
33
00

21
96

.0
1

Concept
XXMIT / RTXMIT
Transmit (Receive)
Function Block
840 USE 499 00 eng

© 2002 Schneider Electric All Rights Reserved

2

3

Table of Contents

About the Book .5

Chapter 1 Introduction to XXMIT and RTXMIT. .7
At a Glance . 7
XXMIT Functionality . 8
RTXMIT Functionality . 9

Chapter 2 XXMIT: Transmit (Compact, Momentum, Quantum)11
At a Glance . 11
Brief Description . 12
Representation . 14
Detailed Parameter Description . 16
XXMIT Communication Functions. 23
XXMIT ASCII Functions . 24
XXMIT Modem Functions . 27
XXMIT Modbus Functions . 28
FIFO and Flow Control . 34
Run Time Errors . 37
Application Example . 38

Chapter 3 RTXMIT: Full Duplex Transmit
(Compact, Momentum, Quantum) .49
At a Glance . 49
Brief Description . 50
Representation . 51
Parameter Description. 52
Runtime Errors . 56
Application Example . 56

Chapter 4 Technical References for XXMIT function block 59
At a glance . 59
Modbus Query/Response Parameter Limits . 60
XXMIT Configuration using Hayes Compatible Dial-Up Modems (Only) 63

4

Chapter 5 Cabling Information . 69
At a Glance . 69
Cable Pinouts. 70
Cable Adapter Kits . 84

Glossary .85

Index .109

840 USE 499 00 October 2002 5

About the Book

At a Glance

Document Scope This manual presents all information neccessary to configure the XXMIT and the
RTXMIT function blocks on all PLC platforms supporting the IEC languages.

Validity Note The information contained in this book is valid for Concept version 2.6 Service
release 1 and later.

Related
Documents

User Comments We welcome your comments about this document. You can reach us by e-mail at
TECHCOMM@modicon.com

Title of Documentation Reference Number

Concept Installation 840 USE 502 00

Concept User Manual 840 USE 503 00

Concept IEC Block Libraries 840 USE 504 00

About the Book

6 840 USE 499 00 October 2002

840 USE 499 00 October 2002 7

1
Introduction to XXMIT and RTXMIT

At a Glance

Overview This chapter gives a general overview on the transmit function block XXMIT and the
transmit/receive function block RTXMIT.

What’s in this
Chapter?

This chapter contains the following topics:

Topic Page

XXMIT Functionality 8

RTXMIT Functionality 9

Introduction

8 840 USE 499 00 October 2002

XXMIT Functionality

Function
Overview

The XXMIT (Transmit) function block enable the use of the PLCs serial ports for
communication under the control of the application program.

The following communication types are supported:
l Modbus as Master
l Simple ASCII Input/Output
l ASCII Input with one or two termination characters
l Modem Communication

Function
Description

The Transmit blocks send Modbus messages from a "master" PLC to multiple slave
PLCs or sends ASCII character strings from the PLC’s Modbus slave port #1 (on
Momentum PLCs also port #2 is supported) to ASCII printers and terminals. XXMIT
sends these messages over telephone dialup modems, radio modems, or simply
direct connections. The Transmit blocks perform general ASCII input functions in
the communication mode including simple ASCII and terminated ASCII. You may
import and export ASCII or binary data into your PLC. The block has builtin
diagnostics that checks to make sure no other Transmit blocks are active in the PLC
on the same port. Within the Transmit blocks, control inputs allows you to control the
communications link between the PLC and DCE (Data Communication Equipment)
devices attached to Modbus port #1 or port #2 of the PLC. The Transmit blocks do
NOT activate the port LED when transmitting data.

Introduction

840 USE 499 00 October 2002 9

RTXMIT Functionality

Function
Overview

The RTXMIT (Receive/Transmit) function block enable the use of the PLCs serial
ports for full duplex communication under the control of the application program.

The following communication types are supported:
l Simple ASCII Input/Output
l ASCII Input with one or two termination characters

Function
Description

The RTXMIT Transmit block sends ASCII character strings from the PLC’s Modbus
slave port#1 (on Momentum PLCs also port#2 is supported) to ASCII printers,
terminals or any other serial device. The Transmit blocks perform general ASCII
input functions in the communication mode including simple ASCII and terminated
ASCII. You may import and export ASCII or binary data into your PLC. The RTXMIT
block can send and receive characters at the same time (full duplex). The block has
builtin diagnostics that checks to make sure no other Transmit blocks are active in
the PLC on the same port. Within the Transmit blocks, control inputs allows you to
control the communications link between the PLC and DCE (Data Communication
Equipment) devices attached to Modbus port #1 or port#2 of the PLC. The Transmit
blocks do NOT activate the port LED when transmitting data.

Introduction

10 840 USE 499 00 October 2002

840 USE 499 00 October 2002 11

2
XXMIT: Transmit (Compact,
Momentum, Quantum)

At a Glance

Introduction This chapter describes the XXMIT function block.

What’s in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief Description 12

Representation 14

Detailed Parameter Description 16

XXMIT Communication Functions 23

XXMIT ASCII Functions 24

XXMIT Modem Functions 27

XXMIT Modbus Functions 28

FIFO and Flow Control 34

Run Time Errors 37

Application Example 38

XXMIT: Transmit (Compact, Momentum, Quantum)

12 840 USE 499 00 October 2002

Brief Description

Function
Description

The XXMIT (Transmit) function block sends Modbus messages from a "master" PLC
to multiple slave PLCs or sends ASCII character strings from the PLC’s Modbus
slave port#1 (on Momentum PLCs also port#2 is supported) to ASCII printers and
terminals. XXMIT sends these messages over telephone dialup modems, radio
modems, or simply direct connections. XXMIT performs general ASCII input
functions in the communication mode including simple ASCII and terminated ASCII.
You may import and export ASCII or binary data into your PLC. The block has builtin
diagnostics that checks to make sure no other XXMIT blocks are active in the PLC
on the same port. Within the XXMIT block control inputs allows you to control the
communications link between the PLC and DCE (Data Communication Equipment)
devices attached to Modbus port #1 or port#2 of the PLC. The XXMIT block does
NOT activate the port LED when it is transmitting data.

Restrictions The following restrictions apply to the XXMIT function block:
XXMIT does not support::
l ASCII string conversion
l copy and compare functions
l Port Status functions

1RWH��EN and ENO should NOT be used with the XXMIT, otherwise the output
parameters may freeze.

1RWH��Momentum only supports one Stopbit.

1RWH��Port 2 only supported by Momentum PLCs

XXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 499 00 October 2002 13

Software and
Hardware
Required

Software
The XXMIT function block requires the following software
l A minimum of Concept 2.2 Service Release 2
l IEC exec version
Hardware
The following hardware is not supported by the XXMIT function block:
l PLCs which do not support IEC languages
l Soft PLC
l All Atrium PLCs
l IEC Simulator

Memory
Requirements

The usage of one or more XXMIT EFBs in an IEC application consumes
approximately 15.5 KByte program (code) memory.For each instance of this EFB
included in the user program, additional data memory between 2.5 and 3 Kbyte is
allocated.

XXMIT: Transmit (Compact, Momentum, Quantum)

14 840 USE 499 00 October 2002

Representation

Symbol Representation of the Block

XXMIT

BOOLActive

BOOLDone

BOOLError

ANYMsgIn

INTReoCount

INTStatus

INTRetry

StartBOOL
CommandWORD
MsgOutANY
MsgLenINT
PortBYTE
BauderateINT
DatabitsBYTE
StopbitsBYTE
ParityBYTE
RespToutBYTE
RetryLmtINT
StartDlyINT

EndDlyINT

XXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 499 00 October 2002 15

Parameter
Description

Description of the block parameter

Parameters Data type Significance

Start BOOL Value of 1 starts XXMIT operation

Command WORD Specifies the command to be performed

MsgOut ANY Message to be sent

MsgLen INT Message length of output message

Port BYTE Selection of communications interface

Baudrate INT Baudrate

Databits BYTE Databits

Stopbits BYTE Stopbits

Parity BYTE Parity

RespTout INT Time to wait for a valid response

RetryLmt INT Number of retries until receiving a valid response

StartDly INT Waiting time before message transmit.

EndDly INT Waiting time after message transmit

Active BOOL Value of 1 indicates that an XXMIT operation is in progress

Done BOOL Value of 1 indicates that the XXMIT operation has been
completed successfully

Error BOOL Value of 1 indicates that an error has ocured or that the current
XXMIT operation is terminated

MsgIn ANY Incoming message

RecCount INT Displaythe number of received characters

Status INT Display a fault code generated by the XXMIT block

Retry INT Indicates the current number of retry attempts made by the
XXMIT block

XXMIT: Transmit (Compact, Momentum, Quantum)

16 840 USE 499 00 October 2002

Detailed Parameter Description

Start A value of 1 at Start initiates the XXMIT operation. The value of 1 must be applied
until the operation has finished or until an error has occurred.

Command The XXMIT interprets each bit of the command word as a function to perform. If bit
7 and 8 are on simultaneously or if any two or more of bits 13, 14, 15 or 16 are on
simultaneously or if bit 7 is not on when bits 13, 14, 15, or 16 are on error 129 will
be generated. For more details refer to XXMIT Communication Functions, p. 23.
The individual bit definitions are shown in the table below.
Command Word Layout

XXMIT Command Word Bit Definitions

Bit Definition

Bit 1 (msb) Reserved

Bit 2 Enable RTS/
CTS modem
control

Set to 1 when a DCE connected to the PLC requires hardware
handshaking using RTS/CTS control. This bit may be used in
conjunction with values contained in StartDly and EndDly. Start of
transmission delay keeps RTS asserted for the time in StartDly (ms)
before XXMIT sends a message out of PLC port. Likewise, end of
transmission delay keeps RTS asserted for the time in EndDly (ms) after
XXMIT has finished sending a message out of the PLC port. Once the
end of transmission delay expires XXMIT de-assert RTS.

Bit 3 Enable
RS485 mode

Set to 1 when the selected port should operate in RS485 mode.
Otherwise it defaults to 0, which is RS232 mode. When using port 2 of a
Momentum PLC in RS485 mode with Modbus Messaging, make sure to
use exactly the same parameters (baudrate, databits, stopbits, parity) for
the XXMIT block as configured for that port.

Bit 4 Reserved

Bit 5 Terminated
ASCII input

Set to 1 to remove and discard all characters from FIFO until the starting
string is matched, then these starting characters and subsequent
characters are written into MsgIn until the terminator sequence is
matched. The terminator string is also written into the MsgIn. Refer to
Terminated ASCII Input Function, p. 24 for more details.

Bit 6 Simple
ASCII input

Set to 1 to remove the ASCII characters from FIFO for writing into MsgIn
array. Refer to Simple ASCII Input Function, p. 26 for more details.

1

Bit

msb

7 8 9 16

lsb

XXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 499 00 October 2002 17

Bit 7 Enable
ASCII string
messaging

Set to 1 when you want to send ASCII messages out of the PLC. XXMIT
sends ASCII strings up to 1024 characters in length. You program the
ASCII message into the MsgOut. Only use Bit 7 OR Bit 8, do not try to
use both.

Bit 8 Enable
Modbus
messaging

Set to 1 when you want to send Modbus messages out of the PLC.
Modbus messages may be in either RTU or ASCII formats. When data
bits=8, XXMIT uses Modbus RTU format. When data bits=7, XXMIT
uses Modbus ASCII format. Only use Bit 7 OR Bit 8, do not try to use
both.

Bit 9 Enable
ASCII receive
FIFO

Set to 1 to allow the XXMIT block to take control over the selected port
(1 or 2) from the PLC. The block begins to receive ASCII characters into
an empty 512 byte circular FIFO. Refer to ASCII Receive FIFO, p. 34 for
more details.

Bit 10 Enable
back space

Set to 1 to allow special handling of ASCII back space character (BS,
8Hex) when using either Simple ASCII Input (Bit 6) or Terminated ASCII
Input (Bit 5). If Bit 10 is set, each back space character will NOT be
stored into MsgIn. Refer to Enable Back space, p. 34 for more details.

Bit 11 Enable
RTS/CTS flow
control

Set to 1 to allow full duplex hardware flow control using the RTS and CTS
handshaking signals for ASCII massaging. The RTS/CTS operates in
both the input and output modes. Refer to Enable RTS/CTS Flow
Control, p. 35 for more details.

Bit 12 Enable
Xon/Xoff flow
control

Set to 1 to allow full duplex software flow control using the ASCII Xon
character (DC1, 11 Hex) and the ASCII Xoff character (DC3, 13 Hex).
The Xon/Xoff operates in both the input and output modes. Refer to
Enable Xon/Xoff Flow Control, p. 36 for more details.

Bit 13 Pulse dial
modem

Set to 1 when using a Hayes compatible dial-up modem and you wish to
pulse dial a telephone number. You program the phone number into the
MsgOut. The length of the message must be in MsgLen. Pulse dialed
numbers are sent to the modem automatically preceded by ATDP and
with carriage return <CR> and line feed <LF> appended. Since the dial
message is an ASCII string, bit 7 must be ON prior to sending the number
to be dialed.

Bit 14 hangup
modem

Set to 1 when using a Hayes compatible dial-up modem and you want to
hangup the modem. You must use user logic to turn this bit ON. Since
the hangup message is an ASCII string, bit 7 must be ON prior to sending
the message. Hang up messages are sent to the modem automatically
preceded by +++AT and with carriage return <CR> and line feed <LF>
appended. XXMIT looks for a correct disconnect response from the
modem before it turns ON the Done output signal, noting a successful
completion.

Bit Definition

XXMIT: Transmit (Compact, Momentum, Quantum)

18 840 USE 499 00 October 2002

MsgOut MsgOut contains the message data to be transferred, for example, ASCII characters
for an ASCII transfer, definition of termination characters for terminated ASCII input
or Modbus templates for Modbus master messages.
The data type that must be assigned to the parameter has to match the
requirements of the function to be performed. The data type of the MsgOut
parameter must be equal to the data type of the MsgIn field.

Bit 15 Tone dial
modem

Set to 1 when using a Hayes compatible dial-up modem and you wish to
tone dial a telephone number. You program the phone number into the
MsgOut. The length of the message must be in MsgLen. Tone dial
numbers are sent to the modem automatically preceded by ATDT and
with carriage return <CR> and line feed <LF> appended. Since the dial
message is an ASCII string, bit 7 must be ON prior to sending the number
to be dialed.

Bit 16 Initialize
modem

Set to 1 when using a Hayes compatible dial-up modem and you want to
initialize the modem. You program the initialization message into
MsgOut and the length of the message into MsgLen. All messages are
sent to the modem automatically preceded by AT and with a carriage
return <CR> and line feed <LF> appended. Since the initialization
message is an ASCII string, bit 7 must be ON prior to sending the
message.

Bit Definition

1RWH��MsgOut and MsgIn are of Data Type ANY. It is preferrable to use a Byte
Array. Different from the XMIT Block, ASCII messages are stored in byte order,
allowing for easy handling, for example, through assigning a string as an initial
value.

1RWH��For Modbus Messaging MsgOut must be a field of words. The minimum size
of the array is WordArr9

XXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 499 00 October 2002 19

MsgLen You must enter the length of the current message according to the selected XXMIT
function.
The following table gives an overview for Modbus and ASCII functions:

Port Port specifies the communications interface. The only authorized values are the
values 1 and 2. Port 2 is only available on the Momentum PLC.

Baudrate XXMIT supports the following data rates: 50, 75, 110, 134, 150, 300, 600, 1200,
1800, 2000, 2400, 3600, 4800, 7200, 9600, 19200. To configure a data rate, enter
its decimal number. When an invalid data rate is entered, the block displays an
illegal configuration error (error code 127) in the XXMIT Status element.

Databits XXMIT supports the following data bits: 7 and 8. To configure a data bit size, enter
its decimal number into this element. Modbus messages may be sent in ASCII
mode or RTU mode. ASCII mode requires 7 data bits, while RTU mode requires 8
data bits. When sending ASCII character message you may use either 7 or 8 data
bits. When an invalid data bit is entered, the block displays an illegal configuration
error (error code 127) in the XXMIT Status element. For more details on Modbus
message formats refer to Modicon Modbus Protocol Reference Guide (PI MBUS
300).

Stopbits XXMIT supports one or two stop bits. Enter a decimal of either: 1 = one stop bit, or
2 = two stop bits. When an invalid stop bit is entered, the block displays an illegal
configuration error (error code 127) in the XXMIT Status element.

Parity XXMIT supports the following parity: none, odd and even. Enter a decimal of either:
0 = no parity, 1 = odd parity, or 2 = even parity. When an invalid parity is entered,
the block displays an illegal configuration error (error code 127) in the XXMIT Status
element.

XXMIT function Subfunction Message Length

Modbus Messaging 01, 02, 03, 04, 05, 06, 08,
15, 16

5

Modbus Messaging 20, 21 6

Terminated ASCII Input 5

Simple ASCII Input 1...1024.

ASCII String Messaging 1...1024. The selected length
must match the size of the array
assigned to MsgOut. Otherwise
you get error 129.

XXMIT: Transmit (Compact, Momentum, Quantum)

20 840 USE 499 00 October 2002

RespTout You enter the time value in milliseconds (ms) to determine how long XXMIT waits
for a valid response message from a slave device (PLC, modem, etc.). In addition,
the time applies to ASCII transmissions and flow control operations. When the
response message is not completely formed within this specified time, XXMIT issues
a fault. The valid range is 0 ... 65535 ms. The timeout is initiated after the last
character in the message is sent.

RetryLmt You enter the quantity of retries to determine how many times XXMIT sends a
message to get a valid response from a slave device (PLC, modem, etc.). When the
response message is not completely formed within this specified time, XXMIT issues
a fault and a fault code. The valid range is 0 ... 65535 # of retries. This field is used
in conjunction with RespTout.

StartDly You enter the time value in milliseconds (ms) when RTS/CTS control is enabled, to
determine how long XXMIT waits after CTS is received before it transmits a
message out of the PLC port. Also, you may use this register even when RTS/CTS
is NOT in control. In this situation, the entered time value determines how long
XXMIT waits before it sends a message out of the PLC port. You may use this as a
pre message delay timer. The valid range is 0 ... 65535 ms.

EndDly You enter the time value in milliseconds (ms) when RTS/CTS control is enabled, to
determine how long XXMIT keeps RTS asserted once the message is sent out of
the PLC port. After the time expires, XXMIT deassert RTS. Also, you may use this
register even when RTS/CTS is NOT in control. In this situation, the entered time
value determines how long XXMIT waits after it sends a message out of the PLC
port. You may use this as a post message delay timer. The valid range is 0 ... 65535
ms.

Retry The value displayed here indicates the current number of retry attempts made by the
XXMIT block. This element is read only.

Active A value of 1 indicates that an XXMIT operation is in progress.

Done A value of 1 indicates that the XXMIT operation has been completed successfully.

1RWH��On RS 485 communication the transmit signal is held to ’1’ during the EndDly
time. On 2-wire connections any characters coming from the communication
partner will be lost.Therefore set EndDly to 0 ms if this function is not needed.

XXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 499 00 October 2002 21

Error A value of 1 indicates that an error has occurred or that the current XXMIT operation
is terminated.

MsgIn MsgIn contains the incoming message data, for terminated ASCII input or simple
ASCII input.
The data type that must be assigned to the parameter has to match the
requirements of the function to be performed. The data type must be equal to the
type of the MsgOut field.

RecCount This element displays the number of received characters.

Status This element displays a fault code generated by the XXMIT block.
A complete list is shown in the table below.
Fault Status

Fault Code Fault Description

1 Modbus exception - Illegal function

2 Modbus exception - Illegal data address

3 Modbus exception - Illegal data value

4 Modbus exception - Slave device failure

5 Modbus exception - Acknowledge

6 Modbus exception - Slave device busy

7 Modbus exception -Negative acknowledge

8 Modbus exception -Memory parity error

9 ... 99 Reserved

100 Slave PLC data area cannot equal zero

101 Master PLC data area cannot equal zero

102 Coil (0x) not configured

103 Master PLC 4x Holding Register area not configured

104 Data length cannot equal zero

105, 106 Reserved

107 Transmit message time-out (This error is generated when the UART cannot
complete a transmission in 10 seconds or less. This error bypasses the retry
counter and will activate the error output on the first error).

108 Undefined error

109 Modem returned ERROR

110 Modem returned NO CARRIER

111 Modem returned NO DIALTONE

112 Modem returned BUSY

XXMIT: Transmit (Compact, Momentum, Quantum)

22 840 USE 499 00 October 2002

113 Invalid LRC checksum from the slave PLC

114 Invalid CRC checksum from the slave PLC

115 Invalid Modbus function code

116 Modbus response message time-out

117 Modem reply time-out

118 XXMIT could not gain access to PLC communications port #1 or port #2

119 XXMIT could not enable PLC port receiver

120 XXMIT could not set PLC UART

121 Reserved

122 Invalid Port

123 Reserved

124 Undefined internal state

125 Broadcast mode not allowed with this Modbus function code

126 DCE did not assert CTS

127 Illegal configuration (data rate, data bits, parity, or stop bits)

128 Unexpected response received from Modbus slave

129 Illegal command word setting

130 Command word changed while active

131 Invalid character count

132 Reserved

133 ASCII input FIFO overflow error

134 Invalid number of start characters or termination characters

135...149 Reserved

150 Either configured port already taken by another instance of the XXMIT or the
configured port is not supported on that PLC

151 MsgOut is smaller than 12 Byte while ’Modbus Master Messaging’ function is
selected

152 Variable connected to MsgOut is smaller than the value of the MsgLen
parameter while ’ASCII String Messaging’ is selected

153 Variable connected to MsgIn is smaller than the value of the MsgLen
parameter while either ’Terminated ASCII Input’ or ’SimpleASCII Input’ is
selected

Fault Code Fault Description

XXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 499 00 October 2002 23

XXMIT Communication Functions

XXMIT Command
Word

The XXMIT communication block performs six functions shown below. For each
function certain bits of the Command word must be set.

Command Word
Bits

Command Word Functions in Relation to Bits

Function Command word bits
that may be set to 1

Bits that MUST be set to = 0

Terminated ASCII input

(Bit 5=1) 1
2,3,9,10,11,12 6,7,8,13,14,15,16

Simple ASCII input
(Bit 6=1) *

2,3,9,10,11,12 5,7,8,13,14,15,16

Simple ASCII output
(Bit 7=1)

2,3,9,10,11,12 5,6,8,13,14,15,16

Modem output (Bit 7=1) 2,3,13,14,15,16 5,6,8,9,10,11,12 (plus one, but
ONLY one, of the following bits is set
to 1: 13,14,15 or 16, while the other
three bits must be set to 0)

Modbus master messaging
output (Bit 8=1)

2,3 5,6,7,9,10,11,12,13,14,15,16

1RWH��1 When using either of these functions you MUST set Enable ASCII receive
FIFO (Bit 9) to 1. Bit 1 (MSB) and Bit 4 are reserved. (See Table &RPPDQG��S� ��)

XXMIT: Transmit (Compact, Momentum, Quantum)

24 840 USE 499 00 October 2002

XXMIT ASCII Functions

At a Glance The XXMIT function block supports the following ASCII communication functions
l Terminated ASCII Input
l Simple ASCII Input
l ASCII String Messaging

Terminated
ASCII Input
Function

When Bit 5 of the Command Word is activated for terminated ASCII Input
messages, the MsgOut array has to contain the ASCII input definition table.
Depending of which datatype you selected for MsgOut, the terminated ASCII
definition table consists of three words or 6 byte. The terminated ASCII input
definition table is shown in the table below.
Terminated ASCII Input Definition Table (Datatype WordArray)

Terminated ASCII Input Definition Table (Datatype ByteArray)

During the process, RecCount holds a running count of characters written into the
MsgIn array. Once the terminated string is received the Done output on the XXMIT
block goes ON and RecCount holds the total length of the received string including
the starting and terminator strings. At this point the XXMIT block still owns the port
and continues to save newly received characters into the ASCII receive FIFO,
because the enable ASCII receive FIFO Command Word, Bit 9 is ON.
Using program logic, you can clear the simple ASCII input Bit before the next scan,
while leaving the enable ASCII receive FIFO Bit ON. Thus, MsgIn is NOT over
written by newer FIFO data, which is still collected in the FIFO. Using program logic,
you can clear both bits for enable ASCII receive FIFO (Bit 9), and terminated ASCII
input (Bit 5) to return port control back to the PLC.

Word High Byte Low Byte

MsgOut[1] Number of starting characters (allowed
content = 0, 1, 2)

Number of terminator characters
(allowed content = 1, 2)

MsgOut[2] First starting character Second starting character

MsgOut[3] First terminator character Second terminator character

Byte Function

MsgOut[1] length of termination string (1 or 2)

MsgOut[2] length of start string (0 or 1 or 2)

MsgOut[3] 2nd start character

MsgOut[4] 1st start character

MsgOut[5] 2nd termination character

MsgOut[6] 1st termination character

XXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 499 00 October 2002 25

When too many characters are written into the MsgIn array with NO terminator
detected, or the MsgIn array is outside the allowed range for the configured PLC an
error is reported in Status. The character limit is the smaller of 1024 or two times
the sizes of the MsgIn array.

Terminated
ASCII Example

Assume that XXMIT is activated with the command word Bit 9 and 5 set. Enable
ASCII FIFO and terminated ASCII. The following ASCII string is received by the
port: "AMScrlf$weight = 1245 GRAMScrlf$wei". Refer to the ASCII Input Definition
Table that shows the contents denoted by () used in this example.
Terminated ASCII Input Definition Table (content Datatype Byte Array)

Terminated ASCII Input Definition Table Example (content for Datatype Word Array)

The XXMIT block becomes ACTIVE and then discards from the input FIFO the initial
five characters, "AMScrlf", because they do not match the first starting character set
to ’$’. On the logic scan after the ’$’ is received, the XXMIT block remains ACTIVE
and it copies the ’$’ and subsequent characters into the MsgIn array, updating
RecCount with the count done so far, as the characters come in. After the final
termination character is received the output Done is activated and MsgLen contains
the total length equal to 22 characters (0x0016). The MsgIn array contains: "$weight
= 1245 GRAMScrlf" as Byte Array (or: "$w", "ei", "gh", "t ", "= ", "12", "45", " G", "RA",
"MS", "crlf" if using a Word Array). On the scan that the output Done is activated,
the already received characters from the next message, "$wei", that came in after
the termination string, remains in the ASCII input FIFO. This gives the program logic
the opportunity to turn off the Terminated ASCII input before the next scan solve of
XXMIT for this port, keeping those characters in the FIFO until the PLC completes
processing the current message, that might take several scans.

Byte Content

MsgOut[1] Number of starting characters (0x01)

MsgOut[2] Number of terminator characters (0x02)

MsgOut[3] Second starting character (Not Used)

MsgOut[4] First starting character (’$’)

MsgOut[5] Second terminator character (’lf’’)

MsgOut[6] First terminator character (’cr’)

Word High Byte Low Byte

MsgOut[1] Number of starting characters (0x01) Number of terminator characters
(0x02)

MsgOut[2] First starting character (’$’) Second starting character (Not
Used)

MsgOut[3] First terminator character (’cr’) Second terminator character (’lf’’)

XXMIT: Transmit (Compact, Momentum, Quantum)

26 840 USE 499 00 October 2002

Simple ASCII
Input Function

All incoming characters are placed into the MsgIn array. If MsgIn is defined as Byte
Array (as recommended), the incomming characters are simply stored first
character into first array element, second character into second and so on.If MsgIn
is defined as WordArray, two characters are stored in each element. The first
character is stored in the high byte of the first element. The second character is
stored in the low byte of the first element. The third character is stored in the high
byte of the second element, and so on. The Message Length variable (MsgLen)
contains the length of the message (1 ... 1024 characters).

ASCII String
Messaging

When Command Word, Bit 7 is activated for String Messaging, the MsgOut array
has to contain the ASCII information to be transmitted. The message length MsgLen
has to be set to the length of the message to be transmitted.
As mentioned in Detailed Parameter Description, p. 16, MsgOut may be of any
datatype. For ASCII String Messaging the type ByteArray reflects best the nature of
strings: First Byte contains first character and so on. (See Simple ASCII Send, p. 42)

1RWH��When Simple ASCII Input (Bit 6) and ASCII Receive FIFO (Bit 9) remain set,
new characters are continuously transferred from FIFO into the same MsgIn array
thus constantly over writing the previous characters stored into the MsgIn array.

XXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 499 00 October 2002 27

XXMIT Modem Functions

At a glance The XXMIT function block allows you to communicate to a Hayes compatible
modem using the functions listed in the following table:
Modem Functions

Initialize Modem Set Bit 16 of the command word to 1 when using a Hayes compatible dial-up modem
and you want to initialize the modem. You program the initialization message into
the MsgOut array and the length of the message into MsgLen. All messages are
sent to the modem automatically preceded by AT and with a carriage return <CR>
and line feed <LF> appended. Since the initialization message is an ASCII string,
bit 7 must be ON prior to sending the message

Pulse Dial
Modem

Set Bit 13 of the command word to 1 when using a Hayes compatible dial-up modem
and you wish to pulse dial a telephone number. You program the phone number into
the MsgOut array. The length of the message must be in MsgLen. Pulse dialed
numbers are sent to the modem automatically preceded by ATDP and with carriage
return <CR> and line feed <LF> appended. Since the dial message is an ASCII
string, bit 7 must be ON prior to sending the number to be dialed.

Tone Dial Modem Set Bit 15 of the command word to 1 when using a Hayes compatible dial-up modem
and you wish to tone dial a telephone number. You program the phone number into
the MsgOut array. The length of the message must be in MsgLen. Tone dialed
numbers are sent to the modem automatically preceded by ATDT and with carriage
return <CR> and line feed <LF> appended. Since the dial message is an ASCII
string, bit 7 must be ON prior to sending the number to be dialed.

Hangup Modem Set Bit 14 of the command word to 1 when using a Hayes compatible dial-up modem
if you want to hangup the modem. You must use program logic to turn this bit ON.
Since the hangup message is an ASCII string, bit 7 must be ON prior to sending the
message. Hang up messages are sent to the modem automatically preceded by
+++AT and with carriage return <CR> and line feed <LF> appended. XXMIT looks
for a correct disconnect response from the modem before it turns ON the Done
output signal, noting a successful completion.

Bit in Command Word Function

Bit 13 Pulse dial modem

Bit 14 Hangup modem

Bit 15 Tone dial modem

Bit 16 Initialize modem

XXMIT: Transmit (Compact, Momentum, Quantum)

28 840 USE 499 00 October 2002

XXMIT Modbus Functions

At a Glance The XXMIT function block supports the following Modbus function codes:.
l 01 ... 06 and 15 ... 16
l 08
l 20 and 21

Modbus
Function Codes
(01 ... 06, 15 and
16)

For Modbus messages, the MsgOut array has to contain the Modbus definition
table. This has to be defined as a field of words. The Modbus definition table for
Modbus function code: 01, 02, 03, 04, 05, 06, 15 and 16 is five registers long and
you must set MsgLen to 5 for successful XXMIT operation. The Modbus definition
table is shown in the table below.
Modbus Definition Table Function Codes (01 ... 06, 15 and 16)

1RWH��When using port 2 of a Momentum PLC in RS485 mode with Modbus
Messaging, make sure to use exactly the same parameters (baudrate, databits,
stopbits, paritty) for the XXMIT block as configured for that port.

Content Description

Modbus
function code
(MsgOut[1])

XXMIT supports the following function codes:
01 = Read multiple coils (0x)
02 = Read multiple discrete inputs (1x)
03 = Read multiple holding registers (4x)
04= Read multiple input registers (3x)
05 = Write single coil (0x)
06 = Write single holding registers (4x)
15 = Write multiple coils (0x)
16 = Write multiple holding registers (4x)

Quantity
(MsgOut[2])

Enter the amount of data you want written to the slave PLC or read from
the slave PLC. For example, enter 100 to read 100 holding registers from
the slave PLC or enter 32 to write 32 coils to a slave PLC. There is a size
limitation on quantity that is dependent on the PLC model. Refer to
Appendix A for complete details on limits.

Slave PLC
address
(MsgOut[3])

Enter the slave Modbus PLC address. Typically the Modbus address
range is 1 ... 247. To send a Modbus message to multiple PLCs, enter 0
for the slave PLC address. This is referred to as Broadcast Mode.
Broadcast Mode only supports Modbus function codes that writes data
from the master PLC to slave PLCs. Broadcast Mode does NOT support
Modbus function codes that read data from slave PLCs.

XXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 499 00 October 2002 29

Source and Destination Data Areas for Function Codes (01 ... 06, 15 and 16)

When you want to send 20 Modbus messages out of the PLC, you must transfer 20
Modbus definition tables one after another into MsgOut after each successful
operation of XXMIT, or you may program 20 separate XXMIT blocks and then
activate them one at a time through user logic.

Slave PLC data
area
(MsgOut[4])

For a read command, the slave PLC data area is the source of the data.
For a write command, the slave PLC data area is the destination for the
data. For example, when you want to read coils (00300 ... 00500) from a
slave PLC, enter 300 in this field. When you want to write data from a
master PLC and place it into register (40100) of a slave PLC, enter 100 in
this field. Depending on the type of Modbus command (write or read), the
source and destination data areas must be as defined in the Source and
Destination Data Areas table below.

Master PLC
data area
(MsgOut[5])

For a read command, the master PLC data area is the destination for the
data returned by the slave. For a write command, the master PLC data
area is the source of the data. For example, when you want to write coils
(00016 ... 00032) located in the master PLC to a slave PLC, enter 16 in the
field. When you want to read input registers (30001 ... 30100) from a slave
PLC and place the data into the master PLC data area (40100 ... 40199),
enter 100 in this field. Depending on the type of Modbus command (write
or read), the source and destination data areas must be as defined in the
Source and Destination Data Areas table below.

Function Code Master PLC Data Area Slave PLC Data Area

03 (Read multiple 4x) 4x (destination) 4x (source)

04 (Read multiple 3x) 4x (destination) 3x (source)

01 (Read multiple 0x) 0x (destination) 0x (source)

02 (Read multiple 1x) 0x (destination) 1x (source)

16 (Write multiple 4x) 4x (source) 4x (destination)

15 (Write multiple 0x) 0x (source) 0x (destination)

05 (Write single 0x) 0x (source) 0x (destination)

06 (Write single 4x) 4x (source) 4x (destination)

Content Description

XXMIT: Transmit (Compact, Momentum, Quantum)

30 840 USE 499 00 October 2002

Modbus
Function Code
(08)

For Modbus messages, the MsgOut array has to contain the Modbus definition
table. This has to be defined as a field of words. The Modbus definition table for
Modbus function code: 08 is five registers long and you must set MsgLen to 5 for
successful XXMIT operation. The Modbus definition table is shown in the table
below.
Modbus Definition Table Function Codes (08)

Content Description

Modbus function code
(MsgOut[1])

XXMIT supports the following function code:
08 = Diagnostics

Diagnostics (MsgOut[2]) Enter the diagnostics subfunction code decimal value in this
field to perform the specific diagnostics function desired. The
following diagnostic subfunctions are supported:

Code
00
01
02
03
04
05 ... 09
10

11
12
13
14 ... 15
16
17
18
19 ... 21

Description
Return query data
Restart comm option
Return diagnostic register
Change ASCII input delimiter
Force listen only mode
Reserved
Clear counters
(& diagnostics registers in 384, 484)
Return bus messages count
Return bus comm error count
Return bus exception error count
Not supported
Return slave NAK count
Return slave busy count
Return bus Char overrun count
Not supported

Slave PLC address
(MsgOut[3])

Enter the slave Modbus PLC address. Typically the Modbus
address range is 1 ... 247. Function code 8 does NOT support
Broadcast Mode (Address 0)

Diagnostics function data
field content (MsgOut[4])

You must enter the decimal value needed for the data area of
the specific diagnostic subfunction. For subfunctions 02, 04,
10, 11, 12, 13, 16, 17 and 18 this value is automatically set to
zero. For subfunctions 00, 01, and 03 you must enter the
desired data field value. For more details, refer to Modicon
Modbus Protocol Reference Guide (PI-MBUS-300).

XXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 499 00 October 2002 31

Master PLC data area
(MsgOut[5])

For all subfunctions, the master PLC data area is the
destination for the data returned by the slave. You must
specify a 4x register that marks the beginning of the data area
where the returned data is placed. For example, to place the
data into the master PLC data area starting at (40100), enter
100 in this field. Subfunction 04 does NOT return a response.
For more details, refer to Modicon Modbus Protocol
Reference Guide (PI-MBUS-300).

Content Description

XXMIT: Transmit (Compact, Momentum, Quantum)

32 840 USE 499 00 October 2002

Modbus
Function Codes
(20, 21)

For Modbus messages, the MsgOut array has to contain the Modbus definition
table. This has to be defined as a field of words. The Modbus definition table for
Modbus function codes: 20 and 21 is six registers long and you must set MsgLen to
6 for successful XXMIT operation. The Modbus definition table is shown in the table
below.
Modbus Definition Table Function Codes (20, 21)

Content Description

Modbus function code
(MsgOut[1])

XXMIT supports the following function codes:
20 = Read general reference (6x)
21 = Write general reference (6x)

Quantity (MsgOut[2]) Enter the amount of data you want written to the slave PLC or
read from the slave PLC. For example, enter 100 to read 100
holding registers from the slave PLC or enter 32 to write 32 coils
to a slave PLC. There is a size limitation on quantity that is
dependent on the PLC model.

Slave PLC address
(MsgOut[3])

Enter the slave Modbus PLC address. Typically the Modbus
address range is 1 ... 247. Function code 20 and 21 do NOT
support Broadcast Mode (Address 0).

Slave PLC data area
(MsgOut[4])

For a read command, the slave PLC data area is the source of
the data. For a write command, the slave PLC data area is the
destination for the data. For example, when you want to read
registers (600300 ... 600399) from a slave PLC, enter 300 in this
field. When you want to write data from a master PLC and place
it into register (600100) of a slave PLC, enter 100 in this field.
Depending on the type of Modbus command (write or read), the
source and destination data areas must be as defined in the
Source and Destination Data Areas table below. The lowest
extended register is addressed as register "zero" (600000). The
lowest holding register is addressed as register "one" (400001).

Master PLC data area
(MsgOut[5])

For a read command, the master PLC data area is the destination
for the data returned by the slave. For a write command, the
master PLC data area is the source of the data. For example,
when you want to write registers (40016 ... 40032) located in the
master PLC to 6x registers in a slave PLC, enter 16 in the field.
When you want to read 6x registers (600001 ... 600100) from a
slave PLC and place the data into the master PLC data area
(40100 ... 40199), enter 100 in this field. Depending on the type
of Modbus command (write or read), the source and destination
data areas must be as defined in the Source and Destination
Data Areas table below. The lowest extended register is
addressed as register "zero" (600000). The lowest holding
register is addressed as register "one" (400001).

XXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 499 00 October 2002 33

Source and Destination Data Areas for Function Codes (20, 21)

When you want to send 20 Modbus messages out of the PLC, you must transfer 20
Modbus definition tables one after another into MsgOut after each successful
operation of XXMIT, or you may program 20 separate XXMIT blocks and then
activate them one at a time through user logic.

File number (MsgOut[6]) Enter the file number for the 6x registers to be written to or read
from. (1 ... 10) depending on the size of the extended register
data area. 600001 is 60001 file 1 and 69 0001 is 60001 file 10
as viewed by the Reference Data Editor.

Function Code Master PLC Data Area Slave PLC Data Area

20 (Read general reference 6x) 4x (destination) 6x (source)

21 (Write general reference 6x) 4x (source) 6x (destination)

Content Description

XXMIT: Transmit (Compact, Momentum, Quantum)

34 840 USE 499 00 October 2002

FIFO and Flow Control

At a glance The XXMIT function block allows the the user to define the use of a receive FIFO
buffer, flow control and the function of received back spaces.

ASCII Receive
FIFO

Setting Bit 9 of the command word to 0 ends this function. When the FIFO receives
512 characters an internal overflow is set. When this occurs all subsequent
characters are discarded, all ASCII input operations (simple and terminated) are
ended, and the block returns an error until you toggle (Bit 9). When (Bit 9) is toggled,
all data in the FIFO is discarded, both ASCII input control bits are ignored (Simple
ASCII (Bit 6), Terminated ASCII (Bit 5)), and when no ASCII output controls are
selected then the control of the serial port (1 or 2) is returned back to the PLC.
You need to set either Terminated ASCII (Bit 5) or Simple ASCII (Bit 6) to remove
the ASCII characters from FIFO for processing. No more than one of the following
three bits can be set simultaneously: Terminated ASCII (Bit 5), Simple ASCII (Bit 6),
or ASCII Output (Bit 7).
Full duplex operation may be achieved by setting both ASCII Receive FIFO (BIT 9),
and ASCII Output (Bit 7). This allows simple ASCII transmission out of the PLC
while still receiving ASCII characters into FIFO. This is useful when working with
dumb terminals. When ASCII Receive FIFO (Bit 9) is set none of the following ASCII
output controls are allowed: Modbus Master Messaging (Bit 8), Pulse Dial Modem
(Bit 13), Hangup Modem (Bit 14), Tone Dial Modem (Bit 15) and Initialize Modem
(Bit 16).

Enable Back
space

When a backspace (BS) is detected it is NOT stored into the MsgIn array, in fact it
deletes the previous character and thus decreases the RecCount Character
Counter. In contrast, when a regular ASCII character is detected it is stored in the
MsgIn array and the RecCount Character Counter is increased.

This special back space functionality along with internal echo enabled at the terminal
are very useful for dealing with dumb terminals. A single Terminated ASCII Input
XXMIT block searching for "cr" is activated with ASCII Receive FIFO (Bit 9) and back
space (Bit 10) set. No additional program logic is required while you type and edit
characters using the back space on the fly. When you type "cr" XXMIT activates the
Done output, and the corrected data is all lined up properly in the MsgIn array.

1RWH��Back spaces CANNOT delete characters from an empty MsgIn array, thus
the RecCount Character Counter never goes below 0.

XXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 499 00 October 2002 35

Enable RTS/CTS
Flow Control

The following pertains to the output mode. The XXMIT state goes to BLOCKED
receiving when the receiving device indicates it cannot process additional
characters by setting CTS to OFF. Likewise, The XXMIT state goes to UNBLOCKED
when CTS is ON and the receiving devices indicates it CAN process additional
characters.
When transmission is UNBLOCKED and Simple ASCII Output (Bit 7) and RTS/CTS
Flow Control (Bit 11) are set then the transmit output data is sent out in 16 byte
packets. After all output packets are sent then the Done output on the XXMIT block
goes ON to indicate "Operation Successful".
If during a transmission it suddenly becomes BLOCKED, only the remaining
characters in the current output packet are sent, never exceeding 16 characters, and
the XXMIT block remains ACTIVE indefinitely. Only when the CTS in ON will the
ASCII output resume sending all remaining output packets.
The following pertains to the input mode. Since RTS is an output signal, it can be
used independently of the ASCII output transmit process, to BLOCK or UNBLOCK
sending devices. When ASCII Receive FIFO (Bit 9) is set the RTS/CTS Flow
Control works in the input mode. When ASCII Receive FIFO (Bit 9) is set and neither
of the two ASCII inputs are set, Simple ASCII Input (Bit 6) or Terminated ASCII Input
(Bit 5), the received characters will fill the FIFO in which they are inserted. In the
mean time, the RTS Flow Control (Bit 11) is ON allowing the sending device to
proceed.
When the FIFO (512 characters) is more than three quarters full with characters the
RTS Control Flow (Bit 11) is cleared to BLOCK the sending device. The RTS
Control Flow (Bit 11) remains cleared until either Simple ASCII Input (Bit 6) or
Terminated ASCII Input (Bit 5) have removed enough characters from the FIFO
whereby reducing it to less than one quarter full of characters at which point the RTS
Control Flow (Bit 11) is turned ON.

1RWH��The RTS/CTS Flow Control algorithm is different from RTS/CTS Modem
Control. The former is related to full duplex receive buffer overflow. The latter
deals with the transmit process gaining access to a shared transmission medium.
Therefore, it is illegal to simultaneously request both of these RTS/CTS algorithms.

1RWH��You CANNOT select any type of RTS/CTS Flow Control (Bit 11)
handshaking when the port is in RS 485 Mode (Bit 3) because these signals do
NOT exist in RS 485 mode.

XXMIT: Transmit (Compact, Momentum, Quantum)

36 840 USE 499 00 October 2002

Enable Xon/Xoff
Flow Control

The following pertains to the output mode. The XXMIT state goes to BLOCKED
when an Xoff character is received. Likewise the XXMIT state goes to
UNBLOCKED when an Xon character is received. In neither case will Xon or Xoff
be inserted into the FIFO.
When transmission is UNBLOCKED and Simple ASCII Output (Bit 7) and Xon/Xoff
Flow Control (Bit 12) are set then the transmit output data is sent out in 16 byte
packets. After all output packets are sent the Done output on the XXMIT block goes
ON.
If during a transmission it suddenly becomes BLOCKED, only the remaining
characters in the current output packet are sent, never exceeding 16 characters, and
the XXMIT block remains ACTIVE indefinitely. Only when the next Xon character is
received will the ASCII output resume sending all remaining output packets.
The following pertains to the input mode. Xon/Xoff may be used to BLOCK or
UNBLOCK sending devices. When ASCII Receive FIFO (Bit 9) is set the Xon/Xoff
Control Flow (Bit 12) works in the input mode. When ASCII Receive FIFO (Bit 9) is
set and neither of the two ASCII inputs are set, Simple ASCII Input (Bit 6) or
Terminated ASCII Input (Bit 5), the received characters will fill the FIFO in which they
are inserted.
When the FIFO is more than three quarter full with characters and additional
characters are received the FIFO state variable is set to send XOFF characters out
the serial port after a delay of up to 16 character times BLOCKING the sender and
clearing the FIFO state variable.
When all ASCII output functions (Bits 8,13,14,15, and 16) are OFF and the Xon/Xoff
Flow Control (Bit 12) is ON the delay time defaults to 1 character time. In contrast,
when all ASCII output functions (Bits 8,13,14,15, and 16) are ON and the Xon/Xoff
Flow Control (Bit 12) is ON then the ASCII output is broken up into 16 byte packets.
Thus, pending Xoff characters DO NOT have to wait more than 16 character times
before BLOCKING the sender.
Once the sender has stopped transmission, the PLC eventually removes the
characters from the FIFO using either Simple ASCII Input (Bit 6) or Terminated
ASCII Input (Bit 7).
When FIFO becomes less than one quarter full with characters the FIFO state
variable is set to send XON, thus, sending an Xon character out the serial port to
UNBLOCK the sender.

1RWH��To prevent lockup due to a disconnected cable or other intermittent
communication errors, when the sender is BLOCKED and did NOT receive the Xon
character correctly we use the following algorithm. When FIFO becomes empty
and no characters are subsequently received, then a steady stream of Xon
characters are transmitted at the rate of once every 5 seconds.

XXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 499 00 October 2002 37

Run Time Errors

Error Messages In case of error, the XXMIT function block will generate the following runtime error:
E_EFB_WORLD_INTERFACE
This will be displayed in the Online Event dialog.
Subject to the value of the first error message parameter, the error message may
have various origins.
l An invalid communications interface was selected.

An invalid value for the communications interface was selected at the Port input.
Authorized values are "1" and "2" for Momentum PLCs, all other platforms only
"1".

l Selected port is already taken by another instance of XXMIT.
l Either an invalid value for Baudrate/Stopbits/Databits has been used or the

variables connected to MsgIn or MsgOut do not provide enough memory for the
configured XXMIT operation.

1RWH��The Xon/Xoff Flow Control (Bit 12) is different from the RTS/CTS Control
Flow (Bit 11). The former uses transmitted Xon and Xoff characters to prevent
receive buffer overflow in full duplex mode. The latter uses hardware hand-shaking
signals to accomplish the same goal. Therefore, it is illegal to simultaneously
request both of these flow control algorithms because RTS/CTS Flow Control (Bit
11) Modem Control implies a half duplex network while Xon/Xoff Flow Control (Bit
12) implies a full duplex network.

XXMIT: Transmit (Compact, Momentum, Quantum)

38 840 USE 499 00 October 2002

Application Example

Description The following program is a short demo application with four instances of the XXMIT
block showing the four main functions:
l Modbus Master
l Simple ASCII In
l ASCII Message Out
l Terminated ASCII In

Modbus Master The following Modbus Master operation is a read request to a slave device
connected to port 1 of the master:
l Read slave’s 4:0001 to 4:00010
l into local 4:00011 to 4:00020
The Slave must be set up with the following port parameters:
l 9600 baud
l 8 data bits
l 1 stop bit
l even parity (2)
The Master uses settings from the XXMIT function block

XXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 499 00 October 2002 39

Variable
declaration for
Modbus Master

The following table shows the variables used in the Modbus Master example:

Variable Name Data Type Initial
Value

Comment

StartModbusMstr BOOL

ModbusMstrActive BOOL

ModbusMstrCommand WORD 16#0100 Bit 8 set

ModbusMstrDone BOOL

ModbusMstrError BOOL

ModbusMstrNode WORD

ModbusMstrSettings
 ModbusMstrSettings[1]
 ModbusMstrSettings[2]
 ModbusMstrSettings[3]
 ModbusMstrSettings[4]
 ModbusMstrSettings[5]
 ModbusMstrSettings[6]
 ...

WordArr9
3
10

1
11

Modbus Code: Read multiple registers
Amount of Registers to read
Slave Modbus address
Source register
Destination Register
not used

ModbusMstrStatus INT

ModbusMstrNode WORD Enter Slave address

ModbusMstrErrorCounter INT

ModbusMstrDoneCounter INT

XXMIT: Transmit (Compact, Momentum, Quantum)

40 840 USE 499 00 October 2002

IEC Section for
Modbus Master

Program the following in an FBD section:
Slave node address assignment

Assignments to the XXMIT function block:

Count errors and successes

MOVE

ModbusMstrNode ModbubsMstrSettings[3]

XXMIT

ModbusMstrActiveActive

ModbusMstrDoneDone

ModbusMstrErrorError

MsgIn

RecCount

ModbusMstrStatusStatus

ModbusMstrRetryCounterRetry

StartStartModbusMstr
CommandModbusMstrCommand
MsgOutModbusMstrSettings
MsgLen5
Port1
Bauderate9600
Databits8
Stopbits1
Parity2
RespTout100
RetryLmt20
StartDly100
EndDly100

CTU

QCUModbusMstrError

PV0
R

PV ModbubsMstrErrorCounter

CTU

QCUModbusMstrDone

PV0
R

PV ModbubsMstrDoneCounter

XXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 499 00 October 2002 41

Simple ASCII
Receive

Receives whatever comes into port 1. The receive buffer’s length is assigned as
’SimpleReceiveLength’, which has an initial value of 10.
Received characters are in MsgIn array, number of received characters in
RecCount.

Variable
declaration for
Simple ASCII
Receive

The following table shows the variables used in the Simple ASCII Receive example:

Variable Name Data Type Initial
Value

Comment

StartSimpleReceive BOOL

SimpleReceiveActive BOOL

SimpleReceiveCharCounter INT

SimpleReceiveCommand WORD 16#0480 Bits 6 and 9 set. FIFO enabled

SimpleReceiveDone BOOL

SimpleReceiveError BOOL

SimpleReceiveLength INT 10

SimpleReceiveRetryCounter INT

SimpleReceiveStatus INT

SimpleRecMessage ByteArr12

SimpleReceiveDoneCounter INT

SimpleReceiveErrorCounter INT

XXMIT: Transmit (Compact, Momentum, Quantum)

42 840 USE 499 00 October 2002

IEC Section for
Simple ASCII
Receive

Program the following in an FBD section:

Count errors and successes

Simple ASCII
Send

Sends a simple ASCII message out off port 1, the message is ’Hello World!!’

XXMIT

SimpleReceiveActiveActive

SimpleReceiveDoneDone

SimpleReceiveErrorError

SimpleRecMessageMsgIn

SimpleReceiveCharCountRecCount

SimpleReceiverStatusStatus

SimpleReceiveRetryCounterRetry

StartStartSimpleReceive
CommandSimpleReceiveCommand
MsgOutSimpleReceiveLength
MsgLen

Port1
Bauderate9600
Databits8
Stopbits1
Parity2
RespTout100
RetryLmt20
StartDly100
EndDly100

CTU

QCUSimpleReceiveError

PV0
R

PV SimpleReceiveErrorCounter

CTU

QCUSimpleReceiveDone

PV0
R

PV SimpleReceiveDoneCounter

XXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 499 00 October 2002 43

Variable
declaration for
Simple ASCII
Send

The following table shows the variables used in the Simple ASCII Send example:

Variable Name Data Type Initial
Value

Comment

StartSimpleSend BOOL

SimpleSendActive BOOL

SimpleSendCommand WORD 16#0200 Bit 7 set

SimpleSendDone BOOL

SimpleSendError BOOL

SimpleSendLength INT 14 Number of characters to send

SimpleSendMessage
 SimpleSendMessage[1]
 SimpleSendMessage[2]
 SimpleSendMessage[3]
 SimpleSendMessage[4]
 SimpleSendMessage[5]
 SimpleSendMessage[6]
 SimpleSendMessage[7]
 SimpleSendMessage[8]
 SimpleSendMessage[9]
 SimpleSendMessage[10]
 SimpleSendMessage[11]
 SimpleSendMessage[12]
 SimpleSendMessage[13]
 SimpleSendMessage[14]

ByteArr36
16#48
16#65
16#6C
16#6C
16#6F
16#20
16#57
16#6F
16#72
16#6C
16#64
16#20
16#21
16#21

’Hello World !!’

SimpleSendRetryCounter INT

SimpleSendStatus INT

SimpleSendDoneCounter INT

SimpleSendErrorCounter INT

XXMIT: Transmit (Compact, Momentum, Quantum)

44 840 USE 499 00 October 2002

IEC Section for
Simple ASCII
Send

Program the following in an FBD section:

Count errors and successes

Terminated
ASCII Receive

After receiving the ’starting characters’ "AB", the function block puts all received
characters into the receive buffer MsgIn. The receiver will stop when the ’finishing
characters’ "CD" are received, whereby the "Done" output will be set, to indicate the
successfull completion. The max. length of the receive buffer is assigned as
"TermReceiveLength", which is set to an initial value of 20 in this example.

XXMIT

SimpleSendActiveActive

SimpleSendDoneDone

SimpleSendErrorError

MsgIn

RecCount

SimpleSendStatusStatus

SimpleSendRetryCounterRetry

StartStartSimpleSend
CommandSimpleSendCommand
MsgOutSimpleSendMessage
MsgLenSimpleSendLength
Port1
Bauderate9600
Databits8
Stopbits1
Parity2
RespTout100

RetryLmt20
StartDly100
EndDly100

CTU

QCUSimpleSendError

PV0
R

PV SimpleSendErrorCounter

CTU

QCUSimpleSendDone

PV0
R

PV SimpleSendDoneCounter

XXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 499 00 October 2002 45

Variable
declaration for
Terminated
ASCII Receive

The following table shows the variables used in the Terminated ASCII Receive
example:

Variable Name Data Type Initial
Value

Comment

StartTermReceive BOOL

TermReceiveActive BOOL

TermReceiveCharCounter INT

TermReceiveCommand WORD 16#0880 Bits 5 and 9 set. FIFO enabled

TermReceiveDone BOOL

TermReceiveError BOOL

TermReceiveLength INT 20

TermReceiveMessage ByteArr36 Received characters

TermReceiveRetryCounter INT

TermReceiveSettings
 TermReceiveSettings[1]
 TermReceiveSettings[2]
 TermReceiveSettings[3]
 TermReceiveSettings[4]
 TermReceiveSettings[5]
 TermReceiveSettings[6]

ByteArr36
16#02
16#02
16#41
16#42
16#43
16#44

length of termination string (1 or 2)
length of start string (0, 1 or 2)
2nd start character
1st start character
2nd termination character
1st termination character

TermReceiveStatus INT

TermReceiveDoneCounter INT

TermReceiveErrorCounter INT

XXMIT: Transmit (Compact, Momentum, Quantum)

46 840 USE 499 00 October 2002

IEC Section for
Terminated
ASCII Receive

Program the following in an FBD section:

Count errors and successes

XXMIT

TermReceiveActiveActive

TermReceiveDoneDone

TermReceiveErrorError

TermReceiveMessageMsgIn

TermReceiveCharCounterRecCount

TermReceiveStatusStatus

TermReceiveRetryCounterRetry

StartStartTermReceive
CommandTermReceiveCommand
MsgOutTermReceiveSettings
MsgLenTermReceiveLength
Port1
Bauderate9600
Databits8
Stopbits1
Parity2
RespTout100

RetryLmt20
StartDly100
EndDly100

CTU

QCUTermReceiveError

PV0
R

PV TermReceiveErrorCounter

CTU

QCUTermReceiveDone

PV0
R

PV TermReceiveDoneCounter

XXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 499 00 October 2002 47

Entering Strings
as initial values

The Variable Editor of Concept allows you to easily enter Strings as initial values into
byte arrays.
The following part gives a short describtion of how to define a variable ’DemoString’
as ’ByteArr36’ and enter a string ’My Text ! ’ as initial value.
Open the Variable Editor
From the main menu select:
Project -> Variable Editor.
Variable Editor

Define new variable
Enter the new variables name in the ’Variable Name’ field. As data type select
’ByteArrxx’ (xx depends on the size of your message). In the ’InitValue’ field a ’Set...’
button appears.
Enter text as initial value
Click on the ’Set...’ button and open the definition window. Double clicking into the
value field brings up a cursor and allows you to enter your text.

Variable Editor

Type

Variables Constants

Cancel HelpOK

Exp Variable Name Data Type Address InitValue Used

Search/Paste

Search/Replace

2

Demo String ByteArr36 01 Set...

3

XXMIT: Transmit (Compact, Momentum, Quantum)

48 840 USE 499 00 October 2002

Definition ByteArr

Look at Array Elements
Click on the ’+’ button in front of the variables name and open the view onto all array
elements. The value column shows the ASCII code representation of the entered
characters as hexadecimal numbers.
Elements of the Byte Array

Definition ByteArr36

Cancel HelpOK

Name Type

DemoString ByteArr36+

Value

DemoString

My Text!

Definition ByteArr36

Cancel HelpOK

Name Type

DemoString ByteArr36-

Value

BYTE 16#4DDemoString[1]

BYTE 16#79DemoString[2]

BYTE 16#20DemoString[3]

BYTE 16#54DemoString[4]

BYTE 16#65DemoString[5]

BYTE 16#78DemoString[6]

BYTE 16#74DemoString[7]

BYTE 16#20DemoString[8]

BYTE 16#21DemoString[9]

DemoString

840 USE 499 00 October 2002 49

3
RTXMIT: Full Duplex Transmit
(Compact, Momentum, Quantum)

At a Glance

Introduction This chapter describes the RTXMIT function block.

What’s in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief Description 50

Representation 51

Parameter Description 52

Runtime Errors 56

Application Example 56

RTXMIT: Transmit (Compact, Momentum, Quantum)

50 840 USE 499 00 October 2002

Brief Description

Function
Description

The function block provides full duplex communication through the local Modbus
port. On Momentum PLCs the second local Modbus port is supported as well.
The function block combines two main functions into one, these are simple message
reception and simple message transmission.

Restrictions The RTXMIT does not support Modbus protocol or modem functions.

Software and
Hardware
Required

Software
The RTXMIT function block requires the following software
l A minimum of Concept 2.5 Service Release 2
l IEC exec (delivered with Concept V2.5 SR2 or later)
Hardware
The following hardware is not supported by the RTXMIT function block:
l PLCs which do not support IEC languages
l Soft PLC
l All Atrium PLCs
l IEC Simulator

Memory
Requirements

The usage of one or more RTXMIT EFBs in an IEC application consumes
approximately 5KByte program (code) memory. For each instance of this EFB
included in the user program, additional data memory of 200 byte is allocated.

1RWH��EN and ENO should NOT be used with the RTXMIT, otherwise the output
parameters may freeze.

RTXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 499 00 October 2002 51

Representation

Symbol Representation of the Block

RTXMIT

BOOLActiveTx

BOOLErrorTx

BOOLDoneTx

BOOLActiveRx

BOOLErrorRx

BOOLDoneRx

UINTCountRx

TxStartBOOL
TxBuffANY

TxLengthUINT
RxStartBOOL
RxResetBOOL
RxLengthUINT

RxBckSpcBOOL
PortBYTE
BaudRateUINT
DataBitsBYTE

StopBitsBYTE
ParityBOOL
EvenPariBOOL

FlowCtrlBOOL
FlowSoftBOOL
FlowBlckUINT

BegDeltBYTE
BegDel1BYTE
BegDel2BYTE
EndDelCtBYTE

EndDel1BYTE

UDINTAllCtRx

WORDStatusTx

EndDel2BYTE

WORDStatusRx

ANYBuffRx

EchoBOOL

RTXMIT: Transmit (Compact, Momentum, Quantum)

52 840 USE 499 00 October 2002

Parameter Description

Parameter
Description

Description of the block parameter

Parameters Data type Significance

TxStart BOOL On a rising edge (FALSE->TRUE) the EFB begins with the
send operation. This operation would work concurrently to an
ongoing reception. If this parameter transitions from TRUE to
FALSE an ongoing transmission will be aborted without any
error being generated. After a transmission process completed
(with or without success) a new process won’t be triggered
before the next rising edge happening to TxStart.

TxBuff ANY A variable of any datatype, it contains the ’to be sent’ character
stream in Intel format.

TxLength UINT This parameter specifies the full amount of characters to be
sent from TxBuff. Without the use of data flowcontrol (RTS/
CTS or XON/XOFF), the amount of characters to be sent from
TxBuff may not exceed 1024. With data flow control being
activated TxLength may go as high as 2^16, as FlowBlck
specifies the number of characters being transmitted with one
message frame.

RxStart BOOL On a rising edge (FALSE->TRUE) the EFB begins with the
receive operation. This operation would work concurrently to
an ongoing transmission. In case this parameter carries the
value TRUE after the reception process completed (DoneTx =
TRUE), following characters being received won’t be stored in
RxBuff anymore. A new reception process won’t be triggerd
before the next rising edge happing to RxStart.

RxReset BOOL If TRUE, the following stream of characters being received will
be stored at the begin of BuffRx. Also output parameter
CountRx will be set to zero. At the same time current values of
input parameters RxLength, Strt_Cnt, Strt_Dl1, Strt_Dl2,
End_Cnt, End_Dl1, End_Dl2, RxBckSpc will be used from
then on.

RxLength UINT Max. number of characters to be received. In case this value
exceeds the size of BuffRx no error will be generated, but the
size of BuffRx will be used instead. After the given number of
characters has been received the output parameter DoneRx
transitions to TRUE, and the receive operation will end at that
time.

RTXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 499 00 October 2002 53

RxBckSpc BOOL While this parameter is being set to TRUE a received
character of value 8 (backspace) will cause the one character
being received before the backspace to be overwritten by the
character being received after the backspace. Also, in this
mode the output CountRx will decrease its value with each
backspace being received, till it’s 0. The EFB will consider the
value of RxBckSpc only while RxStart transitions from FALSE
to TRUE or while RxReset is TRUE (whereby RxStart needs to
be TRUE at that time).

Port BYTE Local port number (1 or 2)
The 2nd port is supported on Momentum PLCs only.
Note: On Momentum PLCs the EFB will switch to RS485 if the
assigned port has been configured as such, otherwise the port
will be run in RS232 mode.

Baudrate UINT Bits per second for transmission and reception, allowed values
are: 50, 75, 110, 134, 150, 300, 600, 1200, 1800, 2000, 2400,
3600, 4800, 7200, 9600, 19200

DataBits BYTE Databits per transmitted and received character (8 or 7)

StopBits BYTE Stopbits per transmitted and received character (1 or 2)

Parity BOOL If TRUE, parity check will be enabled (odd or even depends on
EvenPari).
If FALSE no parity check will be used.

EvenPari BOOL If TRUE and Parity = TRUE, even parity check will be used.
If FALSE and Parity = TRUE, odd parity check will be used.

FlowCtrl BOOL If TRUE, the next triggered transmission will consider either
RTS/CTS or XON/XOFF (depends on FlowSoft)for data flow
control. Receive operations won’t use data flow control, since
the PLC internal buffer is big enough (512 byte) to avoid losing
any character between two PLC scans.

FlowSoft BOOL If TRUE, the data flow of transmissions will be controled by
using the XON/XOFF handshaking method.

Parameters Data type Significance

RTXMIT: Transmit (Compact, Momentum, Quantum)

54 840 USE 499 00 October 2002

FlowBlck UINT Used only if FlowCtrl equals TRUE!
This parameter specifies the number of characters being sent
as one frame as soon as the transmitter obtains permission to
sent through the selected data flow control mechanism.
If FlowBlck is set to 0 the EFB will internally use 1 instead, as
this is the minimum amount of characters to be sent in one
frame.
If FlowBlck is set to a higher value than TxLength the EFB will
internally use TxLength instead, as this is the maximum
amount of characters to be sent in one frame. In order to
increase data throughput (only one frame can be transmitted
per PLC scan) the value assigned to FlowBlck needs to be
increased.

BegDelCt BYTE Number of start delimiter. This parameter assigns how many
characters are being used for the start delimiter. Allowed
values are: 0, 1, 2. In case the value exceeds 2 the EFB won’t
generate an error, but would use the max. of 2 instead.

BegDel1 BYTE This is the first (of max. 2) character of the start delimiter.

BegDel2 BYTE This is the second (of max. 2) character of the start delimiter.

EndDelCt BYTE Number of end delimiter. This parameter assigns how many
characters are being used for the end delimiter. Allowed
values are: 0, 1, 2. In case the value exceeds 2 the EFB won’t
generate an error, but would use the max. of 2 instead.

EndDel1 BYTE This is the first (of max. 2) character of the end delimiter.

EndDel2 BYTE This is the second (of max. 2) character of the end delimiter.

Echo BOOL If TRUE, all characters being received during transmission will
be discarded. In RS485 2-wire mode this parameter would
need to be set TRUE, otherwise each just-transmitted
character would be received immediately afterwards.

ActiveTx BOOL If TRUE, a previously initiated send operation is still ongoing.

ErrorTx BOOL If TRUE, a previously initiated send operation failed, StatusTx.
In such case StatusTx will carry an error code that helps to
identify the reason for a failure.

DoneTx BOOL If TRUE, a previously initiated send operation finsihed with
success.

ActiveRx BOOL If TRUE, a previously initiated receive operation is still
ongoing.

ErrorRx BOOL If TRUE, a previously initiated receive operation failed.
In such case StatusRx will carry an error code that helps to
identify the reason for a failure.

Parameters Data type Significance

RTXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 499 00 October 2002 55

Port-Parameters New port parameters being assigned to input parameters Port, Baudrate, DataBits,
StopBits, Parity and EvenPari will only be used after both parts of the EFB (receiver
and transmitter) have been shutdown (TxStart = FALSE and RxStart = FALSE) and
at least one of them has been (re-)started again.

DoneRx BOOL If TRUE, a previously initiated receive operation finsihed with
success.

CountRx UINT Number of characters being received since last initiated
receive operation.
This output parameter will be set back to 0 after RxReset has
been set to TRUE. Also this number does decrease upon
reception of a backspace character in case RxBckSpc is set to
TRUE.

AllCtRx UDINT Number of ALL characters being received since the last rising
edge happened at RxStart.
This output will also stay at its value after RxReset has been
set to TRUE.

BuffRx ANY A variable of any datatype, it is used to store the received
characters in Intel format.

StatusTx WORD Will be 0 if there’s no error for the send operation, otherwise
error code (See Runtime Errors, p. 56).

StatusRx WORD Will be 0 if there’s no error for the receive operation, otherwise
error code (See Runtime Errors, p. 56).

Parameters Data type Significance

RTXMIT: Transmit (Compact, Momentum, Quantum)

56 840 USE 499 00 October 2002

Runtime Errors

Error code (at
StatusTx and
StatusRx)

Error code (at StatusTx and StatusRx)

Application Example

Description The following program is a short demo application which shows the implementation
of a full duplex transmission with RTXMIT in the Structured Text language. The
message to be transmitted has to be in TxBuff, the received message is in
BuffRx.

Full Duplex
Transfer

Declaration of function block:

Error Code Description

0 No error, either EFB is turned off completely (TxStart and RxStart are
FALSE) or the ongoing process works properly.

8003 (hex) The assigned Modbus port does not exist (>1 on Quantum and Compact,
>2 on Momentum).
or
Another EFB is using the assigned Modbus port already.

8304 (hex) The assigned Modbus port is used by a 984-Loadable (like XXMIT).

8305 (hex) Illegal baudrate being assigned.

8307 (hex) Illegal number of data bits being assigned.

8308 (hex) Illegal number of stop bits being assigned.

VAR
send_receive : RTXMIT;
END_VAR;

RTXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 499 00 October 2002 57

Call of function block:

Conversion of number of received characters from UDINT to UINT format:

send_receive (TxStart := TX_start, (* start of sending *)
TxBuff := tx_buffer, (* send buffer *)
TxLength := TX_length, (* length of a complete send telegram *)
RxStart := Rx_start, (* start of receiving *)
RxReset := FALSE, (* reset mode not activated *)
RxLength := 40, (* max length of a received telegram, inclusing STX/CR *
RxBckSpc := FALSE, (* no backspaces allowed *)
Port := port_number, (* caution: for Quantum PLC only port 1 may be used! *
Baudrate := BAUDRATE, (* baudrate is fixed *)
Databits := 8, (* data format is fixed *)
Stopbits := 1, (* number of stop bits is fixed *)
Parity := FALSE, (* no parity *)
EvenPari := FALSE,
FlowCtrl := TRUE, (* activate flow control *)
FlowSoft := FALSE, (* flow control by RTS/CTS *)
FlowBlck := 40, (* when flow control is active up to 40 character

 per cycle will be sent *)
BegDelCt := 0,
BegDel1 := 0,
BegDel2 := 0,
EndDelCt := 0,
EndDel1 := 0,
EndDel2 := 0,
Echo := FALSE, (* only required in mode RS485-2 wire mode *)
BuffRx => rx_buffer); (* special operator for allocation of RX_BUFF *)
TX_active := send_receive.ActiveTx;
TX_error := send_receive.ErrorTx;
TX_done := send_receive.DoneTx;
RX_active := send_receive.ActiveRx;
RX_error := send_receive.ErrorRx;
RX_done := send_receive.DoneRx;
rx_cnt_uint := send_receive.CountRx;
rx_cnt_udint := send_receive.AllCtRx;
TX_status := send_receive.StatusTx;
RX_status := send_receive.StatusRx;

RX_count := UDINT_TO_UINT (IN := rx_cnt_udint);

RTXMIT: Transmit (Compact, Momentum, Quantum)

58 840 USE 499 00 October 2002

840 USE 499 00 October 2002 59

4
Technical References for XXMIT
function block

At a glance

Overview This chapter describes the Technical References for the XXMIT function block.

What’s in this
Chapter?

This chapter contains the following topics:

Topic Page

Modbus Query/Response Parameter Limits 60

XXMIT Configuration using Hayes Compatible Dial-Up Modems (Only) 63

Tech.Ref.XXMIT

60 840 USE 499 00 October 2002

Modbus Query/Response Parameter Limits

Parameter Limits
Based on PLC
Type

The query/response parameters are limited based upon the type of PLC you are
using. Refer to the applicable table below.
Quantum PLC Maximum Parameters table:

Function
Code

Description Query Response

1 Read Coil Status 2000 Coils 2000 Coils

2 Read Input Status 2000 Inputs 2000 Inputs

3 Read Holding Registers 125 Registers 125 Registers

4 Read Input Registers 125 Registers 125 Registers

5 Force Single Coil 1 Coil 1 Coil

6 Force Single Register 1 Register 1 Register

15 Force Multiple Coil 800 Coils 800 Coils

16 Force Multiple Register 100 Registers 100 Registers

20 Read General References Maximum length of the
entire message can
NOT exceed 256 bytes

Maximum length of the
entire message can NOT
exceed 256 bytes

21 Write General References Maximum length of the
entire message can
NOT exceed 256 bytes

Maximum length of the
entire message can NOT
exceed 256 bytes

1RWH��The 140 CPU 113 02 and the 140 CPU 113 03 do not support General
References.

Tech.Ref.XXMIT

840 USE 499 00 October 2002 61

884 PLC Maximum Parameters table:

584/984 PLC Maximum Parameters table:

Function
Code

Description Response

1 Read Coil Status 2000 Coils

2 Read Input Status 2000 Inputs

3 Read Holding Registers 125 Registers

4 Read Input Registers 125 Registers

5 Force Single Coil 1 Coil

6 Force Single Register 1 Register

15 Force Multiple Coil 800 Coils

16 Force Multiple Register 100 Registers

20 Read General References NOT Supported

21 Write General References NOT Supported

Function
Code

Description Response

1 Read Coil Status 2000 Coils

2 Read Input Status 2000 Inputs

3 Read Holding Registers 125 Registers

4 Read Input Registers 125 Registers

5 Force Single Coil 1 Coil

6 Force Single Register 1 Register

15 Force Multiple Coil 800 Coils

16 Force Multiple Register 100 Registers

20 Read General Refer ences (6x) Maximum length of the entire message
can NOT exceed 256 bytes

21 Write General Refer ences (6x) Maximum length of the entire message
can NOT exceed 256 bytes

Tech.Ref.XXMIT

62 840 USE 499 00 October 2002

484 PLC Maximum Parameters table:

184/384 PLC Maximum Parameters table:

Function
Code

Description Response

1 Read Coil Status 512 Coils

2 Read Input Status 512 Inputs

3 Read Holding Registers 254 Registers

4 Read Input Registers 32 Registers

5 Force Single Coil 1 Coil

6 Force Single Register 1 Register

15 Force Multiple Coil 800 Coils

16 Force Multiple Register 60 Registers

20 Read General Refer ences NOT Supported

21 Write General Refer ences NOT Supported

Function
Code

Description Response

1 Read Coil Status 800 Coils

2 Read Input Status 800 Inputs

3 Read Holding Registers 100 Registers

4 Read Input Registers 100 Registers

5 Force Single Coil 1 Coil

6 Force Single Register 1 Register

15 Force Multiple Coil 800 Coils

16 Force Multiple Register 100 Registers

20 Read General Refer ences NOT Supported

21 Write General Refer ences NOT Supported

Tech.Ref.XXMIT

840 USE 499 00 October 2002 63

M84 PLC Maximum Parameters table:

XXMIT Configuration using Hayes Compatible Dial-Up Modems (Only)

Description There are three commands that you need to become familiar with when interfacing
dial-up modems to XXMIT.
These commands are:
l Initialize modem
l Dial modem
l Hangup modem.
 Before an ASCII message or a Modbus message goes through the modem, you
must first send an initialization string and then a dial string to the modem. Once the
modem has dialed the telephone number and made a connection to the remote
modem, you may send an unlimited number of ASCII messages or Modbus
messages through the modem. To send multiple messages, you increment the
message pointer to the next message after each successful XXMIT operation. When
all messages are sent, you may then send the hangup string to the modem.

Function
Code

Description Response

1 Read Coil Status 64 Coils

2 Read Input Status 64 Inputs

3 Read Holding Registers 32 Registers

4 Read Input Registers 4 Registers

5 Force Single Coil 1 Coil

6 Force Single Register 1 Register

15 Force Multiple Coil 64 Coils

16 Force Multiple Register 32 Registers

Tech.Ref.XXMIT

64 840 USE 499 00 October 2002

Initialization
Message

The initialization message is just like any other ASCII message and may be a
maximum of 512 characters long, although 50 characters is usually more than
enough to initialize a modem. You may implement any Hayes AT command as part
of the initialization string. We recommend the following commands when initializing
a modem for use with XXMIT.
Initialization Message for Dial-Up Modem

Initialization
Message =

AT&F&K0&Q0&D0V1Q0X0E1

AT= Self-calibrate Modem 1

&F= Recall factory configuration as active configuration 1

&K0= Disable local flow control 2

&Q0= Communicate in asynchronous mode 2

&D0= Ignore status of DTR signal 1

V1= Display result codes as words 1

If V1 is not used or if modem is not capable of returning verbose responses
the XXMIT block returns error 117 (modem replay time out).

Q0= Return result codes 1

X4= Provide basic call progress result codes: Connect, No Carrier, and Ring 1

E1= Echo characters from the keyboard to the screen in command state 1

1 These parameters must always be part of the initialization string for XXMIT to function
properly.

2 These parameters should be part of the initialization string for XXMIT to transmit a
message to remote modem properly. Only a experienced modem user should change or
not use these parameters.

1RWH��While some modem manufacturers state full compatibility with Hayes, they
may still be slightly different. Therefore, we recommend using only those
commands that have the same definition as those stated above.

Tech.Ref.XXMIT

840 USE 499 00 October 2002 65

The initialization message must always start with Hayes standard AT command. The
XXMIT block automatically precedes modem command messages with AT and
appends the message with carriage return (0x0D) and line feed (0x0A) characters
since these are required by all modem control messages. Other (non controlling)
ASCII messages do not have to end with a carriage return and line feed.
For example, a typical initialization message that XXMIT sends to the modem.

For example, the initialization message may also be used to set S-registers of the
modem.

To have XXMIT send an initialization message to the modem, bit 7 and bit 16 of the
command word must be ON. When bit 16 is ON, bits 15 and 14 must not be ON or
XXMIT will not complete the operation successfully. To actually send the message,
Start input of XXMIT must come ON and stays ON until the operation is complete or
an error occurs. When XXMIT determines the message was successfully sent to the
modem, it turns ON the Done output. When an error occurs, the Error output comes
ON. The Active output is ON while the message is being sent to the modem.

Message Length

(AT)&F&K0&Q0&D0V1X0Q0 (<CR><LF>) 1 17 characters

1 Characters within parentheses are automatically sent.

Message Length

(AT)S0=1 (<CR><LF>) 1 4 characters

1 Characters within parentheses are automatically sent.

1RWH��To eliminate some user logic programming, you may initialize the modem
with parameters via a terminal program and not use XXMIT. Once the parameters
are in the modem memory they may be saved to non-memory with an AT
command, usually &W.

Tech.Ref.XXMIT

66 840 USE 499 00 October 2002

Dial Message The dial message is used to send a telephone number to the modem. Only AT
commands related to dialing a number should be included with the message.
Examples of typical dial messages used with XXMIT are shown below.
For example, dial telephone number using tone dialing.

For example, dial telephone number using pulse dialing.

For example, dial telephone number using tone dialing, wait to hear dial tone before
dialing number, and pause before dialing the rest of the number.

To have XXMIT send a tone dial message to the modem, bit 7 and bit 15 of the
command word must be ON. When bit 15 is ON, bits 16 and 14 must not be ON or
XXMIT will not complete the operation successfully. To actually send the message,
the Start input of XXMIT must come ON and stays ON until the operation is complete
or an error occurs. When XXMIT determines the message was successfully sent to
the modem, it turns ON the Done output. When an error occurs, the Error output
comes ON. The Active output is ON while the message is being sent to the modem.

Message Length

(AT)DT)6800326 (<CR><LF>)1 7 characters

1 Characters within parentheses are automatically sent.

Message Length

(AT)DP)6800326 (<CR><LF>)1 7 characters

1 Characters within parentheses are automatically sent.

Message Length

(AT)DT)W,6800326 (<CR><LF>)1 9 characters

1 Characters within parentheses are automatically sent.

1RWH��Because it takes so long for a local modem to make a connection to a remote
modem, the timeout value, in RespTout should be quite long when sending a dial
message to a modem. For example, set the timeout for 30,000 mS when sending
a dial message. When the timeout value is too short, XXMIT issues a message
timeout. You may have to try several settings before finding the optimal time.

Tech.Ref.XXMIT

840 USE 499 00 October 2002 67

Hangup Message The hangup message is used to hangup the modem. Only AT commands related to
hanging up the modem should be used in this message. An example of a typical
hangup message is shown below.
For example, hangup modem message.

When the hangup message is sent to a modem that is already connected to a
remote modem, XXMIT must first set the local modem in command mode. XXMIT
does this by sending a escape sequence +++ to the modem. XXMIT assumes that
+++ sets the modem in command mode. Some modem manufactures let the owner
change this default escape sequence. For XXMIT to function properly the modem
should be set to accept the +++ escape sequence.
To have XXMIT send a hangup message to the modem, bit 7 and bit 14 of the
command word must be ON. When bit 14 is ON, bits 16 and 15 must not be ON or
XXMIT will not complete the operation successfully. To actually send the message,
the Start input of XXMIT must come ON and stays ON until the operation is complete
or an error occurs. When XXMIT determines the message was successfully sent to
the modem, it turns ON the Done output. When an error occurs, the Error output
comes ON. The Done output is ON while the message is being sent to the modem.

Message Length

(+++AT)H0 (<CR><LF>)1 2 characters

1 Characters within parentheses are automatically sent.

1RWH��Expert: Because it takes so long for a local modem to hangup once it
receives the hangup command, the timeout value, in RespTout should quite long
when sending a dial message to a modem. For example, set the timeout for 30,000
mS when sending a dial message. When the timeout value is too short, XXMIT
issues a message timeout. You may have to try several settings before finding the
optimal time.

Tech.Ref.XXMIT

68 840 USE 499 00 October 2002

840 USE 499 00 October 2002 69

5
Cabling Information

At a Glance

Overview This chapter describes cables and pinouts for the hardware components used with
the Transmit function blocks..

What’s in this
Chapter?

This chapter contains the following topics:

Topic Page

Cable Pinouts 70

Cable Adapter Kits 84

Cabling

70 840 USE 499 00 October 2002

Cable Pinouts

Interface Cable
Pinouts

You need to build an interface cable between your PLC and the modem or printer.
The actual cable is connected to the Port which is supported by the PLC and to the
RS232 port of the modem or printer, or direct to another PLC’s Modbus port.
Because the XXMIT supports many modems and printers the pinouts are going to
vary. Some pinouts are provided below.
For information on Momentum communication connections see TSX Momentum M1
Processor Adapter and Option Adapter User Guide.

9-pin (RS-232) to
25-pin (Modem)
with no RTS/CTS
Control

Refer to the figure for Front Views of Connectors.

Refer to the Connector Pinouts table.

Connector Pinouts

9-Pin Connector 25-Pin D-shell

Signal Name Pinout Pinout
Connected To ...

Pinout Signal Name

RXD 2 Yes 3 RXD

TXD 3 Yes 2 TXD

RTS 7 Jumpered
8 Jumpered

4 Jumpered
5 Jumpered

RTS

CTS CTS

DSR 4 Jumpered
6 Jumpered

6 Jumpered
20 Jumpered

DSR

DTR DTR

GND 5 Yes 7 GND

5

4

3

2

1

9

8

7

6

9-pin Male

Front View

13

12

11

10

9

25

24

23

22

25-pin Male

Front View

8

7

6

5

20

19

18

17

21

4

3

2

1

16

15

14

Pin 1

Pin 1

Pin 9

Pin 25

Cabling

840 USE 499 00 October 2002 71

9-pin (RS-232) to
25-pin (Modem)
with RTS/CTS
Control

Refer to the figure for Front Views of Connectors.

Refer to the Connector Pinouts table.

Connector Pinouts

9-Pin Connector 25-Pin D-shell

Signal Name Pinout Pinout
Connected To ...

Pinout Signal Name

RXD 2 Yes 3 RXD

TXD 3 Yes 2 TXD

RTS 7 Yes 4 RTS

CTS 8 Yes 5 CTS

DSR 4 Jumpered
6 Jumpered

6 Jumpered
20 Jumpered

DSR

DTR DTR

GND 5 Yes 7 GND

5

4

3

2

1

9

8

7

6

9-pin Male

Front View

13

12

11

10

9

25

24

23

22

25-pin Male

Front View

8

7

6

5

20

19

18

17

21

4

3

2

1

16

15

14

Pin 1

Pin 1

Pin 9

Pin 25

Cabling

72 840 USE 499 00 October 2002

9-pin to 9-pin
(Null Modem)

Refer to the figure for Front Views of Connectors.

Refer to the Connector Pinouts table.

Connector Pinouts

9-Pin Connector 9-Pin Connector

Signal Name Pinout Pinout
Connected To ...

Pinout Signal Name

RXD 2 Yes 3 TXD

TXD 3 Yes 2 RXD

RTS 7 Jumpered
8 Jumpered

7 Jumpered
8 Jumpered

RTS

CTS CTS

DSR 4 Jumpered
6 Jumpered

4 Jumpered
6 Jumpered

DSR

DTR DTR

GND 5 Yes 5 GND

5

4

3

2

1

9

8

7

6

9-pin Male

Front View

Pin 1

Pin 9

Cabling

840 USE 499 00 October 2002 73

9-pin to 9-pin
(Modem)

Refer to the figure for Front Views of Connectors.

Refer to the Connector Pinouts table.

Connector Pinouts

9-Pin Connector 9-Pin Connector

Signal Name Pinout Pinout
Connected To ...

Pinout Signal Name

TXD 2 Yes 2 TXD

RXD 3 Yes 3 RXD

RTS 7 Yes 7 RTS

CTS 8 Yes 8 CTS

DSR 4 Jumpered
6 Jumpered

4 Jumpered
6 Jumpered

DSR

DTR DTR

GND 5 Yes 5 GND

5

4

3

2

1

9

8

7

6

9-pin Male

Front View

Pin 1

Pin 9

Cabling

74 840 USE 499 00 October 2002

9-pin to 25-pin
(Null Modem)

Refer to the figure for Front Views of Connectors.

Refer to the Connector Pinouts table.

Connector Pinouts

9-Pin Connector 25-Pin D-shell

Signal Name Pinout Pinout
Connected To ...

Pinout Siignal Name

RXD 2 Yes 2 TXD

TXD 3 Yes 3 RXD

RTS 7 Jumpered
8 Jumpered

4 Jumpered
5 Jumpered

RTS

CTS CTS

DSR 4 Jumpered
6 Jumpered

6 Jumpered
20 Jumpered

DSR

DTR DTR

GND 5 Yes 7 GND

5

4

3

2

1

9

8

7

6

9-pin Male

Front View

13

12

11

10

9

25

24

23

22

25-pin Male

Front View

8

7

6

5

20

19

18

17

21

4

3

2

1

16

15

14

Pin 1

Pin 1

Pin 9

Pin 25

Cabling

840 USE 499 00 October 2002 75

RJ45-(8x8) to
25-pin (Null
Modem)
110XCA20401

Refer to the figure for Front Views of Connectors.

Refer to the Connector Pinouts table.

Connector Pinouts

RJ45 Connector 25-Pin D-shell

Signal Name Pinout Pinout
Connected To ...

Pinout Signal Name

RXD 4 Yes 2 TXD

TXD 3 Yes 3 RXD

RTS 6 Jumpered
7 Jumpered

4 Jumpered
5 Jumpered

RTS

CTS CTS

GND 5 Yes 7 GND

DSR 2 Yes 6
20

DSR

DTR

Chassis Ground 8 Yes 1 Chassis Ground

&$87,21

'DQJHU�RI���9�VKRUW�FLUFXLW�

Pin1 of the RJ45 receives 5V from the PLC.

)DLOXUH�WR�IROORZ�WKLV�SUHFDXWLRQ�FDQ�UHVXOW�LQ�LQMXU\�RU�HTXLSPHQW�
GDPDJH�

13

12

11

10

9

25

24

23

22

25-pin Male

Front View

8

7

6

5

20

19

18

17

21

4

3

2

1

16

15

14
Pin 1

Pin 25

Pin 1

RJ45 connector
(8x8)

Cabling

76 840 USE 499 00 October 2002

RJ45-(8x8) to
9-pin (Null
Modem)
110XCA20301

Refer to the figure for Front Views of Connectors.

Refer to the Connector Pinouts table.

Connector Pinouts

RJ45 Connector 9-Pin D-shell

Signal Name Pinout Pinout
Connected To
...

Pinout Signal Name

RXD 4 Yes 3 TXD

TXD 3 Yes 2 RXD

RTS 6 Jumpered
7 Jumpered

7 Jumpered
8 Jumpered

RTS

CTS CTS

GND 5 Yes 5 GND

DSR 2 Yes 4
6

DTR

DSR

Chassis Ground 8 Yes Case of the
Connector

&$87,21

'DQJHU�RI���9�VKRUW�FLUFXLW�

Pin1 of the RJ45 receives 5V from the PLC.

)DLOXUH�WR�IROORZ�WKLV�SUHFDXWLRQ�FDQ�UHVXOW�LQ�LQMXU\�RU�HTXLSPHQW�
GDPDJH�

Pin 1

RJ45 connector
(8x8)

5

4

3

2

1

9

8

7

6

9-pin Male

Front View

Pin 1

Pin 9

Cabling

840 USE 499 00 October 2002 77

RJ45-(8x8) to
25-pin (Modem)
110XCA20401

Refer to the figure for Front Views of Connectors.

Refer to the Connector Pinouts table.

Connector Pinouts

RJ45 Connector 25-Pin D-shell

Signal Name Pinout Pinout
Connected To ...

Pinout Signal Name

RXD 4 Yes 3 RXD

TXD 3 Yes 2 TXD

RTS 6 Jumpered
7 Jumpered

4 Jumpered
5 Jumpered

RTS

CTS CTS

GND 5 Yes 7 GND

DSR 2 Yes 6
20

DSR

DTR

Chassis Ground 8 Yes 1 Chassis Ground

&$87,21

'DQJHU�RI���9�VKRUW�FLUFXLW�

Pin1 of the RJ45 receives 5V from the PLC.

)DLOXUH�WR�IROORZ�WKLV�SUHFDXWLRQ�FDQ�UHVXOW�LQ�LQMXU\�RU�HTXLSPHQW�
GDPDJH�

13

12

11

10

9

25

24

23

22

25-pin Male

Front View

8

7

6

5

20

19

18

17

21

4

3

2

1

16

15

14
Pin 1

Pin 25

Pin 1

RJ45 connector
(8x8)

Cabling

78 840 USE 499 00 October 2002

RJ45-(8x8) to
25-pin (Modem)
110XCA20401

Refer to the figure for Front Views of Connectors.

Refer to the Connector Pinouts table.

Connector Pinouts

RJ45 Connector 25-Pin D-shell

Signal Name Pinout Pinout
Connected To ...

Pinout Signal Name

RXD 4 Yes 3 RXD

TXD 3 Yes 2 TXD

RTS 6 Yes 4 RTS

CTS 7 Yes 5 CTS

GND 5 Yes 7 GND

6 Jumpered
20 Jumpered

DSR

DTR

Chassis Ground 8 Yes 1 Chassis Ground

&$87,21

'DQJHU�RI���9�VKRUW�FLUFXLW�

Pin1 of the RJ45 receives 5V from the PLC.

)DLOXUH�WR�IROORZ�WKLV�SUHFDXWLRQ�FDQ�UHVXOW�LQ�LQMXU\�RU�HTXLSPHQW�
GDPDJH�

13

12

11

10

9

25

24

23

22

25-pin Male

Front View

8

7

6

5

20

19

18

17

21

4

3

2

1

16

15

14
Pin 1

Pin 25

Pin 1

RJ45 connector
(8x8)

Cabling

840 USE 499 00 October 2002 79

RJ45-(8x8) to
RJ45-(8x8)
(Modem)

Refer to the figure for Front Views of Connectors.

Refer to the Connector Pinouts table.

Connector Pinouts

RJ45 Connector RJ45 Connector

Signal Name Pinout Pinout Connected
To ...

Pinout Signal Name

RXD 4 Yes 4 RXD

TXD 3 Yes 3 TXD

RTS 6 Yes 6 RTS

CTS 7 Yes 7 CTS

GND 5 Yes 5 GND

DSR 2 Yes 2 DSR

Chassis Ground 8 Yes 8 Chassis Ground

&$87,21

'DQJHU�RI���9�VKRUW�FLUFXLW�

Pin1 of the RJ45 receives 5V from the PLC.

)DLOXUH�WR�IROORZ�WKLV�SUHFDXWLRQ�FDQ�UHVXOW�LQ�LQMXU\�RU�HTXLSPHQW�
GDPDJH�

Pin 1

RJ45 connector
(8x8)

5

4

3

2

1

9

8

7

6

9-pin Male

Front View

Pin 1

Pin 9

Cabling

80 840 USE 499 00 October 2002

9-pin to
RJ45-(8x8)
(Modem)
110XCA20301

Refer to the figure for Front Views of Connectors.

Refer to the Connector Pinouts table.

Connector Pinouts

RJ45 Connector 9-Pin Connector

Signal Name Pinout Pinout
Connected To
...

Pinout Signal Name

RXD 4 Yes 2 RXD

TXD 3 Yes 3 TXD

RTS 6 Jumpered
7 Jumpered

7 Jumpered
8 Jumpered

RTS

CTS CTS

GND 5 Yes 5 GND

DSR 2 Yes 6
4

DSR

DTR

Chassis Ground 8 Yes Case of the Connector

&$87,21

'DQJHU�RI���9�VKRUW�FLUFXLW�

Pin1 of the RJ45 receives 5V from the PLC.

)DLOXUH�WR�IROORZ�WKLV�SUHFDXWLRQ�FDQ�UHVXOW�LQ�LQMXU\�RU�HTXLSPHQW�
GDPDJH�

Pin 1

RJ45 connector
(8x8)

5

4

3

2

1

9

8

7

6

9-pin Male

Front View

Pin 1

Pin 9

Cabling

840 USE 499 00 October 2002 81

9-pin to
RJ45-(8x8)
(Modem)
110XCA20301

Refer to the figure for Front Views of Connectors.

Refer to the Connector Pinouts table.

Connector Pinouts

RJ45 Connector 9-Pin Connector

Signal Name Pinout Pinout Connected
To ...

Pinout Signal Name

RXD 4 Yes 2 RXD

TXD 3 Yes 3 TXD

RTS 6 Yes 7 RTS

CTS 7 Yes 8 CTS

GND 5 Yes 5 GND

6 Jumpered
4 Jumpered

DSR

DTR

Chassis Ground 8 Yes Case of the Connector

&$87,21

'DQJHU�RI���9�VKRUW�FLUFXLW�

Pin1 of the RJ45 receives 5V from the PLC.

)DLOXUH�WR�IROORZ�WKLV�SUHFDXWLRQ�FDQ�UHVXOW�LQ�LQMXU\�RU�HTXLSPHQW�
GDPDJH�

Pin 1

RJ45 connector
(8x8)

5

4

3

2

1

9

8

7

6

9-pin Male

Front View

Pin 1

Pin 9

Cabling

82 840 USE 499 00 October 2002

9-pin Momentum
RS 485

Refer to the figure for Front Views of Connectors.

Pinouts table for the 9-pin D-Sub female Momentum RS 485 connector.

RS 485 Multidrop
Example

The following illustration shows a RS 485 2-wire multidrop wiring example

Pin Signal Name

1 TXD +

2 RXD +

3 Signal Ground

4 reserved

5 reserved

6 TXD -

7 RXD -

8 reserved

9 reserved

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

120 Ω120 Ω

Cabling

840 USE 499 00 October 2002 83

RJ 45 Momentum
RS 485

Refer to the figure for Front Views of Connectors.

Pinouts table for the RJ 45 Momentum RS 485 connector.

Pin Signal Name

1 RXD -

2 RXD +

3 TXD +

4 reserved

5 Signal Ground

6 TXD -

7 reserved

8 screen

Pin 1

Cabling

84 840 USE 499 00 October 2002

Cable Adapter Kits

Cable Adapter
Kits for RJ45

You may want to purchase Cable Adapter Kits for your RJ45 (8x8) requirements
rather than make them. The table below provides a list of available kits.
Available Cable Adapter Kids

Description Part Number

RJ45-(8x8) to 25-Pin (Male) 110XCA20401

RJ45-(8x8) to 9-Pin (Male) 110XCA20301

RJ45-(8x8) to 9-Pin (Female) 110XCA20302

RJ45-(8x8) to 25-Pin (Female) 110XCA20402

840 USE 499 00 October 2002 85

Glossary

active Window The window, which is currently selected. Only one window can be active at any
given time. When a window is active, the color of the title bar changes, so that it is
distinguishable from the other windows. Unselected windows are inactive.

Actual
Parameters

Current connected Input / Output Parameters.

Addresses (Direct) addresses are memory ranges in the PLC. They are located in the State
RAM and can be assigned Input/Output modules.
The display/entry of direct addresses is possible in the following formats:
l Standard Format (400001)
l Separator Format (4:00001)
l Compact format (4:1)
l IEC Format (QW1)

ANL_IN ANL_IN stands for the "Analog Input" data type and is used when processing analog
values. The 3x-References for the configured analog input module, which were
specified in the I/O component list, are automatically assigned data types and
should therefore only be occupied with Unlocated Variables.

ANL_OUT ANL_OUT stands for the "Analog Output" data type and is used when processing
analog values. The 4x-References for the configured analog input module, which
were specified in the I/O component list, are automatically assigned data types and
should therefore only be occupied with Unlocated Variables.

ANY In the above version "ANY" covers the BOOL, BYTE, DINT, INT, REAL, UDINT,
UINT, TIME and WORD elementary data types and related Derived Data Types.

$

Glossary

86 840 USE 499 00 October 2002

ANY_BIT In the above version "ANY_BIT" covers the BOOL, BYTE and WORD data types.

ANY_ELEM In the above version "ANY_ELEM" covers the BOOL, BYTE, DINT, INT, REAL,
UDINT, UINT, TIME and WORD data types.

ANY_INT In the above version "ANY_INT" covers the DINT, INT, UDINT and UINT data types.

ANY_NUM In the above version "ANY_NUM" covers the DINT, INT, REAL, UDINT and UINT
data types.

ANY_REAL In the above version "ANY_REAL" covers the REAL data type.

Application
Window

The window containing the workspace, menu bar and the tool bar for the application
program. The name of the application program appears in the title bar. An
application window can contain several Document windows. In Concept the
application window corresponds to a Project.

Argument Synonymous with Actual parameters.

ASCII-Mode The ASCII (American Standard Code for Information Interchange) mode is used to
communicate with various host devices. ASCII works with 7 data bits.

Atrium The PC based Controller is located on a standard AT board, and can be operated
within a host computer in an ISA bus slot. The module has a motherboard (requiring
SA85 driver) with two slots for PC104 daughter-boards. In this way, one PC104
daughter-board is used as a CPU and the other as the INTERBUS controller.

Backup file
(Concept-EFB)

The backup file is a copy of the last Source coding file. The name of this backup file
is "backup??.c" (this is assuming that you never have more than 100 copies of the
source coding file). The first backup file has the name "backup00.c". If you have
made alterations to the Definitions file, which do not cause any changes to the EFB
interface, the generation of a backup file can be stopped by editing the source
coding file (Objects → Source). If a backup file is created, the source file can be
entered as the name.

%

Glossary

840 USE 499 00 October 2002 87

Base 16 literals Base 16 literals are used to input whole number values into the hexadecimalsystem.
The base must be denoted using the prefix 16#. The values can not have any signs
(+/-). Single underscores (_) between numbers are not significant.

Example
16#F_F or 16#FF (decimal 255)
16#E_0 or 16#E0 (decimal 224)

Base 2 literals Base 2 literals are used to input whole number values into the dualsystem. The base
must be denoted using the prefix 2#. The values can not have any signs (+/-). Single
underscores (_) between numbers are not significant.

Example
2#1111_1111 or 2#11111111 (decimal 255)
2#1110_0000 or 2#11100000 (decimal 224)

Base 8 literals Base 8 literals are used to input whole number values into the octosystem. The base
must be denoted using the prefix 8#. The values can not have any signs (+/-). Single
underscores (_) between numbers are not significant.

Example
8#3_77 or 8#377 (decimal 255)
8#34_0 or 8#340 (decimal 224)

Binary
Connections

Connections between FFB outputs and inputs with the data type BOOL.

Bitsequence A data element, which consists of one or more bits.

BOOL BOOL stands for the data type "boolean". The length of the data element is 1 bit
(occupies 1 byte in the memory). The value range for the variables of this data type
is 0 (FALSE) and 1 (TRUE).

Bridge A bridge is a device, which connects networks. It enables communication between
nodes on two networks. Each network has its own token rotation sequence - the
token is not transmitted via the bridge.

BYTE BYTE stands for the data type "bit sequence 8". Entries are made as base 2 literal,
base 8 literal or base 16 literal. The length of the data element is 8 bits. A numerical
value range can not be assigned to this data type.

Glossary

88 840 USE 499 00 October 2002

Clipboard The clipboard is a temporary memory for cut or copied objects. These objects can
be entered in sections. The contents of the clipboard are overwritten with each new
cut or copy.

Coil A coil is a LD element which transfers the status of the horizontal short on its left
side, unchanged, to the horizontal short on its right side. In doing this, the status is
saved in the relevant variable/direct address.

Compact format
(4:1)

The first digit (the Reference) is separated from the address that follows by a colon
(:) where the leading zeros are not specified.

Constants Constants are Unlocated variables, which are allocated a value that cannot be
modified by the logic program (write protected).

Contact A contact is a LD element, which transfers a status on the horizontal link to its right
side. This status comes from the boolean AND link of the status of the horizontal link
on the left side, with the status of the relevant variable/direct address. A contact
does not change the value of the relevant variable/direct address.

Data transfer
settings

Settings which determine how information is transferred from your programming
device to the PLC.

Data Types The overview shows the data type hierarchy, as used for inputs and outputs of
functions and function blocks. Generic data types are denoted using the prefix
"ANY".
l ANY_ELEM

l ANY_NUM
ANY_REAL (REAL)
ANY_INT (DINT, INT, UDINT, UINT)

l ANY_BIT (BOOL, BYTE, WORD)
l TIME

l System Data types (IEC Extensions)
l Derived (from "ANY" data types)

&

'

Glossary

840 USE 499 00 October 2002 89

DCP I/O drop A remote network with a super-ordinate PLC can be controlled using a Distributed
Control Processor (D908). When using a D908 with remote PLC, the super-ordinate
PLC considers the remote PLC as a remote I/O drop. The D908 and the remote PLC
communicate via the system bus, whereby a high performance is achieved with
minimum effect on the cycle time. The data exchange between the D908 and the
super-ordinate PLC takes place via the remote I/O bus at 1.5Mb per second. A
super-ordinate PLC can support up to 31 D908 processors (addresses 2-32).

DDE (Dynamic
Data Exchange)

The DDE interface enables a dynamic data exchange between two programs in
Windows. The user can also use the DDE interface in the extended monitor to
invoke their own display applications. With this interface, the user (i.e. the DDE
client) can not only read data from the extended monitor (DDE server), but also write
data to the PLC via the server. The user can therefore alter data directly in the PLC,
while monitoring and analyzing results. When using this interface, the user can
create their own "Graphic Tool", "Face Plate" or "Tuning Tool" and integrate into the
system. The tools can be written in any language, i.e. Visual Basic, Visual C++,
which supports DDE. The tools are invoked, when the user presses one of the
buttons in the Extended Monitor dialog field. Concept Graphic Tool: Configuration
signals can be displayed as a timing diagram using the DDE connection between
Concept and Concept Graphic Tool.

Declaration Mechanism for specifying the definition of a language element. A declaration usually
covers the connection of an identifier to a language element and the assignment of
attributes such as data types and algorithms.

Definitions file
(Concept-EFB)

The definitions file contains general descriptive information on the selected EFB and
its formal parameters.

Derived Data
Type

Derived data types are data types, which are derived from Elementary Data Types
and/or other derived data types. The definition of derived data types is found in the
Concept data type editor.
A distinction is made between global data types and local data types.

Derived Function
Block (DFB)

A derived function block represents the invocation of a derived function block type.
Details of the graphic form of the invocation can be found in the "Functional block
(instance)". In contrast to the invocation of EFB types, invocations of DFB types are
denoted by double vertical lines on the left and right hand side of the rectangular
block symbol.
The body of a derived function block type is designed using FBD language, LD
language, ST language, IL language, however, this is only the case in the current
version of the programming system. Furthermore, derived functions can not yet be
defined in the current version.
A distinction is made between local and global DFBs.

Glossary

90 840 USE 499 00 October 2002

Device Address The device address is used to uniquely denote a network device in the routing path.
The address is set on the device directly, e.g. using the rotary switch on the back of
the modules.

DFB Code The DFB code is the section’s DFB code, which can be executed. The size of the
DFB code is mainly dependant upon the number of blocks in the section.

DFB instance
data

The DFB instance data is internal data from the derived function block used in the
program.

DINT DINT stands for the data type "double length whole number (double integer)".
Entries are made as integer literal, base 2 literal, basis 8 literal or base 16 literal. The
length of the data element is 32 bits. The value range for variables of this datatype
reaches from -2 exp (31) to 2 exp (31) -1.

Direct
Representation

A method of displaying variables in the PLC program, from which the assignment to
the logical memory can be directly - and indirectly to the physical memory - derived.

Document
Window

A window within an application window. Several document windows can be open at
the same time in an application window. However, only one document window can
ever be active. Document windows in Concept are, for example, sections, the
message window, the reference data editor and the PLC configuration.

DP (PROFIBUS) DP = Remote Peripheral

Dummy An empty file, which consists of a text heading with general file information, such as
author, date of creation, EFB designation etc. The user must complete this dummy
file with further entries.

DX Zoom This property enables the user to connect to a programming object, to monitor and,
if necessary change, its data value.

EFB code The EFB code is the section’s EFB code, which can be executed. In addition the
used EFBs count in DFBs.

Elementary
functions/
function blocks
(EFB)

Identifier for Functions or Function blocks, whose type definitions are not formulated
in one of the IEC languages, i.e. whose body for example can not be modified with
the DFB editor (Concept-DFB). EFB types are programmed in "C" and are prepared
in a pre-compiled form using libraries.

(

Glossary

840 USE 499 00 October 2002 91

EN / ENO (Enable
/ Error signal)

If the value of EN is equal to "0" when the FFB is invoked, the algorithms that are
defined by the FFB will not be executed and all outputs keep their previous values.
The value of ENO is in this case automatically set to "0". If the value of EN is equal
to "1", when the FFB is invoked, the algorithms which are defined by the FFD will be
executed. After the error-free execution of these algorithms, the value of ENO is
automatically set to "1". If an error occurs during the execution of these algorithms,
ENO is automatically set to "0". The output behavior of the FFB is independent of
whether the FFBs are invoked without EN/ENO or with EN=1. If the EN/ENO display
is switched on, it is imperative that the EN input is switched on. Otherwise, the FFB
is not executed. The configuration of EN and ENO is switched on or off in the Block
Properties dialog box. The dialog box can be invoked with the Objects →
Properties... menu command or by double-clicking on the FFB.

Error If an error is recognized during the processing of a FFB or a step (e.g. unauthorized
input values or a time error), an error message appears, which can be seen using
the Online → Online events... menu command. For FFBs, the ENO output is now
set to "0".

Evaluation The process, through which a value is transmitted for a Function or for the output of
a Function block during Program execution.

FFB (Functions/
Function blocks)

Collective term for EFB (elementary functions/function blocks) and DFB (Derived
function blocks)

Field variables A variable, which is allocated a defined derived data type with the key word ARRAY
(field). A field is a collection of data elements with the same data type.

FIR Filter (Finite Impulse Response Filter) a filter with finite impulse answer

Formal
parameters

Input / Output parameters, which are used within the logic of a FFB and led out of
the FFB as inputs/outputs.

)

Glossary

92 840 USE 499 00 October 2002

Function (FUNC) A program organization unit, which supplies an exact data element when
processing. a function has no internal status information. Multiple invocations of the
same function using the same input parameters always supply the same output
values.
Details of the graphic form of the function invocation can be found in the "Functional
block (instance)". In contrast to the invocation of the function blocks, function
invocations only have a single unnamed output, whose name is the same as the
function. In FBD each invocation is denoted by a unique number via the graphic
block, this number is automatically generated and can not be altered.

Function block
(Instance) (FB)

A function block is a program organization unit, which correspondingly calculates the
functionality values that were defined in the function block type description, for the
outputs and internal variable(s), if it is invoked as a certain instance. All internal
variable and output values for a certain function block instance remain from one
function block invocation to the next. Multiple invocations of the same function block
instance with the same arguments (input parameter values) do not therefore
necessarily supply the same output value(s).
Each function block instance is displayed graphically using a rectangular block
symbol. The name of the function block type is stated in the top center of the
rectangle. The name of the function block instance is also stated at the top, but
outside of the rectangle. It is automatically generated when creating an instance,
but, depending on the user’s requirements, it can be altered by the user. Inputs are
displayed on the left side of the block and outputs are displayed on the right side.
The names of the formal input/output parameters are shown inside the rectangle in
the corresponding places.
The above description of the graphic display is especially applicable to the function
invocation and to DFB invocations. Differences are outlined in the corresponding
definitions.

Function Block
Dialog (FBD)

One or more sections, which contain graphically displayed networks from Functions,
Function blocks and Connections.

Function block
type

A language element, consisting of: 1. the definition of a data structure, divided into
input, output and internal variables; 2. a set of operations, which are performed with
elements of the data structure, when a function block type instance is invoked. This
set of operations can either be formulated in one of the IEC languages (DFB type)
or in "C" (EFB type). A function block type can be instanced (invoked) several times.

Glossary

840 USE 499 00 October 2002 93

Function
Number

The function number is used to uniquely denote a function in a program or DFB. The
function number can not be edited and is automatically assigned. The function
number is always formed as follows: .n.m

n = section number (current number)
m = Number of the FFB object in the section (current number)

Generic Data
Type

A data type, which stands in place of several other data types.

Generic literals If the literal’s data type is not relevant, simply specify the value for the literal. If this
is the case, Concept automatically assigns the literal a suitable data type.

Global Data Global data are Unlocated variables.

Global derived
data types

Global derived data types are available in each Concept project and are occupied in
the DFB directory directly under the Concept directory.

Global DFBs Global DFBs are available in each Concept project. The storage of the global DFBs
is dependant upon the settings in the CONCEPT.INI file.

Global macros Global macros are available in each Concept project and are occupied in the DFB
directory directly under the Concept directory.

Groups (EFBs) Some EFB libraries (e.g. the IEC library) are divided into groups. This facilitates EFB
location especially in expansive libraries.

Host Computer Hardware and software, which support programming, configuring, testing, operating
and error searching in the PLC application as well as in a remote system application,
in order to enable source documentation and archiving. The programming device
can also be possibly used for the display of the process.

*

+

Glossary

94 840 USE 499 00 October 2002

I/O Map The I/O and expert modules from the various CPUs are configured in the I/O map.

Icon Graphical representation of different objects in Windows, e.g. drives, application
programs and document windows.

IEC 61131-3 International standard: Programmable Logic Controls - Part 3: Programming
languages.

IEC Format
(QW1)

There is an IEC type designation in initial position of the address, followed by the
five-figure address.
l %0x12345 = %Q12345
l %1x12345 = %I12345
l %3x12345 = %IW12345
l %4x12345 = %QW12345

IEC name
conventions
(identifier)

An identifier is a sequence of letters, numbers and underscores, which must begin
with either a letter or underscore (i.e. the name of a function block type, an instance,
a variable or a section). Letters of a national typeface (i.e.: ö,ü, é, õ) can be used,
except in project and DFB names.
Underscores are significant in identifiers; e.g. "A_BCD" and "AB_CD" are
interpreted as two separate identifiers. Several leading and multiple successive
underscores are not allowed.
Identifiers should not contain any spaces. No differentiation is made between upper
and lower case, e.g. "ABCD" and "abcd" are interpreted as the same identifier.
Identifiers should not be Keywords.

IEC Program
Memory

The IEC memory consists of the program code, EFB code, the section data and the
DFB instance data.

IIR Filter (Infinite Impulse Response Filter) a filter with infinite impulse answer

Initial step The first step in a sequence. A step must be defined as an initial step for each
sequence. The sequence is started with the initial step when first invoked.

Initial value The value, which is allocated to a variable when the program is started. The values
are assigned in the form of literals.

,

Glossary

840 USE 499 00 October 2002 95

Input bits
(1x references)

The 1/0 status of the input bits is controlled via the process data, which reaches from
an input device to the CPU.

Input parameter
(Input)

Upon invocation of a FFB, this transfers the corresponding argument.

Input words
(3x references)

An input word contains information, which originates from an external source and is
represented by a 16 bit number. A 3x register can also contain 16 sequential input
bits, which were read into the register in binary or BCD (binary coded decimal)
format. Note: The x, which follows the initial reference type number, represents a
five-figure storage location in the user data memory, i.e. the reference 300201
signifies an input word at the address 201 in the State RAM.

Input/output
marker bits (0x
references)

An input/output marker bit can be used to control real output data using an output
unit of the control system, or to define one or more discrete outputs in the state RAM.
Note: The x, which follows the initial reference type number, represents a five-figure
storage location in the user data memory, i.e. the reference 000201 signifies an
output or marker bit at the address 201 in the State RAM.

Instance Name An identifier, which belongs to a certain function block instance. The instance name
is used to clearly denote a function block within a program organization unit. The
instance name is automatically generated, but it can be edited. The instance name
must be unique throughout the whole program organization unit, and is not case
sensitive. If the name entered already exists, you will be warned and you will have
to choose another name. The instance name must comply with the IEC name
conventions otherwise an error message appears. The automatically generated
instance name is always formed as follows: FBI_n_m

FBI = Function Block Instance
n = section number (current number)
m = Number of the FFB object in the section (current number)

Instancing Generating an Instance.

1RWH��The x, which follows the initial reference type number, represents a five-
figure storage location in the user data memory, i.e. the reference 100201 signifies
an output or marker bit at the address 201 in the State RAM.

Glossary

96 840 USE 499 00 October 2002

Instruction (IL) Instructions are the "commands" of the IL programming language. Each instruction
begins on a new line and is performed by an operator with a modifier if necessary,
and if required for the current operation, by one or more operands. If several
operands are used, they are separated by commas. A character can come before
the instruction, which is then followed by a colon. The commentary must, where
available, be the last element of the line.

Instruction
(LL984)

When programming electrical controls, the user should implement operation-coded
instructions in the form of picture objects, which are divided into a recognizable
contact form. The designed program objects are, on a user level, converted to
computer usable OP codes during the download process. The OP codes are
decoded in the CPU and processed by the firmware functions of the controller in a
way that the required control is implemented.

Instruction (ST) Instructions are the "commands" of the ST programming language. Instructions
must be concluded by semicolons. Several instructions can be entered in one line
(separated by semicolons).

Instruction list
(IL)

IL is a text language according to IEC 1131, which is shown in operations, i.e.
conditional or unconditional invocations of Functions blocks and Functions,
conditional or unconditional jumps etc. through instructions.

INT INT stands for the data type "whole number (integer)". Entries are made as integer
literal, base 2 literal, basis 8 literal or base 16 literal. The length of the data element
is 16 bits. The value range for variables of this datatype reaches from -2 exp (15) to
2 exp (15) -1.

Integer literals Integer literals are used to input whole number values into the decimalsystem. The
values can have a preceding sign (+/-). Single underscores (_) between numbers
are not significant.

Example
-12, 0, 123_456, +986

INTERBUS (PCP) The new INTERBUS (PCP) I/O drop type is entered into the Concept configurator,
to allow use of the INTERBUS PCP channel and the INTERBUS process data pre-
processing (PDV). This I/O drop type is assigned the INTERBUS switching module
180-CRP-660-01.
The 180-CRP-660-01 differs from the 180-CRP-660-00 only in the fact that it has a
clearly larger I/O range in the control state RAM.

Invocation The process, through which an operation is carried out.

Glossary

840 USE 499 00 October 2002 97

Jump Element of the SFC language. Jumps are used to skip zones in the sequence.

Keywords Keywords are unique combinations of characters, which are used as special
syntactical components, as defined in Appendix B of the IEC 1131-3. All keywords
which are used in the IEC 1131-3 and therefore in Concept, are listed in Appendix
C of the IEC 1131-3. These keywords may not be used for any other purpose, i.e.
not as variable names, section names, instance names etc.

Ladder Diagram
(LD)

Ladder Diagram is a graphic programming dialog according to IEC1131, which is
optically oriented to the "rung" of a relay contact plan.

Ladder Logic 984
(LL)

The terms Ladder Logic and Ladder Diagram refer to the word Ladder being
executed. In contrast to a circuit diagram, a ladder diagram is used by electrotech-
nicians to display an electrical circuit (using electrical symbols), which should show
the course of events and not the existing wires, which connect the parts with each
other. A usual user interface for controlling the actions of automation devices
permits a Ladder Diagram interface, so that electrotechnicians do not have to learn
new programming languages to be able to implement a control program.
The structure of the actual Ladder Diagram enables the connection of electric
elements in such a way that generates a control output, which is dependant upon a
logical power flow through used electrical objects, which displays the previously
requested condition of a physical electrical device.
In simple form, the user interface is a video display processed by the PLC
programming application, which sets up vertical and horizontal grid, in which
programming objects are classified. The diagram contains the power grid on the left
side, and when connected to activated objects, the power shifts from left to right.

Landscape Landscape means that when looking at the printed text, the page is wider than it is
high.

-

.

/

Glossary

98 840 USE 499 00 October 2002

Language
Element

Every basic element in one of the IEC programming languages, e.g. a step in SFC,
a function block instance in FBD or the initial value of a variable.

Library Collection of software objects, which are intended for re-use when programming
new projects, or even building new libraries. Examples are the libraries of the
Elementary function block types.
EFB libraries can be divided up into Groups.

Link A control or data flow connection between graphical objects (e.g. steps in the SFC
Editor, function blocks in the FBD Editor) within a section, represented graphically
as a line.

Literals Literals are used to provide FFB inputs, and transition conditions etc using direct
values. These values can not be overwritten by the program logic (read only). A
distinction is made between generic and standardized literals.
Literals are also used to allocate a constant, a value or a variable an initial value.
Entries are made as base 2 literal, base 8 literal, basis 16 literal, integer literal, real
literal or real literal with exponent.

Local derived
data types

Local derived data types are only available in a single Concept project and the local
DFBs and are placed in the DFB directory under the project directory.

Local DFBs Local DFBs are only available in a single Concept project and are placed in the DFB
directory under the project directory.

Local Link The local network is the network, which connects the local nodes with other nodes
either directly or through bus repeaters.

Local macros Local macros are only available in a single Concept project and are placed in the
DFB directory under the project directory.

Local network
nodes

The local node is the one, which is currently being configured.

Located variable A state RAM address (reference addresses 0x, 1x, 3x,4x) is allocated to located
variables. The value of these variables is saved in the state RAM and can be
modified online using the reference data editor. These variables can be addresses
using their symbolic names or their reference addresses.

All inputs and outputs of the PLC are connected to the state RAM. The program can
only access peripheral signals attached to the PLC via located variables. External
access via Modbus or Modbus Plus interfaces of the PLC, e.g. from visualization
systems, is also possible via located variables.

Glossary

840 USE 499 00 October 2002 99

Macro Macros are created with the help of the Concept DFB software.
Macros are used to duplicate frequently used sections and networks (including their
logic, variables and variable declaration).
A distinction is made between local and global macros.

Macros have the following properties:
l Macros can only be created in the FBD and LD programming languages.
l Macros only contain one section.
l Macros can contain a section of any complexity.
l In programming terms, there is no difference between an instanced macro, i.e. a

macro inserted into a section and a conventionally created section.
l DFB invocation in a macro
l Declaring variables
l Using macro-specific data structures
l Automatic transfer of the variables declared in the macro.
l Initial value for variables
l Multiple instancing of a macro in the entire program with differing variables
l The name of the section, variable names and data structure names can contain

up to 10 different exchange marks (@0 to @9).

MMI Man-Machine-Interface

Multi element
variables

Variables to which a Derived data type defined with STRUCT or ARRAY is allocated.
A distinction is made here between field variables and structured variables.

Network A network is the collective switching of devices to a common data path, which then
communicate with each other using a common protocol.

Network node A node is a device with an address (1...64) on the Modbus Plus network.

Node Node is a programming cell in a LL984 network. A cell/node consists of a 7x11
matrix, i.e. 7 rows of 11 elements.

0

1

Glossary

100 840 USE 499 00 October 2002

Operand An operand is a literal, a variable, a function invocation or an expression.

Operator An operator is a symbol for an arithmetic or boolean operation, which is to be carried
out.

Output
parameter
(outputs):

A parameter, through which the result(s) of the evaluation of a FFB is/are returned.

Output/marker
words (4x
references)

An output / marker word can be used to save numerical data (binary or decimal) in
the state RAM, or to send data from the CPU to an output unit in the control system.
Note: The x, which follows the initial reference type number, represents a five-figure
storage location in the user data memory, i.e. the reference 400201 signifies a 16 bit
output or marker word at the address 201 in the State RAM.

Peer CPU The Peer CPU processes the token execution and the data flow between the
Modbus Plus network and the PLC user logic.

PLC Memory programmable controller

Portrait Portrait means that the sides are larger than the width when printed.

Print-out Expressions consist of operators and operands.

Program The uppermost program organization unit. A program is closed on a single PLC
download.

Program
organization unit

A function, a function block, or a Program. This term can refer to either a type or an
instance.

Program
redundancy
system (Hot
Standby)

A redundancy system consists of two identically configured PLC machines, which
communicate with one another via redundancy processors. In the case of a
breakdown of the primary PLC, the secondary PLC takes over the control check.
Under normal conditions, the secondary PLC does not take over the control function,
but checks the status information, in order to detect errors.

2

3

Glossary

840 USE 499 00 October 2002 101

Project General description for the highest level of a software tree structure, which specifies
the super-ordinate project name of a PLC application. After specifying the project
name you can save your system configuration and your control program under this
name. All data that is created whilst setting up the configuration and program,
belongs to this super-ordinate project for this specific automation task.
General description for the complete set of programming and configuration
information in the project database, which represents the source code that
describes the automation of a system.

Project database The database in the host computer, which contains the configuration information for
a project.

Prototype file
(Concept-EFB)

The prototype file contains all the prototypes of the assigned functions. In addition,
if one exists, a type definition of the internal status structure is specified.

REAL REAL stands for the data type "floating point number". The entry can be real-literal
or real-literal with an exponent. The length of the data element is 32 bits. The value
range for variables of this data type extends from +/- 3.402823E+38.

Real literals Real literals are used to input floating point values into the decimal system. Real
literals are denoted by a decimal point. The values can have a preceding sign (+/-).
Single underscores (_) between numbers are not significant.

Example
-12.0, 0.0, +0.456, 3.14159_26

5

1RWH��Dependent on the mathematical processor type of the CPU, different ranges
within this permissable value range cannot be represented. This applies to values
that are approaching ZERO and for values that approach INFINITY. In these cases
NAN (1ot $ 1umber) or INF (,1)inite will be displayed in the animation mode
instead of a number value.

Glossary

102 840 USE 499 00 October 2002

Real literals with
exponents

Real literals with exponents are used to input floating point values into the decimal
system. Real literals with exponents are identifiable by a decimal point. The
exponent indicates the power of ten, with which the existing number needs to be
multiplied in order to obtain the value to be represented. The base can have a
preceding negative sign (-). The exponent can have a preceding positive or negative
sign (+/-). Single underscores (_) between numbers are not significant. (Only
between numbers, not before or after the decimal point and not before or after "E",
"E+" or "E-")

Example
-1.34E-12 or -1.34e-12
1.0E+6 or 1.0e+6
1.234E6 or 1.234e6

Reference Every direct address is a reference that begins with an indicator, which specifies
whether it is an input or an output and whether it is a bit or a word. References that
begin with the code 6, represent registers in the extended memory of the state RAM.
0x range = Coils
1x range = Discrete inputs
3x range = Input registers
4x range = Output registers
6x range = Register in the extended memory

Register in the
extended
memory (6x-
reference)

6x references are holding registers in the extended memory of the PLC. They can
only be used with LL984 user programs and only with a CPU 213 04 or CPU 424 02.

Remote Network
(DIO)

Remote programming in the Modbus Plus network enables maximum performance
when transferring data and dispenses of the need for connections. Programming a
remote network is simple. Setting up a network does not require any additional
ladder logic to be created. All requirements for data transfer are fulfilled via
corresponding entries in the Peer Cop Processor.

RIO (Remote I/O) Remote I/O indicates a physical location of the I/O point controlling devices with
regard to the CPU controlling them. Remote inp./outputs are connected to the
controlling device via a twisted communication cable.

1RWH��The x, which follows each initial reference type number, represents a five-
figure storage location in the user data memory, i.e. the reference 400201 signifies
a 16 bit output or marker word at the address 201 in the State RAM.

Glossary

840 USE 499 00 October 2002 103

RTU-Mode Remote Terminal Unit
The RTU mode is used for communication between the PLC and an IBM compatible
personal computer. RTU works with 8 data bits.

Runtime error Errors, which appear during program processing on the PLC, in SFC objects (e.g.
Steps) or FFBs. These are, for example, value range overflows with figures or timing
errors with steps.

SA85 module The SA85 module is a Modbus Plus adapter for IBM-AT or compatible computers.

Scan A scan consists of reading the inputs, processing the program logic and outputting
the outputs.

Section A section can for example be used to describe the mode of functioning of a
technological unit such as a motor.
A program or DFB consists of one or more sections. Sections can be programmed
with the IEC programming languages FBD and SFC. Only one of the named
programming languages may be used within a section at any one time.
Each section has its own document window in Concept. For reasons of clarity, it is
however useful to divide a very large section into several small ones. The scroll bar
is used for scrolling within a section.

Section Code Section Code is the executable code of a section. The size of the Section Code is
mainly dependent upon the number of blocks in the section.

Section Data Section data is the local data in a section such as e.g. literals, connections between
blocks, non-connected block inputs and outputs, internal status memory of EFBs.

Separator
Format (4:00001)

The first digit (the reference) is separated from the five figure address that follows
by a colon (:).

Sequence
language (SFC)

The SFC Language Elements enable a PLC program organization unit to be divided
up into a number of Steps and Transitions, which are connected using directional
Links. A number of actions belong to each step, and transition conditions are
attached to each transition.

6

1RWH��Data which appears in the DFBs of this section is not section data.

Glossary

104 840 USE 499 00 October 2002

Serial
Connections

With serial connections (COM) the information is transferred bit by bit.

Source code file
(Concept-EFB)

The source code file is a normal C++ source file. After executing the Library →
Create files menu command, this file contains an EFB-code frame, in which you
have to enter a specific code for the EFB selected. To do this invoke the Objects →
Source menu command.

Standard Format
(400001)

The five figure address comes directly after the first digit (the reference).

Standardized
literals

If you would like to manually determine a literal’s data type, this may be done using
the following construction: ’Data type name’#’value of the literal’.

Example
INT#15 (Data type: integer, value: 15),
BYTE#00001111 (Data type: byte, value: 00001111)
REAL#23.0 (Data type: real, value: 23.0)

To assign the data type REAL, the value may also be specified in the following
manner: 23.0.
Entering a comma will automatically assign the data type REAL.

State RAM The state RAM is the memory space for all variables, which are accessed via
References (Direct representation) in the user program. For example, discrete
inputs, coils, input registers, and output registers are situated in the state RAM.

Status Bits For every device with global inputs or specific inp./outputs of Peer Cop data, there
is a status bit. If a defined group of data has been successfully transferred within the
timeout that has been set, the corresponding status bit is set to 1. If this is not the
case, this bit is set to 0 and all the data belonging to this group is deleted (to 0).

Step SFC-language element: Situation, in which the behavior of a program occurs,
regarding its inputs and outputs of those operations which are defined by the actions
belonging to the step.

Step name The step name is used to uniquely denote a step in a program organization unit. The
step name is generated automatically, but it can be edited. The step name must be
unique within the entire program organization unit, otherwise an error message will
appear.
The automatically generated step name is always formed as follows: S_n_m

S = step
n = section number (current number)
m = Number of the step in the section (current number)

Glossary

840 USE 499 00 October 2002 105

Structured text
(ST)

ST is a text language according to IEC 1131, in which operations, e.g. invocations
of Function blocks and Functions, conditional execution of instructions, repetitions
of instructions etc. are represented by instructions.

Structured
variables

Variables to which a Derived data type defined with STRUCT (structure) is allocated.
A structure is a collection of data elements with generally different data types
(elementary data types and/or derived data types).

SY/MAX In Quantum control devices, Concept includes the providing of I/O-map SY/MAX-I/
O modules for remote contolling by the Quantum PLC. The SY/MAX remote
backplane has a remote I/O adapter in slot 1, which communicates via a Modicon
S908 R I/O System. The SY/MAX-I/O modules are executed for you for labelling and
inclusion in the I/O map of the Concept configuration.

Template file
(Concept-EFB)

The template file is an ASCII file with layout information for the Concept FBD Editor,
and the parameters for code creation.

TIME TIME stands for the data type "time". The entry is time literal. The length of the data
element is 32 bits. The value range for variables of this data type extends from 0 to
2exp(32)-1. The unit for the TIME data type is 1 ms.

Time literals Permissable units for times (TIME) are days (D), hours (H), minutes (M), seconds
(S) and milliseconds (MS) or combinations of these. The time must be marked with
the prefix t#, T#, time# or TIME#. The "overflow" of the unit with the highest value is
permissible, e.g. the entry T#25H15M is allowed.

Example
t#14MS, T#14.7S, time#18M, TIME#19.9H, t#20.4D, T#25H15M,
time#5D14H12M18S3.5MS

Token The network "token" controls the temporary possession of the transfer right via a
single device. The token passes round the devices in a rotating (increasing) address
sequence. All devices follow the token rotation and can receive all the possible data
that is sent with it.

Total IEC
memory

The total IEC memory consists of the IEC program memory and the global data.

7

Glossary

106 840 USE 499 00 October 2002

Traffic Cop The traffic cop is an IO map, which is generated from the user-IO map. The traffic
cop is managed in the PLC and in addition to the user IO map, contains e.g. status
information on the I/O stations and modules.

Transition The condition, in which the control of one or more predecessor steps passes to one
or more successor steps along a directed link.

UDEFB User-defined elementary functions/function blocks
Functions or function blocks, which were created in the C programming language,
and which Concept provides in libraries.

UDINT UDINT stands for the data type "unsigned double integer". Entries are made as
integer literal, base 2 literal, basis 8 literal or base 16 literal. The length of the data
element is 32 bits. The value range for variables of this data type extends from 0 to
2exp(32)-1.

UINT UINT stands for the data type "unsigned integer". Entries are made as integer literal,
base 2 literal, basis 8 literal or base 16 literal. The length of the data element is 16
bits. The value range for variables of this data type extends from 0 to (2exp 16)-1.

Unlocated
variable

Unlocated variables are not allocated a state RAM address. They therefore do not
occupy any state RAM addresses. The value of these variables is saved in the
internal system and can be changed using the reference data editor. These
variables are only addressed using their symbolic names.

Signals requiring no peripheral access, e.g. intermediate results, system tags etc.,
should be primarily declared as unlocated variables.

8

Glossary

840 USE 499 00 October 2002 107

Variables Variables are used to exchange data within a section, between several sections and
between the program and the PLC.
Variables consist of at least one variable name and one data type.
If a variable is assigned a direct address (reference), it is called a located variable.
If the variable has no direct address assigned to it, it is called an unlocated variable.
If the variable is assigned with a derived data type, it is called a multi element
variable.
There are also constants and literals.

Warning If a critical status is detected during the processing of a FFB or a step (e.g. critical
input values or an exceeded time limit), a warning appears, which can be seen using
the Online → Event Viewer... menu command. For FFBs, the ENO remains set to
"1".

WORD WORD stands for the data type "bit sequence 16". Entries are made as base 2
literal, base 8 literal or base 16 literal. The length of the data element is 16 bits. A
numerical value range can not be assigned to this data type.

9

:

Glossary

108 840 USE 499 00 October 2002

���

840 USE 499 00 October 2002 109

C
Cable Adapter Kids

for RJ45-(8x8), 84
Cable pinouts

9-pin (RS-232) to 25-pin (Modem) with
no RTS/CTS control, 70
9-pin (RS-232) to 25-pin (Modem) with
RTS/CTS control, 71
9-pin Momentum RS 485, 82
9-pin to 25-pin (Null Modem), 74
9-pin to 9-pin (Modem), 73
9-pin to 9-pin (Null Modem), 72
9-pin to RJ45-(8x8) (Modem)
110XCA20301, 80, 81
RJ 45 Momentum RS 485, 83
RJ45-(8x8) to 25-pin (Modem)
110XCA20401, 77, 78
RJ45-(8x8) to 25-pin (Null Modem)
110XCA20401, 75
RJ45-(8x8) to 9-pin (Null Modem)
110XCA20301, 76
RJ45-(8x8) to RJ45-(8x8) (Modem), 79

Cabling Information, 69
COMM

RTXMIT, 49
XXMIT, 11

F
function block

XXMIT, 59

I
Introduction, 7

M
Momentum RS 485, 82, 83
Multidrop, 82

P
PLC parameter limits

184/384, 62
484, 62
584/984, 61
884, 61
M84, 63
Quantum, 60

R
RS 485, 82, 83
RTU

RTXMIT, 49
XXMIT, 11

RTXMIT, 49

T
Technical References

XXMIT, 59
Transmit, 11, 49

,QGH[

Index

110 840 USE 499 00 October 2002

X
XXMIT, 11
XXMIT Configuration

using Dial-Up Modems, 63

