
33
00

22
18

.0
0

Concept
IEC block library
Part: LIB984
840 USE 504 00 eng Version 2.6

© 2002 Schneider Electric All Rights Reserved

2

3

Table of Contents

About the book .5

Part I General information on the LIB984 block library 7
Overview . 7

Chapter 1 Parameterizing functions and function blocks 9
Parameterizing functions and function blocks. 9

Chapter 2 At a glance .13
Overview . 13
Modsoft Functions and using the state RAM. 15
Concept uses variables with pre-defined, standardized types 15
Concept EFBs and Parameters. 16
Tables under Concept . 16
Concept EFBs and the ANY data type . 17
Implementation aspects . 17

Part II EFB descriptions . 19
Overview . 19

Chapter 3 DLOG: Data event logging for PCMCIA Read/write support .21

Chapter 4 FIFO: First In/First Out stack register . 27

Chapter 5 GET_3X: Reading 3x register . 31

Chapter 6 GET_4X: Reading 4x register . 33

Chapter 7 GET_BIT: Reading bit. 35

Chapter 8 IEC_BMDI: Block move .37

Chapter 9 LIFO: Last In/First Out stack register . 45

Chapter 10 PUT_4X: Write 4x register .49

Chapter 11 R2T_***: Register to table .51

4

Chapter 12 SET_BIT: Set bit . 55

Chapter 13 SET_BITX: Set expanded bit. 59

Chapter 14 SRCH_***: Search . 63

Chapter 15 T2T: Table to table . 67

Glossary .73

Index .97

840 USE 504 00 October 2002 5

About the book

At a Glance

Document Scope This documentation should help you to configure functions and function blocks.

Validity Note This documentation is valid for Concept 2.6 under Microsoft Windows 98, Microsoft
Windows 2000 and Microsoft Windows NT 4.x.

Related
Documents

User Comments We welcome your comments about this document. You can reach us by e-mail at
TECHCOMM@modicon.com

Note: Additional up-to-date tips can be found in the Concept README file.

Title of Documentation Reference Number

Concept Installation Instructions 840 USE 502 00

Concept User Manual 840 USE 503 00

Concept-EFB User Manual 840 USE 505 00

Concept LL984 Block Library 840 USE 506 00

About the book

6 840 USE 504 00 October 2002

840 USE 504 00 October 2002 7

I
General information on the LIB984
block library

Overview

Introduction This section contains general information about the LIB984 block library.

What’s in this
part?

This part contains the following chapters:

Chapter Chaptername Page

1 Parameterizing functions and function blocks 9

2 At a glance 13

General information

8 840 USE 504 00 October 2002

840 USE 504 00 October 2002 9

1
Parameterizing functions and
function blocks

Parameterizing functions and function blocks

Parameterization

10 840 USE 504 00 October 2002

General Each FFB consists of an operation, the operands needed for the operation and an
instance name or function counter.

Operation The operation determines which function is to be executed with the FFB, e.g. shift
register, conversion operations.

Operand The operand specifies what the operation is to be executed with. With FFBs, this
consists of formal and actual parameters.

FFB
(e.g. ON-delay)

Item name/
Function counter
(e.g. FBI_2_22 (18))

Operation
(e.g. TON)

Operand

Actual parameter
Variable, element of a

multi-element
variable, literal, direct

address
(e.g. ENABLE, EXP.1,
TIME, ERROR, OUT,

%4:0001)

Formal
parameter

(e.g.
IN,PT,Q,ET)

TON

ENABLE

EXP.1

TIME

EN

IN

PT

ENO

Q

ET

ERROR

OUT

%4:00001

FBI_2_22 (18)

Parameterization

840 USE 504 00 October 2002 11

Formal/actual
parameters

The formal parameter holds the place for an operand. During parameterization, an
actual parameter is assigned to the formal parameter.

The actual parameter can be a variable, a multi-element variable, an element of a
multi-element variable, a literal or a direct address.

Conditional/
unconditional
calls

"Unconditional" or "conditional" calls are possible with each FFB. The condition is
realized by pre-linking the input EN.
l Displayed EN

conditional calls (the FFB is only processed if EN = 1)
l EN not displayed

unconditional calls (FFB is always processed)

Calling functions
and function
blocks in IL and
ST

Information on calling functions and function blocks in IL (Instruction List) and ST
(Structured Text) can be found in the relevant chapters of the user manual.

Note: If the EN input is not parameterized, it must be disabled. Any input pin that
is not parameterized is automatically assigned a "0" value. Therefore, the FFB
should never be processed.

Parameterization

12 840 USE 504 00 October 2002

840 USE 504 00 October 2002 13

2
At a glance

Overview

At a glance The EFB Library LIB984 emulates the Modsoft functions in Concept without major
differences. On the other hand all the features of Concept, different data types,
located and unlocated variables, are available in these functions.
Overview of the function blocks present:

Function block Modsoft Equivalent

R2T_INT, R2T_UINT, R2T_DINT, R2T_UDINT, R2T_REAL R->T

T2T T->T

FIFO FIN, FOUT

LIFO

SRCH_INT, SRCH_UINT, SRCH_DINT, SRCH_UDINT,
SRCH_REAL

SRCH

GET_3X

GET_4X

PUT_4X

GET_BIT

SET_BIT

At a glance

14 840 USE 504 00 October 2002

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Modsoft Functions and using the state RAM 15

Concept uses variables with pre-defined, standardized types 15

Concept EFBs and Parameters 16

Tables under Concept 16

Concept EFBs and the ANY data type 17

Implementation aspects 17

At a glance

840 USE 504 00 October 2002 15

Modsoft Functions and using the state RAM

Introduction If we look at the details of the general implementation, we see that Modsoft functions
only work with the State-RAM (0x, 1x, 3x and 4x registers) and process mainly
16-bit register values. All blocks or tables are based on 16-bit values.

Conversion in
Concept

The size of these tables is given as the number of "words" required. For the different
register types (0x, 1x, 3x, 4x) there is a physical address in the state RAM and they
have a configured but fixed length. The length of each table is therefore known. All
discretes are packed into words (16 bit = 1 word). Modsoft and Concept work directly
on these packed bit structures. If bits are moved with the functions below then only
structures of contiguous words are moved
Example:
Start addresses 0x1, 0x17,0xn with n = i*16+1

Properties of
Modsoft
functions

Modsoft functions have a maximum of 3 Boolean inputs, 3 Boolean outputs and a
maximum of 3 parameters/parameter blocks and all inputs, outputs and parameters
have no variable name.

Concept uses variables with pre-defined, standardized types

Differences
between
Concept and
Modsoft

If we take a more detailed look at Concept, we notice the following differences:
l Concept also has unlocated variables (no specific address), which may be

randomly spread throughout memory. Addresses of variables may also change
during runtime, when a Download Changes is invoked.

l Concept also has a wide range of different data types of elementary types (INT,
DINT, REAL) and defined structures to user-defined structures and arrays. EFBs
and user-defined DFBs work with variables of these data types. EFBs can work
with variables which are located to the State-Ram or with unlocated variables
which may lie somewhere in the application RAM of the controller.

l Blocks in Concept are pre-defined data-structures or arrays.
l Tables in Concept are pre-defined arrays of elementary data types or structures.

At a glance

16 840 USE 504 00 October 2002

Concept EFBs and Parameters

Mode of
functioning of
Concept

The Concept compiler checks that each parameter variable has the same data type
as the EFB pin. This is why several different ADD functions are necessary to cover
for all the known elementary datatypes (integer, double integer or float, etc.).
When defining an EFB for Concept each parameter must have a pre-defined
datatype. If an EFB works with a special data-structure, then this data structure must
be defined in Concept when implementing the EFB. During application program
design it is not possible to connect a variable of another datatype to a certain pin of
the EFB.

Tables under Concept

Mode of
functioning of
Concept

If we now look to "tables" then we see there are some difficulties. If an EFB works
with a table, then this table must have been previously defined. If the table is an
array of 10 integers this must be defined in the DTY data of the EFB library in the
following way.
TYPE TI_10 :
 ARRAY[0..9] OF INT;
END_TYPE
When we now design an EFB using this array we can, for example, put/ get array-
elements to/from the array. The EFB however only works with an array of 10
integers. If we need more elements, then we have to define a new (different) data-
type. Even so the existing EFB will not work with this new data type as it is not the
same as that defined during the design of the EFB.
The first problem is to define the right number of ARRAY elements.
The next problem is that we have to define different EFBs for arrays of different
datatypes.

At a glance

840 USE 504 00 October 2002 17

Concept EFBs and the ANY data type

Functioning
mode of Concept

Concept has the special data type ‘ANY’ available for simplifying table operations.
A pin declared with this data type can be linked to a variable of any data type. In
order to work properly, at run time, the size (in bytes) of the data type of the
connected variables is transferred to the EFB as a hidden parameter. However the
actual type of the variable (whether it is an INT, UINT, WORD, a structure of
elements or an array) is still unknown to the EFB.

Example The EFB is passed a pointer to a variable which has a size of 4 bytes. Whether these
4 bytes are of type DINT or REAL is unknown. For this reason the parameter ANY
can only be used if the processing of this parameter is clearly defined. In the above
example the EFB doesn't know whether to perform floating point or integer
arithmetic. Should the size increase, it becomes more and more unclear as to what
data type the variable is. (e.g. a size of 100 bytes could be an array of bytes,
integers, or reals, or a structure with different data types)

Further
restrictions

Another restriction of the datatype ANY is, that if this type is used more than once in
the same EFB, all pins of this type must be connected to variables of the same
datatype.

Implementation aspects

Procedure These differences between Concept and Modsoft outline what is possible for the
conversion of the Modsoft functions to a Concept EFB library.
In the implementation we have contrasting requirements:
l Implement the function conforming as much as possible to the existing solution

in Modsoft.
i.e. only implementing a state RAM solutions (cannot be used with localized
variables)

l Implementing the function according to the standard programming rules for
IEC1131.
i.e. different solutions for parameters and consequently in mode of operation.

Limitations The Modsoft functions BLKM, BLKT and TBLK are not included in this package.
BLKM already has an equivalent Concept function named MOVE.
BLKT and TBLK can be replaced with a similar DFB function.

At a glance

18 840 USE 504 00 October 2002

840 USE 504 00 October 2002 19

II
EFB descriptions

Overview

Introduction These EFB descriptions are listed in alphabetical order.

What’s in this
part?

This part contains the following chapters:

Chapter Chaptername Page

3 DLOG: Data event logging for PCMCIA Read/write support 21

4 FIFO: First In/First Out stack register 27

5 GET_3X: Reading 3x register 31

6 GET_4X: Reading 4x register 33

7 GET_BIT: Reading bit 35

8 IEC_BMDI: Block move 37

9 LIFO: Last In/First Out stack register 45

10 PUT_4X: Write 4x register 49

11 R2T_***: Register to table 51

12 SET_BIT: Set bit 55

13 SET_BITX: Set expanded bit 59

14 SRCH_***: Search 63

15 T2T: Table to table 67

EFB descriptions

20 840 USE 504 00 October 2002

840 USE 504 00 October 2002 21

3
DLOG: Data event logging for
PCMCIA Read/write support

Overview

At a glance This chapter describes the DLOG block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 22

Representation 23

Detailed description 24

Run time error 26

DLOG: Data event logging for PCMCIA Read/write support

22 840 USE 504 00 October 2002

Brief description

Function
description

The read/write support in PCMCIA consists of a configuration expansion established
with a DLOG block. With the DLOG block, one application can copy data e.g. onto
or from a PCMCIA flashcard, delete individual memory blocks on a PCMCIA
flashcard, and delete an entire PCMCIA flashcard. The application regulates the
data format and how often the data are saved.

As additional parameters, EN and ENO can be configured.

Limitations When using the DLOG block, the following limitations apply:
l This block is only available with the PLC family TSX Compact.
l The DLOG block can only work with linear PCMCIA flash cards which use AMD

flash devices.

DLOG: Data event logging for PCMCIA Read/write support

840 USE 504 00 October 2002 23

Representation

Symbol Representation of the function block:

Description of
parameters

Description of block parameters:

DLOG_CTRL
data structure

Description of the DLOG_CTRL data structure:

DLOG

BLK_CTRLDLOG_CTRL
SRCDESTUINT
LENGTHUINT
ABORTBOOL

BOOLERROR

BOOLSUCCESS

Parameters Data type Meaning

BLK_CTRL DLOG_CTRL Data structure of the Control block

SRCDEST UINT First 4x register in a data area, used as source or target for the
operation specified.

LENGTH UINT Maximum number of registers reserved for the data area:
0 to 100.

ABORT BOOL 1 = stops the current active operation

ERROR BOOL 1 = Error (See also Error message, p. 26) during DLOG
operation (operation terminated unsuccessfully)

SUCCESS BOOL 1 = DLOG operation terminated successfully (operation
successful)

Element Data type Meaning

status WORD Error status

operation WORD Operation type

window WORD Window (block indicator)

offset WORD Offset (Byte address within the block)

count WORD counter

DLOG: Data event logging for PCMCIA Read/write support

24 840 USE 504 00 October 2002

Detailed description
DLOG_CTRL The structured variable entered at this input contains the five elements for the DLOG

control block. The control block is used to define the function of the DLOG
command, the PCMCIA flash card window and the PCMCIA flashcard window
offset, a returned status word and a data word counter value.

The control block is used to define the function of the DLOG command, the PCMCIA
flash card window and the PCMCIA flashcard window offset, a returned status word
and a data word counter value.

Element Meaning Function

status Error status Displays DLOG errors in HEX values:
l 1 = the counter parameter of the control block, i.e. the DLOG

block length during a write operation (operation type = 1)
l 2 = PCMCIA card command failed during startup (write/

read/delete
l 3 = PCMCIA card command failed during execution (write/

read/delete)
l 4 = current EXEC (16-bit) is not a valid EXEC for Compact

(32-bit).

operation Operation type The following operations are available:
l 1 = write to PCMCIA card
l 2 = read to PCMCIA card
l 3 = delete one block
l 4 = delete entire card contents

window Window (block
indicator)

This element designates a specific block (PCMCIA save
window) on the PCMCIA card (1 block = 128 Kbytes).
The number of blocks depends on the PCMCIA card memory
size. (e.g. 0 ... Max. 31 for a 4 meg (PCMCIA card.)

offset Offset (Byte
address within
the block)

Specific byte area within a specific block on the PCMCIA card.
Area: 1 ... 128 Kbyte

count counter Number of 4x registers written or read onto the PCMCIA card.
Area: 0 to 100.

Note: PCMCIA flash card addresses are addresses with a window offset basis.
Established size of windows is 128 Kbyte (65,535 words (16-bit values)). No write/
read operation can overshoot the boundary between one window and the next. for
this reason "offset" plus "count" must always be ≤ 128 Kbyte (65.535 words).

DLOG: Data event logging for PCMCIA Read/write support

840 USE 504 00 October 2002 25

SRCDEST The value entered at this input defines the first register (e.g. the value "50" produces
the 4x register address 4x000050) in an associated block of 4x word registers. The
DLOG block will use this block as the source or destination of the operation
established in the "operation" of the BLK_CTRL input.

Table of operations:

If the value at this input is not within the 4x register area, an error message appears
and the ERROR output is set to "1".

LENGTH The value entered at this input is the length of the data range – i.e. the maximum
number of words (registers) authorized in a transfer to or from the PCMCIA flash
card. The length can be in the 0 to 100 range.

ABORT If there is a "1" at this input, the current operation is aborted. The input is static, i.e.
as long as the value is "1", the block is not executed.

ERROR If the current DLOG operation has been terminated unsuccessfully, this output is set
to "1".

A read or write operation can take on several cycles before terminating. This means
that if ERROR and SUCCESS both have the value "0", the current operation has not
yet been completed.

SUCCESS If the current DLOG operation has been completed successfully, this output is set to
"1".

A read or write operation can take on several cycles before terminating. This means
that if ERROR and SUCCESS both have the value "0", the current operation has not
yet been completed.

Operation State RAM reference Function

Write 4x Source reference

Read 4x Destination reference

Delete block none none

Delete card none none

DLOG: Data event logging for PCMCIA Read/write support

26 840 USE 504 00 October 2002

Runtime error

Error message An error message appears if
l the current EXEC (16-bit) is not a valid EXEC for Compact (32-bit). In this case

the "status" element of the BLK_CTRL input is set to the value"4" (HEX) and the
Error message "E_EFB_CURRENT_MODE_NOT_ALLOWED" is generated.
Otherwise the ERROR output is set to "1" and the execution of the block is then
aborted. (If the block continues to be operated with the incompatible EXEC, the
error message appears in each program cycle as long as the block is active.)

l the value at the SRCDEST is not within the 4x register area. In this case an error
message is generated. Otherwise the ERROR output is set to "1" and the
execution of the block is then aborted.

l an error occurs during a read or write cycles. In this case the PCM error code is
displayed in the "status" element of the BLK_CTRL input. Otherwise the ERROR
output is set to "1" and the execution of the block is then aborted.

840 USE 504 00 October 2002 27

4
FIFO: First In/First Out stack
register

Overview

At a glance This chapter describes the FIFO block

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 28

Representation 28

Detailed description 29

FIFO: First In/First Out stack register

28 840 USE 504 00 October 2002

Brief description

Function
description

This Function block is a ‘first in – first out’ stack register.
As additional parameters, EN and ENO can be configured.

Representation

Symbol Block representation:

Parameter
description

Description of the block parameters:

Note: For technical reasons, this function block cannot be used with the
programming languages ST and IL.

FIFO

BOOLFULL

BOOLEMPTY

ANYY

RBOOL
SETBOOL
GETBOOL
XANY
N_MAXUINT

Parameter Data type Meaning

R BOOL 1 = stack will be cleared

SET BOOL 1 = write value to stack

GET BOOL 1 = read value from stack

X ANY should be a field
(array) from
ANY_ELEM e.g.
ARRAY[0..X] OF INT

Stack input

N_MAX UINT Maximum number of elements in the stack

FULL BOOL 1= stack is full, no further elements can be put in the
stack.

EMPTY BOOL 1 = stack is empty (number of elements in the stack = 0)

Y ANY should be a field
(array) from
ANY_ELEM e.g.
ARRAY[0..X] OF INT

Stack output

FIFO: First In/First Out stack register

840 USE 504 00 October 2002 29

Detailed description

Functionality
Under Concept

FIFO is a ’first in-first out’ stack register
The index and stack registers are invisible to the user. The stack register is a
component of the internal status and can take up to 2000 bytes of data
(i.e. 1000 INT- or 500 REAL- or 500 TIME elements).
The function block contains two Boolean inputs GET and SET to read a value from
the stack register or to write a value to the stack register. As long as this input is set
to 1, a value is either read from or written to the FIFO stack. If GET and SET are set
at the same time SET (write) is executed first and then GET (read). The stack
register is cleared if R(eset)=1.
The input parameters that monitor the stack must be set in a sensible sequence so
that the function block works properly.
A sensible sequence would be e.g.:

The N_MAX parameter indicates the maximum number of elements in the stack
register.
If the stack register is full (number of elements in the stack register=N_MAX <= 2000
/(Size of (X)) then FULL is set to 1 for one scan and no other elements can be put
on the stack register. If the stack register is empty (number of elements in the stack
register = 0) then EMPTY is set to 1 for one scan. The function has an X input and
a Y output for different elementary data types.
X and Y are of type ANY which implies a predefined length. Because of the limited
size of the internal stack register, only input and output types are accepted with an
elementary size equal to or less than 200 bytes. Otherwise, a runtime error occurs
and an error message is generated which sets ENO to 0.

Cycle Parameter Result

Cycle n R=0, SET=0, GET=0 Stack not initialized

Cycle n+1 R=1, SET=0, GET=0 Stack initialized

Cycle n+2 R=0, SET=0, GET=0 End initialization

Cycle n+3 R=0, SET=1, GET=0 Load stack with x values

Cycle n+x+1 R=0, SET=0, GET=0 End load

Cycle n+x+2 R=0, SET=0, GET=1 Get x values

Cycle n+x+2+x R=0, SET=0, GET=1 Stack not empty

FIFO: First In/First Out stack register

30 840 USE 504 00 October 2002

Functionality
under Modsoft

These functions copy a value from a source register (16 bits) to a queue (table) or
vise-versa.

The table begins with the first address of the queue registers. The first element in
this table is the number of those elements defined in the queue.
These functions copy a 16 bit value from a source register to the queue (Index + 1)
in every cycle.

Differences Differences between Concept and Modsoft:
l The table can have any predefined data structure. Modsoft functions cannot be

processed with localized variables or links. Modsoft uses offsets in the State
RAM. The table is a component of the State RAM (not reserved, no check for
multiple access).

l Pins are recognized under Concept.
EN/ENO are optional under Concept (Standard IEC1131-3).

l Different function names (’->’ cannot be used in one name under Concept).
l Different display (see Functionality Under Modsoft, p. 30).

Entry, Input/Output Meaning

Upper entry Source is a reference to the State RAM:
0x, 1x or in a combined 16 bit field 3x, 4x

Middle entry Queue ’Pointer’ is a reference to the State RAM:
Beginning of 4x register + 1 + value in pointer

Lower entry Table length (1..100).

Upper input/upper output Function enable

Middle output Queue full, further copy procedures will not be executed

Lower output Queue empty

EN :
BOOL EN :

BOOL
ENO :
BOOLQ : UINT[]

DEST : UINT

LEN : UINT

R-->T

ENO :
BOOL

FULL :
BOOL

EMPTY :
BOOL

FULL :
BOOL

EMPTY :
BOOL

SRC : UINT

Q : UINT[]

LEN : UINT

FIN

840 USE 504 00 October 2002 31

5
GET_3X: Reading 3x register

Overview

At a glance This chapter describes the GET_3X block

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 32

Representation 32

Detailed description 32

GET_3X: Reading 3x register

32 840 USE 504 00 October 2002

Brief description

Function
description

This function block writes values from the 3x register region of the state RAM to the
variable that is connected to the output pin.
EN and ENO can be configured as additional parameters.

Representation

Symbol Representation of the function block:

Description of
parameters

Description of the block parameters:

Detailed description

Function
description

The function block GET_3X writes values from the 3x register region of the state
RAM into the variable, which is connected to the output pin.
OFF is an offset in the 3x register memory.
The function copies as many bytes as the size of the output datatype connected to
the output pin.

Example The output of this function will read the 16-bit value of register 300120, if OFF = 120
and the output is of datatype INT.
The value in OFF may be modified at runtime.
If the value in OFF is beyond the configured number of 3x-Registers, an error
message is generated and ENO is set to 0.

Note: For technical reasons, this function block can only be used in compact form
in ST or IL programming languages (INSTANCE_NAME (OFF:=offset,
VAL=>value)).

GET_3X

ANYVALOFFUINT

Parameters Data type Meaning

OFF UINT OFF is an offset in the 3x register memory.

VAL ANY Output

840 USE 504 00 October 2002 33

6
GET_4X: Reading 4x register

Overview

At a glance This chapter describes the GET_4X block

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 34

Representation 34

Detailed description 34

GET_4X: Reading 4x register

34 840 USE 504 00 October 2002

Brief description

Function
description

This function block writes values from the 4x register region of the state RAM to the
variable that is connected to the output pin.
EN and ENO can be configured as additional parameters.

Representation

Symbol Representation of the function block:

Description of
parameters

Description of the block parameters:

Detailed description

Function
description

The function block GET_4X writes values from the 4x register region of the state
RAM into the variable, which is connected to the output pin.
OFF is an offset in the 4x register memory.
The function copies as many bytes as the size of the output datatype connected to
the output pin.

Example The output of this function will read the 16-bit value of register 400120, if OFF = 120
and the output is of datatype INT.
The value in OFF may be modified during runtime.
If OFF lies outside the configured number of 4x-Registers, an error message is
generated and ENO is set to 0.

Note: For technical reasons, this function block can only be used in compact form
in ST or IL programming languages (INSTANCE_NAME (OFF:=offset,
VAL=>value)).

GET_4X

ANYVALOFFUINT

Parameters Data type Meaning

OFF UINT OFF is an offset in the 4x register memory.

VAL ANY Output

840 USE 504 00 October 2002 35

7
GET_BIT: Reading bit

Overview

At a glance This chapter describes the GET_BIT block

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 36

Representation 36

Detailed description 36

GET_BIT: Read bit

36 840 USE 504 00 October 2002

Brief description

Function
description

This function block reads the bit of the "IN" input selected with "NO" and writes the
current state to the "RES" output.
As additional parameters, EN and ENO can be configured.

Representation

Symbol Representation of the function block:

Description of
parameters

Description of the block parameters:

Detailed description

Function
description

The GET_BIT function block reads the bit of the "IN" input selected with "NO" and
writes the current state to the "RES" output.
The output is the current state of the selected input data bit.
The "NO" parameter shows which input data bit to select.

GET_BIT

BOOLRESINWORD
NOUINT

Parameters Data type Meaning

IN WORD Input register

NO UINT Bit number to be read.

RES BOOL Current state of selected bit.

16 1
Bit

840 USE 504 00 October 2002 37

8
IEC_BMDI: Block move

Overview

At a glance This chapter describes the IEC_BMDI block

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 38

Representation 38

Detailed description 40

Run time error 43

IEC_BMDI: Block move

38 840 USE 504 00 October 2002

Brief description

Function
description

This function block creates a word-by-word copy of the number of elements listed in
LENGTH from the OFF_IN position in the source table (SEL_IN) to the OFF_OUT
position in the destination table (SEL_OUT).

As additional parameters, EN and ENO can be configured.

Representation

Symbol Representation of the function block:

WARNING

Dangerous process conditions

This function block overwrites the values in State memory WITHOUT
regard to possible forced values in the reference data editor. This can
produce serious process conditions.

Failure to observe this precaution can result in severe injury or
equipment damage.

Note: For technical reasons, this function block cannot be used with the
programming language IL.

IEC_BMDI

SEL_INDATA
OFF_INDATA

LENGTHDATA

SEL_OUTDATA
OFF_OUTDATA

IEC_BMDI: Block move

840 USE 504 00 October 2002 39

Description of
parameters

Description of the block parameters:

Parameters Data type Meaning

SEL_IN UINT Source table having contents copied. Selection of source table:
0 = 0x
1 = 1x
3 = 3x
4 = 4x

OFF_IN UINT Offset in selected source table (SEL_IN). As the copy operation is
executed word-by-word, OFF_IN must be a multiple of n+1 for 0x
and 1x source tables (n=0, 1, 2, 3... e.g. 1, 17, 33, 49 etc.) The
offset is subject to upper limit supervision and must be within the
limits of the source table.

LENGTH UINT Table size for source and destination table. LENGTH indicates the
number of elements in the source table to be copied. Because the
copy operation is performed word-by-word, 0x and 1x source
tables must have a multiple of 16 (e.g. 16, 32, 48, etc.) for
LENGTH. LENGTH is subject to upper limit supervision and must
be within the limits of the source and destination tables.
Independent of the configured limits, the LENGTH value was
additionally restricted to the following values to prevent the copy
operation from taking up too much time:
0x, 1x bits: max LENGTH = 1600
3x, 4x registers: max LENGTH = 100

SEL_OUT UINT Destination table to which contents of source table will be copied.
Selection of destination table:
0 = 0x
4 = 4x

OFF_OUT UINT Offset in selected source table. Because the copy operation is
performed word-by-word, 0x and 1x source tables OFF_OUT
must have a multiple of n+1 (n=0, 1, 2, 3... e.g. 1, 17, 33, 49, etc.).
The offset is subject to upper limit supervision and must be within
the limits of the destination table.

IEC_BMDI: Block move

40 840 USE 504 00 October 2002

Detailed description

Function
description

IEC_BMDI makes a word-by-word copy of the number of elements listed in LENGTH
from the OFF_IN position in the source table (SEL_IN) to the OFF_OUT position in
the destination table (SEL_OUT). While copying, LENGTH always uses the type of
SEL_IN for orientation (0x,1x: LENGTH = number of bits; 3x, 4x: LENGTH = number
of words)
Copy behavior:
l 0x or 1x to 0x

The source and target lengths are identical during copying of 0x or 1x to 0x
l 3x or 4x to 4x

The source and target lengths are identical during copying of 3x or 4x to 3x
l 0x or 1x to 4x

When copying 0x or 1x to 4x, a WORD-to-WORD copy is made as well. In this,
the first source bit is copied into the MSB (highest bit) of the first 4x register, and
so on. LENGTH defines the number of bits to be copied. The maximum output
length is LENGTH/16 registers.

l 3x or 4x to 0x
When copying 3x or 4x to 0x, a WORD-to-WORD copy is made as well. In this,
the MSB (highest bit) of the first register is copied into the first destination bit and
so on. LENGTH defines the number of registers to be copied. The maximum
output length is LENGTH x 16 bits.

WARNING

Dangerous process conditions

This function block overwrites the values in State memory WITHOUT
regard to possible forced values in the reference data editor. This can
produce dangerous process conditions.

Failure to observe this precaution can result in severe injury or
equipment damage.

IEC_BMDI: Block move

840 USE 504 00 October 2002 41

Example 1 In the example, 64 0x source bits from start address 0:00129 are copied into the 4x
destination register (starting at address 4:00112). The input range is 0:00129 to
0:00192, and the output range is 4:00112 to 4:00115.

Example 2 In the example, 11 4x source registers from start address 4:00250 are copied into
the 0x destination bits (starting at address 0:00257). The input range is 4:00250 to
4:00260, and the output range is 0:00257 to 0:00432.

Example 3 In the example, 128 0x source bits are copied from start address 0:00001 into the
0x destination bits (starting at address 0:00257). The input range is 0:00001 to
0:00127, and the output range is 0:00257 to 0:00384.

IEC_BMDI

SEL_IN0
OFF_IN129

LENGTH64

SEL_OUT4
OFF_OUT112

IEC_BMDI

SEL_IN4
OFF_IN250

LENGTH11

SEL_OUT0
OFF_OUT257

IEC_BMDI

SEL_IN0
OFF_IN1

LENGTH128

SEL_OUT0
OFF_OUT257

IEC_BMDI: Block move

42 840 USE 504 00 October 2002

Example 4 In the example, 15 4x source registers are copied from start address 4:00250 into
the 4x destination registers (starting at address 4:01030). The input range is
4:00250 to 4:00264, and the output range is 4:01030 to 4:01044.

IEC_BMDI

SEL_IN4
OFF_IN250

LENGTH15

SEL_OUT4
OFF_OUT1030

IEC_BMDI: Block move

840 USE 504 00 October 2002 43

Runtime error

Runtime error The following standard user error messages are utilized:

If there are no errors, the function block copies the values from the indicated source
to the destination address and sets the ENO output to 1.
The user errors 1 through 12 will block the copy operation and are setting the ENO
output to 0.
If user error 13 occurs, the copy operation continues and the ENO output remains
at 1 because this error is treated as a warning. However, the user error will be
reported in the online event dialog.

User error message Meaning

E_EFB_USER_ERROR_1 Input value is invalid register type (SEL_IN).

E_EFB_USER_ERROR_2 The input offset (OFF_IN) selects an address outside
acceptable limits.

E_EFB_USER_ERROR_3 The input offset (OFF_IN) is not 1 or a multiple of 16+1.

E_EFB_USER_ERROR_4 Output value is invalid register type (SEL_OUT).

E_EFB_USER_ERROR_5 The output offset (OFF_IN) selects an address outside
acceptable limits.

E_EFB_USER_ERROR_6 The output offset (OFF_OUT) is not 1 or a multiple of
16+1.

E_EFB_USER_ERROR_7 The value for LENGTH is 0.

E_EFB_USER_ERROR_8 The value for LENGTH addresses more than 1600 bits.

E_EFB_USER_ERROR_9 The value for LENGTH addresses more than 100 words.

E_EFB_USER_ERROR_10 The value for LENGTH selects a source address outside
the acceptable limits.

E_EFB_USER_ERROR_11 The value for LENGTH selects a destination address
outside the acceptable limits.

E_EFB_USER_ERROR_12 The value for LENGTH is not a multiple of 16.

E_EFB_USER_ERROR_13 Warning: Address overlap of input and output addresses.

IEC_BMDI: Block move

44 840 USE 504 00 October 2002

840 USE 504 00 October 2002 45

9
LIFO: Last In/First Out stack
register

Overview

At a glance This chapter describes the LIFO block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 46

Representation 46

Detailed description 47

LIFO: Last In/First Out stack register

46 840 USE 504 00 October 2002

Brief description

Function
description

This Function block is a ‘last in – first out’ stack register.
As additional parameters, EN and ENO can be configured.

Representation

Symbol Representation of the function block:

Description of
parameters

Description of the block parameters:

Note: For technical reasons, this function block cannot be used with the
programming languages ST and IL.

LIFO

BOOLFULL

BOOLEMPTY

ANYY

RBOOL
SETBOOL
GETBOOL
XANY
N_MAXUINT

Parameters Data type Meaning

R BOOL 1 = stack register will be cleared

SET BOOL 1 = write value into stack register

GET BOOL 1 = read value from stack register

X ANY should be Array
ANY_ELEM e.g.
.ARRAY[0..X] OF INT

Stack register input

N_MAX UINT Maximum number of elements in the stack register

FULL BOOL 1= stack register is full, cannot put any more
elements onto stack register.

EMPTY BOOL 1 = stack register is empty (number of elements in
the stack register = 0)

Y ANY should be Array
ANY_ELEM e.g.
.ARRAY[0..X] OF INT

Stack register output

LIFO: Last In/First Out stack register

840 USE 504 00 October 2002 47

Detailed description

Function
description

LIFO is a ’last in/first out’ stack register.
The index and stack register are invisible to the user. The stack register is part of the
internal state and can accept up to 2000 bytes (i.e. 1000 INT or 500 REAL or 500
TIME elements).
The function block has two Boolean inputs, GET and SET, that are used to either
read a value from or write a value to the stack register. If GET and SET are set
simultaneously, SET (write) will be executed before GET (read).
The stack register will be cleared if R(eset) = 1.
The input parameters checking the stack must be set in a meaningful order allow the
function block to work properly.
A meaningful order is, for instance:

An N_MAX parameter defines the maximum number of elements in the stack
register.
In a full stack register (number of elements in the stack register = N_MAX <= 2000
/ (size of (X)), FULL is set to 1. Cannot put any more elements onto stack register.
In an empty stack register (number of elements in the stack register = 0), EMPTY is
set to 1.
The function has one X input and one Y output with various data types.
X and Y are type ANY which implicates a pre-defined length. Due to the limited size
of the stack register, only data types with an element size smaller than or equal to
200 bytes are allowed. Otherwise a runtime error will be generated and the ENO
output is set to 0.

Cycle Parameters Result

Cycle n R=0, SET=0, GET=0 Stack not initialized

Cycle n+1 R=1, SET=0, GET=0 Stack initialized

Cycle n+2 R=0, SET=0, GET=0 Ending initializing

Cycle n+3 R=0, SET=1, GET=0 Loading stack with x values

Cycle n+x+1 R=0, SET=0, GET=0 Ending loading

Cycle n+x+2 R=0, SET=0, GET=1 Get x values

Cycle n+x+2+x R=0, SET=0, GET=1 Stack not empty

LIFO: Last In/First Out stack register

48 840 USE 504 00 October 2002

840 USE 504 00 October 2002 49

10
PUT_4X: Write 4x register

Overview

At a glance This chapter describes the PUT_4X block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief Description 50

Representation 50

Detailed description 50

PUT_4X: Write 4x register

50 840 USE 504 00 October 2002

Brief Description

Function
Description

This function block reads values from the IN variables and writes them in the 4x
register range of the State RAM.

As additional parameters, EN and ENO can be configured.

Representation

Symbol Representation of the function block:

Description of
parameters

Description of the block parameters:

Detailed description

Function
description

The function block PUT_4X reads values from the variable IN and writes them into
the 4x register region of state RAM.
OFF is an offset in the 4x register memory.
The function copies as many bytes as the size of the input datatype connected to
the pin IN.

Example The function will copy the 16-bit field from IN to the register 400120, if OFF = 120
and the input is a WORD.
The value of OFF may be modified during runtime.
If OFF lies outside the configured number of 4x-Registers, an error message is
generated and ENO is set to 0.

Note: As this function block has no output pin, the editors do not recognize that this
function block overwrites a 4x register range. For this reason these 4x registers in
the Used Reference Display dialog box are not displayed as used.

PUT_4X

OFFUINT
INANY

Parameters Data type Meaning

OFF UINT OFF is an offset in the 4x register memory.

IN ANY Input

840 USE 504 00 October 2002 51

11
R2T_***: Register to table

Overview

At a glance This chapter describes the R2T_*** block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 52

Representation 52

Detailed description 53

R2T_***: Register to table

52 840 USE 504 00 October 2002

Brief description

Function
description

This function block copies the value entered in the SRC to the DEST parameter
which is interpreted as a table.
EN and ENO can be configured as additional parameters.

Representation

Symbol Representation of the function block:

Description of
parameters

Description of the block parameters:

Note: Since this function block has an output of data type ANY but has no input of
this data type the ANY output must be assigned with the => operator. An instance
of this function block may be called one time only. Calling the same function block
instance more than once is not possible.

R2T_***

BOOLEND

ANYDEST

UINTOFF

NoIncBOOL
RBOOL
SRC*** *** = INT, UINT, DINT, UDINT, REAL

Parameters Data type Meaning

NoInc BOOL 1: freezes the pointer value

R BOOL 1: resets the pointer value to zero

SRC INT, UINT, DINT,
UINT, REAL

Source data to be copied in the current cycle

END BOOL 1: Pointer value = Table length, i.e. table is full, the
function block performs no further copy functions, and
OFF is no longer incremented. The function block (and
consequently END as well) can be reset with R=1.

DEST ANY should be Array
of INT, UINT, DINT,
UDINT or REAL e.g.
ARRAY[0..X] OF INT

Destination register where source data will be copied
in the cycle.

OFF UINT OFF shows the position in the table. OFF is normalized
with a reset (R), i.e. when R=1, OFF is set to "1". After
the restore, OFF is incremented by 1.

R2T_***: Register to table

840 USE 504 00 October 2002 53

Detailed description

Mode of
functioning
under Concept

R2T copies the value entered at SRC to the DEST parameter which is interpreted
as a table.
The OFF parameter, an offset, points to the position in the destination field (array)
where the source value is to be saved.
In each cycle, the function copies the value from SRC to DEST[OFF] and increments
the offset value by data type size in the table, i.e. OFF+1.
The offset value is automatically raised in each cycle as long as the NoInc parameter
does not have the value 1. OFF is of the read/write type, equivalent to the
VAR_IN_OUT IEC parameters
Association between OFF, NoInc and R:

SRC has the same data type (INT, UINT, DINT, UDINT, REAL) as the selected
function block (refer to _***).
DEST is type ANY which implicates a pre-defined length. The same type is accepted
as the data type for this Array as for SRC irrespective of the type entered for the run
time (it could be a structure of various types).
OFF undergoes a bounds check in each cycle. If OFF exceeds the length of the
table (internal parameter size), END is set to 1 and OFF is no longer increased (the
function no longer copies until OFF accepts a value within the table’s bounds again.

OFF
 (previous cycle)

NoInc R OFF
(current
cycle)

Comment

n (any value) 0 1 2 The value for OFF is reset to 1
with R=1, and since NoInc=0,
incremented by 1 already in the
same cycle.

n (any value) 1 1 1 The value for OFF is reset to 1
with R=1, and since NoInc=1, it is
not incremented.

n (any value) 1 0 n If NoInc=1, the value for OFF is
not incremented and the value
from the previous cycle is
maintained.

n (any value) 0 0 n+1 If R=0 and NoInc=0, the value
from the previous cycle is
incremented by 1.

R2T_***: Register to table

54 840 USE 504 00 October 2002

Mode of
functioning
under Modsoft

This function copies a value from a source register (16 bits) into a table.

The table starts with a destination register. The first element is the offset value in the
table to which the source value has to be copied.
In each cycle, the function copies the 16-bit value from the source register into the
destination register + offset + 1.
The offset is increased in each cycle when the mid input is 0.
The offset is reset to 0 when the lower input is 1.

Differences Differences between Concept and Modsoft:
l The table is any pre-defined data structure. Modsoft functions do not work with

unlocated variables or links. Modsoft uses offsets in the state RAM. The table is
part of the state RAM (not reserved, no checking for multiple use).

l Pins are named under Concept.
l EN/ENO are optional under Concept (Standard IEC1131-3).
l Various function names (’->’ can not be used in a name under Concept).
l Various displays (seeMode of functioning under Modsoft, p. 54).

Entry, Input/Output Meaning

Upper entry Source is a reference into State-Ram: 0x, 1x, or in a contiguous
16-bit field 3x, 4x

Mid entry Destination ’pointer’ is reference into State-Ram. Start of 4x
register + 1 + value in pointer

Lower entry Length of table (1..255, 1..999, depending on process

Upper input, upper output Enable function

Mid input Raising offset for output table or not (0 or1)

Lower input Resetting offset for output table (if 1 then offset = 0)

Mid output Offset reaching table size – no further copy operations

Source
indicator

Enabling
copy
function

table
length

Reset
pointer
value to 0

Destinatio
n table

Freeze or
increment
pointer
value

Copy of
enable bit

Pointer
value
has
reached

sourceEN :
BOOL

table lengthR :
BOOL

destination
pointer

NoInc :
BOOL

ENO :
BOOL

END :
BOOL

R --> T

840 USE 504 00 October 2002 55

12
SET_BIT: Set bit

Overview

At a glance This chapter describes the SET_BIT block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 56

Representation 56

Detailed description 57

SET_BIT: Set bit

56 840 USE 504 00 October 2002

Brief description

Function
description

This Function block sets the bit of the "RES" output selected with "NO" to the value
of "IN".

The parameters EN and ENO can additionally be projected.

Representation

Symbol Block representation:

Parameter
description

Description of the block parameters:

WARNING

Dangerous process conditions

This function block overwrites the values in status RAM WITHOUT
regard to possible forced values in the reference data editor. This can
produce dangerous process conditions.

Failure to observe this precaution can result in severe injury or
equipment damage.

Note: For technical reasons, the function block cannot be used in programming
languages ST or IL. If you wish to use the functionality of this block in IL/ST, please
use the function block SET_BITX (See SET_BITX: Set expanded bit, p. 59).

SET_BIT

WORDINBOOL
NOUINT

RES

Parameter Data type Meaning

IN BOOL Input data

NO UINT Bit number to be written.

RES WORD Output

SET_BIT: Set bit

840 USE 504 00 October 2002 57

Detailed description

Function
description

The SET_BIT function block sets the bit of the "RES" output selected with "NO" to
the value of "IN".
The "NO" parameter provides the bit number in the output data.

16 1
Bit

SET_BIT: Set bit

58 840 USE 504 00 October 2002

840 USE 504 00 October 2002 59

13
SET_BITX: Set expanded bit

Overview

Introduction This chapter describes the SET_BITX block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 60

Representation 60

Detailed description 61

SET_BITX: Set expanded Bit

60 840 USE 504 00 October 2002

Brief description

Function
description

This Function block sets the bit of the "RES" output register selected with "NO" to
the value of "IN".

The parameters EN and ENO can additionally be projected.

Representation

Symbol Block representation:

Parameter
description

Description of the block parameters:

WARNING

Dangerous process conditions

This function block overwrites the values in status RAM WITHOUT
regard to possible forced values in the reference data editor. This can
produce dangerous process conditions.

Failure to observe this precaution can result in severe injury or
equipment damage.

Note: This function block (in contrast to the SET_BIT function block) can be used
in programming languages ST and IL.

SET_BITX

WORDRESWORD
INBOOL
NOUINT

RES

Parameter Data type Meaning

RES WORD Input for IN_OUT variables

IN BOOL Input data

NO UINT Number of Bit to be written.

RES WORD Output for IN_OUT variables

SET_BITX: Set expanded Bit

840 USE 504 00 October 2002 61

Detailed description

Function
description

The SET_BITX function block sets the bit of the "RES" output selected with "NO" to
the value of "IN".
Since the input RS and the output RES concern an IN_OUT variable, the same
variable should be connected to the two parameters.
The "NO" parameter provides the bit number in the output data.

16 1
Bit

SET_BITX: Set expanded Bit

62 840 USE 504 00 October 2002

840 USE 504 00 October 2002 63

14
SRCH_***: Search

Overview

At a glance This chapter describes the SRCH_*** block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 64

Representation 65

Detailed description 66

SRCH_***: Search

64 840 USE 504 00 October 2002

Brief description

Function
description

This function block searches a source table for an entered bit pattern. In each cycle
it searches the table for the next element, checks whether or not it matches the
defined pattern and shows the result in a Boolean output. Then it increments the
index in the source table for the next cycle.
As additional parameters, EN and ENO can be configured.

Note: Since this function block has an output of data type ANY but has no input of
this data type the ANY output must be assigned with the => operator. An instance
of this function block may be called one time only. Calling the same function block
instance more than once is not possible.

SRCH_***: Search

840 USE 504 00 October 2002 65

Representation

Symbol Representation of the function block:

Description of
parameters

Description of block parameters:

SRCH_***

BOOLFOUND

UINTINDEX

TRIGBOOL
CONTBOOL
SRCANY
PATTERN*** *** = INT, UINT, DINT, UDINT, REAL

Parameters Data type Meaning

TRIG BOOL TRIG detects the rising edge and starts the search.

CONT BOOL CONT defines whether to continue the search or to
resume it at the beginning of the table after a pattern
has been found.

SRC ANY should be Array
of INT, UINT, DINT,
UDINT or REAL e.g.
ARRAY[0..X] OF

INT

Source table

PATTERN INT, UINT, DINT,
UINT, REAL

PATTERN is the bit pattern for the search.

FOUND BOOL 1 = pattern found

INDEX UINT Once the pattern is found, the INDEX parameter
shows where in the table the pattern has been
found.

SRCH_***: Search

66 840 USE 504 00 October 2002

Detailed description

Function
description

The SRCH function block searches a source table for an entered bit pattern. In each
TRIG-enabled cycle it searches the table for the next element, checks whether or
not it matches the defined pattern and shows the result in a Boolean output. Then it
increments the index in the source table for the next cycle.
SRC (source) is type ANY which implicates a pre-defined length. This field (array) is
interpreted as an ARRAY with the same data type (INT, UINT, DINT, UDINT, REAL)
as the selected function block (refer to _***), this is independent of the actually
selected data type for this pin (it could be a structure of different types).
TRIG detects the rising edge and starts the search for one cycle. The search will
stop after this cycle until the next rising edge is detected at TRIG.
PATTERN is the bit pattern for the search. PATTERN has the same data type (INT,
UINT, DINT, UDINT, REAL) as the selected function block (refer to _***).
The CONT parameter defines whether to continue the search or to resume it at the
beginning of the table after a pattern has been found.
Once the pattern is found, FOUND is set to "1" and the INDEX parameter shows
where in the table the pattern has been found.

840 USE 504 00 October 2002 67

15
T2T: Table to table

Overview

At a glance This chapter describes the T2T block

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 68

Representation 69

Detailed description 70

T2T: Table to Table

68 840 USE 504 00 October 2002

Brief description

Function
description

This function block copies the value from the parameter SRC, which is interpreted
as a table to the parameter DEST, which is also interpreted as a table.
As additional parameters, EN and ENO can be configured.

Note: Since this function block has an output of data type ANY bus has no input of
this data type the ANY output must be assigned with the => operator. An instance
of this function block may be called one time only. Calling the same function block
instance more than once is not possible.

T2T: Table to Table

840 USE 504 00 October 2002 69

Representation

Symbol Representation of the function block:

Description of
parameters

Description of block parameters:

T2T

BOOLEND

ANYDEST

UINTOFF

NoIncBOOL
RBOOL
SRCANY
SIZEUINT

Parameters Data type Meaning

NoInc BOOL 1: freezes the pointer value

R BOOL 1: resets the pointer value to zero

SRC ANY should be Array
ANY_ELEM e.g.
.ARRAY[0..X] OF

INT

Source data to be copied in the current cycle

SIZE UINT Size tells the function block how many words have
to copied every cycle.

END BOOL 1: Pointer value = table length (function block
cannot increment any further)

DEST ANY should be Array
ANY_ELEM e.g.
.ARRAY[0..X] OF INT

Destination register where source data will be
copied in the cycle.

OFF UINT 0: the parameter R is 1 before the copy is
performed.

T2T: Table to Table

70 840 USE 504 00 October 2002

Detailed description

Mode of
functioning
under Concept

This function copies the value from the parameter SRC, which is interpreted as a
table to the parameter DEST, which is also interpreted as a table.
The parameter OFF points into both tables. It is an index for the source array and
the destination array where the source value should be copied from and to.
In each cycle the function copies the value of SRC[OFF] to DEST[OFF].
The offset will be incremented in each cycle by the number of 16bit words, which are
copied, unless the parameter NoInc is 1. OFF is of the read/write type, equivalent to
the VAR_IN_OUT IEC parameters
A parameter SIZE tells the EFB how many words have to be copied every cycle.
OFF is reset to 0 if the parameter R has the value 1 before copying.
SRC and DEST are of type ANY which implies a pre-defined length. These variables
will be interpreted as an ARRAY of bytes regardless of the type definition for these
parameters (they may be a structure of different types).
OFF undergoes a bounds check each cycle. If OFF exceeds the length of one of the
tables then END is set to 1 and OFF is not incremented. The function will not copy
any more data until OFF returns within its bounds.

T2T: Table to Table

840 USE 504 00 October 2002 71

Mode of
functioning
under Modsoft

This function copies a value from a source table to a destination table.

The table starts with the source register. The value in the destination pointer points
to the offset in the table, where as many elements (words) as described in table
length should be copied.
The value(s) are copied from the source register + offset + 1 to the destination
register + offset + 1.
In each cycle the function copies as many 16-bit values from the source register to
the destination register as defined in table length.
The offset is incremented in each cycle when the mid input is 0.
The offset is reset to 0 when the lower input is 1.

Differences Differences between Concept and Modsoft:
l The table is any pre-defined data structure. Modsoft functions cannot work with

unlocated variables or links. Modsoft uses offsets in the state RAM. The table is
part of the state RAM (not reserved, no checking for multiple use).

l Pins are named under Concept.
l EN/ENO are optional under Concept (Standard IEC1131-3).
l Various function names (’->’ can not be used in a name under Concept).
l Various displays (seeMode of functioning under Modsoft, p. 71).

Entry, Input/Output Meaning

Upper entry Source is a reference into State-Ram: 0x, 1x, or in a contiguous
16-bit field 3x, 4x

Mid entry Destination ’pointer’ is reference into State-Ram: Start of 4x
register + 1 + value in pointer

Lower entry Length of table (1..255, 1..999, depending on processor)

Upper input, upper output Enable function

Mid input Incrementing offset for output table or not (0 or1)

Lower input Resetting offset for output table (if 1 then offset = 0)

Mid output Offset reaching table size – no further copy operations

Source
indicator

Table
length

Reset
pointer
value to 0

Destinatio
n table

Freeze or
increment
pointer
value

Copy of
enable bit

Pointer
value
has
reached

sourceEN :
BOOL

table lengthR :
BOOL

destination
pointer

NoInc :
BOOL

ENO :
BOOL

END :
BOOL

T--> T

Enabling
copy
function

T2T: Table to Table

72 840 USE 504 00 October 2002

840 USE 504 00 October 2002 73

Glossary

Active window The window, which is currently selected. Only one window can be active at any one
given time. When a window is active, the heading changes color, in order to
distinguish it from other windows. Unselected windows are inactive.

Actual parameter Currently connected Input/Output parameters.

Addresses (Direct) addresses are memory areas on the PLC. These are found in the State RAM
and can be assigned input/output modules.
The display/input of direct addresses is possible in the following formats:
l Standard format (400001)
l Separator format (4:00001)
l Compact format (4:1)
l IEC format (QW1)

ANL_IN ANL_IN stands for the data type "Analog Input" and is used for processing analog
values. The 3x References of the configured analog input module, which is specified
in the I/O component list is automatically assigned the data type and should
therefore only be occupied by Unlocated variables.

ANL_OUT ANL_OUT stands for the data type "Analog Output" and is used for processing
analog values. The 4x-References of the configured analog output module, which is
specified in the I/O component list is automatically assigned the data type and
should therefore only be occupied by Unlocated variables.

ANY In the existing version "ANY" covers the elementary data types BOOL, BYTE, DINT,
INT, REAL, UDINT, UINT, TIME and WORD and therefore derived data types.

A

Glossary

74 840 USE 504 00 October 2002

ANY_BIT In the existing version, "ANY_BIT" covers the data types BOOL, BYTE and WORD.

ANY_ELEM In the existing version "ANY_ELEM" covers the elementary data types BOOL,
BYTE, DINT, INT, REAL, UDINT, UINT, TIME and WORD.

ANY_INT In the existing version, "ANY_INT" covers the data types DINT, INT, UDINT and
UINT.

ANY_NUM In the existing version, "ANY_NUM" covers the data types DINT, INT, REAL, UDINT
and UINT.

ANY_REAL In the existing version "ANY_REAL" covers the data type REAL.

Application
window

The window, which contains the working area, the menu bar and the tool bar for the
application. The name of the application appears in the heading. An application
window can contain several document windows. In Concept the application window
corresponds to a Project.

Argument Synonymous with Actual parameters.

ASCII mode American Standard Code for Information Interchange. The ASCII mode is used for
communication with various host devices. ASCII works with 7 data bits.

Atrium The PC based controller is located on a standard AT board, and can be operated
within a host computer in an ISA bus slot. The module occupies a motherboard
(requires SA85 driver) with two slots for PC104 daughter boards. From this, a
PC104 daughter board is used as a CPU and the others for INTERBUS control.

Back up data file
(Concept EFB)

The back up file is a copy of the last Source files. The name of this back up file is
"backup??.c" (it is accepted that there are no more than 100 copies of the source
files. The first back up file is called "backup00.c". If changes have been made on the
Definition file, which do not create any changes to the interface in the EFB, there is
no need to create a back up file by editing the source files (Objects → Source). If a
back up file can be assigned, the name of the source file can be given.

B

Glossary

840 USE 504 00 October 2002 75

Base 16 literals Base 16 literals function as the input of whole number values in the hexadecimal
system. The base must be denoted by the prefix 16#. The values may not be
preceded by signs (+/-). Single underline signs (_) between figures are not
significant.

Example
16#F_F or 16#FF (decimal 255)
16#E_0 or 16#E0 (decimal 224)

Base 8 literal Base 8 literals function as the input of whole number values in the octal system. The
base must be denoted by the prefix 3.63kg. The values may not be preceded by
signs (+/-). Single underline signs (_) between figures are not significant.

Example
8#3_1111 or 8#377 (decimal 255)
8#34_1111 or 8#340 (decimal 224)

Basis 2 literals Base 2 literals function as the input of whole number values in the dual system. The
base must be denoted by the prefix 0.91kg. The values may not be preceded by
signs (+/-). Single underline signs (_) between figures are not significant.

Example
2#1111_1111 or 2#11111111 (decimal 255)
2#1110_1111 or 2#11100000 (decimal 224)

Binary
connections

Connections between outputs and inputs of FFBs of data type BOOL.

Bit sequence A data element, which is made up from one or more bits.

BOOL BOOL stands for the data type "Boolean". The length of the data elements is 1 bit
(in the memory contained in 1 byte). The range of values for variables of this type is
0 (FALSE) and 1 (TRUE).

Bridge A bridge serves to connect networks. It enables communication between nodes on
the two networks. Each network has its own token rotation sequence – the token is
not deployed via bridges.

BYTE BYTE stands for the data type "Bit sequence 8". The input appears as Base 2 literal,
Base 8 literal or Base 1 16 literal. The length of the data element is 8 bit. A numerical
range of values cannot be assigned to this data type.

Glossary

76 840 USE 504 00 October 2002

Cache The cache is a temporary memory for cut or copied objects. These objects can be
inserted into sections. The old content in the cache is overwritten for each new Cut
or Copy.

Call up The operation, by which the execution of an operation is initiated.

Coil A coil is a LD element, which transfers (without alteration) the status of the horizontal
link on the left side to the horizontal link on the right side. In this way, the status is
saved in the associated Variable/ direct address.

Compact format
(4:1)

The first figure (the Reference) is separated from the following address with a colon
(:), where the leading zero are not entered in the address.

Connection A check or flow of data connection between graphic objects (e.g. steps in the SFC
editor, Function blocks in the FBD editor) within a section, is graphically shown as a
line.

Constants Constants are Unlocated variables, which are assigned a value that cannot be
altered from the program logic (write protected).

Contact A contact is a LD element, which transfers a horizontal connection status onto the
right side. This status is from the Boolean AND- operation of the horizontal
connection status on the left side with the status of the associated Variables/direct
Address. A contact does not alter the value of the associated variables/direct
address.

C

Glossary

840 USE 504 00 October 2002 77

Data transfer
settings

Settings, which determine how information from the programming device is
transferred to the PLC.

Data types The overview shows the hierarchy of data types, as they are used with inputs and
outputs of Functions and Function blocks. Generic data types are denoted by the
prefix "ANY".
l ANY_ELEM

l ANY_NUM
ANY_REAL (REAL)
ANY_INT (DINT, INT, UDINT, UINT)

l ANY_BIT (BOOL, BYTE, WORD)
l TIME

l System data types (IEC extensions)
l Derived (from "ANY" data types)

DCP I/O station With a Distributed Control Processor (D908) a remote network can be set up with a
parent PLC. When using a D908 with remote PLC, the parent PLC views the remote
PLC as a remote I/O station. The D908 and the remote PLC communicate via the
system bus, which results in high performance, with minimum effect on the cycle
time. The data exchange between the D908 and the parent PLC takes place at 1.5
Megabits per second via the remote I/O bus. A parent PLC can support up to 31
(Address 2-32) D908 processors.

DDE (Dynamic
Data Exchange)

The DDE interface enables a dynamic data exchange between two programs under
Windows. The DDE interface can be used in the extended monitor to call up its own
display applications. With this interface, the user (i.e. the DDE client) can not only
read data from the extended monitor (DDE server), but also write data onto the PLC
via the server. Data can therefore be altered directly in the PLC, while it monitors
and analyzes the results. When using this interface, the user is able to make their
own "Graphic-Tool", "Face Plate" or "Tuning Tool", and integrate this into the
system. The tools can be written in any DDE supporting language, e.g. Visual Basic
and Visual-C++. The tools are called up, when the one of the buttons in the dialog
box extended monitor uses Concept Graphic Tool: Signals of a projection can be
displayed as timing diagrams via the DDE connection between Concept and
Concept Graphic Tool.

D

Glossary

78 840 USE 504 00 October 2002

Decentral
Network (DIO)

A remote programming in Modbus Plus network enables maximum data transfer
performance and no specific requests on the links. The programming of a remote
net is easy. To set up the net, no additional ladder diagram logic is needed. Via
corresponding entries into the Peer Cop processor all data transfer requests are
met.

Declaration Mechanism for determining the definition of a Language element. A declaration
normally covers the connection of an Identifier with a language element and the
assignment of attributes such as Data types and algorithms.

Definition data
file (Concept
EFB)

The definition file contains general descriptive information about the selected FFB
and its formal parameters.

Derived data type Derived data types are types of data, which are derived from the Elementary data
types and/or other derived data types. The definition of the derived data types
appears in the data type editor in Concept.
Distinctions are made between global data types and local data types.

Derived Function
Block (DFB)

A derived function block represents the Call up of a derived function block type.
Details of the graphic form of call up can be found in the definition " Function block
(Item)". Contrary to calling up EFB types, calling up DFB types is denoted by double
vertical lines on the left and right side of the rectangular block symbol.
The body of a derived function block type is designed using FBD language, but only
in the current version of the programming system. Other IEC languages cannot yet
be used for defining DFB types, nor can derived functions be defined in the current
version.
Distinctions are made between local and global DFBs.

DINT DINT stands for the data type "double integer". The input appears as Integer literal,
Base 2 literal, Base 8 literal or Base 16 literal. The length of the data element is 32
bit. The range of values for variables of this data type is from –2 exp (31) to 2 exp
(31) –1.

Direct display A method of displaying variables in the PLC program, from which the assignment of
configured memory can be directly and indirectly derived from the physical memory.

Document
window

A window within an Application window. Several document windows can be opened
at the same time in an application window. However, only one document window
can be active. Document windows in Concept are, for example, sections, the
message window, the reference data editor and the PLC configuration.

Dummy An empty data file, which consists of a text header with general file information, i.e.
author, date of creation, EFB identifier etc. The user must complete this dummy file
with additional entries.

Glossary

840 USE 504 00 October 2002 79

DX Zoom This property enables connection to a programming object to observe and, if
necessary, change its data value.

Elementary
functions/
function blocks
(EFB)

Identifier for Functions or Function blocks, whose type definitions are not formulated
in one of the IEC languages, i.e. whose bodies, for example, cannot be modified with
the DFB Editor (Concept-DFB). EFB types are programmed in "C" and mounted via
Libraries in precompiled form.

EN / ENO (Enable
/ Error display)

If the value of EN is "0" when the FFB is called up, the algorithms defined by the FFB
are not executed and all outputs contain the previous value. The value of ENO is
automatically set to "0" in this case. If the value of EN is "1" when the FFB is called
up, the algorithms defined by the FFB are executed. After the error free execution of
the algorithms, the ENO value is automatically set to "1". If an error occurs during
the execution of the algorithm, ENO is automatically set to "0". The output behavior
of the FFB depends whether the FFBs are called up without EN/ENO or with EN=1.
If the EN/ENO display is enabled, the EN input must be active. Otherwise, the FFB
is not executed. The projection of EN and ENO is enabled/disabled in the block
properties dialog box. The dialog box is called up via the menu commands Objects
→ Properties... or via a double click on the FFB.

Error When processing a FFB or a Step an error is detected (e.g. unauthorized input value
or a time error), an error message appears, which can be viewed with the menu
command Online → Event viewer... . With FFBs the ENO output is set to "0".

Evaluation The process, by which a value for a Function or for the outputs of a Function block
during the Program execution is transmitted.

Expression Expressions consist of operators and operands.

FFB (functions/
function blocks)

Collective term for EFB (elementary functions/function blocks) and DFB (derived
function blocks)

Field variables Variables, one of which is assigned, with the assistance of the key word ARRAY
(field), a defined Derived data type. A field is a collection of data elements of the
same Data type.

E

F

Glossary

80 840 USE 504 00 October 2002

FIR filter Finite Impulse Response Filter

Formal
parameters

Input/Output parameters, which are used within the logic of a FFB and led out of the
FFB as inputs/outputs.

Function (FUNC) A Program organization unit, which exactly supplies a data element when executing.
A function has no internal status information. Multiple call ups of the same function
with the same input parameter values always supply the same output values.
Details of the graphic form of function call up can be found in the definition " Function
block (Item)". In contrast to the call up of function blocks, the function call ups only
have one unnamed output, whose name is the name of the function itself. In FBD
each call up is denoted by a unique number over the graphic block; this number is
automatically generated and cannot be altered.

Function block
(item) (FB)

A function block is a Program organization unit, which correspondingly calculates
the functionality values, defined in the function block type description, for the output
and internal variables, when it is called up as a certain item. All output values and
internal variables of a certain function block item remain as a call up of the function
block until the next. Multiple call up of the same function block item with the same
arguments (Input parameter values) supply generally supply the same output
value(s).
Each function block item is displayed graphically by a rectangular block symbol. The
name of the function block type is located on the top center within the rectangle. The
name of the function block item is located also at the top, but on the outside of the
rectangle. An instance is automatically generated when creating, which can
however be altered manually, if required. Inputs are displayed on the left side and
outputs on the right of the block. The names of the formal input/output parameters
are displayed within the rectangle in the corresponding places.
The above description of the graphic presentation is principally applicable to
Function call ups and to DFB call ups. Differences are described in the
corresponding definitions.

Function block
dialog (FBD)

One or more sections, which contain graphically displayed networks from Functions,
Function blocks and Connections.

Function block
type

A language element, consisting of: 1. the definition of a data structure, subdivided
into input, output and internal variables, 2. A set of operations, which is used with
the elements of the data structure, when a function block type instance is called up.
This set of operations can be formulated either in one of the IEC languages (DFB
type) or in "C" (EFB type). A function block type can be instanced (called up) several
times.

Glossary

840 USE 504 00 October 2002 81

Function counter The function counter serves as a unique identifier for the function in a Program or
DFB. The function counter cannot be edited and is automatically assigned. The
function counter always has the structure: .n.m

n = Section number (number running)
m = Number of the FFB object in the section (number running)

Generic data
type

A Data type, which stands in for several other data types.

Generic literal If the Data type of a literal is not relevant, simply enter the value for the literal. In this
case Concept automatically assigns the literal to a suitable data type.

Global derived
data types

Global Derived data types are available in every Concept project and are contained
in the DFB directory directly under the Concept directory.

Global DFBs Global DFBs are available in every Concept project and are contained in the DFB
directory directly under the Concept directory.

Global macros Global Macros are available in every Concept project and are contained in the DFB
directory directly under the Concept directory.

Groups (EFBs) Some EFB libraries (e.g. the IEC library) are subdivided into groups. This facilitates
the search for FFBs, especially in extensive libraries.

I/O component
list

The I/O and expert assemblies of the various CPUs are configured in the I/O
component list.

IEC 61131-3 International norm: Programmable controllers – part 3: Programming languages.

G

I

Glossary

82 840 USE 504 00 October 2002

IEC format (QW1) In the place of the address stands an IEC identifier, followed by a five figure address:
l %0x12345 = %Q12345
l %1x12345 = %I12345
l %3x12345 = %IW12345
l %4x12345 = %QW12345

IEC name
conventions
(identifier)

An identifier is a sequence of letters, figures, and underscores, which must start with
a letter or underscores (e.g. name of a function block type, of an item or section).
Letters from national sets of characters (e.g. ö,ü, é, õ) can be used, taken from
project and DFB names.
Underscores are significant in identifiers; e.g. "A_BCD" and "AB_CD" are
interpreted as different identifiers. Several leading and multiple underscores are not
authorized consecutively.
Identifiers are not permitted to contain space characters. Upper and/or lower case
is not significant; e.g. "ABCD" and "abcd" are interpreted as the same identifier.
Identifiers are not permitted to be Key words.

IIR filter Infinite Impulse Response Filter

Initial step
(starting step)

The first step in a chain. In each chain, an initial step must be defined. The chain is
started with the initial step when first called up.

Initial value The allocated value of one of the variables when starting the program. The value
assignment appears in the form of a Literal.

Input bits
(1x references)

The 1/0 status of input bits is controlled via the process data, which reaches the CPU
from an entry device.

Input parameters
(Input)

When calling up a FFB the associated Argument is transferred.

Input words
(3x references)

An input word contains information, which come from an external source and are
represented by a 16 bit figure. A 3x register can also contain 16 sequential input bits,
which were read into the register in binary or BCD (binary coded decimal) format.
Note: The x, which comes after the first figure of the reference type, represents a
five figure storage location in the user data store, i.e. if the reference 300201
signifies a 16 bit input word in the address 201 of the State RAM.

Instantiation The generation of an Item.

Note: The x, which comes after the first figure of the reference type, represents a
five figure storage location in the application data store, i.e. if the reference 100201
signifies an input bit in the address 201 of the State RAM.

Glossary

840 USE 504 00 October 2002 83

Instruction (IL) Instructions are "commands" of the IL programming language. Each operation
begins on a new line and is succeeded by an operator (with modifier if needed) and,
if necessary for each relevant operation, by one or more operands. If several
operands are used, they are separated by commas. A tag can stand before the
instruction, which is followed by a colon. The commentary must, if available, be the
last element in the line.

Instruction
(LL984)

When programming electric controllers, the task of implementing operational coded
instructions in the form of picture objects, which are divided into recognizable
contact forms, must be executed. The designed program objects are, on the user
level, converted to computer useable OP codes during the loading process. The OP
codes are deciphered in the CPU and processed by the controller’s firmware
functions so that the desired controller is implemented.

Instruction list
(IL)

IL is a text language according to IEC 1131, in which operations, e.g. conditional/
unconditional call up of Function blocks and Functions, conditional/unconditional
jumps etc. are displayed through instructions.

INT INT stands for the data type "whole number". The input appears as Integer literal,
Base 2 literal, Base 8 literal or Base 16 literal. The length of the data element is 16
bit. The range of values for variables of this data type is from –2 exp (15) to 2 exp
(15) –1.

Integer literals Integer literals function as the input of whole number values in the decimal system.
The values may be preceded by the signs (+/-). Single underline signs (_) between
figures are not significant.

Example
-12, 0, 123_456, +986

INTERBUS (PCP) To use the INTERBUS PCP channel and the INTERBUS process data
preprocessing (PDP), the new I/O station type INTERBUS (PCP) is led into the
Concept configurator. This I/O station type is assigned fixed to the INTERBUS
connection module 180-CRP-660-01.
The 180-CRP-660-01 differs from the 180-CRP-660-00 only by a clearly larger I/O
area in the state RAM of the controller.

Glossary

84 840 USE 504 00 October 2002

Item name An Identifier, which belongs to a certain Function block item. The item name serves
as a unique identifier for the function block in a program organization unit. The item
name is automatically generated, but can be edited. The item name must be unique
throughout the Program organization unit, and no distinction is made between
upper/lower case. If the given name already exists, a warning is given and another
name must be selected. The item name must conform to the IEC name conventions,
otherwise an error message appears. The automatically generated instance name
always has the structure: FBI_n_m

FBI = Function block item
n = Section number (number running)
m = Number of the FFB object in the section (number running)

Jump Element of the SFC language. Jumps are used to jump over areas of the chain.

Key words Key words are unique combinations of figures, which are used as special syntactic
elements, as is defined in appendix B of the IEC 1131-3. All key words, which are
used in the IEC 1131-3 and in Concept, are listed in appendix C of the IEC 1131-3.
These listed keywords cannot be used for any other purpose, i.e. not as variable
names, section names, item names etc.

Ladder Diagram
(LD)

Ladder Diagram is a graphic programming language according to IEC1131, which
optically orientates itself to the "rung" of a relay ladder diagram.

J

K

L

Glossary

840 USE 504 00 October 2002 85

Ladder Logic 984
(LL)

In the terms Ladder Logic and Ladder Diagram, the word Ladder refers to execution.
In contrast to a diagram, a ladder logic is used by engineers to draw up a circuit (with
assistance from electrical symbols),which should chart the cycle of events and not
the existing wires, which connect the parts together. A usual user interface for
controlling the action by automated devices permits ladder logic interfaces, so that
when implementing a control system, engineers do not have to learn any new
programming languages, with which they are not conversant.
The structure of the actual ladder logic enables electrical elements to be linked in a
way that generates a control output, which is dependant upon a configured flow of
power through the electrical objects used, which displays the previously demanded
condition of a physical electric appliance.
In simple form, the user interface is one of the video displays used by the PLC
programming application, which establishes a vertical and horizontal grid, in which
the programming objects are arranged. The logic is powered from the left side of the
grid, and by connecting activated objects the electricity flows from left to right.

Landscape
format

Landscape format means that the page is wider than it is long when looking at the
printed text.

Language
element

Each basic element in one of the IEC programming languages, e.g. a Step in SFC,
a Function block item in FBD or the Start value of a variable.

Library Collection of software objects, which are provided for reuse when programming new
projects, or even when building new libraries. Examples are the Elementary function
block types libraries.
EFB libraries can be subdivided into Groups.

Literals Literals serve to directly supply values to inputs of FFBs, transition conditions etc.
These values cannot be overwritten by the program logic (write protected). In this
way, generic and standardized literals are differentiated.
Furthermore literals serve to assign a Constant a value or a Variable an Initial value.
The input appears as Base 2 literal, Base 8 literal, Base 16 literal, Integer literal, Real
literal or Real literal with exponent.

Local derived
data types

Local derived data types are only available in a single Concept project and its local
DFBs and are contained in the DFB directory under the project directory.

Local DFBs Local DFBs are only available in a single Concept project and are contained in the
DFB directory under the project directory.

Local link The local network link is the network, which links the local nodes with other nodes
either directly or via a bus amplifier.

Local macros Local Macros are only available in a single Concept project and are contained in the
DFB directory under the project directory.

Glossary

86 840 USE 504 00 October 2002

Local network
nodes

The local node is the one, which is projected evenly.

Located variable Located variables are assigned a state RAM address (reference addresses 0x,1x,
3x, 4x). The value of these variables is saved in the state RAM and can be altered
online with the reference data editor. These variables can be addressed by symbolic
names or the reference addresses.

Collective PLC inputs and outputs are connected to the state RAM. The program
access to the peripheral signals, which are connected to the PLC, appears only via
located variables. PLC access from external sides via Modbus or Modbus plus
interfaces, i.e. from visualizing systems, are likewise possible via located variables.

Macro Macros are created with help from the software Concept DFB.
Macros function to duplicate frequently used sections and networks (including the
logic, variables, and variable declaration).
Distinctions are made between local and global macros.

Macros have the following properties:
l Macros can only be created in the programming languages FBD and LD.
l Macros only contain one single section.
l Macros can contain any complex section.
l From a program technical point of view, there is no differentiation between an

instanced macro, i.e. a macro inserted into a section, and a conventionally
created macro.

l Calling up DFBs in a macro
l Variable declaration
l Use of macro-own data structures
l Automatic acceptance of the variables declared in the macro
l Initial value for variables
l Multiple instancing of a macro in the whole program with different variables
l The section name, the variable name and the data structure name can contain up

to 10 different exchange markings (@0 to @9).

MMI Man Machine Interface

Multi element
variables

Variables, one of which is assigned a Derived data type defined with STRUCT or
ARRAY.
Distinctions are made between Field variables and structured variables.

M

Glossary

840 USE 504 00 October 2002 87

Network A network is the connection of devices to a common data path, which communicate
with each other via a common protocol.

Network node A node is a device with an address (164) on the Modbus Plus network.

Node address The node address serves a unique identifier for the network in the routing path. The
address is set directly on the node, e.g. with a rotary switch on the back of the
module.

Operand An operand is a Literal, a Variable, a Function call up or an Expression.

Operator An operator is a symbol for an arithmetic or Boolean operation to be executed.

Output
parameters
(Output)

A parameter, with which the result(s) of the Evaluation of a FFB are returned.

Output/discretes
(0x references)

An output/marker bit can be used to control real output data via an output unit of the
control system, or to define one or more outputs in the state RAM. Note: The x,
which comes after the first figure of the reference type, represents a five figure
storage location in the application data store, i.e. if the reference 000201 signifies
an output or marker bit in the address 201 of the State RAM.

Output/marker
words
(4x references)

An output/marker word can be used to save numerical data (binary or decimal) in
the State RAM, or also to send data from the CPU to an output unit in the control
system. Note: The x, which comes after the first figure of the reference type,
represents a five figure storage location in the application data store, i.e. if the
reference 400201 signifies a 16 bit output or marker word in the address 201 of the
State RAM.

N

O

Glossary

88 840 USE 504 00 October 2002

Peer processor The peer processor processes the token run and the flow of data between the
Modbus Plus network and the PLC application logic.

PLC Programmable controller

Program The uppermost Program organization unit. A program is closed and loaded onto a
single PLC.

Program cycle A program cycle consists of reading in the inputs, processing the program logic and
the output of the outputs.

Program
organization unit

A Function, a Function block, or a Program. This term can refer to either a Type or
an Item.

Programming
device

Hardware and software, which supports programming, configuring, testing,
implementing and error searching in PLC applications as well as in remote system
applications, to enable source documentation and archiving. The programming
device could also be used for process visualization.

Programming
redundancy
system
(Hot Standby)

A redundancy system consists of two identically configured PLC devices, which
communicate with each other via redundancy processors. In the case of the primary
PLC failing, the secondary PLC takes over the control checks. Under normal
conditions the secondary PLC does not take over any controlling functions, but
instead checks the status information, to detect mistakes.

Project General identification of the uppermost level of a software tree structure, which
specifies the parent project name of a PLC application. After specifying the project
name, the system configuration and control program can be saved under this name.
All data, which results during the creation of the configuration and the program,
belongs to this parent project for this special automation.
General identification for the complete set of programming and configuring
information in the Project data bank, which displays the source code that describes
the automation of a system.

Project data bank The data bank in the Programming device, which contains the projection information
for a Project.

P

Glossary

840 USE 504 00 October 2002 89

Prototype data
file
(Concept EFB)

The prototype data file contains all prototypes of the assigned functions. Further, if
available, a type definition of the internal

REAL REAL stands for the data type "real". The input appears as Real literal or as Real
literal with exponent. The length of the data element is 32 bit. The value range for
variables of this data type reaches from 8.43E-37 to 3.36E+38.

Real literal Real literals function as the input of real values in the decimal system. Real literals
are denoted by the input of the decimal point. The values may be preceded by the
signs (+/-). Single underline signs (_) between figures are not significant.

Example
-12.0, 0.0, +0.456, 3.14159_26

Real literal with
exponent

Real literals with exponent function as the input of real values in the decimal system.
Real literals with exponent are denoted by the input of the decimal point. The
exponent sets the key potency, by which the preceding number is multiplied to get
to the value to be displayed. The basis may be preceded by a negative sign (-). The
exponent may be preceded by a positive or negative sign (+/-). Single underline
signs (_) between figures are not significant. (Only between numbers, not before
or after the decimal poiont and not before or after "E", "E+" or "E-")

Example
-1.34E-12 or -1.34e-12
1.0E+6 or 1.0e+6
1.234E6 or 1.234e6

R

Note: Depending on the mathematic processor type of the CPU, various areas
within this valid value range cannot be represented. This is valid for values nearing
ZERO and for values nearing INFINITY. In these cases, a number value is not
shown in animation, instead NAN (Not A Number) oder INF (INFinite).

Glossary

90 840 USE 504 00 October 2002

Reference Each direct address is a reference, which starts with an ID, specifying whether it
concerns an input or an output and whether it concerns a bit or a word. References,
which start with the code 6, display the register in the extended memory of the state
RAM.
0x area = Discrete outputs
1x area = Input bits
3x area = Input words
4x area = Output bits/Marker words
6x area = Register in the extended memory

Register in the
extended
memory
(6x reference)

6x references are marker words in the extended memory of the PLC. Only LL984
user programs and CPU 213 04 or CPU 424 02 can be used.

RIO (Remote I/O) Remote I/O provides a physical location of the I/O coordinate setting device in
relation to the processor to be controlled. Remote inputs/outputs are connected to
the consumer control via a wired communication cable.

RP (PROFIBUS) RP = Remote Peripheral

RTU mode Remote Terminal Unit
The RTU mode is used for communication between the PLC and an IBM compatible
personal computer. RTU works with 8 data bits.

Rum-time error Error, which occurs during program processing on the PLC, with SFC objects (i.e.
steps) or FFBs. These are, for example, over-runs of value ranges with figures, or
time errors with steps.

Note: The x, which comes after the first figure of each reference type, represents
a five figure storage location in the application data store, i.e. if the reference
400201 signifies a 16 bit output or marker word in the address 201 of the State
RAM.

Glossary

840 USE 504 00 October 2002 91

SA85 module The SA85 module is a Modbus Plus adapter for an IBM-AT or compatible computer.

Section A section can be used, for example, to describe the functioning method of a
technological unit, such as a motor.
A Program or DFB consist of one or more sections. Sections can be programmed
with the IEC programming languages FBD and SFC. Only one of the named
programming languages can be used within a section.
Each section has its own Document window in Concept. For reasons of clarity, it is
recommended to subdivide a very large section into several small ones. The scroll
bar serves to assist scrolling in a section.

Separator format
(4:00001)

The first figure (the Reference) is separated from the ensuing five figure address by
a colon (:).

Sequence
language (SFC)

The SFC Language elements enable the subdivision of a PLC program organiza-
tional unit in a number of Steps and Transitions, which are connected horizontally
by aligned Connections. A number of actions belong to each step, and a transition
condition is linked to a transition.

Serial ports With serial ports (COM) the information is transferred bit by bit.

Source code data
file
(Concept EFB)

The source code data file is a usual C++ source file. After execution of the menu
command Library → Generate data files this file contains an EFB code framework,
in which a specific code must be entered for the selected EFB. To do this, click on
the menu command Objects → Source.

Standard format
(400001)

The five figure address is located directly after the first figure (the reference).

Standardized
literals

If the data type for the literal is to be automatically determined, use the following
construction: ’Data type name’#’Literal value’.

Example
INT#15 (Data type: Integer, value: 15),
BYTE#00001111 (data type: Byte, value: 00001111)
REAL#23.0 (Data type: Real, value: 23.0)

For the assignment of REAL data types, there is also the possibility to enter the
value in the following way: 23.0.
Entering a comma will automatically assign the data type REAL.

S

Glossary

92 840 USE 504 00 October 2002

State RAM The state RAM is the storage for all sizes, which are addressed in the user program
via References (Direct display). For example, input bits, discretes, input words, and
discrete words are located in the state RAM.

Statement (ST) Instructions are "commands" of the ST programming language. Instructions must be
terminated with semicolons. Several instructions (separated by semi-colons) can
occupy the same line.

Status bits There is a status bit for every node with a global input or specific input/output of Peer
Cop data. If a defined group of data was successfully transferred within the set time
out, the corresponding status bit is set to 1. Alternatively, this bit is set to 0 and all
data belonging to this group (of 0) is deleted.

Step SFC Language element: Situations, in which the Program behavior follows in
relation to the inputs and outputs of the same operations, which are defined by the
associated actions of the step.

Step name The step name functions as the unique flag of a step in a Program organization unit.
The step name is automatically generated, but can be edited. The step name must
be unique throughout the whole program organization unit, otherwise an Error
message appears.
The automatically generated step name always has the structure: S_n_m

S = Step
n = Section number (number running)
m = Number of steps in the section (number running)

Structured text
(ST)

ST is a text language according to IEC 1131, in which operations, e.g. call up of
Function blocks and Functions, conditional execution of instructions, repetition of
instructions etc. are displayed through instructions.

Structured
variables

Variables, one of which is assigned a Derived data type defined with STRUCT
(structure).
A structure is a collection of data elements with generally differing data types
(Elementary data types and/or derived data types).

SY/MAX In Quantum control devices, Concept closes the mounting on the I/O population
SY/MAX I/O modules for RIO control via the Quantum PLC with on. The SY/MAX
remote subrack has a remote I/O adapter in slot 1, which communicates via a
Modicon S908 R I/O system. The SY/MAX I/O modules are performed when
highlighting and including in the I/O population of the Concept configuration.

Symbol (Icon) Graphic display of various objects in Windows, e.g. drives, user programs and
Document windows.

Glossary

840 USE 504 00 October 2002 93

Template data
file
(Concept EFB)

The template data file is an ASCII data file with a layout information for the Concept
FBD editor, and the parameters for code generation.

TIME TIME stands for the data type "Time span". The input appears as Time span literal.
The length of the data element is 32 bit. The value range for variables of this type
stretches from 0 to 2exp(32)-1. The unit for the data type TIME is 1 ms.

Time span
literals

Permitted units for time spans (TIME) are days (D), hours (H), minutes (M), seconds
(S) and milliseconds (MS) or a combination thereof. The time span must be denoted
by the prefix t#, T#, time# or TIME#. An "overrun" of the highest ranking unit is
permitted, i.e. the input T#25H15M is permitted.

Example
t#14MS, T#14.7S, time#18M, TIME#19.9H, t#20.4D, T#25H15M,
time#5D14H12M18S3.5MS

Token The network "Token" controls the temporary property of the transfer rights via a
single node. The token runs through the node in a circulating (rising) address
sequence. All nodes track the Token run through and can contain all possible data
sent with it.

Traffic Cop The Traffic Cop is a component list, which is compiled from the user component list.
The Traffic Cop is managed in the PLC and in addition contains the user component
list e.g. Status information of the I/O stations and modules.

Transition The condition with which the control of one or more Previous steps transfers to one
or more ensuing steps along a directional Link.

T

Glossary

94 840 USE 504 00 October 2002

UDEFB User defined elementary functions/function blocks
Functions or Function blocks, which were created in the programming language C,
and are available in Concept Libraries.

UDINT UDINT stands for the data type "unsigned double integer". The input appears as
Integer literal, Base 2 literal, Base 8 literal or Base 16 literal. The length of the data
element is 32 bit. The value range for variables of this type stretches from 0 to
2exp(32)-1.

UINT UINT stands for the data type "unsigned integer". The input appears as Integer
literal, Base 2 literal, Base 8 literal or Base 16 literal. The length of the data element
is 16 bit. The value range for variables of this type stretches from 0 to (2exp16)-1.

Unlocated
variable

Unlocated variables are not assigned any state RAM addresses. They therefore do
not occupy any state RAM addresses. The value of these variables is saved in the
system and can be altered with the reference data editor. These variables are only
addressed by symbolic names.

Signals requiring no peripheral access, e.g. intermediate results, system tags etc,
should primarily be declared as unlocated variables.

Variables Variables function as a data exchange within sections between several sections and
between the Program and the PLC.
Variables consist of at least a variable name and a Data type.
Should a variable be assigned a direct Address (Reference), it is referred to as a
Located variable. Should a variable not be assigned a direct address, it is referred
to as an unlocated variable. If the variable is assigned a Derived data type, it is
referred to as a Multi-element variable.
Otherwise there are Constants and Literals.

Vertical format Vertical format means that the page is higher than it is wide when looking at the
printed text.

U

V

Glossary

840 USE 504 00 October 2002 95

Warning When processing a FFB or a Step a critical status is detected (e.g. critical input value
or a time out), a warning appears, which can be viewed with the menu command
Online → Event viewer... . With FFBs the ENO output remains at "1".

WORD WORD stands for the data type "Bit sequence 16". The input appears as Base 2
literal, Base 8 literal or Base 1 16 literal. The length of the data element is 16 bit. A
numerical range of values cannot be assigned to this data type.

W

Glossary

96 840 USE 504 00 October 2002

CBA

840 USE 504 00 October 2002 97

B
Block Move, 37

C
Concept EFBs and parameters, 16
Concept EFBs and the ANY data type, 17

D
Data event logging for PCMCIA Read/write
support, 21
DLOG, 21

F
FIFO, 27
First-In/First-Out stack register, 27
Function

Parameterization, 9
Function block

Parameterization, 9

G
GET_3X, 31
GET_4X, 33
GET_BIT, 35

I
IEC_BMDI, 37
Implementation aspects, 17

L
Last-In/First-Out stack register, 45
LIB984

DLOG, 21
FIFO, 27
GET_3X, 31
GET_4X, 33
GET_BIT, 35
IEC_BMDI, 37
LIFO, 45
PUT_4X, 49
R2T_***, 51
SET_BIT, 55
SET_BITX, 59
SRCH_***, 63
T2T, 67

Lib984, 13
At a glance, 13
DLOG, 21
FIFO, 27
GET_3X, 31
GET_4X, 33
GET_BIT, 35
IEC_BMDI, 37
LIFO, 45
PUT_4X, 49
R2T_***, 51

Index

Index

98 840 USE 504 00 October 2002

SET_BIT, 55
SET_BITX, 59
SRCH_***, 63
T2T, 67

LIFO, 45

M
Modsoft Functions

Concept EFBs and Parameters, 16
Concept EFBs and the ANY data type, 17
Conversion in Concept, 15
Differences in Concept, 15
Implementation aspects under Concept,
17
Tables under Concept, 16
Using the state RAM, 15

P
Parameterization, 9
PUT_4X, 49

R
R2T_***, 51
Read bit, 35
Reading 3x register, 31
Reading 4x register, 33
Register to table, 51

S
Search, 63
Set bit, 55
Set expanded Bit, 59
SET_BIT, 55
SET_BITX, 59
SRCH_***, 63

T
T2T, 67
Table to table, 67
Tables under Concept, 16

W
Write 4x register, 49

