
ister, 4x + 1, con-
tains the value
being searched
for

Bottom:
Table length*

Top:
echos the
top input

I O

Top:
ON initiates a
search

Middle:
0 = search from

the beginning
1 = search from

last match

Middle:
match found

Searches a table of
registers for the bit
pattern specified in
the register immedi-
ately following the
pointer in the
middle node

* K is an integer constant in the range 1 ... 255.

An Example of a SRCH Operation

10001

10002 00142

40421

5
SRCH

40430

The source table to be searched is five
registers long starting at holding register
40421, and the content of the table reg-
isters is as follows:

Source Table
Registers

Register
Content

40421

40422

40423

40424

40425

=

=

=

=

=

1111

2222

3333

4444

5555

The bit pattern to be searched for is
3333, which is the value that gets en-
tered into register 40431 (the register

immediately following the pointer regis-
ter in the middle node).

When contact 10001 transitions from
OFF to ON, the logic searches the
source table for the register that con-
tains 3333. When that value is found
(in register 40423), the pointer value in
register 40430 is set to 3, indicating that
the third register in the source table
contains the searched-for value; coil
00142 is also energized for one scan.

890 USE 146 00 69Data Management Instructions

Moving a Block of Data
The block move (BLKM) instruction co-
pies the entire contents of a source
table of registers to a destination table
in one logic scan. BLKM is a three-high
nodal instruction.

Warning BLKM will override
any disabled coils in a desti-
nation table without enabling
them. If a coil has been dis-
abled for repair or mainte-
nance, there is the potential
for injury, since that coil’s
state can change as a result of
the BLKM operation.

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

I O

Block move

0x, 1x, *
3x, or 4x

0x** or
4x

BLKM
K***

Top:
source table

Middle:
destination table

Bottom:
Table length*

Top:
echos the
top input

Top:
ON initiates a
block move

Copies the entire
contents of one table
to another table of
outputs or holding
registers

*** K is an integer constant in the range 1 ... 100.

* If you use a 0x or 1x reference, it must be given as a multiple of 16 + 1 (1, 17, 33, etc.), and it implies
the use of 16 discrete bits (1 ... 16, 17 ... 32, 33 ... 48, etc.).

** If 0x references are used as the destination, they cannot be programmed as coils, only as contacts
referencing those coil numbers

Application Example: A Recipe Loading Routine Using Block Moves
A ladder logic program can store a col-
lection of specific process recipes, each
in a unique storage table and loadable
on demand to a working table where a
generic process is being run. The
recipes must be structured with similar
types of information in corresponding
registers—if heating temperature infor-
mation is kept in the third register of
one recipe, similar information should
be kept in the third register of all the
other recipes as well.

Specific recipes can be loaded to and
removed from the generic process via
BLKM instructions.

The logic example shown on the next
page contains an eight-register working
table (registers 40201 ... 40208) in
which three different recipes can be run.
Recipe selection is handled by three in-
put switches, contacts 10101, 10102,
and 10103.

Data Management Instructions70 890 USE 146 00

40101

40201

BLKM

10101 10102 10103

8

40109

40201

BLKM

10102 10101 10103

8

40117

40201

BLKM

10103 10101 10102

8

To run process A, for example, turn
contact 10101 ON and leave contacts
10102 and 10103 OFF. When input
10101 is energized, it passes power
through N.C. contacts 10102 and
10103, and the first BLKM block moves
the recipe for process A from registers
40101 ... 40108 to registers 40201 ...
40208.

890 USE 146 00 71Data Management Instructions

Chapter 7
Data Manipulation
Instructions

Boolean Logic Instructions

An Application Example: Simple Table Averaging

Bit Complementing in a Data Matrix

Bit Comparison in a Data Matrix

Sensing and Manipulating Bits in a Data Matrix

Data Manipulation Instructions72 890 USE 146 00

Boolean Logic Instructions
Three instructions are available to per-
form ANDing, ORing, and XORing logic
operations.

Warning These Boolean in-
structions will override any
disabled coils in the destina-

tion matrix without enabling
them. If a coil has been dis-
abled for repair or mainte-
nance, there is the potential
for injury, since that coil’s
state can change as a result of
the logic operation.

I O

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

0x, 1x, *
3x, or 4x

0x** or
4x

AND
K****

*** K is an integer constant in the range 1 ... 100

I O
0x, 1x, *

3x, or 4x

0x** or
4x

OR
K***

I O
0x, 1x, *

3x, or 4x

0x** or
4x

XOR
K***

Top:
Initiates a logical
AND operation

Top:
echos the
top input

Boolean
AND

Boolean
OR

Boolean
exclusive OR

Top:
Initiates a logical
OR operation

Top:
echos the
top input

Top:
Initiates a logical
XOR operation

Top:
echos the
top input

Top:
source matrix

Middle:
destination matrix

Bottom:
matrix length*

Top:
source matrix

Middle:
destination matrix

Bottom:
matrix length*

Top:
source matrix

Middle:
destination matrix

Bottom:
matrix length*

ANDs the bits in the
source matrix with
the equivalently po-
sitioned bits in the
destination matrix,
then places the re-
sults in the destina-
tion matrix, over-
writing the original
bit pattern

ORs the bits in the
source matrix with
the equivalently po-
sitioned bits in the
destination matrix,
then places the re-
sults in the destina-
tion matrix, over-
writing the original
bit pattern

XORs the bits in the
source matrix with
the equivalently po-
sitioned bits in the
destination matrix,
then places the re-
sults in the destina-
tion matrix, over-
writing the original
bit pattern

* If you use a 0x or 1x reference, it must be given as a multiple of 16 + 1 (1, 17, 33, etc.), and it implies
the use of 16 discrete bits (1 ... 16, 17 ... 32, 33 ... 48, etc.).

** If 0x references are used as the destination, they cannot be programmed as coils, only as contacts
referencing those coil numbers

890 USE 146 00 73Data Management Instructions

0 1 1 0

0 1100 0 01

Source Matrix Bits

Destination Matrix Bits

An ANDing Operation

An AND instruction logically ANDs each
bit in a source matrix with the corre-
sponding bits in a destination matrix,
then posts the results in the destination
matrix—overwriting the previous bit pat-
tern in the destination matrix.

For example, when contact 10001
passes power in the network below, the
bit matrix comprising registers 40600
and 40601 are ANDed with the bit ma-
trix comprising registers 40604 and
40605.

10001

40600

2
AND

40604

The result is then copied into registers
40604 and 40605, overwriting the pre-
vious bit pattern.

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 040600

40601

Source Matrix

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40604

40605

Original Destination Matrix

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40604

40605

ANDed Destination Matrix

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

OR
Likewise, an OR instruction logically
ORs the bits in a source matrix with the
corresponding bits in a destination ma-
trix, then overwrites the destination ma-
trix with the results of the operation.

Note Outputs and coils cannot
be turned OFF with the OR in-
struction.

0 1 1 0

0 100 1

Source Matrix Bits

Destination Matrix Bits
1

An ORing Operation

11

Data Manipulation Instructions74 890 USE 146 00

For example, if we were to OR the
same two matrixes as in the example
shown above:

10001

40600

2
OR

40604

the result would be:

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 040600

40601

Source Matrix

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40604

40605

Original Destination Matrix

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

40604

40605

ORed Destination Matrix

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

XOR
The exclusive OR instruction logically
XORs the bits in a source matrix with

the corresponding bits in a destination
matrix, then overwrites the destination
matrix with the results of the operation.

For example, if we were to XOR the
same two matrixes as in the example
shown above:

10001

40600

2
XOR

40604

the result would be:

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 040600

40601

Source Matrix

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40604

40605

Original Destination Matrix

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

40604

40605

XORed Destination Matrix

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 1 0

0 100 01

Source Matrix Bits

Destination Matrix Bits
1

An XORing Operation

1

Archiving the Original Destination Matrix Values
If you want to save the original bit pat-
tern from the registers in the destination
matrix, use the BLKM instruction to
copy the information into another table
before running the Boolean logic opera-
tion.

890 USE 146 00 75Data Management Instructions

An Application Example: Simple Table
Averaging

40101

84
T→R

00003

40203

40202

40202
ADD

40201

40201
ADD

1

40201

40301
DIV

40203

40201

3
XOR

10006

40204

40201

Here is an application routine that com-
bines three integer math calculations
with a data transfer and an XOR in-
struction. It calculates the average val-
ue of the 84 values stored in the table
of registers 40101 ... 40184.

When contact 10006 closes, the top
node in the table-to-register instruction
receives power, initiating the data trans-
fer. The value in the first register of the
table is copied into the middle node of
the first ADD instruction, and the table
pointer value increments register 40203
in the middle node of both the table-to-
register instruction and the DIV instruc-
tion. Because the top output from the
table-to-register instruction passes
power, the first ADD block receives
power and adds the value in register
40204 to the value in register 40202
(which is initially 0); then the sum of this
addition overwrites the previous value in
register 40202.

The routine continues to run this way
until all the values in the table of 84
registers have been added together. At
this point, the pointer value in the
middle node of the table-to-register in-
struction is 84, and the middle output

from that block passes power and en-
ables the DIV instruction.

The values in registers 40201 (all 0s,
representing the high-order portion of
the sum of all the register values in the
table) and 40202 (the low-order portion
of the sum) are divided by 84. The re-
sult is placed in register 40301, and the
remainder is placed in register 40302.
(Because there is power to the middle
input of the DIV instruction, the remain-
der is expressed as a decimal.) The re-
sult of the DIV operation is the average
value of the current values stored in all
84 registers in the table.

When the top output from the DIV in-
struction passes power, the XOR in-
struction becomes empowered. It ex-
clusively ORs the values in registers
40201 ... 40203 with themselves, clear-
ing the matrix to 0s and indicating that
the current table averaging operation is
complete and that a new one should
start.

Data Manipulation Instructions76 890 USE 146 00

Bit Complementing in a Data Matrix
The COMP instruction complements the
bit pattern in a matrix—i.e., changes all
the 0s to 1s and all the 1s to 0s—then
copies the result in a second matrix. A
matrix can be complemented in one
scan.

COMP is a three-high nodal instruction.

Warning COMP will override
any disabled coils in a desti-
nation matrix without enabling
them. If a coil has been dis-
abled for repair or main-
tenance, there is the potential
for injury, since that coil’s
state can change as a result of
the COMP operation.

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

*** K is an integer constant in the range 1 ... 100

I O
0x, 1x, *

3x, or 4x

0x** or
4x

COMP
K***

Top:
ON initiates the
bit complement
operation

Top:
echos the
top input

Top:
source matrix

Middle:
destination matrix

Bottom:
matrix length*

Bit
complement

Complements the
bit values in the
source matrix and
places the results
in the destination
matrix

* If you use a 0x or 1x reference, it must be given as a multiple of 16 + 1 (1, 17, 33, etc.), and it implies
the use of 16 discrete bits (1 ... 16, 17 ... 32, 33 ... 48, etc.).

** If 0x references are used as the destination, they cannot be programmed as coils, only as contacts
referencing those coil numbers

A Bit Complement Example
The ladder logic below shows a COMP
block with a source matrix composed of
two registers—40250 and 40251—and
a destination matrix composed of regis-
ters 40252 and 40253.

10001

40250

2
COMP

40252

When contact 10001 passes power the
block complements the bit values in the
source register and places the results in
the destination register.

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 040250

40251

Source Matrix

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

40252

40253

Complemented Destination Matrix

All values stored in the destination reg-
ister before the COMP instruction is en-
abled will be overwritten by the com-
plemented source values as a result of
the COMP operation.

890 USE 146 00 77Data Management Instructions

Bit Comparison in a Data Matrix
The CMPR instruction compares the bit
pattern in one register matrix with the
bit pattern in another matrix. When a
bit value in one matrix miscompares

with the correspondingly positioned bit
value in the other matrix, a value indi-
cating that matrix location is posted in
the middle node.

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

** K is an integer constant in the range 1 ... 100

I O

O

O

4x

CMPR

I

0x, 1x, *
3x, or 4x

K**

Bit
compare

Top:
ON initiates the
bit compare

Top:
matrix a

Middle:
posts the bit posi-
tion of the current-
ly detected mis-
compared bit and
points to
matrix b, which
begins at 4x + 1

Bottom:
matrix length*

Middle:
0 = restart at last

miscompare
1 = restart at the

beginning

Top:
echos the
top input

Middle:
miscompare
detected

Bottom:
state of mis-
compared bit
in matrix a

Compares bit patterns
in matrixes a and b,
and reports miscom-
pares

* If you use a 0x or 1x reference, it must be given as a multiple of 16 + 1 (1, 17, 33, etc.), and it implies
the use of 16 discrete bits (1 ... 16, 17 ... 32, 33 ... 48, etc.).

A Bit Comparison Example

10001

10002 00143

44620

2
CMPR

44622

00144

This example shows a bit comparison
between two two-register matrixes. Ma-
trix a comprises registers 44620 and
44621; matrix b comprises registers
44623 and 44624:

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 040600

40601

Matrix a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40604

40605

Matrix b

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Matrix a is compared against matrix b
bit by bit on every scan that contact

10001 transitions from OFF to ON until
one miscompare is found.

In the first transition of contact 10001,
the matrix bits are compared until bit
17, where the value in matrix a = 1 and
the value in matrix b = 0. At this point,
a value of 17 is posted in register
44622, the comparison stops, and coils
00143 and 00144 energize for one
scan.

If contact 10002 is energized, the func-
tion will begin to compare at matrix po-
sition 1 in the next transition of 10001
and stop again when the value in regis-
ter 44622 = 17. If contact 10002 is not
energized, the function will begin to
compare at matrix position 18 in the
next transition of 10001 and stop when
the value in register 44622 = 25.

Data Manipulation Instructions78 890 USE 146 00

Sensing and Manipulating Bits in a
Data Matrix
Three instructions are provided to let
you examine and manipulate the bit pat-
terns in a data matrix:

The bit-sense (SENS) instruction ex-
amines and reports the sense—1 or
0—of specific bits in the matrix

The bit-modify (MBIT) instruction mo-
difies the sense of a specific bit in a
matrix—i.e., changes a 0 bit to 1 and
clears a 1 bit to 0

The bit-rotate (BROT) instruction
shifts the bit pattern in a matrix to the
left or right, forcing the exiting bit to
either fall out of the matrix or wrap
onto the other end of the register

One bit per scan may be sensed, modi-
fied, or rotated via these instructions.
Each is a three-high nodal instruction.

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

*** K is an integer constant in the range 1 ... 100 ;
K1 is an integer constant in the range 1 ... 255

I O

O

MBIT

I O
0x, 1x, *

3x, or 4x

0x** or
4x

BROT
K***

I O3x, 4x,
or K1***

0x** or
4x

SENS
K1**

I

K1***

Bit
sensing

Bit
modification

Bit
rotation

3x, 4x,
or K1***

0x** or
4x

I O

I O

OI

I O

I

Top:
ON initiates the
bit rotation

Middle:
0 = start left
1 = start right

Bottom:
0 = bit falls out
of the register
1 = bit wraps to
start of register

Top:
source matrix

Middle:
destination matrix

Bottom:
matrix length*

Top:
echos the
top input

Middle:
sense of the bit
rotating out of
the matrix

Rotates or shifts the
bit pattern in a matrix,
shifting the bits one
position per scan

Top:
ON reports the
sense of the
matrix bits

Middle:
increments the
pointer after a
bit sense

Bottom:
resets the
pointer to 1

Top:
pointer to the
matrix

Middle:
address of first
register in the
matrix

Bottom:
matrix length**

Top:
echos the
top input

Middle:
copies the
sensed bit

Bottom:
pointer > matrix

length

Examines and reports
the sense of specific
bits—i.e., 1 or 0—in a
matrix; one bit per
scan can be sensed

Top:
ON changes
the sense of
the matrix bits

Middle:
0 = clear bit
1 = set bit

Bottom:
increments the
pointer after bit
modification

Top:
pointer to the
matrix

Middle:
address of first
register in the
matrix

Bottom:
matrix length**

Top:
echos the
top input

Middle:
echos the
middle input

Bottom:
pointer > matrix

length

Changes the value of
a bit in the matrix
from 0 to 1 or from 1
to 0; one bit per scan
can be modified

* If you use a 0x or 1x reference, it must be given as a multiple of 16 + 1 (1, 17, 33, etc.), and it implies
the use of 16 discrete bits (1 ... 16, 17 ... 32, 33 ... 48, etc.).

** If 0x references are used as the destination, they cannot be programmed as coils, only as contacts
referencing those coil numbers

890 USE 146 00 79Data Management Instructions

Warning MBIT and BROT will
override any disabled coils in
the matrix without enabling
them. If a coil has been dis-
abled for repair or mainte-
nance, there is the potential
for injury, since that coil’s
state can change as a result of
bit manipulation.

890 USE 146 00 81Simple ASCII Communications

Chapter 8
Simple ASCII
Communications

ASCII Communication via Ladder Logic

The COMM Instruction

Data Formats

ASCII Character Codes

Application Example: Using the HHP an an ASCII Display
Terminal

82 Simple ASCII Communications 890 USE 146 00

ASCII Communication via Ladder Logic
The COMM instruction gives you the
ability to read and write ASCII character
devices—e.g., keyboards, displays, bar-
code readers—via one of the PLC’s
built-in communication ports or, if the
PLC is a parent, via a comm port on
one of the child PLCs on the expansion
link.

Canned Message Formats
The ASCII communications capability
offered with the Modicon Micros PLCs
provides simple canned message for-
mats. In this way, you can use the
low-cost 520VPU19200 Hand-held
Programmer (HHP) as an ASCII device;
the HHP itself does not support full
ASCII message/format editing.

The table below shows the formats—
i.e., operation types—available for use
in the COMM instruction.

The difference between CR/LF and no
CR/LF formats is the way in which they
handle carriages and linefeeds:

For a write operation with CR/LF, the
COMM instruction automatically
sends a carriage return/linefeed after
the selected number of items is sent

For a write operation with no CR/LF,
the COMM instruction does not auto-
matically send any carriage returns
or linefeeds

For a read operation with CR/LF, the
format is satisfied when either the
selected number of items is input—
i.e., taken out of the output buffer—or
when you input a carriage return or
linefeed; in the second case, the CR/
LF is not put into any register

For a read operation with no CR/LF,
inputting the selected number of
items is the only way to satisfy the
format

Format Decimal Format Indicator

Canned Message Formats

Flush input buffer 1000

Flush input byte, no CR/LF 1001

Read ASCII character, no CR/LF 1010

Write ASCII character, no CR/LF 1110

Read ASCII character, CR/LF 1020

Write ASCII character, CR/LF 1120

Read integer (1 ... 4), no CR/LF

Write integer (1 ... 4), no CR/LF

Read integer (1 ... 4), CR/LF

Write integer (1 ... 4), CR/LF

1031 ... 1034

1131 ... 1134

1041 ... 1044

1141 ... 1144

Read hex (1 ... 4), no CR/LF

Write hex (1 ... 4), no CR/LF

Read hex (1 ... 4), CR/LF

Write hex (1 ... 4), CR/LF

1051 ... 1054

1151 ... 1154

1061 ... 1064

1161 ... 1164

890 USE 146 00 83Simple ASCII Communications

The COMM Instruction

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

I O4x

COMM
K*

Simple ASCII
Read/Write O

I

4x

*K is an integer constant in the range 1 ... 255

O

Top:
ON starts the
comm function

Bottom:
aborts the ac-
tive function
and sets the
middle output

Top:
ACTIVE
output

Middle:
turned ON for one
scan when an er-
ror is detected

Bottom:
turned ON for one
scan when func-
tion completes

Performs the ASCII
communication
function defined in
the first register of
the control block
(register 4x in the
top node)

Top:
Beginning of
the control
block

Middle:
Write function
source or
Read function
destination

Bottom:
size of the source/
destination table

COMM Control Block (pointed to by the register in the top node of the instruction)

Register Number

4x Canned message format (One of the decimal format indicators from the table on the previous page)

Register Content

4x + 1 COMM error status

4x + 2 number of data fields provided/expected

4x + 3 number of data fields processed (This register is maintained by the instruction)

4x + 4 reserved for Modicon use

4x + 5 port number (1 for a port on the local PLC, 2 ... 5 if the local PLC is a parent using a port on a child)

4x + 6 reserved for Modicon use

4x + 7 reserved for Modicon use

4x + 8 reserved for Modicon use

4x + 9 active status timer

1 2 3 54 6 7 8 9 10 11 1312 14 1615

000 0 0 0No error

0 0 0 1 01

0 0 1 0 02

0 0 1 1 03

0 1 0 0 04

0 1 0 1 05

0 1 1 0 06

0 1 1 1 07

1 0 0 0 08

1 0 0 1 09

1 0 1 0 10

1 1 0 0 12

Unconfigured child selected in register 4x + 5

COMM instruction active longer than the time specified
in register 4x + 9

Invalid operation type (format) selected in register 4x

Number of data fields specified in register 4x + 2 bigger
than the constant in the bottom node of the COMM
instruction

Receiver buffer error detected

Bad integer value detected in incoming or outgoing data

Bad hex value detected in incoming or outgoing data

Number of bytes to be transmitted exceeds transmit buffer
size—256 bytes for the local ASCII port, 64 bytes for each
child

No local port configured for ASCII

Port in use by parent/child

Child is unhealthy

DSR line is active

1 0 1 1 11

Note See the table on the next page for more details and actions to take when an error is received

84 Simple ASCII Communications 890 USE 146 00

COMM Instruction Error Codes (Returned to the second word in the Control Block)
Code Error Considerations

01 Unconfigured child selected in register 4x
+ 5

The value in register 4x + 5 specifies which PLC the COMM
instruction is to communicate with. A value of 1 selects the local
PLC; a value of 2 selects child #1; a value of 3 selects child #2; etc.

02 COMM instruction active longer than the
time specified in register 4x + 9

03 Invalid operation type (format) selected
in register 4x

04 Number of data fields specified in register
4x + 2 bigger than the constant in the
bottom node of the COMM instruction

05 Receiver buffer error detected

For ASCII formats, each register can hold two fields (ASCII char-
acters). Thus, with a size of 1, the number of fields must be < 2;
with a size of 2, the number of fields must be < 4; etc.

Note The physical port on the selected PLC to be used for ASCII
communication—comm1, comm2, or exp link—is selected at con-
figuration time. It is not dynamically selectable from the COMM
instruction.

For integer formats (1 ... 4), each register can hold one field (one
integer) with a width of from 1 ... 4 digits.

For hex formats (1 ... 4), each register can hold one field (one hex
number) with a width of from 1 ... 4 nibbles.

For all formats that append a return or line feed, the return/line feed
does not require any register storage.

This error can be one of parity, overrun, or framing. To clear the
error, you must issue a flush buffer.

06 Bad integer value detected in incoming or
outgoing data

Valid values (in decimal):
For I1 0 ... 9
For I2 0 ... 99
For I3 0 ... 999
For I4 0 ... 9999

07 Bad hex value detected in incoming or
outgoing data

Valid hex values:
For H1 0 ... F
For H2 0 ... FF
For H3 0 ... FFF
For H4 0 ... FFFF

08 Number of bytes to be transmitted exceeds
transmit buffer size—256 bytes for the local
ASCII port, 64 bytes for each child

The number of bytes to be sent depends on the format selected
and the number of fields to be processed. For ASCII format, the
number of bytes = the number of formats to be processed. For
integer and hex formats, the number of bytes = the number of
formats to be processed x the format specifier (1 ... 4).

For example, if the number of fields to be processed is 2 and the
format specifier is I3, the number of bytes to be sent is 6 (2 x 3).

For all formats, you must add 2 to the above numbers if return/line
feed is selected—returns and line feeds are stored in the TX buffer.

09 No local port configured for ASCII Reconfigure the PLC and assign the desired port to ASCII

10 Port in use by parent/child

11 Child is unhealthy The parent is unable to communicate with the child over the
expansion link

In a parent, this error indicates that the unit is trying to access a
child’s ASCII port when that port has been configured for use by
the child itself. Reconfigure the child and assign the desired port
to the parent.

In a child, this error indicates that the unit is trying to access the
local ASCII port when that port has been configured for use by the
parent. Reconfigure the child and assign the desired port to the child.

12 DSR line is active When a comm port is configured for ASCII, it may actually be in
Modbus/ASCII toggle mode, where the DSR line is used to
toggle between the two communication protocols.

When the PLC is stopped or when the DSR line is asserted while the
PLC is running, the port reconfigures with Modbus parameters set in
the configuration.

When the PLC is running and the DSR line is not asserted while, the
port reconfigures with ASCII parameters set in the configuration.

890 USE 146 00 85Simple ASCII Communications

Data Formats
ASCII Character Format

Format numbers 1010, 1110, 1020, 1120

General Usage Sending/receiving ASCII characters or 8-bit data.
The data is packed two characters per 4x register,
the first character in the most significant eight bits
of the register and the second character in the
eight least significant bits

Usage in a write operation

No auto CR/LF Format satisfied after n characters output from
registers

Auto CR/LF Format satisfied after n characters output from
registers and CR/LF output

Usage in a read operation

No auto CR/LF Format satisfied after n characters input to regis-
ters

Auto CR/LF Format satisfied after n characters input to regis-
ters

or CR/LF received in buffer

Integer (1 ... 4) Format
Format numbers 1031 ... 1034, 1131 ... 1134,

1041 ... 1044, 1141 ... 1144

General Usage Sending/receiving integer data fields. The data is
packed as 1 ... 4 digits (depending on format
number selected) per 4x register and is right-
justified with the first digit in the data field in the
leftmost position

Usage in a write operation
No auto CR/LF Format satisfied after n data fields output from

registers

Auto CR/LF Format satisfied after n data fields output from
registers and CR/LF output

Usage in a read operation
No auto CR/LF Format satisfied after n integers input to registers

Auto CR/LF Format satisfied after n integers input to registers
or CR/LF received in buffer

86 Simple ASCII Communications 890 USE 146 00

Hex (1 ... 4) Format
Format numbers 1051 ... 1054, 1151 ... 1154,

1061 ... 1064, 1161 ... 1164

General Usage Sending/receiving hex data fields. The data is
packed as 1 ... 4 digits (depending on format
number selected) per 4x register and is right-
justified with the first digit in the data field in the
leftmost position

Usage in a write operation
No auto CR/LF Format satisfied after n data fields output from

registers
Auto CR/LF Format satisfied after n data fields output from

registers and CR/LF output

Usage in a read operation

No auto CR/LF Format satisfied after n integers input to registers

Auto CR/LF Format satisfied after n integers input to registers
or CR/LF received in buffer

Flush Input Buffer Format
Format number 1000

General Usage Flushing the input buffer. In the local PLC, the
buffer is flushed immediately—i.e., at logic solve
time. If a parent is using the comm port of a child
for the ASCII operation, the flush is done when the
child receives the request from the parent—the
parent will send this request at the end of scan

Usage in a write operation Not applicable

Usage in a read operation All bytes in the input buffer will be discarded

Flush Input Byte Format
Format number 1001

General Usage Flushing a number of bytes from the input buffer.
In the local PLC, the bytes are flushed immediately.
If a parent is using the comm port of child for the
ASCII operation, the flush is done when the child
receives the request from the parent—the parent
will send this request at the end of scan

Usage in a write operation Not applicable

Usage in a read operation The specified number of bytes in the input buffer
will be discarded

890 USE 146 00 87Simple ASCII Communications

ASCII Character Codes
Here is a list of the ASCII characters,
along with their decimal and hexideci-
mal representations, that can be sup-
ported by the Hand-held Programmer
for simple message displays:

ASCII
Character

Dec
Value

Hex
Value

Bell 7 07

Linefeed 10 0A

Formfeed 12 0C

Carriage return 13 0D

→ 26 1A

← 27 1B

Space 32 20

! 33 21

” 34 22

35 23

$ 36 24

% 37 25

& 38 26

’ 39 27

(40 28

) 41 29

* 42 2A

+ 43 2B

’ 44 2C

- 45 2D

. 46 2E

/ 47 2F

0 48 30

1 49 31

2 50 32

3 51 33

4 52 34

5 53 35

6 54 36

7 55 37

8 56 38

9 57 39

: 58 3A

; 59 3B

ASCII
Character

Dec
Value

Hex
Value

< 60 3C

= 61 3D

> 62 3E

? 63 3F

@ 64 40

A 65 41

B 66 42

C 67 43

D 68 44

E 69 45

F 70 46

H 72 48

I 73 49

J 74 4A

K 75 4B

L 76 4C

M 77 4D

N 78 4E

G 71 47

O 79 4F

P 80 50

Q 81 51

R 82 52

S 83 53

T 84 54

U 85 55

V 86 56

W 87 57

X 88 58

Y 89 59

Z 90 5A

[91 5B

]

^

93 5D

_

94 5E

95 5F

a

b

97 61

c

98 62

99 63

88 Simple ASCII Communications 890 USE 146 00

ASCII
Character

Dec
Value

Hex
Value

e

100 64

f

101 65

g

102 66

h

103 67

i

104 68

j

105 69

k

106 6A

l

107 6B

m

108 6C

n

109 6D

o

110 6E

d

q

112 70

r

113 71

s

114 72

t

115 73

u

116 74

v

117 75

w

118 76

p

111 6F

x

119 77

120 78

y 121 79

z 122 7A

{ 123 7B

| 124 7C

} 125 7D

ü 129 81

132 84

ö 148 94

155 9B

£ 156 9C

¢

164 A4

219 DB

α 224 E0

ñ

ä

β 225 E1

Σ 228 E4

σ 229 E5

µ 230 E6

Ω 234 EA

∞
ε

236 EC

238 EE

— 246 F6..

890 USE 146 00 89Simple ASCII Communications

Application Example: Using the HHP as an
ASCII Display Terminal
In this example, a 520VPU19200 Hand-
held Programmer is used as the ASCII
display terminal where a part count and
cycle time are printed out. The applica-
tion uses four different COMM
instructions:

The first COMM writes the ASCII
message PART COUNT = ; it uses the
1110 format, which writes ASCII
characters followed by a carriage re-
turn and linefeed (CR/LF)

The second COMM writes four inte-
gers that indicate the part count; it
uses the 1144 format, which writes
four integers followed by a CR/LF

The third COMM writes the ASCII
message CYCLE TIME = ; it uses the
1110 format

The fourth COMM writes four inte-
gers representing the cycle time; it
uses the 1144

The first and third COMM instructions
use the same control block. The first
ten registers of this control block, 40400
... 40409, look like this:

Register
Number

Register
Value Meaning

Control Block for First and Third COMMs

40400

40401

40402

40403

40404

40405

40406

1110 Data format is: Write ASCII
character, CR/LF

nn PLC generates an error
message where nn is in
the range 00 ... 12
(00 indicates no problems)

14 A maximum of 14 bytes
of information

nn Number of data fields
processed (nn is main-
tained by the PLC)

Reserved

1 ASCII communication being
handled from the local PLC

Reserved

40407 Reserved

40408 Reserved

40409 0 No timeout

The ASCII character strings are stored
in registers 40410 ... 40426 of the con-
trol block. Here is a table showing the
two ASCII characters in each register
and the hex equivalent for each:

40410

40411

40412

40413

40414

Register
Number ASCII ASCII

P A

R T

C

O U

N T

40415 =

40416 ^ ^

40420 C Y

40421 C L

40422 E ^

40423 T I

40424 M E

40425 =

40426 ^ ^

^ indicates an empty character space

LByte HByte LByte
Hex

HByte
Hex

50 41

52 54

20 43

4F 55

4E 54

20 3D

00 00

43 59

43 4C

45 00

54 49

4D 45

20 3D

00 00

90 Simple ASCII Communications 890 USE 146 00

The second and fourth COMM instruc-
tions also use the same control block.
The first ten registers of this control
block, 40430 ... 40439, look like this:

Register
Number

Register
Value Meaning

Control Block for Second and
Fourth COMMs

40430

40431

40432

40433

40434

40435

40436

1144 Data format is: Write four
integers, CR/LF

nn PLC generates an error
message where nn is in
the range 00 ... 12
(00 indicates no problems)

1 A maximum of 1 byte
of information

nn Number of data fields
processed (nn is main-
tained by the PLC)

Reserved

1 ASCII communication being
handled from the local PLC

Reserved

40437 Reserved

40438 Reserved

40439 0 No timeout

Register 40400 should be loaded with a
part count number “223”, and register
40441 should be loaded with the cycle-
time value “8”.

Network 1 on the following page shows
a technique of using Math Function
Blocks to preload registers with informa-
tion -- in this case, the COMM Control
Blocks. These are the only registers
you need to fill in other than the ASCII
character registers. Another technique
shown as part of this example is the
shared register resources within func-
tion blocks, which saves using more
registers than necessary.

If you are using the HHP, it should be
connected to (a) for 311/411 Micros, the
port that was configured for ASCII after
network setup, or (b) for 512/612
Micros, port 2. Follow the menu
screens to set up the HHP to “Slave
Mode, Simple Message.” The HHP will
display a blank screen with blinking
cursor.

To activate this example, power should
be applied to external input 10002. The
result displayed on the HHP screen
should be two lines of text:

PART COUNT = 0223
CYCLE TIME = 0008

To repeat, clear the HHP screen by

pressing the red () key and the EXIT
key. Again apply power to external
input 10002.

890 USE 146 00 91Simple ASCII Communications

0111

40399

0000

SUB

Network 1

40399

0010

MUL
40399

0014

40402

0000

SUB

0001

40405
SUB

40409
SUB

40400

0034

ADD
40430

0001

40432
SUB

0001

40435
SUB

40439
SUB

0000 0000

0000

0000

0000

00000000

Seg. 1 #1 / 1

40400

0007
COMM

Network 2

40440

COMM
0001

40430

40410

10002

00126

Seg. 1 #2 / 2

P

40400

0007
COMM

Network 3

40441

COMM
0001

40430

40420

00126

00127

Seg. 1 #3 / 3

890 USE 146 00 93Sequencer/Drum Control

Chapter 9
The Sequence Control
Interface Function

SCIF Instruction

Application Example: Time-stepping with SCIF Blocks

94 890 USE 146 00Sequencer/Drum Control

SCIF Instruction

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

I O4x

Top:
ON performs the
drum or ICMP
operation

Top:
echos the
top input

Top:
The step pointer

Bottom:
The number of
application-specif-
ic step data regis-
ters in the step
data table; the
total number of
registers in the
table is K + 6

*K is an integer in the range 1 ... 255.

O

Bottom:
ON if an error
is detected

SCIF
K*

4x

O

I

I

Middle:
ON in drum mode
increments the
step pointer to the
next step;
ON in ICMP
mode passes the
compare status to
the middle output

Bottom:
ON in drum
mode resets the
step pointer to 0;
this input not
used in ICMP
mode

Middle:
In drum mode,
goes ON for the
last step—i.e.,
when the step
pointer = the
maximum num-
ber of steps;
ON in ICMP
mode indicates
a valid (1) or in-
valid (0) com-
pare of the in-
puts (see Note
below).

Middle:
the first register in
the step data
table; the first six
registers in the
table are re-
served as shown
below

Sequential
Control Interface

Performs one of two
functions as defined
by the value in the
first register in the
step data table:

0 = drum mode,
where the block
controls outputs in
the drum sequenc-
ing application

1 = input compare
(ICMP) mode,

where the block
reads inputs to in-
sure that limit

switches, proximity
switches, pushbut-
tons, etc. are prop-

erly positioned to
allow drum outputs

to be fired

Registers in the Step Data Table (pointed to by the middle-node register)
Reference Register Name Description

4x subfunction 0 = drum mode functionality
1 = input comparison (ICMP) mode functionality
(entry of any other value in this register will result in all outputs OFF)

4x + 1 masked output data
(in drum mode)

Loaded by SCIF each time the block is solved; the register contains the contents
of the current step data register masked with the output mask register

raw input data
(in ICMP mode)

Loaded by the user from a group of sequential inputs to be used by the block in
the current step

4x + 2 current step data Loaded by SCIF each time the block is solved; the register contains data from the
current step (pointed to by the step pointer)

4x + 3 output mask
(in drum mode)

Loaded by the user before using the block, the contents will not be altered during
logic solving; contains a mask to be applied to the data for each sequencer step

input mask
(in ICMP mode)

Loaded by the user before using the block, it contains a mask to be ANDed with
raw input data for each step—masked bits will not be compared; the masked data
are put in the masked input data register

4x + 4

4x + 5

not used in drum mode
masked input data
(in ICMP mode)

Loaded by SCIF each time the block is solved, it contains the result of the ANDed
input mask and raw input data

4x + 6

not used in drum mode
compare status
(in ICMP mode)

Loaded by SCIF each time the block is solved, it contains the result of an XOR of
the masked input data and the current step data; unmasked inputs that are not in
the correct logical state cause the associated register bit to go to 1—non-zero bits
cause a miscompare and turn ON the middle output from the SCIF block

start of data table* First of K registers in the table containing the user-specified control data

*This and the rest of the registers represent application-specific step data in the process being controlled

890 USE 146 00 95Sequencer/Drum Control

Note When using the middle out-
put, be aware that when integrat-
ing with other logic, if the step
pointer is zero and the middle in-
put is ON, then the middle output
will also be ON. This condition
will cause the step pointer to be
one step out of sequence.

The drum and ICMP subfunctions work
together to read inputs, trigger outputs,
and sequence steps in the drum pro-
cess. The SCIF instruction emulates
electronically the mechanical tenor drum
sequencer, introduced in the early
1900’s and still used today in applica-
tions that require simultaneous control
of multiple motors, valves, solenoids,
etc. at different steps in a process.

The mechanical tenor drum works much
like a piano roll. A cylinder consists of
a series of rows of cams and flat sur-
faces. Each row represents a step in a
process, and each cam represents a
change of state for a mechanical device
in the process. The cylinder rotates in
a single direction so that each row
passes a stationary string of contacts,
one row at a time. As the cams in a
given row meet the contacts, mechani-
cal state changes take place for that
step in the process.

A Mechanical Tenor Drum

With a SCIF block, a step data table is
set up with a 16-bit register to represent
each step in the process being con-

trolled. The logic scans the table from
top to bottom, treating each 1 value in a
register like a cam and each 0 like a flat
surface in a row on the mechanical ten-
or drum.

A Step Data Table for a SCIF Block

Register
Value

Register
Content

4x

4x + 1

4x + 2

4x + 3

4x + 4

4x + 5

Step Data Table
Set-up Registers

1 1 1

1 10 0

0 1 10 0

1 1 0 0 11 1 0 0

01 10 0 1 1 0 0

0 0 1 1

0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 0

0 1 1 0 1 1 0 0 0 0 1 0 0 0 1 1 0

4x + 6

4x + 7

4x + 8

4x + n

Step 1

Step 2

Step 3

Last
Step

The SCIF instruction combines the con-
cept of the mechanical tenor drum with
the added power and flexibility of the
Modicon Micro PLC to provide

Reduced downtime due to the elimi-
nation of several moving parts

Sequencing operations that can be
easily programmed and maintained

More accuracy in terms of timing be-
tween process steps

More flexibility in setting dwell,
clamp, and hold times

Modern drum sequencer applications in-
clude tire and rubber molding, injection
molding, die casting, plating, bottling,
and other batch-oriented uses.

SCIF combines two subfunctions—drum
and ICMP. Drum mode is used to map
a predefined bit pattern to the outputs
on the Modicon Micro PLC in a sequen-
tial, step-by-step fashion. ICMP (input
compare) mode is used to match inputs
coming from the field devices with a
predefined table of bit patterns for each
step of the drum.

96 890 USE 146 00Sequencer/Drum Control

Using drum and ICMP together allows
the programmer to fire outputs and
compare the status of the inputs against

a predefined status. If a mismatch oc-
curs, the process is halted.

Application Example: Time-stepping with
SCIF Blocks
This three-network ladder logic applica-
tion example shows how SCIF blocks
can be used in both drum and ICMP
modes. The logic in network 1 starts
and stops the sequencer cycle. Once
the Start Cycle pushbutton is pressed,
the logic cycles the drum sequencer un-
til either the Cycle Stop pushbutton or
E-stop pushbutton is pressed.

If Cycle Stop is requested, the drum se-
quence continues until the last step in
the step data table has been completed.
If E-stop is pressed, the drum sequenc-
ing stops immediately on the current
step.

Note In some applications, this
E-stop implementation may not be
desirable. If an immediate stop on
the current step is not desirable in
your application during an emer-
gency shutdown, you should
modify the logic to suit your spe-
cific requirements.

Network 1 controls the starting and
stopping of the drum example.

Coil 00128—Cyclestart SCIF_CONTR—
indicates that the SCIF cycle has
started.

Coil 00129—Seq_start SCIF_CONTR—
indicates that the SCIF sequence has
started or restarted.

0012810001 10002 10003

00128

00128

00129

10001

00130

00129

CycleStart

Cyclestart Seq_start

Last_step

Network 1

EMERG_STOP Stop_cycle
SCIF_CONTR SCIF_CONTR

EMERG_STOP
SCIF_CONTR SCIF_CONTR

Startcycle
SCIF_CONTR

CycleStart
SCIF_CONTR
0001 #000

SCIF_CONTR
Seq_start
SCIF_CONTR

0003 #000 0001 #000

890 USE 146 00 97Sequencer/Drum Control

Caution Running this exam-
ple will fire live outputs. Use
this example only on a simula-
tor, not on live machinery.

Network 2 controls the dwell time used
at each step of the drum.

Coil 00131—Next_step SCIF_CONTR—
increments the SCIF pointer to the next
step.

40150

#0016

40200

SCIF

40201

40400
T.01

Network 2

00129 00131
Next_Step

00131 00129

Steppointr
SCIF_CONTR

Dwelltable
SCIF_DWELL

Seq_start
SCIF_CONTR

Next_Step
SCIF_CONTR

Seq_start
SCIF_CONTR

Dwelltime
SCIF_DWELL

Junk_reg
SCIF_DWELL

0002 #000 0001 #000

Network 3 holds the ICMP and drum
functions that are to be used to com-
pare system inputs to a predetermined
value and to fire the outputs of the
drum.

The BLKM block in network 3 moves
the feedback inputs that the ICMP-

mode SCIF block next to it will monitor
in its middle-node register. This SCIF
block then compares the status of the
feedback inputs to the expected result.

Coil 00132—Compare_OK
SCIF_CONTR—indicates that the SCIF
ICMP inputs equal the desired preset.

98 890 USE 146 00Sequencer/Drum Control

10017

#0001

40101

40150

#0016
BLKM

40100

SCIF

Network 3

00129

00132

00130

Seq_start
SCIF_CONTR
0001 #000

00129
Seq_start

SCIF_CONTR
0001 #000

Compare_OK

40150

#0016

40300

SCIF

Input_1
SCIF_ICMP

Steppointr
SCIF_CONTR

00131
Next_step

SCIF_CONTR
0002 #000

40301

#0001

00001

BLKM

00132
Compare_OK
SCIF_CONTR

Last_step

00130
Last_step

SCIF_CONTR
0003 #000

0003 #000

ICMP_raw
SCIF_ICMP

ICMP_mode
SCIF_ICMP

DRUM_mode
SCIF_DRUM

Output_1

Steppointr
SCIF_CONTR

DRUMmasked
SCIF_DRUM

Network 3 performs the actual sequenc-
er operation. As each step is executed,
the value in register 40301 is changed
by the drum-mode SCIF block to reflect
the bit pattern of the current step.

The BLKM block takes the masked data
in register 40301 and moves it into coils
00001 ... 00017. These coils could be
I/O mapped directly to real outputs;
however, it is also likely that contacts
from these coils would be used to inter-
lock the logic responsible for turning ON
real inputs.

890 USE 146 00 99Sequencer/Drum Control

Reference Tags for the Application
Example
The references in the table below are
used to control the starting, stopping
and interlocking of the SCIF function:

Control References

Ref # Tag Function Description
00128 Cyclestart SCIF_CONTR Indicates that the SCIF cycle has started
00129 Seq_start SCIF_CONTR Indicates SCIF sequence has started/restarted
00130 Last_step SCIF_CONTR Indicates SCIF at last step
00131 Next_step SCIF_CONTR Increments the SCIF pointer to the next step
00132 Compare_OK SCIF_CONTR Indicates that SCIF ICMP inputs = desired preset
10001 EMERG_STOP SCIF_CONTR Emergency stop halts SCIF at current step
10002 Stop_cycle SCIF_CONTR Cycle stop for SCIF halts SCIF at end of cycle
10003 Startcycle SCIF_CONTR Starts starts the SCIF cycle
40150 Steppointr SCIF_CONTR Step pointer register holds SCIF current step #

The references in the table below are
used in the SCIF’s Dwell function.
When the SCIF function is used to hold

step dwell times, it should be used in
the drum mode = 0.

Ref # Tag Function Description

Dwell References

40400 Junk_reg SCIF_DWELL Junk register for dwell timer
40200 Dwelltable SCIF_DWELL SCIF used to hold dwell times for each drum step
40201 Dwelltime SCIF_DWELL Current dwell time for current step
40206 Dwelstep1 SCIF_DWELL Dwell time step 1
40207 Dwelstep2 SCIF_DWELL Dwell time step 2
40208 Dwelstep3 SCIF_DWELL Dwell time step 3
40209 Dwelstep4 SCIF_DWELL Dwell time step 4
40210 Dwelstep5 SCIF_DWELL Dwell time step 5
40211 Dwelstep6 SCIF_DWELL Dwell time step 6
40212 Dwelstep7 SCIF_DWELL Dwell time step 7
40213 Dwelstep8 SCIF_DWELL Dwell time step 8
40214 Dwelstep9 SCIF_DWELL Dwell time step 9
40215 Dwelstep10 SCIF_DWELL Dwell time step 10
40216 Dwelstep11 SCIF_DWELL Dwell time step 11
40217 Dwelstep12 SCIF_DWELL Dwell time step 12
40218 Dwelstep13 SCIF_DWELL Dwell time step 13
40219 Dwelstep14 SCIF_DWELL Dwell time step 14
40220 Dwelstep15 SCIF_DWELL Dwell time step 15
40221 Dwelstep16 SCIF_DWELL Dwell time step 16

100 890 USE 146 00Sequencer/Drum Control

The references in the table below are
used by the SCIF’s input compare

(ICMP) function and are associated with
system inputs.

10017 Input_1 SCIF_ICMP 1st physical input block-moved to SCIF_ICMP
10018 Input_2 SCIF_ICMP 2nd physical input block-moved to SCIF_ICMP
10019 Input_3 SCIF_ICMP 3rd physical input block-moved to SCIF_ICMP
10020 Input_4 SCIF_ICMP 4th physical input block-moved to SCIF_ICMP
10021 Input_5 SCIF_ICMP 5th physical input block-moved to SCIF_ICMP
10022 Input_6 SCIF_ICMP 6th physical input block-moved to SCIF_ICMP
10023 Input_7 SCIF_ICMP 7th physical input block-moved to SCIF_ICMP
10024 Input_8 SCIF_ICMP 8th physical input block-moved to SCIF_ICMP
10025 Input_9 SCIF_ICMP 9th physical input block-moved to SCIF_ICMP
10026 Input_10 SCIF_ICMP 10th physical input block-moved to SCIF_ICMP
10027 Input_11 SCIF_ICMP 11th physical input block-moved to SCIF_ICMP
10028 Input_12 SCIF_ICMP 12th physical input block-moved to SCIF_ICMP
10029 Input_13 SCIF_ICMP 13th physical input block-moved to SCIF_ICMP
10030 Input_14 SCIF_ICMP 14th physical input block-moved to SCIF_ICMP
10031 Input_15 SCIF_ICMP 15th physical input block-moved to SCIF_ICMP
10032 Input_16 SCIF_ICMP 16th physical input block-moved to SCIF_ICMP
40100 ICMP_mode SCIF_ICMP Selects SCIF mode set to 1 for ICMP
40101 ICMP_raw SCIF_ICMP Raw data input register for SCIF ICMP
40102 ICMP_CSD SCIF_ICMP Contains current step data for ICMP function
40103 ICMP_imask SCIF_ICMP Contains ICMP input mask
40104 ICMPmasked SCIF_ICMP ANDed result of raw data and ICMP masked data
40105 ICMPstatus SCIF_ICMP Contains XOR of masked data and ICMP step data
40106 ICMPstep1 SCIF_ICMP 1st entry in ICMP data table
40107 ICMPstep2 SCIF_ICMP 2nd entry in ICMP data table
40108 ICMPstep3 SCIF_ICMP 3rd entry in ICMP data table
40109 ICMPstep4 SCIF_ICMP 4th entry in ICMP data table
40110 ICMPstep5 SCIF_ICMP 5th entry in ICMP data table
40111 ICMPstep6 SCIF_ICMP 6th entry in ICMP data table
40112 ICMPstep7 SCIF_ICMP 7th entry in ICMP data table
40113 ICMPstep8 SCIF_ICMP 8th entry in ICMP data table
40114 ICMPstep9 SCIF_ICMP 9th entry in ICMP data table
40115 ICMPstep10 SCIF_ICMP 10th entry in ICMP data table
40116 ICMPstep11 SCIF_ICMP 11th entry in ICMP data table
40117 ICMPstep12 SCIF_ICMP 12th entry in ICMP data table
40118 ICMPstep13 SCIF_ICMP 13th entry in ICMP data table
40119 ICMPstep14 SCIF_ICMP 14th entry in ICMP data table
40120 ICMPstep15 SCIF_ICMP 15th entry in ICMP data table
40121 ICMPstep16 SCIF_ICMP 16th entry in ICMP data table

Ref # Tag Function Description

ICMP Function References

890 USE 146 00 101Sequencer/Drum Control

The references in the table below are
used by the SCIF’s drum function and
are associated with system outputs.

Ref # Tag Function Description

Drum References

40300 DRUM_mode SCIF_DRUM Selects SCIF mode, set to 0 for drum
40301 DRUMmasked SCIF_DRUM Masked drum output = Mask AND current step data
40302 DRUM_CSD SCIF_DRUM Drum current step data (CSD)
40303 DRUM_omask SCIF_DRUM Drum output mask
40304 DRUM_R1 SCIF_DRUM Reserved drum register 1
40305 DRUM_R2 SCIF_DRUM Reserved drum register 2
40306 DRUMstep1 SCIF_DRUM 1st entry in drum data table
40307 DRUMstep2 SCIF_DRUM 2nd entry in drum data table
40308 DRUMstep3 SCIF_DRUM 3rd entry in drum data table
40309 DRUMstep4 SCIF_DRUM 4th entry in drum data table
40310 DRUMstep5 SCIF_DRUM 5th entry in drum data table
40311 DRUMstep6 SCIF_DRUM 6th entry in drum data table
40312 DRUMstep7 SCIF_DRUM 7th entry in drum data table
40313 DRUMstep8 SCIF_DRUM 8th entry in drum data table
40314 DRUMstep9 SCIF_DRUM 9th entry in drum data table
40315 DRUMstep10 SCIF_DRUM 10th entry in drum data table
40316 DRUMstep11 SCIF_DRUM 11th entry in drum data table
40317 DRUMstep12 SCIF_DRUM 12th entry in drum data table
40318 DRUMstep13 SCIF_DRUM 13th entry in drum data table
40319 DRUMstep14 SCIF_DRUM 14th entry in drum data table
40320 DRUMstep15 SCIF_DRUM 15th entry in drum data table
40321 DRUMstep16 SCIF_DRUM 16th entry in drum data table
00001 Output_1 SCIF_DRUM 1st physical output block-moved from SCIF_DRUM
00002 Output_2 SCIF_DRUM 2nd physical output block-moved from SCIF_DRUM
00003 Output_3 SCIF_DRUM 3rd physical output block-moved from SCIF_DRUM
00004 Output_4 SCIF_DRUM 4th physical output block-moved from SCIF_DRUM
00005 Output_5 SCIF_DRUM 5th physical output block-moved from SCIF_DRUM
00006 Output_6 SCIF_DRUM 6th physical output block-moved from SCIF_DRUM
00007 Output_7 SCIF_DRUM 7th physical output block-moved from SCIF_DRUM
00008 Output_8 SCIF_DRUM 8th physical output block-moved from SCIF_DRUM
00009 Output_9 SCIF_DRUM 9th physical output block-moved from SCIF_DRUM
00010 Output_10 SCIF_DRUM 10th physical output block-moved from SCIF_DRUM
00011 Output_11 SCIF_DRUM 11th physical output block-moved from SCIF_DRUM
00012 Output_12 SCIF_DRUM 12th physical output block-moved from SCIF_DRUM
00013 Output_13 SCIF_DRUM 13th physical output block-moved from SCIF_DRUM
00014 Output_14 SCIF_DRUM 14th physical output block-moved from SCIF_DRUM
00015 Output_15 SCIF_DRUM 15th physical output block-moved from SCIF_DRUM
00016 Output_16 SCIF_DRUM 16th physical output block-moved from SCIF_DRUM

890 USE 146 00 103Subroutine Instructions

Chapter 1 0
Subroutine Instructions

Ladder Logic Subroutine Instructions

The Interrupt and Counter/Timer Inputs

The CTIF Instruction

A CTIF Application Example

Subroutine Instructions104 890 USE 146 00

Ladder Logic Subroutine Instructions
Subroutine logic may be initiated either
by the hardware interrupt or by a pro-
gram-based instruction (JSR) in the
control logic. If you are using a hard-
ware-based interrupt to trigger the sub-
routine, you must configure the PLC’s
high-speed input circuitry to handle the
interrupt(s) using an instruction called
CTIF.

In this chapter, we will discuss the both
methods of getting into and out of a
subroutine.

Subroutine logic is always kept in the
last segment of the ladder logic pro-
gram. No other logic except the sub-
routine logic is stored there. When a
subroutine is initiated, the logic scan
jumps to an instruction in the last seg-
ment called LAB. This instruction la-
bels the beginning of that subroutine’s
logic. When the logic scan reaches an
instruction in the subroutine called RET,
it jumps out of that subroutine and re-
turns to its previous position in the con-
trol logic.

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

I O4x or
K*

JSR
00001

Jump to a
subroutine

Top:
ON enables the
source subroutine

Top:
echos the
top input

Top:
A constant or reg-
ister value that in-
dicates the de-
sired subroutine

Bottom:
Always a con-
stant value of 1

O Bottom:
ON if an error
is detected

Causes the logic scan
to jump to a specified
subroutine in the last
(unscheduled) seg-
ment of user logic

Label the
subroutine I O

K*
LAB

Top:
ON activates
the specified
subroutine

Top:
A unique constant
value that identi-
fies the selected
subroutine

Top:
ON if an error
is detected

Marks the starting
point of the sub-
routine in the user
logic segment

Return to
ladder logic I O

00001
RET

Top:
ON initiates the
return out of the
subfunction

Top:
Always a con-
stant value of 1

Top:
ON if an error
is detected

Returns the logic
scan to the node
immediately follow-
ing the place
where the subrou-
tine was entered

*K is an integer constant in the range 1 ... 255

890 USE 146 00 105Subroutine Instructions

Below is a conceptual illustration of how
a subroutine is called from ladder logic.
When the logic scan in segment 1 en-
counters an enabled JSR instruction, it
jumps to the indicated subroutine in
segment 2. Only the logic associated
with the called subroutine is scanned in

segment 2—all other subroutine logic is
ignored.

When the logic scan encounters a RET
instruction in the subroutine logic, it
jumps back to the node immediately fol-
lowing the JSR instruction in
segment 1.

SEGMENT 1

Network 1

Network 2

Network 3

10001

00002
JSR
00001

Network 2

LAB
00002

Network 1

LAB
00001

RET
00001

Network 3

SEGMENT 2

Logic for
subroutine #1

RET
00001

Logic for
subroutine #2

Subroutine Instructions106 890 USE 146 00

The Interrupt and Counter/Timer Inputs
The 110CPU411, 110CPU512, and
110CPU612 Models of the Micro PLC
have a set of input points built into the
hardware that can be configured as
high-speed counters and/or hardware
interrupts. These inputs are located on
the left side of the input terminal block
across the top of the PLC. (For specific
terminal screws, refer to your PLC hard-
ware manual.)

These inputs can be read on every
scan by the PLC just like standard input
points. In addition, they can used to
trigger high-speed counting or hard-
ware-initiated subroutine operations in
ladder logic.

When they are used as standard inputs,
they are addressed to references
10081 ... 10088 in the I/O map of the
associated PLC. When they are used
to trigger interrupts or high-speed count-
ing operations, these inputs need to be
configured in ladder logic via an instruc-
tion called CTIF. CTIF configures the
internal high-speed interrupt and count-
er hardware for use with these high-
speed inputs. CTIF-configured inputs
do not need to be addressed in the I/O
map unless their associated references
are used in the ladder logic program.

Hardware Interrupt Operation

When a hardware interrupt is confi-
gured, a low-to-high transition on the in-
put initiates an interrupt service subrou-
tine. Interrupt-initiated subroutines are

very similar to JSR-initiated subroutines.
They interrupt the normal logic scan
and send it to a LAB instruction in seg-
ment 2 that identifies the beginning of
the appropriate subroutine. The sub-
routine executes until the scan encoun-
ters a RET instruction, at which point
the logic scan returns to its previous lo-
cation in segment 1. The primary differ-
ence is that the interrupt-initiated sub-
routine is triggered by an external event
caused by a device hardwired to the in-
put, while the JSR-initiated subroutine is
triggered by internal conditions in the
logic program.

To initiate more than one interrupt on
the same input, the interrupt signal must
go low then transition back to high
again. The ladder logic operating sys-
tem does not allow a new interrupt on
the same input until the previous inter-
rupt subroutine has been completed for
about 2 ms. This delay prevents a PLC
lock-up that could otherwise be caused
by a continuous stream of high speed
(> 2 ms) interrupts at the input.

The dedicated interrupt is connected to
the CPU in the PLC through a hardware
filter, which introduces approximately
50 µs of delay into the interrupt subrou-
tine. The operating system also runs
with the interrupts disabled for a certain
time in each scan—about 300 µs.
Thus, the initiation of the interrupt sub-
routine could be delayed by about
350 µs.

Dedicated
Interrupt

Configurable
Counter/Interrupt

00 01 02 03 00 01 02 03 00 03

1 1 1 1 1 1

1 1 1 1 1 11 1 1 1

2 2 2 2

High-speed
Input

110CPU411 110CPU512 110CPU612

890 USE 146 00 107Subroutine Instructions

ll the 110CPU411, 110CPU512, and
110CPU612 PLCs have at least one in-
put that is dedicated to interrupt signals
and another input that is configurable
via the CTIF instruction as either a
hardware interrupt or as a high speed
counter.

Interrupt User Logic
Considerations

User logic to handle an immediate inter-
rupt must be present in the last seg-
ment in the controller logic. This user
logic sequence is known as the interrupt
level processing for that particular inter-
rupt; the user logic that was executing
before the interrupt occurred is known
as the background level processing.

When an immediate interrupt occurs,
the background processing is immedi-
ately suspended and the interrupt level
processing executed. Only when the in-
terrupt level processing has finished
(i.e., reached a RET label or encounters
no more user logic in the controller), will
the Micro return to where it was prior to
the interrupt and continue executing the
background level user logic.

A few of the DX functions -- the COMM
and the EMTH functions -- have
restrictions on their use in interrupt level
user logic.

The COMM Dx Block
The COMM Dx block may not be used
in an interrupt level routine.

The EMTH Dx Block
The EMTH function can never be inter-
rupted while it is executing at back-
ground level if the interrupt level user
logic also contains an EMTH function.

This can be done by inserting a CTIF
function block just before and just after
each occurrence of an EMTH function
in the background level logic. The first
CTIF block should be programmed to
turn off interrupts, and the second CTIF
block to turn them on again.

It should be emphasized that if the in-
terrupt level user logic does not contain
an EMTH function, there is no need to
employ the above technique.

Block Manipulation of Registers
and I/O Points
When a common block of registers
must manipulated by user logic at both
background and at interrupt level, be
aware that the block of registers may
give misleading results unless protected
by temporarily turning the immediate in-
terrupts off. This can be done by insert-
ing a CTIF function block before and
after the critical area.

The problems often encountered with
block transfers can best be illustrated
by the BLKM function, which fills up to a
block of 100 registers. These registers
may be unique sets of data to be ma-
nipulated at periodic intervals by inter-
rupt level user logic. Some of these val-
ues may represent double precision
operands, where the values may range
from 0.1 through 9999.0 to be used as
the divisor in a subsequent interrupt lev-
el computation.

Subroutine Instructions108 890 USE 146 00

For example, if the background user
logic had previously written 0.9999 and
was now about to write 1.0, then if an
immediate interrupt occurred when only
the least significant value (0) had been
block moved, then the value which the
interrupt logic would use would be 0.
This value used as a divisor would
cause an exception state in the proces-
sing, and would result in an error condi-
tion. This in turn could result in incorrect
values being passed and processed.

The solution to this problem is to insert
a CTIF function block before the BLKM
Dx function, and program it to disable
the external interrupt(s). Another CTIF
function block should also be inserted
immediately after the BLKM function
and programmed to re--enable the ex-
ternal interrupt(s). This will then insure
that the block move is uninterruptible
and data integrity is maintained.

This principle applies to any group of
two or more registers which are manip-
ulated by both background and interrupt
level user logic. It is up to the user to
be aware of their own application and
use of data in block form.

Another important issue concerns the
reading or writing of banks of registers
by Modbus commands when these reg-
isters are used by interrupt level logic.
Remember that user--initiated interrupt
level processing can occur at any time
-- including the time that Modbus mes-
sage processing may be underway.

Solving this problem entails the use of a
bank switching technique to effectively
buffer the registers being manipulated
by the Modbus commands. Construct a
block move Dx function to move the
data from a shadow register bank to or
from the Modbus register block. This
BLKM Dx function should be placed
somewhere in the background logic with
CTIF functions on either side to disable
and then enable interrupts. You may
then use the shadow register bank in
user logic processing instead of the reg-
ister bank used by Modbus communica-
tions.

Simple Interrupt Level Handlers
Interrupt handlers in user logic should
be kept as small and as simple as pos-
sible for two reasons:

To avoid “Locking--out” other user
interrupts, since only one interrupt at a
time can be processed and user inter-
rupts cannot be interrupted by each
other.

To minimize the conflict due to use of
common banks of registers used at both
background and interrupt level.

890 USE 146 00 109Subroutine Instructions

The High Speed Counter Input

When the configurable input is set for
high-speed counting, it must be confi-
gured with a terminal count value and it
must be enabled. These conditions are
set via the CTIF instruction.

The counter will count pulses on its in-
put until the terminal count value is
reached, then stop counting. You can
configure the input so that the terminal
count event triggers an interrupt or by
addressing the terminal count and the
current count in the I/O map.

The operating system runs with the in-
terrupts disabled for a certain time in
each scan—about 300 µs. Thus, the
initiation of the interrupt subroutine
could be delayed by about 350 µs.

To initiate another interrupt on the same
terminal count, the counter must be re-
started. The ladder logic operating sys-
tem does not allow a new terminal
count interrupt on the same input until
the previous interrupt subroutine has
been completed for about 2 ms. This
delay prevents a PLC lock-up that could
otherwise be caused by the specifica-
tion of a small terminal count value with
a fast input clock.

Subroutine Instructions110 890 USE 146 00

The CTIF Instruction

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

I O4x

CTIF
K*

Sets up the
inputs for
interrupt and
counter/timer
operations

Top:
ON performs the
operation speci-
fied in the top
node

Top:
echos the
top input

Top:
First word in the
CTIF parameter
block
Bottom:
drop number
where the opera-
tion is performed

*K is an integer constant in the range 1 ... 5.

O Bottom:
ON if an error
is detected

Configures the hard-
ware interrupts and
counter/timer—always
finishes in the same
scan that it starts in

1 2 3 54 6 7 9 10 11 1312 14 15 16

CTIF Parameter Block
Register 4x Error/Operation Type

Error Code Operation Type

8

0 0 Set Mode
0 1 Get Mode

0 0 0 0 No error detected
0 0 0 1 Unsupported operation type specified
0 0 1 0 Interrupt 2 not supported in this model
0 0 1 1 Interrupt 3 not supported while counter is selected
0 1 0 0 Counter value of 0 specified
0 1 0 1 Counter value too big (> 16,383)
0 1 1 0 Operation type supported only on local drop
0 1 1 1 Specified drop not in I/O Map
1 0 0 0 No subroutine for enabled interrupt
1 0 0 1 Remote drop is unhealthy
1 0 1 0 Function not supported remotely

Register 4x + 1 Control setup for Set Mode operation

1 2 3 54 6 7 9 10 11 1312 14 15 168

0 1 Counter Mode
1 0 Timer Mode

0 1 Stop counter/timer operation
1 0 Start counter/timer operation

0 1 Disable auto-restart operation
1 0 Enable auto-restart operation

0 1 Disable interrupt service for timer/counter input
1 0 Enable interrupt service for timer/counter input

Disable interrupt service for Int1 0 1
Enable interrupt service for Int1 1 0

Terminal-count
loading:
0 Disable
1 Enable

Disable interrupt service for Int2 0 1
Enable interrupt service for Int2 1 0

Disable interrupt service for Int3 0 1
Enable interrupt service for Int3 1 0

Register 4x + 2 Status for Get Mode operation

1 2 3 54 6 7 9 10 11 1312 14 15 168

0 Counter Mode
1 Timer Mode

0 Disabled interrupt service for timer/counter input
1 Enabled interrupt service for timer/counter input

0 Disabled auto-restart operation
1 Enabled auto-restart operation

0 Stopped counter/timer operation
1 Started counter/timer operation

No subroutine for Int3 interrupt

Register 4x + 3 Current count value of the timer/counter input
(set by the instruction block as the current count in Get Mode;
set by the user to the counter/timer preset in Set Mode)

No subroutine for Int2 interrupt

No subroutine for timer/counter interrupt
No subroutine for Int1 interrupt

Int3 disabled 0
Int3 enabled 1

Int2 disabled 0
Int2 enabled 1

Int1 disabled 0
Int1 enabled 1

890 USE 146 00 111Subroutine Instructions

The CTIF instruction is a configuration/
operation tool for Modicon Micro PLCs
that contain hardware interrupts (all
models except the 110CPU311 Models).
The actual counter/timer and interrupts
are located in the PLC hardware, and

the CTIF instruction is what is used to
set up this hardware.

The illustrations below show how the
configuration switches interact with the
interrupt functions.

Hardwire
INT 1 LAB 2

INT 1
ENABLE

Controlled by bits 7 and 8

User-selectable
Hardwire Interrupt

LAB 4

TMR /
CTR

LAB 1

Hardwire
INT 2

(DC models only)
LAB 3

INT 2
ENABLE

TMR/CNTR
ENABLE

Controlled by bits 5 and 6

Controlled by bits 9 and 10

INT 3
ENABLE

Controlled by bits 3 and 4

OR

Timer / counter

(see Note 1)

(see Note 2)

Pre-assigned
Subroutine

Note 1. INT 3 is available only when the timer / counter is not used.

Note 2. Bits 15 and 16 select the mode (TMR or CTR). In CTR mode, pulses on the input
are counted. In TMR mode, the input acts as a timer gate and must be high to time.

Hardwire interrupt 1

Hardwire interrupt 2

User-selectable
interrupt 3

User-selectable timer/
counter interrupt

Input Type
Availability

110CPU Models
State RAM References
for Interrupt Data

Subroutine Triggered
by this Input

All 411, 512,
and 612 units

Only units that
use DC power

Subroutine #2

Subroutine #3

All 411, 512,
and 612 units

10081, updated once/scan

10084, updated at the start
of each subroutine

Subroutine #4

10081, updated once/scan

10084, updated at the start
of each subroutine

Subroutine #1

10082, updated once/scan

10085, updated at the start
of each subroutine

10083, updated once/scan

10086, updated at the start
of each subroutine

All 411, 512,
and 612 units

Subroutine Instructions112 890 USE 146 00

A CTIF Application Example
Here is a six-network demonstration
program that explains how the CTIF
function is configured and operated in
the different available modes.

The first two networks, written in seg-
ment 1 of ladder logic, are control logic.
The last four networks, written in seg-
ment 2 (the last segment) are subrou-
tine logic that is called by the hardwired
interrupts.

The example illustrates:
High speed counter mode

Combined high speed (1 ms) timer
and interrupt mode

A discrete, hardwired interrupt mode

Not shown in the example is the ability
to run two hardwired interrupts, a capa-
bility available only in the DC PLCs.

Segment 1, Network 1
Network 1 of segment 1, shown on the
next page, is the first of two control net-

works. All counter/timer information
programmed in this network has been
I/O mapped to be available in input reg-
ister 30001; hardwired interrupt data is
available in inputs 10081 ... 10088.

When contact 10001 transitions from
OFF to ON, the information in registers
40501 and 40504 is cleared. Register
40501, the accumulation register in sub-
routine 1 (in segment 2), increments by
1 each time it is called by the counter/
timer function. Register 40504, the ac-
cumulation register in subroutine 4, in-
crements by 1 each time the hardwired
counter/timer terminal is pulsed in timer
mode.

The configuration data in registers
40100 ... 40103 is moved into the CTIF
parameter block (registers 40300 ...
40303). This information is immediately
sent to the CTIF and is ready to run.
The information sets up the parameter
block as follows:

890 USE 146 00 113Subroutine Instructions

40501

40501

40501

40504

SUB SUB

Segment 1, Netw

10001
Config for
timer with
auto-res-
tart

10003

CTR/TMR
ac-
cumtrr

CTR/TMR
ac-
cumtrr

INT 3
accumtr

INT 3
accumtr

40504

40504

40100

BLKM

Start of
CTIF param

block

TMR with
auto-restart

40300

#0004

40300

CTIF
#0001

Start of
CTIF param

block

Config for
timer with
auto-res-
tart

40501

40501

40501

40504

SUB SUB

CTR/TMR
ac-
cumtrr

CTR/TMR
ac-
cumtrr

INT 3
accumtr

40504

40504

40110

BLKM

Start of
CTIF param

block

TMR with
auto-restart

40300

#0004

40

CT
#0

Start
CTIF p

blo

40502

SUB

INT 1
accumtr

INT 1
accumtr

40502

40502

INT 3
accumtr

40501

40501

40501

40502

SUB SUB

10002
Config for
timer with
auto-res-
tart

CTR/TMR
ac-
cumtrr

CTR/TMR
ac-
cumtrr

INT 1
accumtr

INT 1
accumtr

40502

40502

40105

BLKM

Start of
CTIF param

block

TMR with
auto-restart

40300

#0004

40300

CTIF
#0001

Start of
CTIF param

block

P

P

P

40501

40501

40501

40504

S
U

B
S

U
B

S
eg

m
en

t
1,N

etw
o

rk
1

10001
C
o
n
f
i
g

f
o
r

t
i
m
e
r

w
i
t
h

a
u
t
o
-
r
e
s
-

t
a
r
t10003

C
T
R
/
T
M
R

a
c
-

c
u
m
t
r
r

C
T
R
/
T
M
R

a
c
-

c
u
m
t
r
r

I
N
T

3
a
c
c
u
m
t
r

I
N
T

3
a
c
c
u
m
t
r

40504

40504

40100

B
L

K
M

S
t
a
r
t

o
f

C
T
I
F

p
a
r
a
m

b
l
o
c
k

T
M
R

w
i
t
h

a
u
t
o
-
r
e
s
t
a
r
t

40300

#0004

40300

C
T

IF
#0001

S
t
a
r
t

o
f

C
T
I
F

p
a
r
a
m

b
l
o
c
k

C
o
n
f
i
g

f
o
r

t
i
m
e
r

w
i
t
h

a
u
t
o
-
r
e
s
-

t
a
r
t

40501

40501

40501

40504

S
U

B
S

U
B

C
T
R
/
T
M
R

a
c
-

c
u
m
t
r
r

C
T
R
/
T
M
R

a
c
-

c
u
m
t
r
r

I
N
T

3
a
c
c
u
m
t
r

40504

40504

40110

B
L

K
M

S
t
a
r
t

o
f

C
T
I
F

p
a
r
a
m

b
l
o
c
k

T
M
R

w
i
t
h

a
u
t
o
-
r
e
s
t
a
r
t

40300

#0004

40300

C
T

IF
#0001

S
t
a
r
t

o
f

C
T
I
F

p
a
r
a
m

b
l
o
c
k

40502

S
U

B

I
N
T

1
a
c
c
u
m
t
r

I
N
T

1
a
c
c
u
m
t
r

40502

40502

I
N
T

3
a
c
c
u
m
t
r

40501

40501

40501

40502

S
U

B
S

U
B

10002
C
o
n
f
i
g

f
o
r

t
i
m
e
r

w
i
t
h

a
u
t
o
-
r
e
s
-

t
a
r
t

C
T
R
/
T
M
R

a
c
-

c
u
m
t
r
r

C
T
R
/
T
M
R

a
c
-

c
u
m
t
r
r

I
N
T

1
a
c
c
u
m
t
r

I
N
T

1
a
c
c
u
m
t
r

40502

40502

40105

B
L

K
M

S
t
a
r
t

o
f

C
T
I
F

p
a
r
a
m

b
l
o
c
k

T
M
R

w
i
t
h

a
u
t
o
-
r
e
s
t
a
r
t

40300

#0004

40300

C
T

IF
#0001

S
t
a
r
t

o
f

C
T
I
F

p
a
r
a
m

b
l
o
c
k

PPP

Subroutine Instructions114 890 USE 146 00

40300

Register Content

Error code information and mode type
(always Set mode)

40301 Actual configuration information as
follows:

Terminal count loading enabled
Interrupt service for Int 3 enabled
Interrupt service for Int 2 disabled
Interrupt service for Int 1 disabled
Interrupt service for Int timer/counter
input enabled
Auto-restart operation enabled
Start timer/counter operation
Timer mode selected

The register bit pattern is:

1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1

(A5AA in hex)

40302 Status information

40303 The preset value for the timer—400

The timer continues to accumulate as
long as the hardwired contact remains
ON. Once the timer preset is reached,
subroutine 1 is called and its function is

performed—i.e., 1 is added to the con-
tents of register 40501.

Because the auto-restart option has
been selected, the timer resets to 0 and
begins timing once again for as long as
the hardwired input is ON. The only
condition under which the timer will self-
reset is when it reaches its timer reset
value. Interrupt 3 counts the number of
OFF-to-ON transitions the input makes.

With each transition of the timer-
hardwired input, subroutine 4 is called
and its function is performed—i.e., 1 is
added to the contents of register 40504.

When contact 10002 transitions from
OFF to ON, the information in registers
40501 and 40502 is cleared. Register
40501, the accumulation register in sub-
routine 1, increments by 1 each time it
is called by the counter/timer function.

890 USE 146 00 115Subroutine Instructions

Subroutine Instructions116 890 USE 146 00

Register 40502 is the accumulation reg-
ister in subroutine 2, which increments
by 1 each time the hardwired interrupt 1
input terminal is pulsed.

The configuration data in registers
40105 ... 40108 is moved into the CTIF
parameter block (registers 40300 ...
40303). This information is immediately
sent to the CTIF and is ready to run.
The information sets up the parameter
block as follows:

40300

Register Content

Error code information and mode type
(always Set mode)

40301 Actual configuration information as
follows:

Terminal count loading enabled
Interrupt service for Int 3 disabled
Interrupt service for Int 2 disabled
Interrupt service for Int 1 enabled
Interrupt service for Int timer/counter
input enabled
Auto-restart operation enabled
Start timer/counter operation
Counter mode selected

The register bit pattern is:

1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1

(96A9 in hex)

40302 Status information

40303 The preset value for the counter—9999

The hardwired contact must transition
for the counter to accumulate counts.
When the counter preset is reached,
subroutine 1 is called again, and it in-
crements the contents of register 40501
by 1 each time it is called.

Because the auto-restart option has
been selected, the counter resets to 0
and begins counting once again when
the hardwired input transitions from
OFF to ON. The only condition under
which the counter will self-reset is when
it reaches its counter reset value.

Each time hardwire interrupt 1 transi-
tions from OFF to ON, subroutine 2 is
called, and its function is performed—
i.e., 1 is added to the contents of regis-
ter 40502.

When contact 10003 transitions from
OFF to ON, the information in registers
40501, 40502, and 40504 is cleared.
Register 40501, the accumulation regis-
ter in subroutine, increments by 1 each
time it is called by the counter/timer
function. Register 40501, the accumu-
lation register in subroutine 1, incre-
ments by 1 each time it is called by the
counter/timer function. Register 40504,
the accumulation register in subroutine
4, increments by 1 each time the hard-
wired counter/timer terminal is pulsed in
timer mode.

The configuration data in registers
40110 ... 40113 is moved into the CTIF
parameter block (registers 40300 ...
40303). This information is immediately
sent to the CTIF and is ready to run.
The information sets up the parameter
block as follows:

40300

Register Content

Error code information and mode type
(always Set mode)

40301 Actual configuration information as
follows:

Terminal count loading enabled
Interrupt service for Int 3 enabled
Interrupt service for Int 2 disabled
Interrupt service for Int 1 enabled
Interrupt service for Int timer/counter
input enabled
Auto-restart operation disabled
Start timer/counter operation
Timer mode selected

The register bit pattern is:

1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0

(A69A in hex)

40302 Status information

40303 The preset value for the timer—400

The timer continues to accumulate as
long as the hardwired contact remains
ON. Once the timer preset is reached,
subroutine 1 is called and its function is
performed—i.e., 1 is added to the con-
tents of register 40501.

In this instance, the auto-restart option
is disabled. The timer will reset to 0,
but it will not begin to time until contact

890 USE 146 00 117Subroutine Instructions

10003 transitions from OFF to ON
again, starting the process entire over.
Interrupt 3 counts the number of OFF-
to-ON transitions the input makes.

Each time hardwire interrupt 1 transi-
tions from OFF to ON, subroutine 2 is
called and its function is performed—
i.e., 1 is added to the contents of regis-
ter 40502.

Segment 1, Network 2
The second network in segment 1 fol-
lows the same configuration as the first.
The major difference here is that net-
work 2 is used to configure the CTIF in
a child PLC. Information from that child
is not readily available to the parent
PLC.

40115

#0004

40400

BLKM

10004
Config for
timer with
auto-res-
tart Start of

CTIF param
block

TMR with
auto-restart

40400

CTIF
#0002

Start of
CTIF param

block

10005
Config for
counter
with
auto-res-
tart

Segment 1, Network 2

10006
Config for
timer without
auto-restart

40125

#0004

40400

BLKM

Start of
CTIF param

block

TMR without
auto-restart

40400

CTIF
#0002

Start of
CTIF param

block

40120

#0004

40400

BLKM

Start of
CTIF param

block

TMR with
auto-restart

& INT 1

40400

CTIF
#0002

Start of
CTIF param

block

Subroutine Instructions118 890 USE 146 00

Segment 2, the Subroutines
On the following page is a series of four
networks of subroutines that are called

by the hardwire inputs from the previous
two networks.

Segment 2, Network 1

40501

#0001

ADD

CTR/TMR
accumultr

00001

LAB
#0001

40501
CTR/TMR
accumultr

00001

Segment 2, Network 3

40503

#0001

ADD

00003

LAB
#0003

40503

00003

Segment 2, Network 2

40502

#0001

ADD

00002

LAB
#0002

40502
INT 1

accumultr

00002

INT 1
accumultr

Segment 2, Network 4

40504

#0001

ADD

00004

LAB
#0004

40504

00004

890 USE 146 00 117Other Standard Instructions

Chapter 11
Other Standard Instructions

Skipping Networks

Checking the Health Status of the PLC

Sweep Instructions

Other Standard Instructions118 890 USE 146 00

Skipping Networks
The SKP instruction allows you to skip
a specified number of networks in a lad-
der logic program.

When it is powered, the SKP operation
is performed on every scan. The re-
mainder of the network in which the in-
struction appears counts as the first of
the specified number of networks to be
skipped; the CPU continues to skip net-
works until the total number of networks
skipped equals the number specified in
the instruction block or until a segment
boundary is reached. A SKP operation
cannot cross a segment boundary.

A SKP instruction can be activated only
if you specify in the PLC set-up editor
that skips are allowed.

Warning If inputs and out-
puts that normally effect con-
trol are unintentionally
skipped (or not skipped), the
result can create hazardous
conditions for personnel and
application equipment.

SKP is a one-high nodal instruction.

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

Skip logic
networks I 3x, 4x,

or K*

SKP
Top:
ON activates
the skip function

Top:
Specifies the num-
ber of logic net-
works to be
skipped

Bypasses networks
of ladder logic in the
program and does
not solve skipped
logic

*K is an integer constant in the range 1 ... 255

A Simple SKP Example
When contact 10001 is closed, the re-
mainder of network 06 and all of net-
work 07 are skipped. Power flow in the
skipped networks is invalid. Coil 00001
is still controlled by contact 10003 be-
cause it is solved before the SKP.

0000110003

10001

SKP
2

0000210003

Network 06

Network 07

890 USE 146 00 119Other Standard Instructions

Checking the Health Status of the PLC
The Modicon Micro PLCs maintain a
table in memory that contains vital sys-
tem diagnostic information regarding the
PLC, its I/O, and its communications.
This table is 56 words long, and its con-
tents are structured as follows:

Status
Word

Content of
Status Register

1 ... 11 PLC status information

12 ... 31 Health of I/O locations

32 Error codes generated at
system start-up

33 ... 36 Global communications status

37 ... 40 Health of I/O communications at
the local drop

41 ... 56 Health of I/O communications to and
from the remote drops

Each status word is 16 bits long, and
the status information is conveyed by
the sense of the bits in each word. The
illustrations on the following pages show
how the status information is presented
in the status table.

Some or all of the words in the status
table can be accessed in ladder logic
using the STAT instruction. The STAT
block displays the bit patterns of the
status words in a table of contiguous 4x
registers, the values of which can then
be seen in the panel software.

Note Although you are allowed
to specify either a 0x or 4x regis-
ter in the top node, we recom-
mend that you specify a 4x be-
cause of the excessive number of
0x registers that would be required
to manage the status information.

The register you specify in the top node
of the block is loaded with the current
word 1 bit values, and as many regis-
ters as you specify in the bottom node
will be loaded with bit values from the
corresponding words in the status table.

For example, if you are interested only
in accessing PLC status information,
you could specify a register address of,
say, 40701 in the top node of the block
and a value of 11 in the bottom node—
the bit values of the first 11 words in the
status table will be loaded into registers
40701 ... 40711, respectively.

If you want to load the whole status
table, specify 56 in the bottom node of
the instruction. If you are not using ex-
panded I/O, you need only specify 40 in
the bottom node to get all the relevant
status information.

STAT is a two-high nodal instruction.

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

I O0x or 4x

STAT
K*

Check CPU/
I/O Status

*K is an integer constant in the range 1 ... 56

Top:
ON accesses
the status table

Top:
operation
completed

Top:
First word in
the system
status table

Bottom:
size of the
status table

Gets status data
from the status
table in system
memory and dis-
plays it in user
registers

Other Standard Instructions120 890 USE 146 00

The Modicon Micro PLC Status Table

Word 1 CPU Status

1 2 3 54 6 7 8 9 10 11 1312 14 15 16

If the bit is set to 1, the condition is TRUE

Constant Sweep enabled

Single Sweep delay enabled

1 = 16-bit user logic
0 = 24-bit user logic

RUN light OFF
Battery failed

Word 2 PLC Drop Address

1 2 3 54 6 7 8 9 10 11 1312 14 1615

0 0 1
0 1 0

0 1 1
1 0 0

1 0 1

PLC is configured in single or parent mode =
PLC is configured as child #1 on an expanded I/O network =

Word 3 More PLC Status

1 2 3 54 6 7 8 9 10 11 12 14 161513

Single sweeps
Scan time has exceeded constant scan target

START command pending

First scan

If the bit is set to 1, the condition is TRUE

Word 4 Maximum number of drops allowed in an I/O network

1 2 3 54 6 7 8 9 10 11 1312 14 1615

1 0 0(always set to 4)

01
02

03
04

05

PLC is configured as child #2 on an expanded I/O network =
PLC is configured as child #3 on an expanded I/O network =

PLC is configured as child #4 on an expanded I/O network =

890 USE 146 00 121Other Standard Instructions

The Modicon Micro PLC Status Table (continued)

Word 5 CPU Stop State Conditions

1 2 3 54 6 7 8 9 10 11 1312 14 15 16

If the bit is set to 1, the condition is TRUE

Bad PLC setup

Word 6 Segments in Program

8 11 1312 14 1615

Coil disabled in RUN mode

Logic checksum error

Invalid node in ladder logic

Mismatch between coil use table and coils
in ladder logic

Real time clock error

Watchdog timer has expired

State RAM test has failed

No SON at the start of a segment

Invalid segment scheduler

Illegal peripheral intervention

Error in the I/O map

Peripheral port stop

Word 7 End-0f-Logic Pointer

Word 8 is reserved

Word 9 is reserved

Word 10 RUN/LOAD/DEBUG Status

1 2 3 54 6 7 8 9 10 11 1312 14 1615

0 0
0 1
1 0

DEBUG =
RUN =
LOAD =

Word 11 is reserved

1 2 3 54 6 7 9 10

Number of segments in the current ladder logic program

Address of the EOL pointer

8 11 1312 14 16151 2 3 54 6 7 9 10

Fatal error on the A120 I/O link

Invalid number of DOIOs/EOLs

Other Standard Instructions122 890 USE 146 00

The Modicon Micro PLC Status Table (continued)

Words 12 ... 31 Health of I/O Units

1 2 3 54 6 7 8 9 10 11 1312 14 15 16

If the bit is set to 1, the slot contains a healthy I/O unit

Location 2

Location 1

Location 5
Location 4

Location 3

Word PLC Rack

12
13
14
15

1 1
2
3
4

2 1
2
3
4

5

Four contiguous words are used for each of up to five Modicon Micro PLCs on an I/O expansion network; one word
in each group of four is used for each possible I/O rack, assuming A120 I/O expansion:

Rack 1 is always a Modicon Micro PLC, and racks 2 ... 4 are A120 I/O racks connected to rack 1 via an A120
I/O expansion port.

Each word contains five representative bits that show the health of the associated I/O unit in each rack—i.e.,
each rack can support a maximum of five I/O locations:

An I/O location is healthy when it is configured and I/O mapped correctly, its personality is correct, and
valid communications exist between it and the CPU that controls it.

Converting from Word # to PLC and Rack

word # -- 12

4
= quotient + remainder

where
quotient + 1 = drop #
remainder + 1 = rack #

Converting from Drop and Rack to Word #

word # = (drop # x 4) + rack # + 7

16
17
18
19

20
21
22
23

3 1
2
3
4

24
25
26
27

4 1
2
3
4

28
29
30
31

1
2
3
4

With respect to A120 I/O modules, a location is the physical slot position of the module in its DTA housing.
With respect to a Modicon Micro PLC, the location relates to the following fixed components on the unit:

•
•
•
•
•

Location 1 represents the fixed discrete inputs and outputs on the unit
Location 2 represents the dedicated interrupt component status on the unit
Location 3 represents the user-selectable counter/timer count on the unit
Location 4 represents any fixed analog inputs and outputs on the unit
Location 5 represents the data transfer component on the unit for serial I/O expansion

890 USE 146 00 123Other Standard Instructions

The Modicon Micro PLC Status Table (continued)

Word 32 Start-up Error Codes (Always 0 when the system is running properly)

1 2 3 54 6 7 8 9 10 11 1312 14 1615

1 2 3 54 6 7 8 9 10 11 1312 14 1615

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 1 0 0

0 0 1 0 1 0
0 0 1 0 1 1
0 0 1 1 0 0
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 0 0 0
0 1 0 0 0 1
0 1 0 0 1 0

0 1 0 1 0 0
0 1 0 1 0 1
0 1 0 1 1 0
0 1 0 1 1 1

0 1 1 0 0 1
0 1 1 0 1 0
0 1 1 0 1 1
0 1 1 1 0 0

0 1 1 1 1 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 0 0 1
1 0 0 0 1 0
1 0 0 0 1 1
1 0 0 1 0 0

1 0 1 0 0 0
1 0 1 0 0 1
1 0 1 0 1 0
1 0 1 0 1 1
1 0 1 1 0 0

1 1 0 0 1 0
1 1 0 0 1 1
1 1 0 1 0 0
1 1 0 1 0 1
1 1 0 1 1 0
1 1 0 1 1 1

Bad I/O map length
Bad link number for child PLCs on the network
Wrong number of child PLCs in I/O map
Bad I/O map checksum

Bad child PLC descriptor length
Bad child PLC number
Bad holdup time for child PLC on the network
Bad ASCII port number
Bad number of slots in a child PLC
Child PLC has already been set up
comm port has already been set up
More than 1024 output points
More than 1024 input points

Bad slot address
Bad rack address
Bad number of output bytes
Bad number of input bytes

Bad first reference number
Bad second reference number
No input or output bytes
Discrete not on a 16-bit boundary

Unpaired odd output unit
Unpaired odd input unit
Unmatched odd input/output unit reference
1x reference after 3x register
Dummy unit reference already used
3x reference not a dummy
4x reference not a dummy

Dummy, then real 1x reference
Real, then dummy 1x reference
Dummy, then real 3x reference
Real, then dummy 3x reference
Too many I/O points in a drop

Bad unit descriptor rack
Bad unit descriptor slot
Bad unit descriptor input byte count
Bad unit descriptor output byte count
I/O driver has not been loaded
Unit can be used only in rack 1

01
02
03
04

10
11
12
13
14
15
16
17
18

20
21
22
23

25
26
27
28

30
31
32
33
34
35
36

40
41
42
43
44

50
51
52
53
54
55

Word 33 Global Communications

for a parent- or single-mode PLC:

for a child-mode PLC:

1 2 3 54 6 7 8 9 10 11 1312 14 1615

Number of times the child’s
holdup time has expired

0 = child has not received a valid
output command from the
parent before holdup time
has expired

Number of nonrecoverable communi-
cation losses at any PLC set-up on the I/O
expansion net

0 = unsuccessful communication to
any child on the I/O expansion net

Other Standard Instructions124 890 USE 146 00

The Modicon Micro PLC Status Table (continued)

Word 35 Additional Global Communications

1 2 3 54 6 7 8 9 10 11 1312 14 1615

Word 36 Additional Global Communications

1 2 3 54 6 7 8 9 10 11 1312 14 1615

Number of overrun errors detected on received characters

Last detected parity error

Last detected framing error

Last detected overrun error

Last detected no response error

Words 37 Healthy Communications in Rack 1
(for A120 expansion only)

1 2 3 54 6 7 8 9 10 11 1312 14 1615

Number of times any local unit goes
from healthy to unhealthy

All units healthy

If the bit is set to 1, the condition is TRUE

Words 38 I/O Error Detection in Rack 1
(for A120 I/O expansion only)

1 2 3 54 6 7 8 9 10 11 1312 14 1615

Number of times an error has been detected while communicating with I/O

Words 39 I/O Retry Counter in Rack 1
(for A120 I/O expansion only)

1 2 3 54 6 7 8 9 10 11 1312 14 1615

Number of times a retry has been logged to a local I/O location

Words 40 is reserved, all bits are 0

Number of parity errors detected
on received characters

Number of framing errors detected
on received characters

Word 34 Additional Global Communications

1 2 3 54 6 7 8 9 10 11 1312 14 1615

for a parent-mode PLC:

1 2 3 54 6 7 8 9 10 11 1312 14 1615

for a child-mode PLC:

Number of ms remaining before holdup time expires

Number of retries due to a previous
comm error

Number of no responses on the
system

(for a parent-mode PLC only)

(for a parent-mode PLC only)

890 USE 146 00 125Other Standard Instructions

The Modicon Micro PLC Status Table (concluded)

1 2 3 54 6 7 8 9 10 11 1312 14 1615

Words 41 ... 56 are for Communications on the I/O expansion network—
they have meaning only in parent units

Number of nonrecoverable communi-
cation losses at the specific child

0 = unsuccessful communication from
parent to a specific child

1 2 3 54 6 7 8 9 10 11 1312 14 1615

Number of retries due to a previous
comm error at a specific child

Number of no responses from a
specific child

Each potential child PLC on the network is described by a group of four contiguous words:

Word 41, 45, 49, 53 Format

1 = successful communication
at a specific child

Words 41 ... 44 apply to child #1
Words 45 ... 48 apply to child #2
Words 49 ... 52 apply to child #3
Words 53 ... 56 apply to child #4

Word 42, 46, 50, 54 Format

1 2 3 54 6 7 8 9 10 11 1312 14 1615

Number of CRC errors detected
on received characters from a
specific child

Number of framing errors detected
on received characters from a
specific child

1 2 3 54 6 7 8 9 10 11 1312 14 1615

Number of overrun errors detected
on received charactersLast detected CRC error

Last detected framing error

Last detected overrun error

Last detected no response error

Word 43, 47, 51, 55 Format

Word 44, 48, 52, 56 Format

Other Standard Instructions126 890 USE 146 00

Sweep Instructions
Sweep functions allow you to scan logic
at fixed intervals—they do not make the
controller solve logic faster or terminate
scans prematurely. Sweeps may be
constant or predetermined over some
fixed number of scans—i.e., single
sweeps.

Constant sweep allows you to target
your scan times from 10 ... 200 ms (in
multiples of 10 ms). A target scan time
is the time that elapses between the
start of one scan and the start of the
next. If a constant sweep is invoked
with a time lapse smaller than the ac-
tual scan time, the sweep time is ig-
nored and the system uses its normal
scan rate.

The target scan time in a constant
sweep encompasses logic solve time,
I/O and Modbus port servicing, and sys-
tem diagnostics. If you set a constant
sweep target scan at 40 ms and the ac-
tual logic solve, port servicing, and diag-
nostics require only 30 ms, the control-
ler will wait for 10 ms at the end of each
scan before continuing to the next.

Single sweep functions allow your con-
troller to execute a fixed number of
scans—from 1 ... 15—and then to stop
solving logic but continue servicing I/O.
This function is useful for diagnostic
work. It allows solved logic, moved
data, and completed calculations to be
examined for errors.

Warning Single sweeps
should not be used to debug
controls on machine tools,
processes, or material handl-
ing systems once they have
become active. Once the spe-
cified number of scans has
been solved, all the outputs
are frozen in their last state;
since no logic solving takes
place, the controller ignores
all input information. This can
result in unsafe, hazardous,
and destructive operation of
the tools or processes con-
nected to the controller.

Consult your programming documenta-
tion for procedures to invoke sweep in-
structions.

890 USE 146 00 127Enhanced Instruction Set

Chapter 12
Enhanced Instruction Set
Available on Select Micro
PLC Models

Block↔Table Move Instructions

The Checksum Instruction

The Proportional-Integral-Derivative Instruction

Extended Math Instructions

Enhanced Instruction Set128 890 USE 146 00

Block↔Table Move Instructions

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

I O4x

BLKT
K*

O

I

4x

*K is an integer constant in the range 1 ... 100

Top:
ON initiates the
move

Top:
ON when opera-
tion is completed

Middle:
Error detected—
Move not possible

Top:
First register in
the source block

Middle:
pointer to the first
register (4x + 1) in
the destination
table

Bottom:
size of the desti-
nation table

I

I O4x

TBLK
K*

O

I

4x

Top:
ON when opera-
tion is completed

Top:
First register in
the source table

Bottom:
size of the desti-
nation block

I

Block-to-table
move

Table-to-block
move

Top:
ON initiates the
move

Middle:
ON freezes the
pointer

Bottom:
ON resets the
pointer to 0

Middle:
ON freezes the
pointer

Bottom:
ON resets the
pointer to 0

Middle:
pointer to the first
register (4x + 1) in
the destination
block

Middle:
Error detected—
Move not possible

Moves large quantities
of 4x registers from a
fixed source block to a
destination in a table

Moves a large number
of contiguous registers
in a table to a fixed-
destination block

The Checksum Instruction

Instruction Inputs
(I)

Nodes Outputs

(O)

FunctionStructure

I O4x

CKSM
K*

Checksum

O

I

4x

*K is an integer constant in the range 1 ... 255

Top:
ON calculates the
source table cksm

Bottom:
Used with middle
input to determine
cksm type

Top:
ON when calcula-
tion is completed

Middle:
Error detected:
register count = 0

or
register count >
size of the source
table

Performs straight
check, binary addi-
tion check, CRC-16
check, or LRC check,
depending on state
of the middle and
bottom inputs (see
table below)

Top:
First register in
the source table

Middle:
First of two regis-
ters containing
the result and the
implied register
count

Bottom:
size of the source
table

CKSM Input Usage

CKSM Calculation

Straight check

I

Middle:
Used with bottom
input to determine
cksm type

Middle Input Bottom Input

OFF ON

Binary addition ON ON

CRC-16 ON OFF

LRC OFF OFF

890 USE 146 00 129Enhanced Instruction Set

The Proportional-Integral-Derivative
Instruction

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

I O4x

PID2
K*

Proportional-
Integral-
Deriviative O

I

4x

* K is an integer constant in the range 1 ... 255

Top:
0 = Manual Mode
1 = Auto Mode

Bottom:
0 = output in-

creases as E**
increases

1 = output de-
creases as E**
increases

Top:
invalid parameter

or
loop active but not
being solved

Middle:
PV > low alarm
limit***

Implements an algo-
rithm that performs
the specified P, PI, or
PID operation, as de-
fined in registers
4x + 5, 4x + 6,
4x + 7, and 4x + 8 of
the source table

Top:
First of 21 regis-
ters in the source
table

Middle:
First of 9 registers
used by the block
for calculations

Bottom:
constant repre-
senting the inter-
val at which the
calculation is per-
formed in tenths of
a second

I

Middle:
0 = Tracking ON
1 = Tracking OFF

O

Bottom:
PV > low alarm
limit***

** E is error expressed in raw analog units
*** PV is the process variable

Block
Function

Source Table Register Value
4x + 5 4x + 6 4x + 7 4x + 8

P non-zero non-zerozero zero

PI non-zero zeronon-zero zero

PI non-zero non-zero zeronon-zero

PID2 Source Table (Top Node)

Register Number Register Content

4x

Scaled PV: loaded by the block each time it is scanned; a linear scaling is done on register 4x + 13
using the high and low ranges in 4x + 11 and 4x +12:

scaled PV =
reg 4x + 13

4095
x (reg 4x + 11 -- reg 4x + 12) + reg 4x + 12

Truncate the result at the decimal point and discard all digits to the right of the decimal point—do not
round off the result.

4x + 1 SP: the set point specified in engineering units; its value must be > 4x + 11 > 4x + 12

4x + 2
Mv: loaded by the block every time the loop is solved; it is clamped to the range 0 ... 4095, making
the output compatible with an analog output; the manipulated variable register may be used for
furhter CPU calculations such as cascaded loops

4x + 3 High alarm limit: load a value into this register to specify a high alarm for PV (at or above SP); enter
the value in engineering units within the range specified in registers 4x + 11 and 4x + 12

4x + 4 Low alarm limit: load a value into this register to specify a low alarm for PV (at or below SP); enter
the value in engineering units within the range specified in registers 4x + 11 and 4x + 12

4x + 5
Proportional band: load this register with the desired proportional constant in the range 5 ... 500;
the smaller the number, the larger the proportional contribution; a valid number is required in this
register for PID2 to operate

Enhanced Instruction Set130 890 USE 146 00

Proportional-Integral-Derivative Instruction (continued)

PID2 Source Table (Top Node)

Register Number Register Content

4x + 6

4x + 7

4x + 8

4x + 9

Reset time constant: load this register to add integral action to the calculation; the value is an
integer constant in the range 0000 ... 9999, representing a range of 00.00 ... 99.99 repetitions
per minute—values <9999 or >0000 stop the PID2 calculation; the larger the number, the larger
the integral contribution

Rate time constant: load this register to add derivative action to the calculation; the value is an
integer constant in the range 0000 ... 9999, representing a range of 00.00 ... 99.99 repetitions
per minute—values <9999 or >0000 stop the PID2 calculation; the larger the number, the larger
the derivative contribution

Bias: load this register to add a bias to the output—the value, which is added directly to Mv, must be
between 0000 ... 4095

High integral wind-up limit: load this register with the upper limit of the output value (between
0 ... 4095) where the anti-reset wind-up takes place; if the specified value (normally 4095) is
exceeded, the integral sum is no longer updated

4x + 10 Low integral wind-up limit: load this register with the lower limit of the output value (between
0 ... 4095) where the anti-reset wind-up takes place—the specified value is normally 0

4x + 11
High engineering range: load this register with the highest value for which the measurement
device is spanned—e.g., if a resistance temperature device ranges from 0 ... 500 degrees C,
the high engineering range value is 500; the high range value must be specified as a positive
integer between 0001 ... 9999, corresponding to a raw analog input value of 4095

4x + 12
Low engineering range: load this register with the lowest value for which the measurement
device is spanned; the low range value must be specified as a positive integer between
0001 ... 9998, corresponding to a raw analog input value of 0—it must be less than the value
specified in register 4x + 11

4x + 13 Raw analog measurement: the logic program loads this register with PV; the measurement
must be scaled and linear in the range 0 ... 4095

4x + 14

Pointer to loop counter register: the value you load in this register points to the register that
counts the number of loops solved in each scan; the value entered in the register is the refer-
ence number of the register where the loop count is kept—e.g., if register 41236 keeps the
count, enter the value 1236 in register 4x + 14 of the PID2 source table; the same value must
be loaded to the 4x + 14 register in the source table of every PID2 block in a logic program

4x + 15 Maximum number of loops/scan: if register 4x = 14 contains a non-zero value, you may load a
value into this register to specify the limit on the number of loops to be solved in a single scan

4x + 16

Pointer to reset feedback input: the value you load in this register points to the holding register
that contains the feedback value (F); integration calculations rely on the F value being connected
to Mv—as the PID2 output varies from 0 ... 4095, so should F vary from 0 ... 4095; the value
entered in the register is the feedback register reference number—e.g., if the feedback register is
42250, enter the value 2250 in register 4x + 16 of the PID2 source table

4x + 17 Output clamp high: the value entered in this register determines the upper limit of Mv (normally 4095)

4x + 18 Output clamp low: the value entered in this register determines the lower limit of Mv (normally 0)

4x + 19
RGL constant: the rate gain limit value entered in this register determines the effective degree of
derivative filtering; the range for this value is from 2 ... 30; the smaller the value, the more filtering
takes place

4x + 20

Pointer to track input: the value entered in this register points to the holding register containing the
track input (T) value; the T value is connected to the input of the integral lag whenever the auto bit
and track bit are both TRUE; the value entered in this register is the track input register reference
number—e.g., if the track input register is 40956, enter 0956 in register 4x + 20 in the PID2 source
table

890 USE 146 00 131Enhanced Instruction Set

Proportional-Integral-Derivative Instruction (continued)

PID2 Calculation Block (Middle Node)

Register Number Register Content

4x Loop status register

1 2 3 54 6 7 8 9 10 11 1312 14 15 16

see note

Man/Auto status
of top input

Tracking ON/OFF
status of middle input

Output increase/decrease
status of bottom input

Negative values in
the equation

Integral wind-up limit exceeded

Top output ON

Middle output ON

Bottom output ON

Loop in Auto Mode and time since last solution > solution interval

Always set to 1

Loop in Auto Mode but not being solved

0 = +E in source register 4x + 6
1 = --E in source register 4x + 6

Referencing of 4x + 14 by 4x + 15 is valid

In Wind-down Mode

Note: Bit 16 is set after initial start-up or installation of the loop. If the bit is cleared, the
following actions all take place in one scan:

The loop status register is rest

The current value in the real-time clock is stored in register 4x + 1 in this
block

Registers 4x + 3, 4x + 4, and 4x + 5 in this block are set to zero

The value in source table register 4x + 13 is multiplied by 8 and stored in
register 4x + 6 of this block

Register 4x + 7 and 4x + 8 in this block are cleared

Enhanced Instruction Set132 890 USE 146 00

Proportional-Integral-Derivative Instruction (continued)

PID2 Calculation Block (Middle Node)

Register Number Register Content

4x + 1 Error (E) status

Bit
Code Meaning

Check This Registe in the
Source Table (Top Node)

0000 No errors, all validations OK

0001 Scaled SP above 9999 4x + 1

0002 High alarm above 9999 4x + 3

0003 Low alarm above 9999 4x + 4

0004 Proportional band below 5 4x + 5

0005 Proportional band above 500

4x + 60006 Reset above 99.99 repeats/min

4x + 70007 Rate above 99.99 min

4x + 80008 Bias above 4095

4x + 90009 High integral limit above 4095

4x + 100010 Low integral limit above 4095

4x + 11

4x + 5

0011 High engineering unit scale above 9999

4x + 120012 Low engineering unit scale above 9999

4x + 11 and 4x + 120013 High engineering unit scale below low engineering unit

4x + 1 and 4x + 110014 Scaled SP above high engineering unit

4x + 1 and 4x + 110015 Scaled SP below low engineering unit

(4x + 15 = 0)0016 Loops/scan > 9999

4x + 160017 Reset feedback pointer out of range

4x + 170018 High output clamp above 4095

4x + 180019 Low output clamp above 4095

4x + 17 and 4x + 180020 Low output clamp above high output clamp

4x + 190021 RGL below 2

4x + 190022 RGL above 30

4x + 20 and middle input ON0023 Track F pointer out of range

4x + 20 and middle input ON0024 Track F pointer is zero

see note below0025 Node locked out (short of scan time)

4x + 14 and 4x + 150026 Loop counter pointer is zero

0024 4x + 14 and 4x + 15Loop counter pointer out of range

Note: If lockout occurs often and all the parameters are valid, increase the maximum allowable
number of loops/scan. Lockout may also occur if the counting registers in use are not cleared
as required.

4x + 2
Loop timer register: stores the real-time clock reading on the system clock each time the loop
is solved; the difference between the current clock value and the value stored in this register is
the elapsed time; if elapsed time > the solution interval (10 times the value given in the bottom
node of the PID2 block), the loop should be solved in the current scan

4x + 3
4x + 4
4x + 5

Reserved for internal use

890 USE 146 00 133Enhanced Instruction Set

Proportional-Integral-Derivative Instruction (concluded)

PID2 Calculation Block (Middle Node)

Register Number Register Content

4x + 6
Pv x 8 (filtered): stores the result of the filtered analog input (from source register 4x + 14)
multiplied by eight; this value is useful in derivative control operations

Reserved for internal use4x + 8

4x + 7
Absolute value of E: contains the absolute value of SP -- PV; bit 8 in register 4x + 1 of
this block indicates the sign of E; the value in this register is updated after each loop
solution

Extended Math Instructions

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

I O4x

EMTH

Double
precision
(32-bit)
addition

O4x

Top:
ON initiates the
double precision
addition

Top:
ON when calcula-
tion is completed

Middle:
an operand is
invalid or out of
range

Adds operand 1 (the
value in the top node
register block) and
operand 2 (the value
in the first two regis-
ters of the middle
node block), then
places the result in
the registers 4x + 3
and 4x + 4 in the
middle node block

Top:
First of two con-
tiguous registers
containing oper-
and 1—its value
is in the range
0 ... 99,999,999

Middle:
First of six regis-
ters in the block
described below

Bottom:
appropriate EMTH
function code

1

Middle Node Block

Register Number Register Content

4x and 4x + 1 the value of operand 2, in the range 0 ... 99,999,999

a non-zero value indicates that an overflow condition exists4x + 2

4x + 3 and 4x + 4 the result of the double precision addition

4x + 5 not used but must be configured

Enhanced Instruction Set134 890 USE 146 00

Extended Math Instructions (continued)

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

Double
precision
(32-bit)
subtraction

Top:
ON initiates the
double precision
subtraction

Top:
ON when calcula-
tion is completed

Middle:
operand = operand

1 2

Subtracts operand 2
(the value in the first
and second registers
in the middle node
block) from operand
1 (the value in the
top node block), then
places the result in
the third and fourth
registers of the
middle node block

Top:
First of two con-
tiguous registers
containing oper-
and 1—its value
is in the range
0 ... 99,999,999

Middle:
First of six regis-
ters in the block
described below

Bottom:
appropriate EMTH
function code

I O4x

EMTH

O4x

O
2

Bottom:
operand < operand

1 2

Middle Node Block

Register Number Register Content

4x and 4x + 1 the value of operand 2, in the range 0 ... 99,999,999

non-zero value indicates that an out-of-range condition exists

4x + 2 and 4x + 3

4x + 4

the result of the double precision subtraction

4x + 5 not used but must be configured

Double
precision
multiplication

Top:
ON initiates the
double precision
multiplication

Top:
ON when calcula-
tion is completed

Top:
First of two con-
tiguous registers
containing oper-
and 1, whose val-
ue is in the range
0 ... 99,999,999

Middle:
First of six regis-
ters in the block
described below

Bottom:
appropriate EMTH
function code

I O4x

EMTH

O4x

3

Middle:
an operand is
out of range

Multiplies operand 1
(the value in the top
node register block)
by operand 2 (the
value in the first two
registers of the
middle node block),
then places the re-
sult in the third,
fourth, fifth, and sixth
registers of the
middle node block

Middle Node Block

Register Number Register Content

4x and 4x + 1 the value of operand 2, in the range 0 ... 99,999,999

4x + 2, 4x + 3,

4x + 4, and 4x + 5
the result of the double precision multiplication

890 USE 146 00 135Enhanced Instruction Set

Extended Math Instructions (continued)

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

Double
precision
division

Top:
ON initiates the
double precision
division

Top:
ON when calcula-
tion is completed

Top:
First of two con-
tiguous registers
containing oper-
and 1—its value
is in the range
0 ... 99,999,999

Middle:
First of six regis-
ters in the block
described below

Bottom:
appropriate EMTH
function code

I O4x

EMTH

O4x

O
4

Bottom:
operand 2 = 0

Middle Node Block

Register Number Register Content

4x and 4x + 1 the value of operand 2, in the range 0 ... 99,999,999

4x + 2 and 4x + 3

4x + 4 and 4x + 5

the result (quotient) of the double precision division

Square root

Top:
ON initiates the

√

Top:
ON when calcula-
tion is completed

Top:
First of two regis-
ters containing a
source value in
the range
0 ... 99,999,999

Middle:
First of two regis-
ters where the re-
sult is stored in
the fixed-decimal
format:

1234.5600

Bottom:
appropriate EMTH
function code

I O3x or 4x

EMTH

O4x

5

Middle:
source value
is out of range

Divides operand 1
(the value in the top
node register block)
by operand 2 (the
first two registers in
the middle node
block), then places
the result in the
third and fourth reg-
isters of the middle
node block and the
remainder in the
fifth and sixth regis-
ters of the middle
node block

I

Middle:
ON = remainder
is stored as a
fraction
OFF = remainder
is stored as a
whole number

Middle:
an operand is
out of range

the remainder of the double precision division

operation

Process
square root

Top:
ON initiates the

√

Top:
ON when calcula-
tion is completed

Top:
First of two regis-
ters containing a
source value in
the range
0 ... 99,999,999

Middle:
First of two regis-
ters where the
linearized result
is stored

Bottom:
appropriate EMTH
function code

I O3x or 4x

EMTH

O4x

6

Middle:
source value
is out of range

operation

Calculates the
square root of the
source value in the
top node registers
and stores the result
in the middle node
registers

Calculates the
square root of the
source value in the
top node registers,
linearizes it by multi-
plying it by 63.9922
(the square root of
4095), then stores
the linearized result
in the middle node
registers

Process square
roots are often used
in PID2 operations

Enhanced Instruction Set136 890 USE 146 00

Extended Math Instructions (continued)

Bottom:
appropriate EMTH
function code

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

Logarithm

Top:
ON initiates a
logarithmic
operation

Top:
ON when calcula-
tion is completed

Middle:
A holding register
where the result is
stored

Bottom:
appropriate EMTH
function code

I O

EMTH

O4x

7

Antilogarithm

Top:
ON when calcula-
tion is completed

Top:
A single register
that contains a
source value
stored in the
fixed decimal for-
mat 1.234 and in
the range
0 ... 7.999

Middle:
First of two con-
tiguous registers
where the result is
stored

Bottom:
appropriate EMTH
function code

I O3x or 4x

EMTH

O4x

8

Performs a base 10
logarithmic opera-
tion on the value in
the source registers
in the top node,
then stores the
result in the middle-
node register

Middle:
an error has
been detected
or a value is
out of range

Integer-to-
floating point
conversion

Top:
ON initiates the
conversion

Top:
ON when calcula-
tion is completed

Top:
First of two con-
tiguous registers
containing a dou-
ble-precision
integer source
value

Middle:
First in a block of
four contiguous
holding registers

I O

EMTH

4x

9

Converts a double-
precision integer
value into a 32-bit
floating point value
and stores the result
in the third and
fourth registers of
the middle-node
block

The first two regis-
ters in the block are
not used*

3x or 4x

Top:
First of two con-
tiguous registers
containing a
source value in
the range
0 ... 99,999,999

Top:
ON initiates a
logarithmic
operation

Middle:
an error has been
detected or a val-
ue is out of range

Performs a base 10
antilogarithmic op-
eration on the value
in the source regis-
ter and stores the
result in the middle-
node registers in
the fixed-decimal
format:

12345678

4x

Integer + floating
point addition

Top:
ON initiates
the addition

Top:
ON when calcula-
tion is completed

Top:
First of two con-
tiguous registers
containing a dou-
ble-precision
integer value

Middle:
First in a block of
four contiguous
holding registers

Bottom:
appropriate EMTH
function code

I O

EMTH

4x

10

4x Adds the double-
precision integer val-
ue in the top- node
register block and
the FP value in the
first two registers in
the middle-node
block then stores the
result in the third
and fourth registers
of the middle-node
block

* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 9 instruction.

890 USE 146 00 137Enhanced Instruction Set

Extended Math Instructions (continued)

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

Top:
ON when calcula-
tion is completed

Bottom:
appropriate EMTH
function code

I O

EMTH

4x

11

Top:
ON when calcula-
tion is completed

Bottom:
appropriate EMTH
function code

I O3x or 4x

EMTH

4x

12

Middle:
First in a block of
four contiguous
holding registers

Bottom:
appropriate EMTH
function code

I O

EMTH

4x

13

3x or 4x

4x

Integer -- floating
point subtraction

Top:
First of two con-
tiguous registers
containing a
floating point
value

Middle:
First in a block of
four contiguous
holding registers

Bottom:
appropriate EMTH
function code

I O

EMTH

4x

14

4x

Subtracts the FP
value in the first two
registers of the
middle-node block
from the integer val-
ue in the top-node
register block then
stores the result in
the third and fourth
registers of the
middle-node block

Integer x floating
point
multiplication

Integer/floating
point division

Top:
ON initiates the
subtraction

Top:
ON initiates the
multiplication

Top:
ON initiates the
division

Top:
ON initiates the
subtraction

Top:
First of two con-
tiguous registers
containing a
double-precision
integer value

Top:
First of two con-
tiguous registers
containing a
double-precision
integer value

Top:
First of two con-
tiguous registers
containing a
double-precision
integer value

Middle:
First in a block of
four contiguous
holding registers

Middle:
First in a block of
four contiguous
registers

floating point --
integer
subtraction

Top:
ON when calcula-
tion is completed

Top:
ON when calcula-
tion is completed

Subtracts the dou-
ble-precision integer
value in the first two
registers of the
middle-node block
from the FP value in
the top-node register
block, then stores
the result in the third
and fourth registers
of the middle-node
block

Multiplies the
double-precision
integer value in the
top-node register
block by the FP val-
ue in the first two
registers of the
middle-node block,
then stores the
product in the third
and fourth registers
of the middle-node
block

Divides the double-
precision integer val-
ue in the top-node
register block by the
FP value in the first
two registers of the
middle-node block,
then stores the
quotient in the third
and fourth registers
of the middle-node
block

Enhanced Instruction Set138 890 USE 146 00

Extended Math Instructions (continued)

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

Top:
ON when calcula-
tion is completed

Bottom:
appropriate EMTH
function code

I O

EMTH

4x

15

Top:
ON when calcula-
tion is completed

Bottom:
appropriate EMTH
function code

I O3x or 4x

EMTH

4x

16

3x or 4x

Top:
First of two con-
tiguous registers
containing a
floating point
value

Middle:
First in a block of
four contiguous
holding registers

Bottom:
appropriate EMTH
function code

I O

EMTH

4x

17

4x

Integer-floating
point
comparison

Top:
ON initiates the
comparison

Top:
ON initiates the
conversion

Top:
First of two con-
tiguous registers
containing a dou-
ble-precision inte-
ger value

Middle:
First in a block of
four contiguous
holding registers

floating point-
to-integer
conversion

Top:
ON when calcula-
tion is completed

Divides the double-
precision integer val-
ue in the first two
registers of the
middle-node block
by the FP value in
the top-node register
block, then stores
the quotient in the
third and fourth reg-
isters of the middle-
node block

Compares the dou-
ble-precision inte-
ger value with the
floating point value
(in the first two reg-
isters of the middle-
node block), then
indicates the rela-
tionship via the
middle and bottom
outputs (see table
below)

The third and fourth
registers in the
middle-node block
are not used but
must be configured

floating point/
integer division

Top:
ON initiates the
division

O

O

Middle:
used with the
bottom output to
indicate the value
relationship

Bottom:
used with the
middle output to
indicate the value
relationship

EMTH 16 Outputs
Middle Output State Bottom Output State Value Relationship

ON OFF I > FP

OFF ON I < FP

ON ON I = FP

O

Top:
First of two con-
tiguous registers
containing a dou-
ble-precision inte-
ger

Middle:
First in a block of
four contiguous
holding registers

Bottom:
0 = + integer value
1 = -- integer value

Converts the FP val-
ue stored in the top
two registers of the
middle-node block
into a double- preci-
sion integer value
and stores the con-
verted value in the
third and fourth
registers

The first and second
registers in the
middle node are not
used but must be
configured*

* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 17 instruction.

890 USE 146 00 139Enhanced Instruction Set

Extended Math Instructions (continued)

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

Top:
ON when calcula-
tion is completed

Bottom:
appropriate EMTH
function code

I O

EMTH

4x

18

Top:
ON when calcula-
tion is completed

Bottom:
appropriate EMTH
function code

I O

EMTH

4x

19

Bottom:
appropriate EMTH
function code

I O

EMTH

4x

20

4x

floating point
addition

Bottom:
appropriate EMTH
function code

I O

EMTH

4x

21

4x

Adds FP value 1 (in
the top-node regis-
ter block) and FP
value 2 (from the
first two registers of
the middle-node
block), then stores
the sum in the third
and fourth registers
of the middle-node
block

Top:
ON initiates the
subtraction

Top:
ON initiates the
multiplication

Top:
ON initiates the
division

Top:
ON initiates the
subtraction

Top:
First of two con-
tiguous registers
containing
FP value 1
Middle:
First in a block of
four contiguous
holding registers

Top:
ON when calcula-
tion is completed

Top:
ON when calcula-
tion is completed

Subtracts FP value 2
(stored in the first and
second registers of
the middle-node
block) from FP value
1 (in the top-node
register block), then
stores the difference
in the third and fourth
registers of the
middle-node block

floating point
subtraction

floating point
multiplication

floating point
division

4x

4x

Top:
First of two con-
tiguous registers
containing FP
value 1

Middle:
First in a block of
four contiguous
holding registers

Middle:
First in a block of
four contiguous
holding registers

Divides FP value 1
(in the top-node reg-
ister block) by FP
value 2 (stored in the
first and second reg-
isters of the middle-
node block), then
stores the quotient in
the third and fourth
registers of the
middle-node block

Top:
First of two con-
tiguous registers
containing FP
value 1

Middle:
First in a block of
four contiguous
holding registers

Top:
First of two con-
tiguous registers
containing FP
value 1

Multiplies FP value 1
(in the top-node reg-
ister block) by FP
value 2 (stored in the
first and second reg-
isters of the middle-
node block), then
stores the product in
the third and fourth
registers of the
middle-node block

Enhanced Instruction Set140 890 USE 146 00

Extended Math Instructions (continued)

Bottom:
appropriate EMTH
function code

Performs a square
root operation on
the FP value in the
top-node block and
stores the result in
the third and fourth
registers of the
middle-node block.

The first and sec-
ond registers in the
middle-node block
are not used but
must be
configured*

Bottom:
appropriate EMTH
function code

ON FP value 1 = FP value 2

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

Top:
ON when compari-
son is complete

Bottom:
appropriate EMTH
function code

I O

EMTH

4x

22

I O

EMTH

4x

23

4x

floating point
comparison

Top:
ON initiates the
comparison

Top:
First of two con-
tiguous registers
containing FP
value 1

Middle:
First in a block of
four contiguous
holding registers

floating point
square root

Top:
ON when calcula-
tion is completed

Compares FP value
1 (in the top-node
register block) and
FP value 2 (in the
first two registers of
the middle-node
block), then indi-
cates the relation-
ship via the middle
and bottom outputs
(see table below)

The third and fourth
registers in the
middle node block
are not used but
must be configured

O

O

Middle:
used with the
bottom output to
indicate the value
relationship

Bottom:
used with the
middle output to
indicate the value
relationship

EMTH 22 Outputs
Middle Output State Bottom Output State Value Relationship

ON OFF FP value 1 > FP value 2

OFF ON FP value 1 < FP value 2

ON

Top:
First of two con-
tiguous registers
containing an FP
value
Middle:
First in a block of
four contiguous
holding registers

4x

Top:
ON initiates the

√ operation

Bottom:
appropriate EMTH
function code

I O

EMTH

4x

24

4x
floating point
sign change

Top:
ON when opera-
tion is completed

Top:
First of two regis-
ters containing an
FP value

Middle:
First in a block of
four contiguous
holding registers

Top:
ON initiates the
sign change
operation

Changes the sign of
the FP value in the
top-node register
block and stores the
result in the third
and fourth registers
of the middle-node
block.

The first and second
registers of the
middle-node block
are not used

I O

EMTH

4x

25

floating point π
loading

Top:
ON when loading
is completed

Middle:
First of four regis-
ters where the
FP value of pi is
loaded

ON loads π into
the middle-
register block

Loads the FP value
of pi into the third
and fourth registers
of the middle-node
block; the first and
second registers of
the middle-node
block are not used

* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 23 instruction.

Top: Top:
Not used

890 USE 146 00 141Enhanced Instruction Set

Extended Math Instructions (continued)

Top:
First of two con-
tiguous registers
containing the FP
value of an angle
in radians; the
magnitude is
< 65536.0

Top:
ON initiates the
calculation

Top:
ON when calcula-
tion is completed

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

Top:
ON when calcula-
tion is completed

Bottom:
appropriate EMTH
function code

I O

EMTH

4x

26

Top:
ON when calcula-
tion is completed

Bottom:
appropriate EMTH
function code

I O

EMTH

4x

27

Bottom:
appropriate EMTH
function code

I O

EMTH

4x

28

4x

floating point
sine of an
angle

Calculates in radials
the sine of the float-
ing point value in the
top-node registers
and stores the result
in the third and fourth
registers of the
middle-node block.

Top:
ON initiates the
calculation

Top:
ON initiates the
calculation

Top:
First of two con-
tiguous registers
containing the FP
value of an angle
in radians; the
magnitude is
< 65536.0

Middle:
First in a block of
four contiguous
holding registers

floating point
cosine of an
angle

floating point
tangent of an
angle

4x

4x

Top:
First of two con-
tiguous registers
containing the FP
value of an angle
in radians; the
magnitude is
< 65536.0

Middle:
First in a block of
four contiguous
holding registers

Calculates in radians
the cosine of the
floating point value in
the top-node registers
and stores the result
in the third and fourth
registers of the
middle-node block.

Middle:
First in a block of
four contiguous
holding registers

Calculates in radians
the tangent of the
floating point value
in the top-node regis-
ters and stores the
result in the third and
fourth registers of the
middle-node block.

* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 28 instruction.

The first and second
registers of the
middle-node block
are not used but must
be configured.*

* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 27 instruction.

The first and second
registers of the
middle-node block
are not used but must
be configured.*

* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 26 instruction.

The first and second
registers of the
middle-node block
are not used but must
be configured.*

Enhanced Instruction Set142 890 USE 146 00

Extended Math Instructions (continued)

Bottom:
appropriate EMTH
function code

Top:
First of two con-
tiguous registers
containing the FP
value of the tan-
gent of an angle
between

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

Bottom:
appropriate EMTH
function code

I O

EMTH

4x

31

4x

I O

EMTH

4x

30

4x

Top:
ON initiates the
calculation

Top:
ON initiates the
calculation

Top:
ON when calcula-
tion is completed

Top:
ON when calcula-
tion is completed

floating point
arctangent of
an angle

floating point
arc cosine of
an angle

Middle:
First in a block of
four contiguous
holding registers

Top:
First of two reg-
isters containing
the FP value of
the cosine of an
angle between
0 ... π radians; in

the range of
--1.0 ... +1.0

Calculates in radians
the arc cosine of the
floating point value
in the top-node regis-
ters and stores the
result in the third and
fourth registers of the
middle-node block.

The first and second
registers in the
middle-node block
are not used but must
be configured*

Middle:
First in a block of
four contiguous
holding registers

--π/2 ... π/2
radians

Calculates in radians
the arctangent of the
floating point value
in the top-node regis-
ters and stores the
result in the third and
fourth registers of the
middle-node block.

* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 30 instruction.

* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 31 instruction.

The first and second
registers of the
middle-node block
are not used but must
be configured.*

* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 29 instruction.

The first and second
registers of the
middle-node block
are not used but must
be configured.*Bottom:

appropriate EMTH
function code

I O

EMTH

4x

29

4x

Top:
ON initiates the
calculation

Top:
ON when calcula-
tion is completed

floating point
arcsine of an
angle

Middle:
First in a block of
four contiguous
holding registers

Top:
First of two reg-
isters containing
the FP value of
the sine of an
angle between
--π / 2 ... π / 2

radians; the value
must be in the
range --1.0 ... +1.0

Calculates in radians
the arcsine of the
floating point value
in the top-node regis-
ters and stores the
result in the third and
fourth registers of the
middle-node block;.

890 USE 146 00 143Enhanced Instruction Set

Extended Math Instructions (continued)

* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 35 instruction.

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

Top:
ON when conver-
sion is completed

Bottom:
appropriate EMTH
function code

I O

EMTH

4x

33

Top:
ON when calcula-
tion is completed

Bottom:
appropriate EMTH
function code

I O

EMTH

4x

34

Bottom:
appropriate EMTH
function code

I O

EMTH

4x

35

4x

floating point
degree-to-
radian
conversion

Converts the FP val-
ue in the top-node
registers to an FP
representation of that
value in degrees, and
stores the converted
value in the third and
fourth registers of the
middle-node block.

Top:
ON initiates the
conversion

Top:
ON initiates the
calculation

Top:
ON initiates the
calculation

Top:
First of two con-
tiguous registers
containing the FP
value of an angle
in degrees

Middle:
First in a block of
four contiguous
holding registers

Top:
ON when calcula-
tion is completed

floating point
number raised
to an integer
power

4x

4x

Top:
First of two regis-
ters containing an
FP value

Middle:
First in a block of
four contiguous
holding registers

Raises the FP value
in the top-node regis-
ters to the integer
power specified in the
second register of the
middle-node block,
and stores the result
in the third and fourth
registers of the
middle-node block;
the first register in the
middle node must be
set to zero

floating point
exponential

Top:
First of two con-
tiguous registers
containing an FP
value in the range
--87.34 ... +88.72

Middle:
First in a block of
four contiguous
holding registers

Calculates the expo-
nential value of the
FP number in the
top-node registers
and stores the result
in the third and fourth
registers of the
middle-node block.

The first and second
registers of the
middle-node block
are not used but
must be configured.*

* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 33 instruction.

* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 32 instruction.

The first and second
registers of the
middle-node block
are not used but must
be configured.*

Bottom:
appropriate EMTH
function code

floating point
radian-to-
degree
conversion

I O

EMTH

4x

32

4x

Top:
ON initiates the
conversion

Top:
ON when conver-
sion is completed

Top:
First of two contig-
uous registers
containing the FP
value of an angle
in radians

Middle:
First in a block of
four contiguous
holding registers

Converts the FP val-
ue in the top-node
registers to an FP re-
presentation of that
value in radians, and
stores the conversion
in the third and fourth
registers of the
middle-node block.

The first and second
registers of the
middle-node block
are not used but must
be configured.*

Enhanced Instruction Set144 890 USE 146 00

Extended Math Instructions (concluded)

Bottom:
appropriate EMTH
function code

Instruction Inputs
(I)

Nodes Outputs
(O)

FunctionStructure

Bottom:
appropriate EMTH
function code

I O

EMTH

4x

37

4x

Top:
ON initiates the
calculation

Top:
ON when calcula-
tion is completedfloating point

common
logarithm

Top:
First of two con-
tiguous registers
containing an FP
value > 0

Middle:
First in a block of
four contiguous
holding registers

Calculates the com-
mon logarithm of the
FP number in the
top-node registers
and stores the result
in the third and fourth
registers of the
middle-node block.

Error report
log I O

EMTH

4x

38

Top:
ON initiates the
calculation

Top:
ON when calcula-
tion is completed

O

Middle:
1 = nonzeros in

the register
0 = all bits set to

zero

Middle:
First of four regis-
ters that contain
the error log data
(see below)

Error data are logged
in the third register of
the middle-node
block, and the fourth
register is always set
to zero

The first and second
registers in the
middle-node block
are not used, but
must be configured.

1 2 3 54 6 7 8 9 10 11 1312 14 15 16

FP underflow

FP overflow

Invalid FP value
or operation

Integer/FP conversion error

Register 4x + 2 in the Middle Node of EMTH 38

Exponential function
power too large

Function code of last logged error

* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 37 instruction.

* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 36 instruction.

Bottom:
appropriate EMTH
function code

I O

EMTH

4x

36

4x

Top:
ON initiates the
calculation

Top:
ON when calcula-
tion is completedfloating point

natural
logarithm

Top:
First of two con-
tiguous registers
containing an FP
value > 0

Middle:
First in a block of
four contiguous
holding registers

Calculates the natu-
ral logarithm of the
FP value in the top-
node registers and
stores the result in
the third and fourth
registers of the
middle-node block

The first and second
registers of the
middle-node block
are not used but
must be configured.*

The first and second
registers of the
middle-node block
are not used but
must be configured.*

Top:
Not used

890 USE 146 00 145Updating Flash

Appendix A
Updating the Operating
System in Flash

Executive Update Utilities

Accessing Modfax

146 890 USE 146 00Updating Flash

Executive Update Utilities
The ladder logic operating system for
your Modicon Micro PLC has been
loaded into the PLC’s Flash memory at
the factory. The operating system de-
fines the basic functionality of the PLC
and its instruction set.

Updates may need to be made to
increase system functionality or to fix
bugs. The following information is pro-
vided in the event that you have to up-
date the Flash.

Updating the System with a
Loader Utility Program

Although Flash is nonvolatile, it can be
easily changed. You can update an op-
erating system revision through the
Modbus port without any changes to
hardware.

All that is required is a binary executive
software file and a loader utility pro-
gram. You may download the binary
executive file from a personal computer
to the Micro PLC utilizing the loader util-
ity or Modsoft.

The loader utility contains five files:

LOADER.EXE, an executable file
that performs the loading function

LOADER.HLP, a help text file

LOADER.NDX, an index file for help
screens

MCMIII.MSG, the Modcom III error
message file

README.1ST, a file that explains ex-
actly how to perform the update

The loader utility and the latest execu-
tive software can be obtained:

Via the Customer Service Bulletin
Board (24 hours a day, 365 days a
year, at no charge)

From your local Modicon Representa-
tive

The latest revisions of the various oper-
ating systems (or executive firmwares)
are listed on the Customer Service BBS
and on Modfax. The Modfax document
number for latest Micro PLC upgrades
is 3727. Details on accessing Modfax
and the Customer Service BBS are pro-
vided in this appendix.

Determining the Latest
Available Revision

There are two ways to determine what
revision level of the operating system is
currently installed in a PLC.

If you have MODSOFT Lite, check the
Exec ID line on the Controller Status
Screen—e.g., if the Controller Status In-
formation Screen displays:

EXEC ID 0861 REV 0101

then, your operating system is at
revision 1.01.

If you do not have MODSOFT or MOD-
SOFT Lite, call up the following abso-
lute memory locations to display the
controller executive revision:

Controller Page Location
All Micro PLCs F 4020 (hex)

Access to the above location depends
on the software you are using. Please
contact your software vendor for details.

890 USE 146 00 147Updating Flash

Accessing Modfax
Modfax is an automatic document re-
trieval system available to Modicon cus-
tomers. The system is self-prompting.
To access Modfax, call (800) 468--5342
and select option 3. Have your FAX
number available when you call.

For additional hardware or software
technical assistance, call the Modicon
Field Support Center at (800) 468--5342
or (508) 794--0800 (outside U.S. and
Canada) and select option 1.

Accessing the Customer
Service Bulletin Board

The Modicon Customer Service BBS
provides several features and benefits.
For more information, request Modfax
Document #1113 or contact the Modicon
Field Support Center.

BBS members may use the procedure
given below or may proceed directly to
the Flash Lib. Downloading Flash ex-
ecutives does not cost any credits.
Non--BBS members should use the fol-
lowing procedure to retrieve a binary
executive file and the loader utility from
the BBS:

Executive Update Procedure
Step 1. Using your modem and com-

munication package, dial
508--975--9779. Dial at your
modem’s maximum baud—
we support up to 14,400
baud, no parity, 8 data and 1
stop.

Step 2. If it is your first time calling,
you will need to create an ac-
count—to do this, answer the
five questions you will be
asked at this time.

Step 3. When you reach the main
menu, select m and push
< enter > . You will be wel-

comed to the Flash download
service.

Step 4. The menu shows a number
of PLC models. Select the
number corresponding to the
model you have.

Step 5. You will get a list of files num
bered 1 ... 8, with a descrip-
tion of each file on the right
of the screen. Select the num
ber with the latest revision of
your PLC—usually 1 or 2.

Step 6. Select the download proto-
cols that matches your
communication package pro-
tocol. If you have ZMODEM,
use it—otherwise, try
KERMIT or XMODEM.

Step 7. If your package has
ZMODEM, the download
commences automatically.
With the other protocols, you
may need to tell your
communications software that
you wish to download a file,
then select the protocol to
match the one previously
selected on the BBS.

Step 8. You should now have the
appropriate file in your down-
load path (determined by the
communications package).

148 890 USE 146 00Updating Flash

Step 9. Let’s assume that the first file
you take is the binary exec-
utive file. You now want to
get the loader utility. Push
< enter > once—this should
take you back to the main
menu. If not, type /GO EXEC
and push < enter >.

Step 10. To get the loader utility, re-
peat the above procedure
starting at step 5, this time
using the letter L.

Step 11. The downloaded files are
compressed and will self-
extract when executed.

The result of executing a par-
ticular downloaded .exe ex-
ecutive file is an executive
binary file.

Step 12. Follow the instructions given
in the README.1ST file to
update the ladder logic
operating system.

890 USE 146 00 149Troubleshooting

Appendix B
Troubleshooting

Diagnosing Start-up Conditions

PLC Stopped Error Codes

PLC Crash Codes Displayed on the LEDs

150 890 USE 146 00Troubleshooting

Diagnosing Start-up Conditions
Symptom: No power ok LED

The green power ok LED on the Micro
PLC goes ON when the internal power
conditions of the PLC are healthy and
receiving power from an external sup-
ply. If this LED fails to go ON after
power has been applied to the PLC re-
fer to flowchart 1.

power ok LED
is OFF

Power present
at PLC power

terminal ?

Check power source

Replace PLC

Yes

No

Flowchart 1

Check power terminal
connections

Symptom: No ready LED

The amber ready LED goes ON once
the PLC has successfully passed its
power-up diagnostics, and it remains
ON as long as the PLC has power and
is healthy. If this LED fails to go ON af-
ter power-up, refer to flowchart 2.

Remove all I/O connectors

power ok LED
ON ?

See
Flowchart 1

Yes

No

Flowchart 2

ready LED is OFF

ready LED
ON ?

Yes

No

Replace PLC
Troubleshoot I/O

connections

Apply power to the PLC

890 USE 146 00 151Troubleshooting

Symptom: run LED Not ON
or Flashing

The run LED on the PLC goes ON
steadily when the PLC has been started
and is scanning ladder logic. It flashes
when the PLC has power but cannot
find a valid configuration. If this LED is
OFF or is behaving unexpectedly, refer
to flowchart 3 on the next page.

Symptom: exp link LED
OFF or Flashing

The green exp link LED goes ON
steadily when valid communications are
occurring on the I/O expansion link be-
tween a parent and child PLC; the
same LED pattern should appear on
both PLCs.. It flashes when errors are
occurring on the link. If you see this
LED flashing or if it is OFF when I/O
communications should be occurring,
refer to flowchart 4 on the next page.

Symptom: No Comms to
the PLC

If communications fail unexpectedly on
the PLC, refer to flowchart 5. You may
also want to check for a PLC stopped
error code displayed on your program-
ming panel or a crash code display
flashing on the input LEDs of the Micro
PLC. The stopped error codes and sys-
tem crash codes are described later in
this appendix.

152 890 USE 146 00Troubleshooting

run not ON

Flowchart 3

No

Yes

Is power ok ON ?

Is ready ON ?

See flowchart 1

No

See flowchart 2

Yes

See flowchart 5

Is run flashing ?

No

Connect Programmer

Is run OFF ?

Yes

Start PLC

Is run ON ?

Continue Operation

No

Check PLC Stopped
Code

Correct Problem

Yes

Yes

exp link OFF or flashing

Flowchart 4

Is PLC configured
as a single ?

Is run ON ?

Is exp link ON ?

No

Is exp link
flashing ?

Yes
Configure as

parent or child

See flowchart 3

Continue
operation

Replace PLC

Check cabling at parent
and all childs

Are all child PLCs
on the cable link ?

Call distributor
for assistance

Yes

No

No

Yes

run ON at all childs

Yes

Yes

No

Check J2 screws for
proper termination

890 USE 146 00 153Troubleshooting

No communication to PLC

Flowchart 5

Yes

No

Is run ON ?

Is run LED flashing ?

Are inputs flashing ?

311 / 411 512 / 612

Power cycle PLC try port 2

Comm ok ?

Power cycle PLC

Check comm cable
and adapter

Power cycle PLC at
first opportunity to

reset port 1

Check crash code
display on input

LEDs

Power cycle the
PLC

Reload operating to Flash

Replace PLC or

Call distributor
for assistance

Power cycle PLC

Check stop code
with programming

software

Correct problem or

Yes

No

No

Yes

Yes

No

154 890 USE 146 00Troubleshooting

PLC Stopped Error Codes
Should the PLC stop unexpectedly, you
can find a stopped error code dis-
played in the panel software. The code
will be displayed as a four-character
hex number. In MODSOFT Lite, the
stopped error code is shown in the PLC

Status screen; on an HHP, the stopped
error code is shown

The meanings of the various codes are
listed in the table below.

Stopped Error Codes

Stop Bit Code Stopped Condition Description

8000 PCSTOPPED The PLC is stopped

4000 BADTCOP An error in the I/O map

DIMAWAR The PLC does not have a valid configuration2000

PORTIVENT Bad port intervention1000

BADSEGSCH Ladder logic segments are not scheduled
properly for scanning

0800

SONNOTIST The Start-of-network element did not start
the network

0400

PDCHECKSUM Bad power-down checksum diagnostic0200

NOEOLDOIO Watchdog timer expired befor the logic
scan completed

0080

RTCFAILED The real-time clock has failed0040

BADOXUSED An error in the coil-used table0020

RIOFAILED Failure on the I/O expansion link0010

NODETYPE An illiegal node type has been used0008

ULCSUMERR User logic checksum error0004

DSCRDISAB Discrete disable error0002

BADCONFIG Bad configuration0001

890 USE 146 00 155Troubleshooting

PLC Crash Codes Displayed on the LEDs
If the CPU detects a fatal error, one of
the error codes listed below will be
flashed on the input LED array on the
front of the PLC. The ready LED will
be ON steadily, and the run LED will
flash at the same rate as the input
LEDs—0.5 s ON and 2.5 s OFF.

There are two categories of PLC crash
codes, those generated by the PLC in
kernel mode, and those generated dur-
ing the application.

In the illustrations below, the flashing in-
put LEDs are shown as and the OFF
state input LEDs are shown as .

Kernel Mode Crash Codes

Kernel PROM
checksum error

Flash program/erase
error

System RAM
data error

System RAM
address error

Unexpected executive
return

156 890 USE 146 00Troubleshooting

Application Crash Codes

PROM checksum
error

RAM data test
error

RAM address test
error

Modbus command
buffer overflow

Modbus command
length = 0

Modbus abort
command error

RAM error during
sizing

Run output
active failed

Unexpected
interrupt

Bad UART
hardware

Bad UART
interrupt
(external to the
microprocessor)

Bad receive
comm state

Bad comm state—
transmit ASCII

Bad transmit
comm state

Bad comm
state—transmit
RTU

Bad comm
state—
received RTU

Bad comm
state—received
ASCII

Bad Modbus
state—timer
0 event

Bad Modbus
state—
received
interrupt

Bad Modbus
state—transmit
interrupt

Timeout on
kicking ready

890 USE 146 00 157Index

Index
A

A120 I/O Addressing, 32

A120 I/O expansion, 10

Addressing
A120 I/O, 32
on an I/O expansion link, 34

AND instruction, 69

ASCII
character codes, 83
communication, 78
data formats, 81

autoconfiguration
communication ports, 22
in child operating mode, 18
in parent operating mode, 17
in single operating mode, 16
parameters, 16

B
backup, 7

battery coil, 21

block--to--table move instruction, 124

Boolean logic, 68
AND, 69
OR, 69
XOR, 70

BROT instruction, 74

C
CHECKSUM instruction, 124

CMPR instruction, 73

comm ports, 22

COMP instruction, 72

counters, 52

CTIF instruction, 106

E
EMTH instruction, 129

executive update utilities, 142

F
FIFO stack, 62

flash memory, 3

G
generalized data transfer, 40

H
hardware interrupt operations, 102

high--speed counter input, 105

I
I/O addressing, 26

I/O expansion link, 9

instruction set, 11

interrupt user logic, 103

PR158 890 USE 146 00Index

L
ladder logic instruction set, 11

logic solve time, 3

M
math instructions, 56

MBIT instruction, 74

memory allocation, 4

MOVE instructions
blocks of data, 65
register and table data, 60

O
operating modes, 9

OR instruction, 69

P
parent/child concept, 9

autoconfiguration with, 17, 18
child ID#, 20
splitting fixed I/O with, 37

PID instruction, 125

R
reference numbering, 4

relay logic elements, 46
coils, 47
contacts, 46

RS--232 Port, 22
comm parameters of, 24

RS--485 Port, 22
comm parameters of, 25

S
scan time, 3

SCIF instruction, 90

segments and networks, 44

SENS instruction, 74

setup values, 5

SKIP instruction, 114

SRCHing a table, 64

startup, 14
of a previously configured PLC, 14
of an unconfigured PLC, 15

STAT block, 115

subroutines, 100

SWEEP instruction, 122

T
time of day clock, 21

timers, 53

troubleshooting
at start--up, 146
crash codes on LEDs, 151
stopped error codes, 150

U
user program memory, 6

X
XOR instruction, 70

