
33
00

22
15

.0
0

Concept
IEC Block Library
Part: FUZZY
840 USE 504 00 eng Version 2.6

© 2002 Schneider Electric All Rights Reserved



  

2  



3

Table of Contents

About the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Part I General information on the FUZZY Block Library. . . . . . 9
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 1 Parameterizing functions and function blocks . . . . . . . . . . . . 11
Parameterizing functions and function blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 2 Fuzzy Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Introduction to Fuzzy Control Theory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Fundamental Principles of Fuzzy Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Fuzzy Control in control engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Concepts of Fuzzy Theory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Fuzzy Control in Concept  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
EFBs in the FUZZY Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Fuzzification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Defuzzification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Example for Concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Part II EFB descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 3 DEFUZ_INT, DEFUZ_REAL: Defuzzification with singletons .37
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Brief Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Detailed description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Runtime errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



4

Chapter 4 DEFUZ_STI, DEFUZ_STR: 
Defuzzification with singletons (structure) . . . . . . . . . . . . . . . 43
Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Brief Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Runtime errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 5 FUZ_ATERM_INT, FUZ_ATERM_REAL: 
Fuzzification of all terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Brief Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Runtime errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Chapter 6 FUZ_ATERM_STI, FUZ_ATERM_STR: 
Fuzzification of all terms (structure)  . . . . . . . . . . . . . . . . . . . . 55
Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Brief Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Runtime errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 7 FUZ_MAX_***: Fuzzy Maximum  . . . . . . . . . . . . . . . . . . . . . . . . 59
Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Brief Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Chapter 8 FUZ_MIN_***: Fuzzy Minimum  . . . . . . . . . . . . . . . . . . . . . . . . . 61
Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Brief Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Chapter 9 FUZ_PROD_***: Fuzzy Product. . . . . . . . . . . . . . . . . . . . . . . . . 63
Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Brief Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



5

Chapter 10 FUZ_STERM_***: Fuzzification of one term . . . . . . . . . . . . . . .67
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Brief Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Detailed description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Runtime errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Chapter 11 FUZ_SUM_***: Fuzzy Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Brief Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



6



840 USE 504 00 October 2002 7

About the Book

At a Glance

Document Scope This documentation is designed to help with the configuration of functions and 
function blocks.

Validity Note This documentation applies to Concept 2.6 under Microsoft Windows 98, Microsoft 
Windows 2000, Microsoft Windows XP and Microsoft Windows NT 4.x.

Related 
Documents

User Comments We welcome your comments about this document. You can reach us by e-mail at 
TECHCOMM@modicon.com

Note: There is additional up to date tips in the README data file in Concept.

Title of Documentation Reference Number

Concept Installation Instructions 840 USE 502 00

Concept User Manual 840 USE 503 00

Concept EFB User Manual 840 USE 505 00

Concept LL984 Block Library 840 USE 506 00



About the Book

8 840 USE 504 00 October 2002



840 USE 504 00 October 2002 9

I
General information on the FUZZY 
Block Library

Overview

Introduction This section contains general information on the FUZZY Block Library.

What's in this 
Part?

This part contains the following chapters:

Chapter Chapter Name Page

1 Parameterizing functions and function blocks 11

2 Fuzzy Control 15



General information

10 840 USE 504 00 October 2002



840 USE 504 00 October 2002 11

1
Parameterizing functions and 
function blocks



Parameterization

12 840 USE 504 00 October 2002

Parameterizing functions and function blocks

General Each FFB consists of an operation, the operands needed for the operation and an 
instance name or function counter. 

Operation The operation determines which function is to be executed with the FFB, e.g. shift 
register, conversion operations.

FFB
(e.g. ON-delay)

Item name/
Function counter
(e.g. FBI_2_22 (18))

Operation
(e.g. TON)

Operand

Actual parameter
Variable, element of a 

multi-element 
variable, literal, direct 

address
(e.g. ENABLE, EXP.1, 
TIME, ERROR, OUT, 

%4:0001)

Formal 
parameter

(e.g. 
IN,PT,Q,ET)

TON

ENABLE

EXP.1

TIME

EN

IN

PT

ENO

Q

ET

ERROR

OUT

%4:00001

FBI_2_22 (18)



Parameterization

840 USE 504 00 October 2002 13

Operand The operand specifies what the operation is to be executed with. With FFBs, this 
consists of formal and actual parameters.

Formal/actual 
parameters

The formal parameter holds the place for an operand. During parameterization, an 
actual parameter is assigned to the formal parameter.

The actual parameter can be a variable, a multi-element variable, an element of a 
multi-element variable, a literal or a direct address.

Conditional/ 
unconditional 
calls

"Unconditional" or "conditional" calls are possible with each FFB. The condition is 
realized by pre-linking the input EN.
� Displayed EN

conditional calls (the FFB is only processed if EN = 1)
� EN not displayed

unconditional calls (FFB is always processed)

Calling functions 
and function 
blocks in IL and 
ST

Information on calling functions and function blocks in IL (Instruction List) and ST 
(Structured Text) can be found in the relevant chapters of the user manual.

Note: If the EN input is not parameterized, it must be disabled. Any input pin that 
is not parameterized is automatically assigned a "0" value. Therefore, the FFB 
should never be processed.



Parameterization

14 840 USE 504 00 October 2002



840 USE 504 00 October 2002 15

2
Fuzzy Control

Overview

Introduction In this chapter, first of all a more precise explanation of what Fuzzy Control is and 
how Fuzzy Control can be used for control and regulatory functions will be provided. 
For the use of Fuzzy Control by means of Concept, elementary functions and 
function blocks  (EFBs) are provided, the interaction of which is also more precisely 
explained in this chapter.

What's in this 
Chapter?

This chapter contains the following sections:

Section Topic Page

2.1 Introduction to Fuzzy Control Theory 17

2.2 Fuzzy Control in Concept 25



Fuzzy Control

16 840 USE 504 00 October 2002



Fuzzy Control

840 USE 504 00 October 2002 17

2.1 Introduction to Fuzzy Control Theory

Overview

Introduction This section looks at the fundamental principles of Fuzzy Control

What's in this 
Section?

This section contains the following topics:

Note: This chapter does not attempt to describe Fuzzy Control in a mathematically 
exact way, but rather to provide an understanding of Fuzzy Control. More extensive 
information on the theory can be found in the relevant literature.

Topic Page

Fundamental Principles of Fuzzy Control 18

Fuzzy Control in control engineering 19

Concepts of Fuzzy Theory 20



Fuzzy Control

18 840 USE 504 00 October 2002

Fundamental Principles of Fuzzy Control

Introduction The expression "Fuzzy Logic" describes a theory of "ambiguous quantities". 
In science or in computer programs, it is usually the case that only two values are 
used, true or false, on or off, 1 or 0. There are no intermediate values. 
The main idea of Fuzzy Logic on the other hand is the dealing with ambiguous 
quantities, the elements of which only gradually belong to a set. Instead of just 
"membership" and "non-membership", intermediate stages are also permitted. With 
the help of Fuzzy Logic, ambiguities of the most varying kinds can thus be 
mathematically described and handled.
This theory finds its most successful application in control engineering as Fuzzy 
Control. 

Example: 
Temperature

If one considers a physical magnitude, such as temperature for example, this 
magnitude is generally represented by a number and a physical unit, for example 21 
degrees C. 
The temperature can also be described just as well verbally through attributes. The 
temperature can be described with the attributes "cold", "pleasant" and "warm" when 
we speak of room temperature, for example. These attributes are no longer 
precisely limited in relation to one another, they are ambiguous descriptions of the 
temperature. 
Room temperature of 15 degrees C is generally characterized as "cold,", while a 
temperature of 21 degrees C is characterized as "warm". In relation to human 
feeling, there is not a sharp dividing line between "cold" and "pleasant", as is known 
in classical logic which only works with the truth terms "TRUE" (1) and "FALSE" (0). 
It has much more to do with a gradual transition from "cold" to "pleasant". 



Fuzzy Control

840 USE 504 00 October 2002 19

Fuzzy Control in control engineering

Introduction In control engineering, one or more control variables are produced depending on 
one or more input variables. The input variables are logically and numerically 
associated with one another. The result of the association or the calculation are the 
output variables. Something similar occurs with Fuzzy Control. 
The input variable is converted into a linguistic variable with the help of linguistic 
terms and finally evaluated with the help of rules. The result, also a "fuzzy" linguistic 
variable, must now again be converted into a control variable, since a valve cannot 
be controlled with a "fuzzy" variable.

Fuzzy Control in 
control 
engineering

Process in control engineering

Level Description

1 The input variables are fuzzified

2 The linguistic variables produced are associated with the corresponding 
operators in accordance with specific rules.
Result of the processing of all rules (inference): a "fuzzy" output variable, that is 
to say a variable which is described with its membership degrees through 
attributes.

3 Defuzzification of the output variables into a unambiguous number with which an 
action can then be associated in the control process.



Fuzzy Control

20 840 USE 504 00 October 2002

Concepts of Fuzzy Theory

Linguistic 
Variables and 
Linguistic Terms

Example
If the temperature is defined as a linguistic variable, then it can be described by the 
linguistic terms "cold", "pleasant" and "hot". 
Definition
� A linguistic variable is a variable (e.g. temperature) which is described by 

linguistic terms. 
� Linguistic terms describe attributes of a linguistic variable.

Membership 
Degree

Example
The linguistic terms "cold", "pleasant" and "warm" cannot be clearly distinguished 
from one another. In order to properly characterize this fuzzy dividing line, every 
linguistic term is assessed and given a so-called membership degree. 
This membership degree now indicates to what extent the temperature is really cold. 
� A membership degree of 0 for the linguistic term "cold" means that the 

temperature is not cold at all. 
� A membership degree of 1 for the linguistic term "cold" means that the 

temperature is 100% cold; it is really cold. The various concepts are depicted 
once more in the illustration.

Example for the membership degree 

Definition
The membership degree defines to what extent a physical value is assigned to a 
linguistic term. 
� 0 means that the value does not correspond at all to the linguistic term.
� 1 means that the value corresponds completely to the linguistic term.

cold pleasant warm

16 17 19 20 23
0

1

µ

T/[oC]

M
em

b
er

sh
ip

 d
eg

re
e

Linguistic Terms Membership Functions

Value of variablesTemperature

Variable / Linguistic Variable



Fuzzy Control

840 USE 504 00 October 2002 21

Membership 
Function

Example
The gentle transition from "not really cold" to "really cold" is described by a function. 
These kinds of functions are so-called membership functions, since they describe 
the membership degree to its linguistic term for each physical value.
In the case of the variable temperature, the membership function describes not only 
whether a temperature is "cold" or not, the membership function assigns each 
physical value a confidence value with the expression "the temperature is cold" - this 
is the membership degree.
In general it is sufficient to characterize the membership via relatively simple 
courses of the function such as for example triangles, trapezoids or ramps.
In this way a membership degree can be determined for each physical value of the 
variable temperature. 

In this example, the membership degree for two different temperature values is 
determined. If one has defined a membership function to a linguistic term, then one 
can determine the membership of the variable temperature to the appropriate 
linguistic term for every temperature with the help of the membership degree. 
Definition
The membership function defines a membership degree to a linguistic term for each 
physical value. 

pleasant

T1 T2
0

1

µ

T/[oC]

µ

M
e

m
be

rs
h

ip
 d

eg
re

e

Linguistic Term Membership Functions

2

µ
1

(T1, µ1), (T2, µ2): Elements of the Fuzzy Set



Fuzzy Control

22 840 USE 504 00 October 2002

Fuzzification Example
Fuzzification of the input variable temperature 

The input variable in the conventional "sharp" depiction in comparison to the fuzzy 
depiction
� Sharp depiction: The temperature is 21 degrees C.
� Fuzzy depiction:

the temperature is:
� cold to a membership degree of 0.0
� pleasant to a membership degree of 0.7
� warm to a membership degree of 0.3 

Definition
The determination of the membership degrees for all linguistic terms of a variable in 
relation to an input variable is called fuzzification. 

cold pleasant warm

16 17 19 20 23
0

1

µ

T/[oC]

0.3

0.7



Fuzzy Control

840 USE 504 00 October 2002 23

Rules Example
If we consider ourselves and our daily activities, we can see that our activities are 
based on various prerequisites. We do something when a prerequisite is met. In 
order to describe the activities/reaction we use rules.
For example we say:
� If the room temperature is perceived as cold, then open the heating valve a little

or we say:
� If the room temperature is perceived as warm, then close the heating valve a little.
Another rule could say:
� If it is summer and the outdoor temperature is not cold, then turn the heating off 

completely.
Behind these rules stands the knowledge of an expert, who, through more or less 
extensive learning, has acquired the ability to influence a process in a desired 
manner. The knowledge of the expert is not just limited to the type of action (open 
the valve a little), but is at the same time associated with the knowledge of what "a 
little" means, for example what angle of rotation corresponds to this.
Definition
A rule forms a (fuzzy) statement on the output variable for a specific (fuzzy) input 
variable.

Operators Example
Usually conditions (premises) are associated in the rules with one another through 
the verbal expressions "AND" and "OR". In the example, the premise "If it is 
summer" (the basic variable is the season and the linguistic term is summer) is 
associated with the premise "if the outdoor temperature is not cold" in such a way 
that both statements must be true in order to be able to carry out the conclusion.
These AND and OR associations are processed by mathematical operators in fuzzy 
technology. In Fuzzy Theory there are a series of operators which realize the AND 
associations on the one hand and the OR associations on the other hand. The 
simplest operator for the AND association is the "minimum" and the simplest 
operator for the "OR" association is the "maximum".
Definition
The association of conditions takes place through operators. 

Weighting of the 
rules

In drawing up rules it can happen that they should have different weights. For 
example, one rule always applies (100%), another rule however does not always 
apply (80%). In order to be able to express this, there is the possibility of assigning 
each rule a degree of plausibility. In general this is achieved mathematically by 
multiplying the association result by the degree of plausibility.

Inference The inference is the result of the processing of all rules



Fuzzy Control

24 840 USE 504 00 October 2002

Defuzzification Example
The simplest possibility to create a fuzzy variable from a sharp variable is for every 
attribute of the fuzzy variable to supply a suggestion for the sharp variable. Each 
linguistic term is thus represented by a set numerical value for the variable. One 
speaks in this case of so-called singletons. The suggestions made for each linguistic 
term are now weighted with the appropriate membership degrees. In this way the 
fuzzy variable is  arithmetically transformed back into a sharp variable 
Singletons 

Definition
The transformation of fuzzy variables into sharp variables is called defuzzification. 

Note: There is also a series of other defuzzification methods in Fuzzy Theory, 
some of which are characterized by a great deal of calculation.  These will not be 
looked at at this point.

very small

Y1 Y3

0

1

µ

YY2 Y4 Y5

small
medium

large
very large

µ1 = 0 µ5 = 0
µ2 µ4

µ3



Fuzzy Control

840 USE 504 00 October 2002 25

2.2 Fuzzy Control in Concept

Overview

Introduction This chapter describes how Fuzzy Logic is projected and which EFBs are provided 
by Concept for this purpose.

What's in this 
Section?

This section contains the following topics:

Topic Page

EFBs in the FUZZY Library 26

Fuzzification 28

Inference 30

Defuzzification 30

Example for Concept 31



Fuzzy Control

26 840 USE 504 00 October 2002

EFBs in the FUZZY Library

EFBs in the 
Fuzzy Library

EFBs for INT- and REAL-arithmetic

Operation EFB Group Description

Fuzzification FUZ_STERM_INT (See 
FUZ_STERM_***: 
Fuzzification of one term, 
p. 67),  FUZ_STERM_REAL 
(See FUZ_STERM_***: 
Fuzzification of one term, 
p. 67)

Fuzzify Fuzzification of a 
term

Fuzzification FUZ_ATERM_INT (See 
FUZ_ATERM_INT, 
FUZ_ATERM_REAL: 
Fuzzification of all terms, 
p. 49), FUZ_ATERM_REAL 
(See FUZ_ATERM_INT, 
FUZ_ATERM_REAL: 
Fuzzification of all terms, 
p. 49)

Fuzzify Fuzzification of up to 
9 terms at one time

Fuzzification FUZ_ATERM_STI (See 
FUZ_ATERM_STI, 
FUZ_ATERM_STR: 
Fuzzification of all terms 
(structure), p. 55), 
FUZ_ATERM_STR (See 
FUZ_ATERM_STI, 
FUZ_ATERM_STR: 
Fuzzification of all terms 
(structure), p. 55)

Fuzzyfy_Struct Fuzzification of up to 
9 terms at one time. 
Store result in data 
structure.

Inference FUZ_MAX_INT (See 
FUZ_MAX_***: Fuzzy 
Maximum, p. 59), 
FUZ_MAX_REAL (See 
FUZ_MAX_***: Fuzzy 
Maximum, p. 59)

Operators_OR OR operator: 
Maximum

Inference FUZ_MIN_INT (See 
FUZ_MIN_***: Fuzzy 
Minimum, p. 61), 
FUZ_MIN_REAL (See 
FUZ_MIN_***: Fuzzy 
Minimum, p. 61)

Operators_AND AND operator: 
Minimum



Fuzzy Control

840 USE 504 00 October 2002 27

The difference between integer arithmetic and real arithmetic is:
� the solution inside the calculation.

The solution of the membership degree is 0.01 %.
The range of the membership degrees  0...1 is scaled to 0...10 000.

� the possibility of working with physical values in real arithmetic.
� the execution time, which is longer than in real arithmetic.

Inference FUZ_SUM_INT (See 
FUZ_SUM_***: Fuzzy Sum, 
p. 75), FUZ_SUM_REAL (See 
FUZ_SUM_***: Fuzzy Sum, 
p. 75)

Operators_OR OR operator: Sum

Inference FUZ_PROD_INT (See 
FUZ_PROD_***: Fuzzy 
Product, p. 63), 
FUZ_PROD_REAL (See 
FUZ_PROD_***: Fuzzy 
Product, p. 63)

Operators_AND AND operator: 
Product

Defuzzification DEFUZ_INT (See 
DEFUZ_INT, DEFUZ_REAL: 
Defuzzification with 
singletons, p. 37), 
DEFUZ_REAL (See 
DEFUZ_INT, DEFUZ_REAL: 
Defuzzification with 
singletons, p. 37)

Defuzzify Defuzzification with 
singletons

Defuzzification DEFUZ_STI (See 
DEFUZ_STI, DEFUZ_STR: 
Defuzzification with singletons 
(structure), p. 43), 
DEFUZ_STR (See 
DEFUZ_STI, DEFUZ_STR: 
Defuzzification with singletons 
(structure), p. 43)

Defuzzify_Struct Defuzzification with 
singletons. Fetch 
inputs from data 
structure. 

Operation EFB Group Description



Fuzzy Control

28 840 USE 504 00 October 2002

Fuzzification

Introduction Firstly, all variables that are to be associated with one another through linguistic 
rules must be fuzzified. For this the number of attributes a variable is to be assigned 
must first be considered. This depends on whether these attributes are also to be 
used in the rules. Usually 3 to 5 attributes are sufficient. In Concept you have the 
possibility of selecting a fuzzification for each term of a variable or a fuzzification of 
up to 9 terms of one variable. 

Fuzzification 
with 
FUZ_STERM

The fuzzification of an individual term takes place with the membership function, 
which supports up to 4 support points. 
The membership functions can for example look like this: 

For more information please see the description of EFBs FUZ_STERM (See 
FUZ_STERM_***: Fuzzification of one term, p. 67).

0

1

µ

0

1

µ

0

1

µ

0

1

µ

0

1

µ

0

1

µ

falling ramp rising ramp

trapezoid rectangle

triangle singleton



Fuzzy Control

840 USE 504 00 October 2002 29

Fuzzification 
with 
FUZ_ATERM or 
FUZ_ATERM_ST

In general the functions that are used the most are ramp and triangle. The 
fuzzification of an individual term offers the greatest flexibility for experienced fuzzy 
users, but the easiest way to fuzzify a variable is to use the EFB FUZ_ATERM (See 
FUZ_ATERM_INT, FUZ_ATERM_REAL: Fuzzification of all terms, p. 49) or 
FUZ_ATERM_ST (See FUZ_ATERM_STI, FUZ_ATERM_STR: Fuzzification of all 
terms (structure), p. 55) since these EFBs fuzzify not just one term but all the terms 
of a fuzzy variable. These EFBs also simplify the input of membership functions for 
the different terms.
The idea behind this simplification is that the different membership functions of all 
terms of a fuzzy variable are not independent of one another. In most cases, the total 
of the membership degrees of two successive functions is 1. If, for the sake of 
simplicity, only triangular functions are used instead of trapezoidal functions there 
results the following example of the definition of a membership function for 6 terms 

In this case there are only 6 base points to be defined instead of 2 x 2 + 4 x 3 = 14 
base points in the case of a fuzzification with FUZ_STERM (See FUZ_STERM_***: 
Fuzzification of one term, p. 67). The EFB FUZ_ATERM (See FUZ_ATERM_INT, 
FUZ_ATERM_REAL: Fuzzification of all terms, p. 49) / FUZ_ATERM_ST (See 
FUZ_ATERM_STI, FUZ_ATERM_STR: Fuzzification of all terms (structure), p. 55) 
allows a maximum of 9 attributes.
The fuzzification must be carried out for each input variable. The result of each 
fuzzification are membership degrees for each term that are assigned to the 
attributes. In using the EFBs FUZ_ATERM (See FUZ_ATERM_INT, 
FUZ_ATERM_REAL: Fuzzification of all terms, p. 49) the result is the creation of 
individual variables for the use of graphic connections in the inference. In using the  
EFBs FUZ_ATERM_ST (See FUZ_ATERM_STI, FUZ_ATERM_STR: Fuzzification 
of all terms (structure), p. 55) the membership degrees are summed in a data 
structure.

x1
0

1

µ

x2 x3 x5x4 x6



Fuzzy Control

30 840 USE 504 00 October 2002

Inference

Realization of the 
rules

The rules are realized through the concatenation of the membership degrees of the 
fuzzy variables. The inputs of the EFBs, which represent the fuzzy operators, are 
combined with the membership grades (created by the fuzzy EFBs). The pairs 
FUZ_MIN (See FUZ_MIN_***: Fuzzy Minimum, p. 61)/FUZ_MAX (See 
FUZ_MAX_***: Fuzzy Maximum, p. 59) and FUZ_PROD (See FUZ_PROD_***: 
Fuzzy Product, p. 63)/FUZ_SUM (See FUZ_SUM_***: Fuzzy Sum, p. 75) have 
proven to be good combinations for the AND/OR concatenation. Use the pair 
FUZ_MIN (See FUZ_MIN_***: Fuzzy Minimum, p. 61)/FUZ_MAX (See 
FUZ_MAX_***: Fuzzy Maximum, p. 59) in a first approach.

Weighting the 
rules

Rules must be weighted with a multiplication. In real arithmetic, this purpose is 
served by the EFB FUZ_PROD_REAL (See FUZ_PROD_***: Fuzzy Product, p. 63). 
In integer arithmetic this purpose is served by the EFB FUZ_PROD_INT (See 
FUZ_PROD_***: Fuzzy Product, p. 63), which takes into account the normalized 
form of the membership degrees from 0 ... 10 000.

Defuzzification

Principle The results of the application of all rules are in turn membership degrees for 
attributes of the output variable. In order to achieve a usable result (attributes with 
membership degrees cannot for example be used directly to control values), the 
membership degrees of all terms of the variables must be usefully combined. This 
is achieved with the defuzzification function block DEFUZ (See DEFUZ_INT, 
DEFUZ_REAL: Defuzzification with singletons, p. 37) .

Working method 
in Concept

The function block DEFUZ (See DEFUZ_INT, DEFUZ_REAL: Defuzzification with 
singletons, p. 37) creates, with the help of singletons from the membership degrees, 
an unambiguous value for the output variables, which is assigned to the terms of the 
output variables.



Fuzzy Control

840 USE 504 00 October 2002 31

Example for Concept

Defaults The example is based on integer logic. There are 2 variables, "ipres" and "itemp", 
which are to be assessed in accordance with four prescribed rules.
Fuzzification of the variable "ipress" (ipress has 3 linguistic terms)
� below_norm
� norm
� above_norm
Fuzzification of the variable "ipress" 

Fuzzification of the variable "itemp" (itemp has 4 linguistic terms)
� low
� medium
� high
� very_high
Fuzzification of the variable "itemp" 

The following four rules are valid:
� IF ipress = norm AND itemp = high THEN valve= almost_closed
� IF ipress = above_norm AND itemp = very_high THEN valve = closed 
� IF ipress = norm AND itemp = medium THEN valve= almost_open 
� IF ipress = below_norm AND itemp = low THEN valve = open
The defuzzification should take place with singletons.

below_norm norm above_norm

3900 4000 4100
0

1

µ

ipress

low medium very_high

5000 6500 9500
0

1

µ

itemp8000

high



Fuzzy Control

32 840 USE 504 00 October 2002

Defuzzification of the variable "ivalve" (ivalve has 4 linguistic terms)
� closed
� almost_closed
� almost_open
� open
Defuzzification of the variable "ivalve" 

almost_closed almost_open

3333 6667
0

1

µ

ivalve10000

open

0

closed



Fuzzy Control

840 USE 504 00 October 2002 33

Realization in 
Concept

Fuzzification: 

FUZ_ATERM_INT

MD1

MD2

Xipress

MD3

MD4

MD5

MD6

MD7

MD8S13900

MD9S24000

S34100

FBI_2_1 (1)

ipress_below_norm

ipress_norm
ipress_above_norm

FUZ_ATERM_INT

MD1

MD2

Xipress

MD3

MD4
MD5

MD6
MD7

MD8S15000

MD9S26500

S38000

FBI_2_2 (2)

itemp_low

itemp_medium
itemp_high
itemp_very_high

S49500



Fuzzy Control

34 840 USE 504 00 October 2002

Defuzzification: 

FUZ_MIN_INT

OUTIN1ipress_norm

.2.10 (5)

ivalve_almost_closed

DEFUZ_INT

MD1

MD2

Xipress

MD3

MD4

MD5

MD6
MD7

MD8MDiSi5

MD9MDiSi66667

MDiSi7

.2.3 (7)

ivalve

MDiSi810000

IN2itemp_high

Rule 1:
IF press IS norm AND temp IS high
THEN valve IS almost_closed

MDiSi1

MDiSi20

MDiSi3

MDiSi43300

ZERO_Y0

FUZ_MAX_INT

OUTIN1ipress_above_norm

.2.9 (4)

ivalve_closed
IN2itemp_very_high

Rule 2:
IF press IS above_norm OR temp IS very_high
THEN valve IS closed

FUZ_MIN_INT

OUTIN1ipress_norm

.2.11 (6)

ivalve_almost_open
IN2itemp_medium

Rule 3:
IF press IS norm AND temp IS medium
THEN valve IS almost_open

FUZ_MAX_INT

OUTIN1ipress_below_norm

.2.8 (3)

ivalve_open
IN2itemp_low

Rule 4:
IF press IS below_norm OR temp IS low
THEN valve IS open



840 USE 504 00 October 2002 35

II
EFB descriptions 

Overview

Introduction These EFB descriptions are documented in alphabetical order.

What's in this 
Part?

This part contains the following chapters:

Note: The number of inputs of some EFBs can be increased to a max. of 32 
through vertical size alteration of the FFB symbol. See the description of the 
individual EFBs to determine which EFBs.

Chapter Chapter Name Page

3 DEFUZ_INT, DEFUZ_REAL: Defuzzification with singletons 37

4 DEFUZ_STI, DEFUZ_STR: Defuzzification with singletons 
(structure)

43

5 FUZ_ATERM_INT, FUZ_ATERM_REAL: Fuzzification of all 
terms

49

6 FUZ_ATERM_STI, FUZ_ATERM_STR: Fuzzification of all 
terms (structure)

55

7 FUZ_MAX_***: Fuzzy Maximum 59

8 FUZ_MIN_***: Fuzzy Minimum 61

9 FUZ_PROD_***: Fuzzy Product 63

10 FUZ_STERM_***: Fuzzification of one term 67

11 FUZ_SUM_***: Fuzzy Sum 75



EFB descriptions

36 840 USE 504 00 October 2002



840 USE 504 00 October 2002 37

3
DEFUZ_INT, DEFUZ_REAL: 
Defuzzification with singletons

Overview

Introduction This chapter describes the blocks:
� DEFUZ_INT
� DEFUZ_REAL

What's in this 
Chapter?

This chapter contains the following topics:

Topic Page

Brief Description 38

Description 39

Detailed description 40

Runtime errors 41



DEFUZ_INT, DEFUZ_REAL: Defuzzification with singletons

38 840 USE 504 00 October 2002

Brief Description

Brief Description The function defuzzifies linguistic terms that are represented by singletons, in 
accordance with the maximum mean method. The position of the singletons is 
defined via support points (S1 ... S9). Each term is weighted with the respective 
membership degree (MD1 ... MD9). The range of the membership degrees for data 
type INT is 0 ... 10 000 and for data type REAL is 0 ... 1. The meaning of the inputs 
(expandable inputs MDiSi) can be inferred from the Parameter description, p. 39 .
The number of inputs (MDiSi) can be increased to a max. of 18 through vertical size 
alteration of the block frame. This corresponds to 9 singletons. Additional inputs 
cannot be projected.
The data types of all input values (MDiSi) and those of the output value must be the 
same. There is a special function block available for the processing of each of the 
different data types.
Additional parameters EN and ENO can be projected.



DEFUZ_INT, DEFUZ_REAL: Defuzzification with singletons

840 USE 504 00 October 2002 39

Description

Symbol Block description: 

Formula Block formula:

Explanation: n = number of singletons
Prerequisite: 2 ≤ n ≤ 9

Parameter 
description

Block parameter description:

DEFUZ_***

***Y

ZERO_YBOOL
MDiSi1***
MDiSi2***

::
MDiSix*** *** = INT, REAL

Y

MDi Si×

i 1=

n

�

MDi

i 1=

n

�

---------------------------------=

Parameter Data type Meaning

ZERO_Y BOOL 0: Output of the last Y value

MDiSi1 INT, REAL Singleton: 1; MD1  Membership Degree

MDiSi2 INT, REAL Singleton: 1; S1  Support point

MDiSi3 INT, REAL Singleton: 2; MD2  Membership Degree

MDiSi4 INT, REAL Singleton: 2; S2  Support point

: : :

MDiSi17 INT, REAL Singleton: 9; MD9  Membership Degree

MDiSi18 INT, REAL Singleton: 9; S9  Support point

Y INT, REAL Output



DEFUZ_INT, DEFUZ_REAL: Defuzzification with singletons

40 840 USE 504 00 October 2002

Detailed description

Function 
Description

The function block DEFUZ is available as membership function for the mean of 
maximum method with singletons for the defuzzification of linguistic variables. 
The position of the singletons is defined with support points. 

In projecting the functional block, attention should be given that the inputs are 
always used in pairs, since every linguistic term is weighted via the respective 
membership degree. The meaning of the input indices is described in Parameter 
description, p. 39.
The output Y is set to 0.
If all memberships grades have the value 0, then the output behaviour of the function 
block can be determined via the input ZERO_Y:

ZERO_Y value Result

ZERO_Y = 0 The output Y remains unchanged.

ZERO_Y = 1 The output Y is set to 0.

0

S4 Y

µ

S1 S2 S3

1

µ (1)

µ (2)

µ (3)

µ (4)

(MD)

(MD1)

(MD2)

(MD3)

(MD4)



DEFUZ_INT, DEFUZ_REAL: Defuzzification with singletons

840 USE 504 00 October 2002 41

Runtime errors

Runtime errors An error message results when
� more than 9 support points (this corresponds to a max. of 18 MDiSi inputs) were 

projected (E_EFB_TOO_MANY_INPUTS), 
� the functional block is initialized with an uneven number of inputs 

(E_EFB_WRONG_NUMBER_OF_INPUTS) or
� one of the membership degrees MD1 ... MD9 is outside of the range 

(E_EFB_INPUT_VALUE_OUT_OF_RANGE). Only the following ranges are 
possible:
� INT: 0 ... 10 000
� REAL: 0 ... 1



DEFUZ_INT, DEFUZ_REAL: Defuzzification with singletons

42 840 USE 504 00 October 2002



840 USE 504 00 October 2002 43

4
DEFUZ_STI, DEFUZ_STR: 
Defuzzification with singletons 
(structure)

Overview

Introduction This chapter describes the blocks:
� DEFUZ_STI
� DEFUZ_STR

What's in this 
Chapter?

This chapter contains the following topics:

Topic Page

Brief Description 44

Representation 45

Detailed description 47

Runtime errors 48



DEFUZ_STI, DEFUZ_STR: Defuzzification with singletons (structure)

44 840 USE 504 00 October 2002

Brief Description

Function 
description

The function defuzzifies linguistic terms that are represented by singletons, in 
accordance with the maximum mean method. The position of the singletons is 
defined via support points (S1 ... S9). Every term is weighted with the respective 
membership degree (term1 ... term9) from the data structure FUZ_MD_INT (for 
DEFUZ_STI) or FUZ_MD_REAL (for DEFUZ_STR). The range of the membership 
degrees for data type INT is 0 ... 10 000 and for data type REAL is 0 ... 1.
The number of inputs (S1 ... Sn) can be increased to a max. of 9 through vertical 
size alteration of the block frame. Additional inputs cannot be projected.
The data types of all input values (Sn) must be the same.  There is a special function 
block available for the processing of each of the different data types.
Additional parameters EN and ENO can be projected.



DEFUZ_STI, DEFUZ_STR: Defuzzification with singletons (structure)

840 USE 504 00 October 2002 45

Representation

Symbol Block representation: 

Form Form of block

Definition: n = number of singletons
Prerequisite: 2 ≤ n ≤ 9

DEFUZ_*

FUZ_MD_***Y

ZERO_Y***

MD***
S1***
S2***
::
S9***

* = STI, STR

*** = INT, REAL

Y

MDi Si×

i 1=

n

�

MDi

i 1=

n

�

---------------------------------=



DEFUZ_STI, DEFUZ_STR: Defuzzification with singletons (structure)

46 840 USE 504 00 October 2002

Parameter 
description

DEFUZ_STI, DEFUZ_STR

FUZ_MD_INT,  FUZ_MD_REAL

Parameter Data type Meaning

ZERO_Y BOOL 0: Output of the last Y value
1: Output Y is set to "0"

MD FUZ_MD_INT,
FUZ_MD_REAL

Membership Degree (term1 ... term9)

S1 INT, REAL Singleton: 1

S2 INT, REAL Singleton: 2

: : :

S9 INT, REAL Singleton: 9

Y INT, REAL Output

Element Data type Meaning

n INT Number of terms

term1 INT, REAL Membership Degree (MD1)

: : :

term9 INT, REAL Membership Degree (MD9)



DEFUZ_STI, DEFUZ_STR: Defuzzification with singletons (structure)

840 USE 504 00 October 2002 47

Detailed description

Function 
description

The function block DEFUZ_ST is available as membership function for the defuzzifi-
cation of linguistic variables for the mean of maximum method with singletons.
 The position of the singletons is defined with the support points  (S1 ... S9). 

Each linguistic term is weighted via the respective membership degree.
If all memberships grades have the value 0, then the output behaviour of the function 
block can be determined via the input ZERO_Y:

ZERO_Y value Result

ZERO_Y = 0 The output Y remains unchanged.

ZERO_Y = 1 The output Y is set to 0.

0

S4 Y

µ

S1 S2 S3

1

µ (1)

µ (2)

µ (3)

µ (4)

(MD)

(MD1)

(MD2)

(MD3)

(MD4)



DEFUZ_STI, DEFUZ_STR: Defuzzification with singletons (structure)

48 840 USE 504 00 October 2002

Runtime errors

Runtime errors An error message (E_EFB_TOO_MANY_INPUTS) results if more than 9 support 
points were projected.
A warning (E_EFB_WRONG_NUMBER_OF_INPUTS) results, if the number of 
inputs (=number of support points S1 ... Sn) does not correspond to the number of 
terms used (MD) in the data structure FUZ_MD_INT.n (for DEFUZ_STI) or 
FUZ_MD_REAL.n (for DEFUZ_STR). In this case the number of support points 
included in the calculation of the output value must correspond to the number of 
terms used (MD) in the data structure FUZ_MD_INT.n (for DEFUZ_STI) or 
FUZ_MD_REAL.n (for DEFUZ_STR).



840 USE 504 00 October 2002 49

5
FUZ_ATERM_INT, 
FUZ_ATERM_REAL: Fuzzification 
of all terms

Overview

At a Glance This chapter describes the blocks:
� FUZ_ATERM_INT
� FUZ_ATERM_REAL

What's in this 
Chapter?

This chapter contains the following topics:

Topic Page

Brief Description 50

Representation 51

Detailed description 52

Runtime errors 54



FUZ_ATERM_INT, FUZ_ATERM_REAL: Fuzzification of all terms

50 840 USE 504 00 October 2002

Brief Description

Function 
description

The function block fuzzifies up to 9 terms of the linguistic variables (input X) and 
indicates the individual membership degree (outputs MD1 ... MD9). The range at 
output for data type INT is 0 ... 10 000 and for data type REAL is 0 ... 1. The 
membership functions are defined via support points (expandable inputs S1 ... S9).
The function block works with a special simplification for the definition of the 
membership functions:
� Ramps for the first and last membership function
� only triangles for the membership functions between the first and the last
� the total of two membership degrees of two successive linguistic terms is always 

1 (10 000)
� the sum of all membership degrees of all linguistic terms for each input value X 

is always 1 (10 000)
The number of support points (S1 ... Sx) can be increased to a max. of 9 through 
vertical size alteration of the block frame. Additional support points cannot be 
projected.
The number of the calculated membership degrees corresponds to the number of 
membership functions. If less than 9 membership functions are projected, then the 
other outputs are assigned the value 0. (e.g. for 4 membership functions, 4 
membership degrees for MD1 ... MD4 are calculated and MD5 ... MD9 are to 0).
The data types of all input values and that of the output value must be the same. 
There is a special function block available for the processing of each of the different 
data types.
Additional parameters EN and ENO can be projected.



FUZ_ATERM_INT, FUZ_ATERM_REAL: Fuzzification of all terms

840 USE 504 00 October 2002 51

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

FUZ_ATERM_***

***MD1

***MD2

***MD3

***MD4

***MD5

***MD6

***MD7

***MD8

***MD9

X***

S1***
S2***
::
S9*** *** = INT, REAL

Parameters Data type Meaning

X INT, REAL linguistic variable

S1 INT, REAL Point S1

S2 INT, REAL Point S2

: : :

S9 INT, REAL Point S9

MD1 INT, REAL Output MD1 Membership Degree

MD2 INT, REAL Output MD2 Membership Degree

: : :

MD9 INT, REAL Output MD9 Membership Degree



FUZ_ATERM_INT, FUZ_ATERM_REAL: Fuzzification of all terms

52 840 USE 504 00 October 2002

Detailed description

Parameter 
description

With the function block FUZ_ATERM all terms of a linguistic variable can be fuzzified 
simultaneously. The membership functions are determined via support points (S1, 
S2, S3,...). Through the concept of this fuzzification vertices are defined by a number 
of membership functions with one support point in each case. The resulting forms of 
the membership functions are ramps and triangles, in which the sum of the individual 
membership degrees is always 100%. This connection is explained in the following 
timing diagrams.



FUZ_ATERM_INT, FUZ_ATERM_REAL: Fuzzification of all terms

840 USE 504 00 October 2002 53

Timing diagrams 2 membership functions, 2 support points, 2 membership degrees 

3 membership functions, 3 support points, 3 membership degrees 

4 membership functions, 4 support points, 4 membership degrees 

0

1

S1 S2 X

µ f (1) f (2)

(MD)

0

1

S1 S2 X

µ f (1) f (2)

S3

f (3)

(MD)

0

1

S1 S2 X

µ
f (1)

f (2)

S4

f (3)
f (4)

S3

(MD)



FUZ_ATERM_INT, FUZ_ATERM_REAL: Fuzzification of all terms

54 840 USE 504 00 October 2002

Runtime errors

Runtime errors An error message results when
� the order of the support points is incorrect 

(E_EFB_INPUT_VALUE_OUT_OF_RANGE). The support points must be 
arranged in ascending order (S1 < S2 < S3 < ... < S9 ) or

� more than 9 support points were projected (E_EFB_TOO_MANY_INPUTS).



840 USE 504 00 October 2002 55

6
FUZ_ATERM_STI, 
FUZ_ATERM_STR: Fuzzification 
of all terms (structure)

Overview

Introduction This chapter describes the blocks:
� FUZ_ATERM_STI
� FUZ_ATERM_STR

What's in this 
Chapter?

This chapter contains the following topics:

Topic Page

Brief Description 56

Description 57

Detailed description 58

Runtime errors 58



FUZ_ATERM_STI, FUZ_ATERM_STR: Fuzzification of all terms (structure)

56 840 USE 504 00 October 2002

Brief Description

Function 
description

The function fuzzifies up to 9 terms of the linguistic variables (input X) and issues 
the individual membership degrees in the data structure FUZ_MD_INT (for 
FUZ_ATERM_STI) or FUZ_MD_REAL (for FUZ_ATERM_STR) in the elements 
term1 ... term9. The range at output for data type INT is 0 ... 10 000 and for data type 
REAL is 0 ... 1. The membership functions are defined via support points 
(expandable inputs S1 ... S9).
The function block works with a special simplification for the definition of the 
membership functions.
� Ramps for the first and last membership function
� only triangles for the membership functions between the first and the last
� the total of two membership degrees of two successive linguistic terms is always 

1 (10 000)
� the sum of all membership degrees of all linguistic terms for every input value X 

is always 1 (10 000)
The number of support points (S1 ... Sx) can be increased to a max. of 9 through 
vertical size alteration of the block frame. Additional support points cannot be 
projected.
The number of the calculated membership degrees corresponds to the number of 
membership functions and is stored in the data structure (element n). If less than 
nine membership functions are projected, then the remaining elements of the data 
structure (termx) are not changed. (e.g. for 4 support points there are 4 membership 
functions; their 4 membership degrees are on the elements term1 ... term4; term5 .. 
term9 are not changed.) This has the advantage that data structures which are 
imaged in the signal memory only take up as much memory location as they actually 
require.
The data types of all input values must be the same. There is a special function block 
available for the processing of each of the different data types.
Additional parameters EN and ENO can be projected.



FUZ_ATERM_STI, FUZ_ATERM_STR: Fuzzification of all terms (structure)

840 USE 504 00 October 2002 57

Description

Symbol Block description: 

Parameter 
description

FUZ_ATERM_STI, FUZ_ATERM_STR

FUZ_MD_INT,  FUZ_MD_REAL

FUZ_ATERM_*

FUZ_MD_***MDX***
S1***
S2***
::
S9***

* = STI, STR

*** = INT, REAL

Parameter Data type Meaning

X INT, REAL linguistic variable

S1 INT, REAL Support point S1

S2 INT, REAL Support point S2

: : :

S9 INT, REAL Support point S9

MD FUZ_MD_INT,  
FUZ_MD_REAL

Output Membership Degree (term1 ... term9)

Element Data type Meaning

n INT Number of terms

term1 INT, REAL Membership Degree (MD1)

: : :

term9 INT, REAL  Membership Degree (MD9)



FUZ_ATERM_STI, FUZ_ATERM_STR: Fuzzification of all terms (structure)

58 840 USE 504 00 October 2002

Detailed description

Parameter 
description and 
timing diagram

The parameter description and timing diagram for this block can be found in Detailed 
description, p. 52

Runtime errors

Runtime errors An error message results if
� the order of the support points is incorrect 

(E_EFB_INPUT_VALUE_OUT_OF_RANGE). The support points must be 
arranged in ascending order (S1 < S2 < S3 < ... < S9 ) or

� more than 9 support points were projected (E_EFB_TOO_MANY_INPUTS).



840 USE 504 00 October 2002 59

7
FUZ_MAX_***: Fuzzy Maximum

Overview

Introduction This chapter describes the block FUZ_MAX_***.

What's in this 
Chapter?

This chapter contains the following topics:

Topic Page

Brief Description 60

Description 60



FUZ_MAX_***: Fuzzy Maximum

60 840 USE 504 00 October 2002

Brief Description

Function 
description

The function recognizes the largest input value and issues it at the output.
The data types INT and REAL can be processed. The range of the inputs and the 
output is for data type INT 0 ... 10 000 and for data type REAL 0 ... 1.
The data types of all input values and that of the output value must be the same. 
There is a special function available for each of the different data types.
The number of inputs can be increased.
As additional parameter EN and ENO can be projected.

Description

Symbol Block description: 

Formula Block Formula:

Parameter 
description

Block parameter description:

FUZ_MAX_***

***IN1***
IN2***
::

INn*** *** = INT, REAL

OUT MAX 0 IN1 IN2 … INn,,,,{ }=

Parameter Data type Meaning

IN1 INT, REAL 1st Input value

IN2 INT, REAL 2nd Input value

: : :

INn INT, REAL n. Input value

OUT INT, REAL Maximum value



840 USE 504 00 October 2002 61

8
FUZ_MIN_***: Fuzzy Minimum

Overview

Introduction This chapter describes the block FUZ_MIN_***.

What's in this 
Chapter?

This chapter contains the following topics:

Topic Page

Brief Description 62

Description 62



FUZ_MIN_***: Fuzzy Minimum

62 840 USE 504 00 October 2002

Brief Description

Function 
description

The function recognizes the smallest input value and issues it at the output.
The data types INT and REAL can be processed. The range of the inputs and the 
output is for data type INT 0 ... 10 000 and for data type REAL 0 ... 1.
The data types of all input values and that of the output value must be the same. 
There is a special function available for each of the different data types.
The number of inputs can be increased.
Additional parameters EN and ENO can be projected.

Description

Symbol Block description: 

Formula Block Formula:

Parameter 
description

Block parameter description:

FUZ_MIN_***

***IN1***
IN2***
::
INn*** *** = INT, REAL

REAL: OUT MIN 1 IN1 IN2 … INn,,,,{ }=
INT: OUT MIN 10000 IN1 IN2 … INn,,,,{ }=

Parameter Data type Meaning

IN1 INT, REAL 1st Input value

IN2 INT, REAL 2nd  Input value

: : :

INn INT, REAL n. Input value

OUT INT, REAL Maximum value



840 USE 504 00 October 2002 63

9
FUZ_PROD_***: Fuzzy Product

Overview

Introduction This chapter describes the block FUZ_PROD_***.

What's in this 
Chapter?

This chapter contains the following topics:

Topic Page

Brief Description 64

Description 65

Detailed description 66



FUZ_PROD_***: Fuzzy Product

64 840 USE 504 00 October 2002

Brief Description

Function 
description

The function forms the product (output MD) of the membership degrees (expandable 
inputs MD1 ... MDx). In addition, the function (in the case of integer calculation) 
carries out a multiplication, taking into consideration the range of the membership 
degrees (0 ... 10 000). The range at the inputs and the output for the data type INT 
is 0 ... 10 000 and for data type REAL is 0 ... 1.
The number of inputs can be increased.
Additional parameters EN and ENO can be projected.



FUZ_PROD_***: Fuzzy Product

840 USE 504 00 October 2002 65

Description

Symbol Block description: 

Parameter 
description

Block parameter description:

FUZ_PROD_***

***MDMD1***
MD2***
::
MDx***

*** = INT, REAL

Parameter Data type Meaning

MD1 INT, REAL 1st Membership Degree

MD2 INT, REAL 2nd Membership Degree

: : :

MDx INT, REAL x. Membership Degree

MD INT, REAL Output product (fuzzy)



FUZ_PROD_***: Fuzzy Product

66 840 USE 504 00 October 2002

Detailed description

Function 
description

In real arithmetic, the formation of the product is achieved through simple 
multiplication.

In integer arithmetic, a correction must be carried out through the rescaling of the 
range:

Rule Example

(0 ... 1) * (0 ... 1) = (0 ... 1) 0.3 * 0.6 = 0.18

Rule Example

(0 ... 10 000) * (0 ... 10 000) = (0 ... 10 000) 3 000 * 6 000 = 1 800 (!)



840 USE 504 00 October 2002 67

10
FUZ_STERM_***: Fuzzification of 
one term

Overview

Introduction This chapter describes the block FUZ_STERM_***.

What's in this 
Chapter?

This chapter contains the following topics:

Topic Page

Brief Description 68

Description 69

Detailed description 70

Runtime errors 74



FUZ_STERM_***: Fuzzification of one term

68 840 USE 504 00 October 2002

Brief Description

Function 
description

The function fuzzifies an individual term of the linguistic variables (input X) and 
issues its membership degree to the output MD. The range of the output for data 
type INT is 0 ... 10 000 and for data type REAL is 0 ... 1. The membership function 
is determined by means of a maximum of 4 support points (S1 ... S4). Only 2 to 4 
inputs (support points) are possible. For 2 support points the function realizes a 
ramp function. For 3 support points a triangular function and for 4 support points a 
trapezoidal function. Various function behaviors are possible through different 
initialization of the support points.

The data types of all input values and that of the output value must be the same. 
There is a special function block available for the processing of each of the different 
data types.
The number of the inputs can be increased to a max. of 4 through vertical size 
alteration of the block frame.
Additional parameters EN and ENO can be projected.

Note: For initialization with 4 support points, the processing of the membership 
function corresponds to SFB 361 FUZZYFY of AKF125.



FUZ_STERM_***: Fuzzification of one term

840 USE 504 00 October 2002 69

Description

Symbol Block description: 

Parameter 
description

Block parameter description:

FUZ_STERM_***

***MDX***
S1***

S2***
S3***
S4*** *** = INT, REAL

Parameter Data type Meaning

X INT, REAL linguistic variable

S1 INT, REAL Support point S1

S2 INT, REAL Support point S2

: : :

S4 INT, REAL Support point S4

MD INT, REAL Output Membership Degree



FUZ_STERM_***: Fuzzification of one term

70 840 USE 504 00 October 2002

Detailed description

Parameter 
description

With the function block FUZ_STERM one term of a linguistic variable is fuzzified. 
The membership function can be defined with up to 4 support points (S1 ... S4). The 
support points must be given in ascending order. The standard functions can be 
found in the following table, for exceptions see timing diagram. Forms that deviate 
from this are possible through a corresponding inversion of the support points order. 
The possible sequences of functions are described in the following overview.
Standard functions

Membership function Number of inputs Condition

Falling ramp 2 S2<S1

Rising ramp 2 S1<S2

Triangle 3 S1<S2<S3

Trapezoid 4 S1<S2<S3<S4



FUZ_STERM_***: Fuzzification of one term

840 USE 504 00 October 2002 71

Timing diagram Function block with 2 inputs (S1 .... S2)
Falling ramp: S2 < S1  

Rising ramp: S1 < S2 

Function block with 3 inputs (S1 .... S3)
Triangle: S1 < S2 < S3 

S2 S1
0

1

µ

X

(MD)

Standard function

S2S1
0

1

µ

X

(MD)

Exception

S2S1
0

1

µ

X

(MD)

S3

Standard function



FUZ_STERM_***: Fuzzification of one term

72 840 USE 504 00 October 2002

Falling ramp: S2 < S3 and S1 > S2 

Rising ramp: S1 < S2 and S3 < S2 

Function block with 4 inputs (S1 .... S4)
Trapezoid: S1 < S2 < S3 < S4 

S2 S3
0

1

µ

X

(MD)

Exception

S2S1
0

1

µ

X

(MD)

Exception

S3S1
0

1

µ

X

(MD)

S4S2

Standard function



FUZ_STERM_***: Fuzzification of one term

840 USE 504 00 October 2002 73

Triangle: S1 < S2 < S4 and S3 ≤ S2 

Falling ramp: S2 ≤ S3 < S4 and S1 > S2 

Rising ramp: S1 < S2 ≤ S3 and S4 < S3 

S2S1
0

1

µ

X

(MD)

S4

Exception

S3 S4
0

1

µ

X

(MD)

Exception

S2S1
0

1

µ

X

(MD)

Exception



FUZ_STERM_***: Fuzzification of one term

74 840 USE 504 00 October 2002

Rectangle: S1 = S2 < S3 = S4 

Singleton: S1 = S2 = S3 = S4 

Runtime errors

Runtime errors An error message results when
� the number of support points > is 4 (E_EFB_TO MANY_INPUTS).

S1 = S2 S3 = S4
0

1

µ

X

(MD)

Exception

S1 = S2 = S3 = S4
0

1

µ

X

(MD)

Exception



840 USE 504 00 October 2002 75

11
FUZ_SUM_***: Fuzzy Sum

Overview

Introduction This chapter describes the block FUZ_SUM_***.

What's in this 
Chapter?

This chapter contains the following topics:

Topic Page

Brief Description 76

Description 77



FUZ_SUM_***: Fuzzy Sum

76 840 USE 504 00 October 2002

Brief Description

Function 
description

The function forms the limited sum (output MD) of the membership degrees (inputs 
MD1 ... MDx). The range of the inputs and the output for data type INT is 0 ... 10 000 
and for data type REAL is 0 ... 1.
The number of inputs can be increased.
The data types of all input values and that of the output value must be the same. 
There is a special function block available for the processing of each of the different 
data types.
As additional parameter EN and ENO can be projected.



FUZ_SUM_***: Fuzzy Sum

840 USE 504 00 October 2002 77

Description

Symbol Block description: 

Formula Block Formula:

Parameter 
description

Description of the block parameter:

FUZ_SUM_***

***MDMD1***
MD2***

::
MDx***

*** = INT, REAL

REAL: MD = Min 1 MDi

i 1=

n

�,

� �
� �
� �
� �
� �

INT: MD = Min 10000 MDi

i 1=

n

�,

� �
� �
� �
� �
� �

Parameter Data type Meaning

MD1 INT, REAL 1st Membership Degree

MD2 INT, REAL 2nd Membership Degree

: : :

MDx INT, REAL x. Membership Degree

MD INT, REAL Output limited sum



FUZ_SUM_***: Fuzzy Sum

78 840 USE 504 00 October 2002



840 USE 504 00 October 2002 79

Glossary

active window The window, which is currently selected. Only one window can be active at any one 
given time. When a window is active, the heading changes color, in order to 
distinguish it from other windows. Unselected windows are inactive.

Actual parameter Currently connected Input/Output parameters.

Addresses (Direct) addresses are memory areas on the PLC. These are found in the State RAM 
and can be assigned input/output modules.
The display/input of direct addresses is possible in the following formats:
� Standard format (400001)
� Separator format (4:00001)
� Compact format (4:1)
� IEC format (QW1)

ANL_IN ANL_IN stands for the data type "Analog Input" and is used for processing analog 
values. The 3x References of the configured analog input module, which is specified 
in the I/O component list is automatically assigned the data type and should 
therefore only be occupied by Unlocated variables.

ANL_OUT ANL_OUT stands for the data type "Analog Output" and is used for processing 
analog values. The 4x-References of the configured analog output module, which is 
specified in the I/O component list is automatically assigned the data type and 
should therefore only be occupied by Unlocated variables.

ANY In the existing version "ANY" covers the elementary data types BOOL, BYTE, DINT, 
INT, REAL, UDINT, UINT, TIME and WORD and therefore derived data types.

A



Glossary

80 840 USE 504 00 October 2002

ANY_BIT In the existing version, "ANY_BIT" covers the data types BOOL, BYTE and WORD.

ANY_ELEM In the existing version "ANY_ELEM" covers the elementary data types BOOL, 
BYTE, DINT, INT, REAL, UDINT, UINT, TIME and WORD.

ANY_INT In the existing version, "ANY_INT" covers the data types DINT, INT, UDINT and 
UINT.

ANY_NUM In the existing version, "ANY_NUM" covers the data types DINT, INT, REAL, UDINT 
and UINT.

ANY_REAL In the existing version "ANY_REAL" covers the data type REAL.

Application 
window

The window, which contains the working area, the menu bar and the tool bar for the 
application. The name of the application appears in the heading. An application 
window can contain several document windows. In Concept the application window 
corresponds to a Project.

Argument Synonymous with Actual parameters.

ASCII mode American Standard Code for Information Interchange. The ASCII mode is used for 
communication with various host devices. ASCII works with 7 data bits.

Atrium The PC based controller is located on a standard AT board, and can be operated 
within a host computer in an ISA bus slot. The module occupies a motherboard 
(requires SA85 driver) with two slots for PC104 daughter boards. From this, a 
PC104 daughter board is used as a CPU and the others for INTERBUS control.

Back up data file 
(Concept EFB)

The back up file is a copy of the last  Source files. The name of this back up file is 
"backup??.c" (it is accepted that there are no more than 100 copies of the source 
files. The first back up file is called "backup00.c". If changes have been made on the 
Definition file, which do not create any changes to the interface in the EFB, there is 
no need to create a back up file by editing the source files (Objects → Source). If a 
back up file can be assigned, the name of the source file can be given.

B



Glossary

840 USE 504 00 October 2002 81

Base 16 literals Base 16 literals function as the input of whole number values in the hexadecimal 
system. The base must be denoted by the prefix 16#. The values may not be 
preceded by signs (+/-). Single underline signs ( _ ) between figures are not 
significant.

Example 
16#F_F or 16#FF (decimal 255)
16#E_0 or 16#E0 (decimal 224)

Base 8 literal Base 8 literals function as the input of whole number values in the octal system. The 
base must be denoted by the prefix 3.63kg. The values may not be preceded by 
signs (+/-). Single underline signs ( _ ) between figures are not significant.

Example 
8#3_1111 or 8#377 (decimal 255) 
8#34_1111 or 8#340 (decimal 224) 

Basis 2 literals Base 2 literals function as the input of whole number values in the dual system. The 
base must be denoted by the prefix 0.91kg. The values may not be preceded by 
signs (+/-). Single underline signs ( _ ) between figures are not significant.

Example 
2#1111_1111 or 2#11111111 (decimal 255) 
2#1110_1111 or 2#11100000 (decimal 224) 

Binary 
connections

Connections between outputs and inputs of FFBs of data type BOOL.

Bit sequence A data element, which is made up from one or more bits.

BOOL BOOL stands for the data type "Boolean". The length of the data elements is 1 bit 
(in the memory contained in 1 byte). The range of values for variables of this type is 
0 (FALSE) and 1 (TRUE).

Bridge A bridge serves to connect networks. It enables communication between nodes on 
the two networks. Each network has its own token rotation sequence – the token is 
not deployed via bridges.

BYTE BYTE stands for the data type "Bit sequence 8". The input appears as Base 2 literal, 
Base 8 literal or Base 1 16 literal. The length of the data element is 8 bit. A numerical 
range of values cannot be assigned to this data type.



Glossary

82 840 USE 504 00 October 2002

Cache The cache is a temporary memory for cut or copied objects. These objects can be 
inserted into sections. The old content in the cache is overwritten for each new Cut 
or Copy.

Call up The operation, by which the execution of an operation is initiated.

Coil A coil is a LD element, which transfers (without alteration) the status of the horizontal 
link on the left side to the horizontal link on the right side. In this way, the status is 
saved in the associated Variable/ direct address.

Compact format 
(4:1)

The first figure (the Reference) is separated from the following address with a colon 
(:), where the leading zero are not entered in the address.

Connection A check or flow of data connection between graphic objects (e.g. steps in the SFC 
editor, Function blocks in the FBD editor) within a section, is graphically shown as a 
line.

Constants Constants are Unlocated variables, which are assigned a value that cannot be 
altered from the program logic (write protected).

Contact A contact is a LD element, which transfers a horizontal connection status onto the 
right side. This status is from the Boolean AND- operation of the horizontal 
connection status on the left side with the status of the associated Variables/direct 
Address. A contact does not alter the value of the associated variables/direct 
address.

Data transfer 
settings

Settings, which determine how information from the programming device is 
transferred to the PLC.

C

D



Glossary

840 USE 504 00 October 2002 83

Data types The overview shows the hierarchy of data types, as they are used with inputs and 
outputs of Functions and Function blocks. Generic data types are denoted by the 
prefix "ANY".
� ANY_ELEM

� ANY_NUM
ANY_REAL (REAL)
ANY_INT (DINT, INT, UDINT, UINT)

� ANY_BIT (BOOL, BYTE, WORD)
� TIME

� System data types (IEC extensions)
� Derived (from "ANY" data types)

DCP I/O station With a Distributed Control Processor (D908) a remote network can be set up with a 
parent PLC. When using a D908 with remote PLC, the parent PLC views the remote 
PLC as a remote I/O station. The D908 and the remote PLC communicate via the 
system bus, which results in high performance, with minimum effect on the cycle 
time. The data exchange between the D908 and the parent PLC takes place at 1.5 
Megabits per second via the remote I/O bus. A parent PLC can support up to 31 
(Address 2-32) D908 processors.

DDE (Dynamic 
Data Exchange)

The DDE interface enables a dynamic data exchange between two programs under 
Windows. The DDE interface can be used in the extended monitor to call up its own 
display applications. With this interface, the user (i.e. the DDE client) can not only 
read data from the extended monitor (DDE server), but also write data onto the PLC 
via the server. Data can therefore be altered directly in the PLC, while it monitors 
and analyzes the results. When using this interface, the user is able to make their 
own "Graphic-Tool", "Face Plate" or "Tuning Tool", and integrate this into the 
system. The tools can be written in any DDE supporting language, e.g. Visual Basic 
and Visual-C++. The tools are called up, when the one of the buttons in the dialog 
box extended monitor uses Concept Graphic Tool: Signals of a projection can be 
displayed as timing diagrams via the DDE connection between Concept and 
Concept Graphic Tool.

Decentral 
Network (DIO)

A remote programming in Modbus Plus network enables maximum data transfer 
performance and no specific requests on the links. The programming of a remote 
net is easy. To set up the net, no additional ladder diagram logic is needed. Via 
corresponding entries into the Peer Cop processor all data transfer requests are 
met.

Declaration Mechanism for determining the definition of a Language element. A declaration 
normally covers the connection of an Identifier with a language element and the 
assignment of attributes such as Data types and algorithms.



Glossary

84 840 USE 504 00 October 2002

Definition data 
file (Concept 
EFB)

The definition file contains general descriptive information about the selected FFB 
and its formal parameters.

Derived data type Derived data types are types of data, which are derived from the Elementary data 
types and/or other derived data types. The definition of the derived data types 
appears in the data type editor in Concept.
Distinctions are made between global data types and local data types.

Derived Function 
Block (DFB)

A derived function block represents the Call up of a derived function block type. 
Details of the graphic form of call up can be found in the definition " Function block 
(Item)". Contrary to calling up EFB types, calling up DFB types is denoted by double 
vertical lines on the left and right side of the rectangular block symbol.
The body of a derived function block type is designed using FBD language, but only 
in the current version of the programming system. Other IEC languages cannot yet 
be used for defining DFB types, nor can derived functions be defined in the current 
version.
Distinctions are made between local and global DFBs.

DINT DINT stands for the data type "double integer". The input appears as  Integer literal, 
Base 2 literal, Base 8 literal or Base 16 literal. The length of the data element is 32 
bit. The range of values for variables of this data type is from –2 exp (31) to 2 exp 
(31) –1.

Direct display A method of displaying variables in the PLC program, from which the assignment of 
configured memory can be directly and indirectly derived from the physical memory.

Document 
window

A window within an Application window. Several document windows can be opened 
at the same time in an application window. However, only one document window 
can be active. Document windows in Concept are, for example, sections, the 
message window, the reference data editor and the PLC configuration.

Dummy An empty data file, which consists of a text header with general file information, i.e. 
author, date of creation, EFB identifier etc. The user must complete this dummy file 
with additional entries.

DX Zoom This property enables connection to a programming object to observe and, if 
necessary, change its data value.



Glossary

840 USE 504 00 October 2002 85

Elementary 
functions/
function blocks 
(EFB)

Identifier for Functions or Function blocks, whose type definitions are not formulated 
in one of the IEC languages, i.e. whose bodies, for example, cannot be modified with 
the DFB Editor (Concept-DFB). EFB types are programmed in "C" and mounted via 
Libraries in precompiled form.

EN / ENO (Enable 
/ Error display)

If the value of EN is "0" when the FFB is called up, the algorithms defined by the FFB 
are not executed and all outputs contain the previous value. The value of ENO is 
automatically set to "0" in this case. If the value of EN is "1" when the FFB is called 
up, the algorithms defined by the FFB are executed. After the error free execution of 
the algorithms, the ENO value is automatically set to "1". If an error occurs during 
the execution of the algorithm, ENO is automatically set to "0". The output behavior 
of the FFB depends whether the FFBs are called up without EN/ENO or with EN=1. 
If the EN/ENO display is enabled, the EN input must be active. Otherwise, the FFB 
is not executed. The projection of EN and ENO is enabled/disabled in the block 
properties dialog box. The dialog box is called up via the menu commands Objects 
→ Properties... or via a double click on the FFB.

Error When processing a FFB or a Step an error is detected (e.g. unauthorized input value 
or a time error), an error message appears, which can be viewed with the menu 
command Online → Event display... . With FFBs the ENO output is set to "0".

Evaluation The process, by which a value for a Function or for the outputs of a Function block 
during the Program execution is transmitted.

Expression Expressions consist of operators and operands.

FFB (functions/
function blocks)

Collective term for EFB (elementary functions/function blocks) and DFB (derived 
function blocks)

Field variables Variables, one of which is assigned, with the assistance of the key word ARRAY 
(field), a defined Derived data type. A field is a collection of data elements of the 
same Data type.

FIR filter Finite Impulse Response Filter

E

F



Glossary

86 840 USE 504 00 October 2002

Formal 
parameters

Input/Output parameters, which are used within the logic of a FFB and led out of the 
FFB as inputs/outputs.

Function (FUNC) A Program organization unit, which exactly supplies a data element when executing. 
A function has no internal status information. Multiple call ups of the same function 
with the same input parameter values always supply the same output values.
Details of the graphic form of function call up can be found in the definition " Function 
block (Item)". In contrast to the call up of function blocks, the function call ups only 
have one unnamed output, whose name is the name of the function itself. In FBD 
each call up is denoted by a unique number over the graphic block; this number is 
automatically generated and cannot be altered.

Function block 
(item) (FB)

A function block is a Program organization unit, which correspondingly calculates 
the functionality values, defined in the function block type description, for the output 
and internal variables, when it is called up as a certain item. All output values and 
internal variables of a certain function block item remain as a call up of the function 
block until the next. Multiple call up of the same function block item with the same 
arguments (Input parameter values) supply generally supply the same output 
value(s).
Each function block item is displayed graphically by a rectangular block symbol. The 
name of the function block type is located on the top center within the rectangle. The 
name of the function block item is located also at the top, but on the outside of the 
rectangle. An instance is automatically generated when creating, which can 
however be altered manually, if required. Inputs are displayed on the left side and 
outputs on the right of the block. The names of the formal input/output parameters 
are displayed within the rectangle in the corresponding places.
The above description of the graphic presentation is principally applicable to 
Function call ups and to DFB call ups. Differences are described in the 
corresponding definitions.

Function block 
dialog (FBD)

One or more sections, which contain graphically displayed networks from Functions, 
Function blocks and Connections.

Function block 
type

A language element, consisting of: 1. the definition of a data structure, subdivided 
into input, output and internal variables, 2. A set of operations, which is used with 
the elements of the data structure, when a function block type instance is called up. 
This set of operations can be formulated either in one of the IEC languages (DFB 
type) or in "C" (EFB type). A function block type can be instanced (called up) several 
times.



Glossary

840 USE 504 00 October 2002 87

Function counter The function counter serves as a unique identifier for the function in a  Program or 
DFB. The function counter cannot be edited and is automatically assigned. The 
function counter always has the structure: .n.m

n = Section number (number running)
m = Number of the FFB object in the section (number running)

Generic data 
type

A Data type, which stands in for several other data types.

Generic literal If the Data type of a literal is not relevant, simply enter the value for the literal. In this 
case Concept automatically assigns the literal to a suitable data type.

Global derived 
data types

Global Derived data types are available in every Concept project and are contained 
in the DFB directory directly under the Concept directory.

Global DFBs Global DFBs are available in every Concept project and are contained in the DFB 
directory directly under the Concept directory.

Global macros Global Macros are available in every Concept project and are contained in the DFB 
directory directly under the Concept directory.

Groups (EFBs) Some EFB libraries (e.g. the IEC library) are subdivided into groups. This facilitates 
the search for FFBs, especially in extensive libraries.

I/O component 
list

The I/O and expert assemblies of the various CPUs are configured in the I/O 
component list.

IEC 61131-3 International norm: Programmable controllers – part 3: Programming languages.

G

I



Glossary

88 840 USE 504 00 October 2002

IEC format (QW1) In the place of the address stands an IEC identifier, followed by a five figure address:
� %0x12345 = %Q12345
� %1x12345 = %I12345
� %3x12345 = %IW12345
� %4x12345 = %QW12345

IEC name 
conventions 
(identifier)

An identifier is a sequence of letters, figures, and underscores, which must start with 
a letter or underscores (e.g. name of a function block type, of an item or section). 
Letters from national sets of characters (e.g.  ö,ü, é, õ) can be used, taken from 
project and DFB names.
Underscores are significant in identifiers; e.g. "A_BCD" and "AB_CD" are 
interpreted as different identifiers. Several leading and multiple underscores are not 
authorized consecutively.
Identifiers are not permitted to contain space characters. Upper and/or lower case 
is not significant; e.g. "ABCD" and "abcd" are interpreted as the same identifier.
Identifiers are not permitted to be Key words.

IIR filter Infinite Impulse Response Filter

Initial step 
(starting step)

The first step in a chain. In each chain, an initial step must be defined. The chain is 
started with the initial step when first called up.

Initial value The allocated value of one of the variables when starting the program. The value 
assignment appears in the form of a  Literal.

Input bits (1x 
references)

The 1/0 status of input bits is controlled via the process data, which reaches the CPU 
from an entry device.

Input parameters 
(Input)

When calling up a FFB the associated  Argument is transferred.

Input words (3x 
references)

An input word contains information, which come from an external source and are 
represented by a 16 bit figure. A 3x register can also contain 16 sequential input bits, 
which were read into the register in binary or BCD (binary coded decimal) format. 
Note: The x, which comes after the first figure of the reference type, represents a 
five figure storage location in the user data store, i.e. if the reference 300201 
signifies a 16 bit input word in the address 201 of the State RAM.

Instantiation The generation of an Item.

Note: The x, which comes after the first figure of the reference type, represents a 
five figure storage location in the application data store, i.e. if the reference 100201 
signifies an input bit in the address 201 of the State RAM.



Glossary

840 USE 504 00 October 2002 89

Instruction (IL) Instructions are "commands" of the IL programming language. Each operation 
begins on a new line and is succeeded by an operator (with modifier if needed) and, 
if necessary for each relevant operation, by one or more operands. If several 
operands are used, they are separated by commas. A tag can stand before the 
instruction, which is followed by a colon. The commentary must, if available, be the 
last element in the line.

Instruction 
(LL984)

When programming electric controllers, the task of implementing operational coded 
instructions in the form of picture objects, which are divided into recognizable 
contact forms, must be executed. The designed program objects are, on the user 
level, converted to computer useable OP codes during the loading process. The OP 
codes are deciphered in the CPU and processed by the controller’s firmware 
functions so that the desired controller is implemented.

Instruction list 
(IL)

IL is a text language according to IEC 1131, in which operations, e.g. conditional/
unconditional call up of Function blocks and Functions, conditional/unconditional 
jumps etc. are displayed through instructions.

INT INT stands for the data type "whole number". The input appears as  Integer literal, 
Base 2 literal, Base 8 literal or Base 16 literal. The length of the data element is 16 
bit. The range of values for variables of this data type is from –2 exp (15) to 2 exp 
(15) –1.

Integer literals Integer literals function as the input of whole number values in the decimal system. 
The values may be preceded by the signs (+/-). Single underline signs ( _ ) between 
figures are not significant.

Example 
-12, 0, 123_456, +986

INTERBUS (PCP) To use the INTERBUS PCP channel and the INTERBUS process data 
preprocessing (PDP), the new I/O station type INTERBUS (PCP) is led into the 
Concept configurator. This I/O station type is assigned fixed to the INTERBUS 
connection module 180-CRP-660-01.
The 180-CRP-660-01 differs from the 180-CRP-660-00 only by a clearly larger I/O 
area in the state RAM of the controller.



Glossary

90 840 USE 504 00 October 2002

Item name An Identifier, which belongs to a certain Function block item. The item name serves 
as a unique identifier for the function block in a program organization unit. The item 
name is automatically generated, but can be edited. The item name must be unique 
throughout the Program organization unit, and no distinction is made between 
upper/lower case. If the given name already exists, a warning is given and another 
name must be selected. The item name must conform to the IEC name conventions, 
otherwise an error message appears. The automatically generated instance name 
always has the structure: FBI_n_m

FBI = Function block item
n = Section number (number running)
m = Number of the FFB object in the section (number running)

Jump Element of the SFC language. Jumps are used to jump over areas of the chain.

Key words Key words are unique combinations of figures, which are used as special syntactic 
elements, as is defined in appendix B of the IEC 1131-3. All key words, which are 
used in the IEC 1131-3 and in Concept, are listed in appendix C of the IEC 1131-3. 
These listed keywords cannot be used for any other purpose, i.e. not as variable 
names, section names, item names etc.

Ladder Diagram 
(LD)

Ladder Diagram is a graphic programming language according to  IEC1131, which 
optically orientates itself to the "rung" of a relay ladder diagram.

J

K

L



Glossary

840 USE 504 00 October 2002 91

Ladder Logic 984 
(LL)

In the terms Ladder Logic and Ladder Diagram, the word Ladder refers to execution. 
In contrast to a diagram, a ladder logic is used by engineers to draw up a circuit (with 
assistance from electrical symbols),which should chart the cycle of events and not 
the existing wires, which connect the parts together. A usual user interface for 
controlling the action by automated devices permits ladder logic interfaces, so that 
when implementing a control system, engineers do not have to learn any new 
programming languages, with which they are not conversant.
The structure of the actual ladder logic enables electrical elements to be linked in a 
way that generates a control output, which is dependant upon a configured flow of 
power through the electrical objects used, which displays the previously demanded 
condition of a physical electric appliance.
In simple form, the user interface is one of the video displays used by the PLC 
programming application, which establishes a vertical and horizontal grid, in which 
the programming objects are arranged. The logic is powered from the left side of the 
grid, and by connecting activated objects the electricity flows from left to right.

Landscape 
format

Landscape format means that the page is wider than it is long when looking at the 
printed text.

Language 
element

Each basic element in one of the IEC programming languages, e.g. a Step in  SFC, 
a Function block item in FBD or the Start value of a variable.

Library Collection of software objects, which are provided for reuse when programming new 
projects, or even when building new libraries. Examples are the Elementary function 
block types libraries.
EFB libraries can be subdivided into Groups.

Literals Literals serve to directly supply values to inputs of FFBs, transition conditions etc. 
These values cannot be overwritten by the program logic (write protected). In this 
way, generic and standardized literals are differentiated.
Furthermore literals serve to assign a Constant a value or a Variable an Initial value. 
The input appears as Base 2 literal, Base 8 literal, Base 16 literal, Integer literal, Real 
literal or Real literal with exponent.

Local derived 
data types

Local derived data types are only available in a single Concept project and its local 
DFBs and are contained in the DFB directory under the project directory.

Local DFBs Local DFBs are only available in a single Concept project and are contained in the 
DFB directory under the project directory.

Local link The local network link is the network, which links the local nodes with other nodes 
either directly or via a bus amplifier.

Local macros Local Macros are only available in a single Concept project and are contained in the 
DFB directory under the project directory.



Glossary

92 840 USE 504 00 October 2002

Local network 
nodes

The local node is the one, which is projected evenly.

Located variable Located variables are assigned a state RAM address (reference addresses 0x,1x, 
3x, 4x). The value of these variables is saved in the state RAM and can be altered 
online with the reference data editor. These variables can be addressed by symbolic 
names or the reference addresses.

Collective PLC inputs and outputs are connected to the state RAM. The program 
access to the peripheral signals, which are connected to the PLC, appears only via 
located variables. PLC access from external sides via Modbus or Modbus plus 
interfaces, i.e. from visualizing systems, are likewise possible via located variables.

Macro Macros are created with help from the software Concept DFB.
Macros function to duplicate frequently used sections and networks (including the 
logic, variables, and variable declaration).
Distinctions are made between local and global macros.

Macros have the following properties:
� Macros can only be created in the programming languages FBD and LD.
� Macros only contain one single section.
� Macros can contain any complex section.
� From a program technical point of view, there is no differentiation between an 

instanced macro, i.e. a macro inserted into a section, and a conventionally 
created macro.

� Calling up DFBs in a macro
� Variable declaration
� Use of macro-own data structures
� Automatic acceptance of the variables declared in the macro
� Initial value for variables
� Multiple instancing of a macro in the whole program with different variables
� The section name, the variable name and the data structure name can contain up 

to 10 different exchange markings (@0 to @9).

MMI Man Machine Interface

Multi element 
variables

Variables, one of which is assigned a  Derived data type defined with STRUCT or 
ARRAY.
Distinctions are made between Field variables and structured variables.

M



Glossary

840 USE 504 00 October 2002 93

Network A network is the connection of devices to a common data path, which communicate 
with each other via a common protocol.

Network node A node is a device with an address (164) on the Modbus Plus network.

Node address The node address serves a unique identifier for the network in the routing path. The 
address is set directly on the node, e.g. with a rotary switch on the back of the 
module.

Operand An operand is a Literal, a Variable, a Function call up or an Expression.

Operator An operator is a symbol for an arithmetic or Boolean operation to be executed.

Output 
parameters 
(Output)

A parameter, with which the result(s) of the Evaluation of a FFB are returned.

Output/discretes 
(0x references)

An output/marker bit can be used to control real output data via an output unit of the 
control system, or to define one or more outputs in the state RAM. Note: The x, 
which comes after the first figure of the reference type, represents a five figure 
storage location in the application data store, i.e. if the reference 000201 signifies 
an output or marker bit in the address 201 of the State RAM.

Output/marker 
words (4x 
references)

An output/marker word can be used to save numerical data (binary or decimal) in 
the State RAM, or also to send data from the CPU to an output unit in the control 
system. Note: The x, which comes after the first figure of the reference type, 
represents a five figure storage location in the application data store, i.e. if the 
reference 400201 signifies a 16 bit output or marker word in the address 201 of the 
State RAM.

N

O



Glossary

94 840 USE 504 00 October 2002

Peer processor The peer processor processes the token run and the flow of data between the 
Modbus Plus network and the PLC application logic.

PLC Programmable controller

Program The uppermost Program organization unit. A program is closed and loaded onto a 
single PLC.

Program cycle A program cycle consists of reading in the inputs, processing the program logic and 
the output of the outputs.

Program 
organization unit

A Function, a Function block, or a Program. This term can refer to either a Type or 
an  Item.

Programming 
device

Hardware and software, which supports programming, configuring, testing, 
implementing and error searching in PLC applications as well as in remote system 
applications, to enable source documentation and archiving. The programming 
device could also be used for process visualization.

Programming 
redundancy 
system (Hot 
Standby)

A redundancy system consists of two identically configured PLC devices, which 
communicate with each other via redundancy processors. In the case of the primary 
PLC failing, the secondary PLC takes over the control checks. Under normal 
conditions the secondary PLC does not take over any controlling functions, but 
instead checks the status information, to detect mistakes.

Project General identification of the uppermost level of a software tree structure, which 
specifies the parent project name of a PLC application. After specifying the project 
name, the system configuration and control program can be saved under this name. 
All data, which results during the creation of the configuration and the program, 
belongs to this parent project for this special automation.
General identification for the complete set of programming and configuring 
information in the Project data bank, which displays the source code that describes 
the automation of a system.

Project data bank The data bank in the Programming device, which contains the projection information 
for a Project.

P



Glossary

840 USE 504 00 October 2002 95

Prototype data 
file (Concept 
EFB)

The prototype data file contains all prototypes of the assigned functions. Further, if 
available, a type definition of the internal

REAL REAL stands for the data type "real". The input appears as Real literal or as Real 
literal with exponent. The length of the data element is 32 bit. The value range for 
variables of this data type reaches from 8.43E-37 to 3.36E+38.

Real literal Real literals function as the input of real values in the decimal system. Real literals 
are denoted by the input of the decimal point. The values may be preceded by the 
signs (+/-). Single underline signs ( _ ) between figures are not significant.

Example 
-12.0, 0.0, +0.456, 3.14159_26

Real literal with 
exponent

Real literals with exponent function as the input of real values in the decimal system. 
Real literals with exponent are denoted by the input of the decimal point. The 
exponent sets the key potency, by which the preceding number is multiplied to get 
to the value to be displayed. The basis may be preceded by a negative sign (-). The 
exponent may be preceded by a positive or negative sign (+/-). Single underline 
signs ( _ ) between figures are not significant. (Only between numbers, not before 
or after the decimal poiont and not before or after "E", "E+" or "E-") 

Example 
-1.34E-12 or -1.34e-12 
1.0E+6 or 1.0e+6
1.234E6 or 1.234e6

R

Note: Depending on the mathematic processor type of the CPU, various areas 
within this valid value range cannot be represented. This is valid for values nearing 
ZERO and for values nearing INFINITY. In these cases, a number value is not 
shown in animation, instead NAN (Not A Number) oder INF (INFinite).



Glossary

96 840 USE 504 00 October 2002

Reference Each direct address is a reference, which starts with an ID, specifying whether it 
concerns an input or an output and whether it concerns a bit or a word. References, 
which start with the code 6, display the register in the extended memory of the state 
RAM. 
0x area = Discrete outputs 
1x area = Input bits 
3x area = Input words 
4x area = Output bits/Marker words 
6x area = Register in the extended memory

Register in the 
extended 
memory (6x 
reference)

6x references are marker words in the extended memory of the PLC. Only LL984 
user programs and CPU 213 04 or CPU 424 02 can be used.

RIO (Remote I/O) Remote I/O provides a physical location of the I/O coordinate setting device in 
relation to the processor to be controlled. Remote inputs/outputs are connected to 
the consumer control via a wired communication cable.

RP (PROFIBUS) RP = Remote Peripheral

RTU mode Remote Terminal Unit
The RTU mode is used for communication between the PLC and an IBM compatible 
personal computer. RTU works with 8 data bits.

Rum-time error Error, which occurs during program processing on the PLC, with SFC objects (i.e. 
steps) or FFBs. These are, for example, over-runs of value ranges with figures, or 
time errors with steps.

SA85 module The SA85 module is a Modbus Plus adapter for an IBM-AT or compatible computer.

Note: The x, which comes after the first figure of each reference type, represents 
a five figure storage location in the application data store, i.e. if the reference 
400201 signifies a 16 bit output or marker word in the address 201 of the State 
RAM.

S



Glossary

840 USE 504 00 October 2002 97

Section A section can be used, for example, to describe the functioning method of a 
technological unit, such as a motor.
A Program or DFB consist of one or more sections. Sections can be programmed 
with the IEC programming languages FBD and SFC. Only one of the named 
programming languages can be used within a section.
Each section has its own  Document window in Concept. For reasons of clarity, it is 
recommended to subdivide a very large section into several small ones. The scroll 
bar serves to assist scrolling in a section.

Separator format 
(4:00001)

The first figure (the Reference) is separated from the ensuing five figure address by 
a colon (:).

Sequence 
language (SFC)

The SFC Language elements enable the subdivision of a PLC program organiza-
tional unit in a number of Steps and Transitions, which are connected horizontally 
by aligned Connections. A number of actions belong to each step, and a transition 
condition is linked to a transition.

Serial ports With serial ports (COM) the information is transferred bit by bit.

Source code data 
file (Concept 
EFB)

The source code data file is a usual C++ source file. After execution of the menu 
command Library → Generate data files this file contains an EFB code framework, 
in which a specific code must be entered for the selected EFB. To do this, click on 
the menu command Objects → Source.

Standard format 
(400001)

The five figure address is located directly after the first figure (the  reference).

Standardized 
literals

If the data type for the literal is to be automatically determined, use the following 
construction: ’Data type name’#’Literal value’.

Example 
INT#15 (Data type: Integer, value: 15), 
BYTE#00001111 (data type: Byte, value: 00001111) 
REAL#23.0 (Data type: Real, value: 23.0)

For the assignment of REAL data types, there is also the possibility to enter the 
value in the following way: 23.0. 
Entering a comma will automatically assign the data type REAL.

State RAM The state RAM is the storage for all sizes, which are addressed in the user program 
via References (Direct display). For example, input bits, discretes, input words, and 
discrete words are located in the state RAM.



Glossary

98 840 USE 504 00 October 2002

Statement (ST) Instructions are "commands" of the ST programming language. Instructions must be 
terminated with semicolons. Several instructions (separated by semi-colons) can 
occupy the same line.

Status bits There is a status bit for every node with a global input or specific input/output of Peer 
Cop data. If a defined group of data was successfully transferred within the set time 
out, the corresponding status bit is set to 1. Alternatively, this bit is set to 0 and all 
data belonging to this group (of 0) is deleted.

Step SFC Language element: Situations, in which the Program behavior follows in 
relation to the inputs and outputs of the same operations, which are defined by the 
associated actions of the step.

Step name The step name functions as the unique flag of a step in a Program organization unit. 
The step name is automatically generated, but can be edited. The step name must 
be unique throughout the whole program organization unit, otherwise an Error 
message appears. 
The automatically generated step name always has the structure: S_n_m

S = Step 
n = Section number (number running)
m = Number of steps in the section (number running)

Structured text 
(ST)

ST is a text language according to IEC 1131, in which operations, e.g. call up of 
Function blocks and Functions, conditional execution of instructions, repetition of 
instructions etc. are displayed through instructions.

Structured 
variables

Variables, one of which is assigned a  Derived data type defined with STRUCT 
(structure).
A structure is a collection of data elements with generally differing data types ( 
Elementary data types and/or derived data types).

SY/MAX In Quantum control devices, Concept closes the mounting on the I/O population SY/
MAX I/O modules for RIO control via the Quantum PLC with on. The SY/MAX 
remote subrack has a remote I/O adapter in slot 1, which communicates via a 
Modicon S908 R I/O system. The SY/MAX I/O modules are performed when 
highlighting and including in the I/O population of the Concept configuration.

Symbol (Icon) Graphic display of various objects in Windows, e.g. drives, user programs and 
Document windows.



Glossary

840 USE 504 00 October 2002 99

Template data 
file (Concept 
EFB)

The template data file is an ASCII data file with a layout information for the Concept 
FBD editor, and the parameters for code generation.

TIME TIME stands for the data type "Time span". The input appears as Time span literal. 
The length of the data element is 32 bit. The value range for variables of this type 
stretches from 0 to 2exp(32)-1. The unit for the data type TIME is 1 ms.

Time span 
literals

Permitted units for time spans (TIME) are days (D), hours (H), minutes (M), seconds 
(S) and milliseconds (MS) or a combination thereof. The time span must be denoted 
by the prefix t#, T#, time# or TIME#. An "overrun" of the highest ranking unit is 
permitted, i.e. the input T#25H15M is permitted.

Example 
t#14MS, T#14.7S, time#18M, TIME#19.9H, t#20.4D, T#25H15M, 
time#5D14H12M18S3.5MS

Token The network "Token" controls the temporary property of the transfer rights via a 
single node. The token runs through the node in a circulating (rising) address 
sequence. All nodes track the Token run through and can contain all possible data 
sent with it.

Traffic Cop The Traffic Cop is a component list, which is compiled from the user component list. 
The Traffic Cop is managed in the PLC and in addition contains the user component 
list e.g. Status information of the I/O stations and modules.

Transition The condition with which the control of one or more Previous steps transfers to one 
or more ensuing steps along a directional Link.

UDEFB User defined elementary functions/function blocks
Functions or Function blocks, which were created in the programming language C, 
and are available in Concept Libraries.

T

U



Glossary

100 840 USE 504 00 October 2002

UDINT UDINT stands for the data type "unsigned double integer". The input appears as  
Integer literal, Base 2 literal, Base 8 literal or Base 16 literal. The length of the data 
element is 32 bit. The value range for variables of this type stretches from 0 to 
2exp(32)-1.

UINT UINT stands for the data type "unsigned integer". The input appears as  Integer 
literal, Base 2 literal, Base 8 literal or Base 16 literal. The length of the data element 
is 16 bit. The value range for variables of this type stretches from 0 to (2exp16)-1.

Unlocated 
variable

Unlocated variables are not assigned any state RAM addresses. They therefore do 
not occupy any state RAM addresses. The value of these variables is saved in the 
system and can be altered with the reference data editor. These variables are only 
addressed by symbolic names.

Signals requiring no peripheral access, e.g. intermediate results, system tags etc, 
should primarily be declared as unlocated variables.

Variables Variables function as a data exchange within sections between several sections and 
between the Program and the PLC.
Variables consist of at least a variable name and a Data type.
Should a variable be assigned a direct Address (Reference), it is referred to as a 
Located variable. Should a variable not be assigned a direct address, it is referred 
to as an  unlocated variable. If the variable is assigned a Derived data type, it is 
referred to as a Multi-element variable.
Otherwise there are Constants and Literals.

Vertical format Vertical format means that the page is higher than it is wide when looking at the 
printed text.

Warning When processing a FFB or a Step a critical status is detected (e.g. critical input value 
or a time out), a warning appears, which can be viewed with the menu command 
Online → Event display... . With FFBs the ENO output remains at "1".

V

W



Glossary

840 USE 504 00 October 2002 101

WORD WORD stands for the data type "Bit sequence 16". The input appears as Base 2 
literal, Base 8 literal or Base 1 16 literal. The length of the data element is 16 bit. A 
numerical range of values cannot be assigned to this data type.



Glossary

102 840 USE 504 00 October 2002



CBA

840 USE 504 00 October 2002 103

D
DEFUZ_INT, 37
DEFUZ_REAL, 37
DEFUZ_STI, 43
DEFUZ_STR, 43
Defuzzification, 24, 30
Defuzzification with singletons, 37, 43
Defuzzify

DEFUZ_INT, 37
DEFUZ_REAL, 37

Defuzzify_Struct
DEFUZ_STI, 43
DEFUZ_STR, 43

F
Function

Parameterization, 11, 12
Function block

Parameterization, 11, 12
FUZ_ATERM_INT, 49
FUZ_ATERM_REAL, 49
FUZ_ATERM_STI, 55
FUZ_ATERM_STR, 55
FUZ_MAX_***, 59
FUZ_MIN_***, 61
FUZ_PROD_***, 63
FUZ_STERM_***, 67
FUZ_SUM_***, 75
Fuzzification, 22, 28

Fuzzification of all terms, 49
Fuzzification of all terms (structure), 55
Fuzzification of one term, 67
Fuzzify

FUZ_ATERM_INT, 49
FUZ_ATERM_REAL, 49
FUZ_STERM_***, 67

Fuzzify_Struct
FUZ_ATERM_STI, 55
FUZ_ATERM_STR, 55

FUZZY
DEFUZ_INT, 37
DEFUZ_REAL, 37
DEFUZ_STI, 43
DEFUZ_STR, 43
FUZ_ATERM_INT, 49
FUZ_ATERM_REAL, 49
FUZ_ATERM_STI, 55
FUZ_ATERM_STR, 55
FUZ_MAX_***, 59
FUZ_MIN_***, 61
FUZ_PROD_***, 63
FUZ_STERM_***, 67
FUZ_SUM_***, 75

Index



Index

104 840 USE 504 00 October 2002

Fuzzy Control, 15
Concepts, 20
Defuzzification, 24, 30
Example, 31
Fundamental Principles, 18
Fuzzification, 22, 28
in Concept, 25
Inference, 23, 30
Introduction, 17
Library, 26
Linguistic Term, 20
Linguistic Variable, 20
Membership Degree, 20
Membership Function, 21
Operators, 23
Procedure in control engineering, 19
Realization in Concept, 33
Rule weighting, 23
Rules, 23, 30
Singletons, 24

Fuzzy Library, 26
Fuzzy Maximum, 59
Fuzzy Minimum, 61
Fuzzy Product, 63
Fuzzy Sum, 75

I
Inference, 23, 30

L
Linguistic Term, 20
Linguistic Variable, 20

M
Membership Degree, 20
Membership Function, 21

O
Operators, 23
Operators_AND

FUZ_MIN_***, 61
FUZ_PROD_***, 63

Operators_OR
FUZ_MAX_***, 59
FUZ_SUM_***, 75

P
Parameterization, 11, 12

R
Rules, 23, 30

S
Singletons, 24


