
33
00

22
14

.0
0

Concept
IEC block library
Part: EXTENDED
840 USE 504 00 eng Version 2.6

© 2002 Schneider Electric All Rights Reserved



  

2  



3

Table of Contents

About the book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

Part I General information on the block library EXTENDED  . . 9
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 1 Parameterizing functions and function blocks . . . . . . . . . . . . 11
Parameterizing functions and function blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Part II EFB-descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 2 AVE_***: Averaging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 3 AVGMV: Floating mean with fixed window size  . . . . . . . . . . .23

Chapter 4 AVGMV_K: Floating mean with frozen correction factor . . . . 27

Chapter 5 BCD_TO_INT: Conversion from 16 Bit BCD to INT . . . . . . . . . 31

Chapter 6 BIT_TO_BYTE: Type conversion. . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 7 BIT_TO_WORD: Type conversion. . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 8 BYTE_AS_WORD: Type conversion . . . . . . . . . . . . . . . . . . . . . 41

Chapter 9 BYTE_TO_BIT: Type conversion. . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 10 CTD_***: Down counter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

Chapter 11 CTU_***: Up counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Chapter 12 CTUD_***: Up/Down counter . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Chapter 13 DBCD_TO_DINT: Conversion from 32 Bit BCD to DINT . . . . . 53

Chapter 14 DBCD_TO_INT: Conversion from 32 Bit BCD to INT. . . . . . . . 55

Chapter 15 DEAD_ZONE_REAL: Dead zone . . . . . . . . . . . . . . . . . . . . . . . . 57



4

Chapter 16 DINT_AS_WORD: Type conversion . . . . . . . . . . . . . . . . . . . . . 61

Chapter 17 DINT_TO_DBCD: Conversion from DINT to 32 Bit BCD. . . . . 63

Chapter 18 DIVMOD_***: Division and Modulo . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 19 HYST_***: Indicator signal for maximum value delimiter 
with hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Chapter 20 INDLIM_***: Indicator signal for delimiters with hysteresis. . 71

Chapter 21 INT_TO_BCD: Conversion from INT to 16 Bit BCD. . . . . . . . . 75

Chapter 22 INT_TO_DBCD: Conversion from INT to 32 Bit BCD  . . . . . . . 77

Chapter 23 LIMIT_IND_***: Limit with indicator  . . . . . . . . . . . . . . . . . . . . . 79

Chapter 24 LOOKUP_TABLE1: Traverse progression with 1st 
degree interpolation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Chapter 25 NEG_***: Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Chapter 26 REAL_AS_WORD: Type conversion  . . . . . . . . . . . . . . . . . . . . 91

Chapter 27 SAH: Detecting and holding with rising edge . . . . . . . . . . . . . 93

Chapter 28 SIGN_***: Sign evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Chapter 29 TIME_AS_WORD: Type conversion . . . . . . . . . . . . . . . . . . . . . 99

Chapter 30 TOF_P: Off Delay with Pause . . . . . . . . . . . . . . . . . . . . . . . . . 101

Chapter 31 TON_P: On Delay with Pause . . . . . . . . . . . . . . . . . . . . . . . . . 105

Chapter 32 TRIGGER: Detection of all types of edges  . . . . . . . . . . . . . . 109

Chapter 33 UDINT_AS_WORD: Type conversion. . . . . . . . . . . . . . . . . . . 111

Chapter 34 WORD_AS_BYTE: Type conversion  . . . . . . . . . . . . . . . . . . . 113

Chapter 35 WORD_AS_DINT: Type conversion . . . . . . . . . . . . . . . . . . . . 115

Chapter 36 WORD_AS_REAL: Type conversion  . . . . . . . . . . . . . . . . . . . 117

Chapter 37 WORD_AS_TIME: Type conversion . . . . . . . . . . . . . . . . . . . . 119

Chapter 38 WORD_AS_UDINT: Type conversion. . . . . . . . . . . . . . . . . . . 121

Chapter 39 WORD_TO_BIT: Type conversion  . . . . . . . . . . . . . . . . . . . . . 123

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



5

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



6



840 USE 504 00 October 2002 7

About the book

At a Glance

Document Scope This documentation is designed to help with the configuration of functions and 
function blocks.

Validity Note This documentation applies to Concept 2.6 under Microsoft Windows 98, Microsoft 
Windows 2000 and Microsoft Windows NT 4.x.

Related 
Documents

User Comments We welcome your comments about this document. You can reach us by e-mail at 
TECHCOMM@modicon.com

Note: There is additional up to date tips in the README data file in Concept.

Title of Documentation Reference Number

Concept Installation Instructions 840 USE 502 00

Concept User Manual 840 USE 503 00

Concept EFB User Manual 840 USE 505 00

Concept LL984 Block Library 840 USE 506 00



About the book

8 840 USE 504 00 October 2002



840 USE 504 00 October 2002 9

I
General information on the block 
library EXTENDED

Overview

Introduction This section contains general information on the block library EXTENDED. 

What’s in this 
part?

This part contains the following chapters:

Chapter Chaptername Page

1 Parameterizing functions and function blocks 11



General information

10 840 USE 504 00 October 2002



840 USE 504 00 October 2002 11

1
Parameterizing functions and 
function blocks

Parameterizing functions and function blocks



Parameterization

12 840 USE 504 00 October 2002

General Each FFB consists of an operation, the operands needed for the operation and an 
instance name or function counter. 

Operation The operation determines which function is to be executed with the FFB, e.g. shift 
register, conversion operations.

Operand The operand specifies what the operation is to be executed with. With FFBs, this 
consists of formal and actual parameters.

FFB
(e.g. ON-delay)

Item name/
Function counter
(e.g. FBI_2_22 (18))

Operation
(e.g. TON)

Operand

Actual parameter
Variable, element of a 

multi-element 
variable, literal, direct 

address
(e.g. ENABLE, EXP.1, 
TIME, ERROR, OUT, 

%4:0001)

Formal 
parameter

(e.g. 
IN,PT,Q,ET)

TON

ENABLE

EXP.1

TIME

EN

IN

PT

ENO

Q

ET

ERROR

OUT

%4:00001

FBI_2_22 (18)



Parameterization

840 USE 504 00 October 2002 13

Formal/actual 
parameters

The formal parameter holds the place for an operand. During parameterization, an 
actual parameter is assigned to the formal parameter.

The actual parameter can be a variable, a multi-element variable, an element of a 
multi-element variable, a literal or a direct address.

Conditional/ 
unconditional 
calls

"Unconditional" or "conditional" calls are possible with each FFB. The condition is 
realized by pre-linking the input EN.
l Displayed EN

conditional calls (the FFB is only processed if EN = 1)
l EN not displayed

unconditional calls (FFB is always processed)

Calling functions 
and function 
blocks in IL and 
ST

Information on calling functions and function blocks in IL (Instruction List) and ST 
(Structured Text) can be found in the relevant chapters of the user manual.

Note: If the EN input is not parameterized, it must be disabled. Any input pin that 
is not parameterized is automatically assigned a "0" value. Therefore, the FFB 
should never be processed.



Parameterization

14 840 USE 504 00 October 2002



840 USE 504 00 October 2002 15

II
EFB-Descriptions

Overview

Introduction These EFB descriptions are documented in alphabetical order.

Note: The number of inputs of the EFBs can be increased to a maximum of 32 by 
changing the size of the FFB symbols vertically. Please consult the individual EFB 
descriptions to know which EFBs are concerned.



EFB-descriptions

16 840 USE 504 00 October 2002

What’s in this 
part?

This part contains the following chapters:

Chapter Chaptername Page

2 AVE_***: Averaging 19

3 AVGMV: Floating mean with fixed window size 23

4 AVGMV_K: Floating mean with frozen correction factor 27

5 BCD_TO_INT: Conversion from 16 Bit BCD to INT 31

6 BIT_TO_BYTE: Type conversion 33

7 BIT_TO_WORD: Type conversion 37

8 BYTE_AS_WORD: Type conversion 41

9 BYTE_TO_BIT: Type conversion 43

10 CTD_***: Down counter 45

11 CTU_***: Up counter 47

12 CTUD_***: Up/Down counter 49

13 DBCD_TO_DINT: Conversion from 32 Bit BCD to DINT 53

14 DBCD_TO_INT: Conversion from 32 Bit BCD to INT 55

15 DEAD_ZONE_REAL: Dead zone 57

16 DINT_AS_WORD: Type conversion 61

17 DINT_TO_DBCD: Conversion from DINT to 32 Bit BCD 63

18 DIVMOD_***: Division and Modulo 65

19 HYST_***: Indicator signal for maximum value delimiter with 
hysteresis

67

20 INDLIM_***: Indicator signal for delimiters with hysteresis 71

21 INT_TO_BCD: Conversion from INT to 16 Bit BCD 75

22 INT_TO_DBCD: Conversion from INT to 32 Bit BCD 77

23 LIMIT_IND_***: Limit with indicator 79

24 LOOKUP_TABLE1: Traverse progression with 1st degree 
interpolation

83

25 NEG_***: Negation 87

26 REAL_AS_WORD: Type conversion 91

27 SAH: Detecting and holding with rising edge 93

28 SIGN_***: Sign evaluation 95

29 TIME_AS_WORD: Type conversion 99

30 TOF_P: Off Delay with Pause 101

31 TON_P: On Delay with Pause 105

32 TRIGGER: Detection of all types of edges 109

33 UDINT_AS_WORD: Type conversion 111



EFB-descriptions

840 USE 504 00 October 2002 17

34 WORD_AS_BYTE: Type conversion 113

35 WORD_AS_DINT: Type conversion 115

36 WORD_AS_REAL: Type conversion 117

37 WORD_AS_TIME: Type conversion 119

38 WORD_AS_UDINT: Type conversion 121

39 WORD_TO_BIT: Type conversion 123

Chapter Chaptername Page



EFB-descriptions

18 840 USE 504 00 October 2002



840 USE 504 00 October 2002 19

2
AVE_***: Averaging

Overview

Introduction This chapter describes the AVE_*** block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 20

Representation 21



AVE_***: Averaging

20 840 USE 504 00 October 2002

Brief description

Function 
description

The Function calculates the mean of weighted input values, and the result is then 
given at the output.
Each two successive inputs (K_Xn) represent one pair of values. The first K_Xn 
input corresponds to K1, the next to X1, the one after that to K2, etc.
The number of K_Xn inputs can be increased to 32 by vertically modifying the size 
of the block frame. This corresponds to a maximum of 16 value pairs.
The number of inputs must be even. 
Data types of the ANY_NUM group can be processed.
The data types of all input and output values must be identical. A specific function is 
available to process each of the different data types.

It is possible to project EN and ENO as additional parameters.



AVE_***: Averaging

840 USE 504 00 October 2002 21

Representation

Symbol Block representation: 

Formula Block formula:

Parameter 
description

Block parameter description:

AVE_***

***K_X1***
K_X2***
::
K_Xn***
K_Xm***

*** = INT, DINT, UINT, UDINT, REAL

OUT Σ Ki Xi×( )
Σ Ki( )

---------------------------=

Parameters Data type Meaning

K_X1 INT, DINT, UINT, UDINT, REAL Factor (K1) for first value

K_X2 INT, DINT, UINT, UDINT, REAL First value (X1)

K_X3 INT, DINT, UINT, UDINT, REAL Factor (K2) for second value

K_X4 INT, DINT, UINT, UDINT, REAL Second value (X2)

:

K_Xn INT, DINT, UINT, UDINT, REAL Factor (Km/2) for m/2 value

K_Xm INT, DINT, UINT, UDINT, REAL m/2 value (Xm/2)

OUT INT, DINT, UINT, UDINT, REAL Mean value



AVE_***: Averaging

22 840 USE 504 00 October 2002



840 USE 504 00 October 2002 23

3
AVGMV: Floating mean with fixed 
window size

Overview

Introduction This chapter describes the AVGMV block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

 Brief description 24

Representation 24

Detailed description 25

Runtime error 26



AVGMV: Floating mean with fixed window size

24 840 USE 504 00 October 2002

 Brief description

Function 
description

The function block forms a floating mean from a fixed number of input values (Input 
X). The output is the mean of all values between the current X value and the oldest 
X-value (N-1). It is possible to save up to 50 input values (N).
The function block can operate in manual and automatic mode.
It is possible to project EN and ENO as additional parameters.

Representation

Symbol Block representation: 

Formula With RDY = 1:

or

Explanation of variables

AVGMV

REALY

BOOLRDY

MANBOOL
XREAL
NINT
YMANREAL

Variable Meaning

Y (new) Y value in current program cycle

Y (old) Y value from last program cycle

N Window size (number of values in buffer)

X(N-1) oldest X value in buffer

Y new( )

Xi

i 0=

N 1–

∑
N

-----------------=

Y new( ) Y old( )
X
N
----

X N 1–( )
N

----------------------–+=



AVGMV: Floating mean with fixed window size

840 USE 504 00 October 2002 25

Parameter 
description

Block parameter description:

Detailed description

Automatic 
operating mode

In N program cycles, N X-values are read into an internal buffer. The arithmetic 
mean of these values is calculated, and is delivered at the Y output. From the N+1 
program cycle onwards, the oldest X-value in the buffer is deleted and replaced with 
the current x-value.

After a modification of the N value or after a cold/warm start, the internal buffer is 
deleted. The output is set to the input value X and RDY to "0". The buffer is filled 
during the next N cycles. The Y output contains an mean of the values accumulated 
so far. RDY remains "0" until the buffer is filled with correct X values after N program 
cycles then RDY becomes "1".

Manual 
operating mode

The value YMAN is transferred to the Y output. The buffer is completely filled with 
the value YMAN and marked as full (RDY = 1).

Parameter Data type Meaning

MAN BOOL "0" = automatic operating mode
"1" = manual operating mode

X REAL Input

N INT Window size (number of input values that are loaded into the 
buffer; 50 max.)

YMAN REAL Manual value

Y REAL Mean value

RDY BOOL "1" = n values in buffer, i.e. buffer ready 
"0" = buffer not ready

Note: As long as RDY = 0, the mean is not derived from N values but from the 
current updated read-in number (n < N).



AVGMV: Floating mean with fixed window size

26 840 USE 504 00 October 2002

Diagram Floating mean with limited memory of N = 50 values 

Runtime error

Runtime error An Error message appears if,
l N = 0 or N>50

RDY

0

0

1

X

Y



840 USE 504 00 October 2002 27

4
AVGMV_K: Floating mean with 
frozen correction factor

Overview

Introduction This chapter describes the AVGMV_K block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 28

Representation 28

Detailed description 29



AVGMV_K: Floating mean with frozen correction factor

28 840 USE 504 00 October 2002

Brief description

Function 
description

The function block establishes a floating mean (with frozen correction factor) of up 
to 10 000 input values.
The function block can operate in manual and automatic mode.
It is possible to project EN and ENO as additional parameters.

Representation

Symbol Block representation: 

Formula Block formula:

Explanation of variables

Parameter 
description

Block parameter description:

AVGMV_K

REALY

MANBOOL
XREAL
KINT
YMANREAL

Variable Meaning

Y (new) Y value in current program cycle

Y (old) Y value from last program cycle

K Correction factor

X X value in current program cycle

Y new( ) Y old( )
X Y old( )–

K
----------------------------+=

Parameter Data type Meaning

MAN BOOL "0" = Automatic Mode; "1" = Manual Mode

X REAL Input

K INT Correction factor (max. 10 000)

YMAN REAL Manual value

Y REAL Mean value



AVGMV_K: Floating mean with frozen correction factor

840 USE 504 00 October 2002 29

Detailed description

Automatic 
operating mode

One X value is read in every program cycle. 1/N is deducted from the Y value of the 
last program cycle, and then 1/N of the current X value is added. The result is 
delivered at the Y output.
After a cold or warm (re)start, the X value is assigned to output Y.

Manual 
operating mode

The value YMAN is transferred to the Y output.

Diagram Floating mean with frozen correction factor (K = 50) 

0

X

Y



AVGMV_K: Floating mean with frozen correction factor

30 840 USE 504 00 October 2002



840 USE 504 00 October 2002 31

5
BCD_TO_INT: Conversion from 
16 Bit BCD to INT

Overview

Introduction This chapter describes the BCD_TO_INT block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 32

Representation 32



 Conversion from 16 Bit BCD to INT

32 840 USE 504 00 October 2002

Brief description

Function 
description

This function converts a 16 Bit BCD input value (8-4-2-1-Code) into an INT data type 
output value.
If no valid BCD coded value is created at input, a runtime error is reported and the 
input value passes unchanged to the output.
EN and ENO can be configured as additional parameters.

Example Example of a BCD -> INT conversion

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

Data type Dec. value Hex. value (= BCD-value)

Input value INT -26 797 9753

Output value INT 9 753 -

BCD_TO_INT

INTVALUEINT BCD_VAL

Parameter Data type Meaning

BCD_VAL INT 16 Bit BCD input value

VALUE INT INT output value



840 USE 504 00 October 2002 33

6
BIT_TO_BYTE: Type conversion

Overview

Introduction This chapter describes the BIT_TO_BYTE block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 34

Representation 35



BIT_TO_BYTE: Type conversion

34 840 USE 504 00 October 2002

Brief description

Function 
description

The Function converts 8 input values of the Data type BOOL to an output of the data 
type BYTE.
The input values are assigned to the individual bits of the byte at the output 
according to the input names. 

It is possible to project EN and ENO as additional parameters.

BIT0 (2   )

BIT7 (2   )

0

7

BIT1 (2   )1

BIT6 (2   )6

27 21 2026

BYTE



BIT_TO_BYTE: Type conversion

840 USE 504 00 October 2002 35

Representation

Symbol Block representation: 

Formula Block formula:

Parameter 
description

Block parameter description:

BIT_TO_BYTE

BYTEBIT0BOOL
BIT1BOOL
BIT2BOOL
BIT3BOOL
BIT4BOOL
BIT5BOOL
BIT6BOOL
BIT7BOOL

OUT BIT7 BIT6 … BIT0,,,{ }=

Parameter Data type Meaning

BIT0 BOOL Input bit 0

BIT1 BOOL Input bit 1

: : :

BIT7 BOOL Input bit 7

OUT BYTE Output value



BIT_TO_BYTE: Type conversion

36 840 USE 504 00 October 2002



840 USE 504 00 October 2002 37

7
BIT_TO_WORD: Type conversion

Overview

Introduction This chapter describes the BIT_TO_WORD block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 38

Representation 39



BIT_TO_WORD: Type conversion

38 840 USE 504 00 October 2002

Brief description

Function 
description

The Function converts 16 input words from Data type BOOL to an output value of 
data type WORD.
The input values are assigned to the individual bits of the word at the output 
according to the input names. 

It is possible to project EN and ENO as additional parameters.

BIT0 (2   )

BIT15 (2    )

0

15

BIT1 (2   )1

BIT14 (2    )14

215 21 20214

WORD



BIT_TO_WORD: Type conversion

840 USE 504 00 October 2002 39

Representation

Symbol Block representation: 

Formula Block formula:

Parameter 
description

Block parameter description:

BIT_TO_WORD

WORDDATABIT0BOOL
BIT1BOOL
BIT2BOOL
BIT3BOOL
BIT4BOOL
BIT5BOOL
BIT6BOOL
BIT7BOOL
BIT8BOOL
BIT9BOOL
BIT10BOOL
BIT11BOOL
BIT12BOOL
BIT13BOOL
BIT14BOOL
BIT15BOOL

OUT BIT15 BIT14 … BIT0,,,{ }=

Parameter Data type Meaning

BIT0 BOOL Input bit 0

BIT1 BOOL Input bit 1

: : :

BIT15 BOOL Input bit 15

OUT WORD Output value



BIT_TO_WORD: Type conversion

40 840 USE 504 00 October 2002



840 USE 504 00 October 2002 41

8
BYTE_AS_WORD: Type 
conversion

Overview

Introduction This chapter describes the BYTE_AS_WORD block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 42

Representation 42



BYTE_AS_WORD: Type conversion

42 840 USE 504 00 October 2002

Brief description

Function 
description

The Function converts 2 input words from Data type BYTE to an output value of data 
type WORD.
The input values are assigned to the word at the output according to the input 
names.
It is possible to project EN and ENO as additional parameters.

Representation

Symbol Block representation: 

Formula Block formula:

Parameter 
description

Block parameter description:

BYTE_AS_WORD

WORDDATALOWBYTE
HIGHBYTE

OUT = {HIGH, LOW}

Parameter Data type Meaning

LOW BYTE less significant byte

HIGH BYTE more significant byte

OUT WORD Output value



840 USE 504 00 October 2002 43

9
BYTE_TO_BIT: Type conversion

Overview

Introduction This chapter describes the BYTE_TO_BIT block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 44

Representation 44



BYTE_TO_BIT: Type conversion

44 840 USE 504 00 October 2002

Brief description

Function 
description

Thisfunction block converts one input word from Data type BYTE into 8 output 
values of data type BOOL.
The individual bits of the byte at the input are assigned to the outputs according to 
the output names. 

It is possible to project EN and ENO as additional parameters.

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

BIT0 (2   )

BIT7 (2   )

0

7

BIT1 (2   )1

BIT6 (2   )6

2 7 21 2026

BYTE

BYTE_TO_BIT

BOOLBIT0

BOOLBIT1

BOOLBIT2

BOOLBIT3

BOOLBIT4

BOOLBIT5

BOOLBIT6

BOOLBIT7

INBYTE

Parameter Data type Meaning

IN BYTE Input

BIT0 BOOL Output bit 0

BIT1 BOOL Output bit 1

: : :

BIT7 BOOL Output bit 7



840 USE 504 00 October 2002 45

10
CTD_***: Down counter

Overview

Introduction This chapter describes the CTD_*** block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 46

Representation 46



CTD_***: Down counter

46 840 USE 504 00 October 2002

Brief description

Function 
description

The Function block is used for counting down.
A "1" signal at the LD input causes the value of the PV input to be allocated to the 
CV output. With each transition from "0" to "1" at the CD input, the value of CV is 
reduced by 1. 
When CV is ≤ 0, the output Q becomes "1".
The Data types of the PV input and the CV output must be identical. A specific 
function block is available to process each of the different data types.

The parameters EN and ENO can additionally be projected.

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

Note: The counter only works up to the minimum values of the data type being 
used. No overflow occurs.

CTD_***

BOOLQ

***CV

CDBOOL
LDBOOL
PV*** *** = INT, DINT, UINT, UDINT

Parameter Data type Meaning

CD BOOL Trigger input

LD BOOL Load data

PV INT, DINT, UINT, UDINT Presettings value

Q BOOL Output

CV INT, DINT, UINT, UDINT Count value (actual value)



840 USE 504 00 October 2002 47

11
CTU_***: Up counter

Overview

Introduction This chapter describes the CTU_*** block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 48

Representation 48



CTU_***: Up counter

48 840 USE 504 00 October 2002

Brief description

Function 
description

The Function block is used for counting up.
A "1" signal at the R input causes the value "0" to be allocated to the CV output. With 
each transition from "0" to "1" at the CU input, the value of CV is increased by 1. 
When CV ≥ PV, the Q output is set to "1".
The Data types of the PV input and the CV output must be identical. A specific 
function block is available to process each of the different data types.

The parameters EN and ENO can additionally be projected.

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

Note: The counter only works up to the maximum values of the data type being 
used. No overflow occurs.

CTU_***

BOOLQ

***CV

CUBOOL
RBOOL
PV*** *** = INT, DINT, UINT, UDINT

Parameter Data type Meaning

CU BOOL Trigger input

R BOOL Reset

PV INT, DINT, UINT, UDINT Presettings value

Q BOOL Output

CV INT, DINT, UINT, UDINT Count value (actual value)



840 USE 504 00 October 2002 49

12
CTUD_***: Up/Down counter

Overview

Introduction This chapter describes the CTUD_*** block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 50

Representation 51



CTUD_***: Up/Down counter

50 840 USE 504 00 October 2002

Brief description

Function 
description

The Function block is used for counting up and down.
A "1" signal at the R input causes the value "0" to be allocated to the CV output. A 
"1" signal at the LD input causes the value of the PV input to be allocated to the CV 
output. With each transition from "0" to "1" at the CU input, the value of CV is 
increased by 1. With each transition from "0" to "1" at the CD input, the value of CV 
is reduced by 1. 
If there is a simultaneous "1" signal at input R and input LD, input R has precedence.
When CV ≥ PV, output QU is "1".
When CV is ≤ 0, output QD is "1".

The Data types of input PV and input CV must be identical. A specific Function block 
is available to process each of the different data types.
The parameters EN and ENO can additionally be projected.

Note: The down counter only works up to the minimum values of the data type 
being used, and the up counter only up to the maximum values of the data type 
being used. No overflow occurs.



CTUD_***: Up/Down counter

840 USE 504 00 October 2002 51

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

CTUD_***

BOOLQU

BOOLQD

***CV

CUBOOL
CDBOOL
RBOOL
LDBOOL
PV*** *** = INT, DINT, UINT, UDINT

Parameter Data type Meaning

CU BOOL Up counter trigger input

CD BOOL Down counter trigger input

R BOOL Reset

LD BOOL Load data

PV INT, DINT, UINT, UDINT Presettings value

QU BOOL Up display

QD BOOL Down display

CV INT, DINT, UINT, UDINT Count value (actual value)



CTUD_***: Up/Down counter

52 840 USE 504 00 October 2002



840 USE 504 00 October 2002 53

13
DBCD_TO_DINT: Conversion from 
32 Bit BCD to DINT

Overview

Introduction This chapter describes the DBCD_TO_DINT block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 54

Representation 54



DBCD_TO_DINT: Conversion from 32 Bit BCD to DINT

54 840 USE 504 00 October 2002

Brief description

Function 
description

This function converts a 32 Bit BCD input value (8-4-2-1-Code) into a DINT data type 
output value.
If no valid BCD coded value is created at input, a runtime error is reported and the 
input value passes unchanged to the output.
EN and ENO can be configured as additional parameters.

Example Example of a DBCD -> DINT conversion

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

Data type Dec. value Hex. value (= BCD-value)

Input value DINT -2 023 406 815 8765 4321

Output value DINT 87 654 321 -

DBCD_TO_DINT

DINTVALUEDINT BCD_VAL

Parameter Data type Meaning

BCD_VAL DINT 32 Bit BCD input value

VALUE DINT DINT output value



840 USE 504 00 October 2002 55

14
DBCD_TO_INT: Conversion from 
32 Bit BCD to INT

Overview

Introduction This chapter describes the DBCD_TO_INT block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 56

Representation 56



DBCD_TO_INT: Conversion from 32 Bit BCD to INT

56 840 USE 504 00 October 2002

Brief description

Function 
description

This function converts a 32 Bit BCD input value (8-4-2-1-Code) into an INT data type 
output value.
The valid input value range is 0  32 767 (BCD.).
The following runtime errors are generated:
l If no valid BCD coded value is created at input, a runtime error is reported and 

the input value passes unchanged to the output.
l If the BCD format is correct, but too large (> 32 767) a runtime error is reported 

and the output value is set to -1.
EN and ENO can be configured as additional parameters.

Example Example of a DBCD -> INT conversion

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

Data type Dec. value Hex. value (= BCD-value)

Input value DINT 22 083 0000 5643

Output value INT 5 643 -

DBCD_TO_INT

INTVALUEDINT BCD_VAL

Parameter Data type Meaning

BCD_VAL DINT 32 Bit BCD input value (valid value range 0 - 32767)

VALUE INT INT output value



840 USE 504 00 October 2002 57

15
DEAD_ZONE_REAL: Dead zone

Overview

Introduction This chapter describes the DEAD_ZONE_REAL block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 58

Representation 58

Detailed description 59



DEAD_ZONE_REAL: Dead zone

58 840 USE 504 00 October 2002

Brief description

Function 
description

The Function is used to specify a deadzone for control variables.
It is possible to project EN and ENO as additional parameters.

Representation

Symbol Block representation: 

Formula Block formula:
Assuming: DZ≥0 
Y = GAIN x X  for -DZ ≤ X ≤ DZ
Y = (X - DZ) + GAIN x DZ for X > DZ
Y = (X + DZ) - GAIN x DZ for X < DZ

Parameter 
description

Block parameter description:

DEAD_ZONE_REAL

REALXREAL
DZREAL
GAINREAL

Parameter Data type Meaning

X REAL Input variable

DZ REAL Half width of the deadzone

GAIN REAL Gradient within deadzone

Y REAL Output variable



DEAD_ZONE_REAL: Dead zone

840 USE 504 00 October 2002 59

Detailed description

Characteristic 
Curves

The function block has the following characteristic curve:
Deadzone with 0 < GAIN < 1 

Deadzone with GAIN > 1 

GAIN

X

Y

DZ

-DZ

GAIN

X

Y

DZ

-DZ



DEAD_ZONE_REAL: Dead zone

60 840 USE 504 00 October 2002

Deadzone with GAIN < 0 

Note: Outside the dead zone, a gradient of 1 has been specified.

GAIN

X

Y

DZ

-DZ



840 USE 504 00 October 2002 61

16
DINT_AS_WORD: Type 
conversion

Overview

Introduction This chapter describes the DINT_AS_WORD block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 62

Representation 62



DINT_AS_WORD: Type conversion

62 840 USE 504 00 October 2002

Brief description

Function 
description

This function block converts one input value of Data type DINT to 2 output values of 
data type WORD.
The individual words of the DINT input are assigned to the outputs corresponding to 
the output names.
It is possible to project EN and ENO as additional parameters.

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

DINT_AS_WORD

WORDLOW

WORDHIGH

INDINT

Parameter Data type Meaning

IN DINT Input

LOW WORD less significant word

HIGH WORD more significant word



840 USE 504 00 October 2002 63

17
DINT_TO_DBCD: Conversion from 
DINT to 32 Bit BCD

Overview

Introduction This chapter describes the DINT_TO_DBCD block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 64

Representation 64



DINT_TO_DBCD: Conversion from DINT to 32 Bit BCD

64 840 USE 504 00 October 2002

Brief description

Function 
description

This function converts a DINT data type input value into a 32 Bit BCD output value 
(8-4-2-1-Code).
The valid input value range is 0  99 999 999 (Dec.).
If no valid value is created at input, a runtime error is reported and the input value 
passes unchanged to the output.
EN and ENO can be configured as additional parameters.

Example Example of a DINT -> DBCD conversion

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

Data type Dec. value Hex. value (= BCD-value)

Input value DINT 87 654 321 -

Output value DINT -2 023 406 815 8765 4321

DINT_TO_DBCD

DINTBCD_VALDINT VALUE

Parameter Data type Meaning

VALUE DINT DINT input value (valid value range 0 - 99 999 999)

BCD_VAL DINT 32 Bit BCD output value



840 USE 504 00 October 2002 65

18
DIVMOD_***: Division and Modulo

Overview

Introduction This chapter describes the DIVMOD_*** block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 66

Representation 66

Runtime error 66



DIVMOD_***: Division and Modulo

66 840 USE 504 00 October 2002

Brief description

Function 
description

This function block divides the value at input IN1 by the value at input IN2. The result 
of the division (quotient) is delivered at output DV. The remainder of the division 
(Modulo) is delivered at output MD.
If there is a decimal place in the division result, the division will truncate it.
Data types of the ANY_INT group can be processed.
The data types of all input and output values must be identical. A specific function is 
available to process each of the different data types.
It is possible to project EN and ENO as additional parameters.

Representation

Symbol Block representation: 

Formula Block formula:
DV = IN1 / IN2
MD = IN1 mod IN2

Parameter 
description

Block parameter description:

Runtime error

Runtime error An Error message appears, when
l IN2=0

DIVMOD_***

***DV

***MD

IN1***
IN2*** *** = INT, DINT, UINT, UDINT

Parameter Data type Meaning

IN1 INT, DINT, UINT, UDINT Dividend

IN2 INT, DINT, UINT, UDINT Divisor

DV INT, DINT, UINT, UDINT Quotient

MD INT, DINT, UINT, UDINT Modulo



840 USE 504 00 October 2002 67

19
HYST_***: Indicator signal for 
maximum value delimiter with 
hysteresis

Overview

Introduction This chapter describes the HYST_*** block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 68

Representation 68

Detailed Description 69



HYST_***: Indicator for maximum value delimiter with hysteresis

68 840 USE 504 00 October 2002

Brief description

Function 
description

The function block monitors the input variable X for violation of the upper threshold.

Data types of the ANY_NUM group can be processed.
The data types of all input values must be identical. A specific function is available 
process each of the different data types.
It is possible to project EN and ENO as additional parameters.

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

Note: If the lower threshold should be monitored as well, use the INDLIM function 
block.

HYST_***

BOOLINDX***
HIGH***
LOW***

*** = INT, DINT, UINT, UDINT, REAL

Parameter Data type Meaning

X INT, DINT, UINT, UDINT, REAL Input variable

HIGH INT, DINT, UINT, UDINT, REAL Maximum upper threshold

LOW INT, DINT, UINT, UDINT, REAL Minimum upper threshold

IND BOOL Anzeige: reached upper threshold



HYST_***: Indicator for maximum value delimiter with hysteresis

840 USE 504 00 October 2002 69

Detailed Description

Parameter 
description

If X violates the upper HIGH limit, the function block reports this condition with IND 
= 1.
If, subsequently, X violates the LOW threshold, IND will be reset to "0".

Function Function description
INDi = 1, if X > HIGH
INDi = 0, if X < LOW
otherwise
INDi = INDi-1

If LOW is greater than HIGH, there is no hysteresis, and IND shows X is greater than 
HIGH.

Diagram Maximum value delimiter with hysteresis 

IND

X 

LOW

HIGH

X

Time



HYST_***: Indicator for maximum value delimiter with hysteresis

70 840 USE 504 00 October 2002



840 USE 504 00 October 2002 71

20
INDLIM_***: Indicator signal for 
delimiters with hysteresis

Overview

Introduction This chapter describes the INDLIM_*** block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 72

Representation 72

Detailed description 73



INDLIM_***: Indicator signal for delimiters with hysteresis

72 840 USE 504 00 October 2002

Brief description

Function 
description

The function block monitors the input variable X for violation of the upper threshold 
and violation of the lower threshold.

It is possible to process data types of the ANY_NUM group.
The data types of all input values must be identical. A specific function is available 
to process each of the different data types.
It is possible to project EN and ENO as additional parameters.

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

Note: If only the upper threshold should be monitored as well, use the HYST 
function block.

INDLIM_***

BOOLMX_IND

BOOLMN_IND

X***
MX_HIGH***
MX_LOW***
MN_LOW***
MN_HIGH*** *** = INT, DINT, UINT, UDINT, REAL

Parameter Data type Meaning

X INT, DINT, UINT, UDINT, REAL Input variable

MX_HIGH INT, DINT, UINT, UDINT, REAL Maximum upper limit

MX_LOW INT, DINT, UINT, UDINT, REAL Minimum lower limit

MN_LOW INT, DINT, UINT, UDINT, REAL Minimum lower limit

MN_HIGH INT, DINT, UINT, UDINT, REAL Minimum upper limit

MX_IND BOOL Display: reached upper limit

MN_IND BOOL Display: reached lower limit



INDLIM_***: Indicator signal for delimiters with hysteresis

840 USE 504 00 October 2002 73

Detailed description

Parameter 
description

If X exceeds the upper limit MX_HIGH, the function block reports this condition with 
MX_IND = 1.
If, subsequently, X is less than the limit MX_LOW, MX_IND will be reset to "0".

Function Function description:
MX_INDi = 1, if X > MX_HIGH
MX_INDi = 0, if X < MX_LOW
otherwise
MX_INDi = MX_IND(i-1)
If X is less than the lower limit MN_HIGH, the function block reports this condition 
with MN_IND =1. 
If, subsequently, X exceeds the limit MN_LOW, MX_IND is reset to "0".

Function Function description:
MX_INDi = 1, if X < MX_HIGH
MX_INDi = 0, if X > MX_LOW
otherwise
MX_INDi = MX_IND(i-1)
If MX_LOW is greater than MX_HIGH, there will be no hysteresis, and MX_IND 
displays the fact that X is greater than MX_HIGH.
If MN_HIGH is greater than MN_LOW, there will be no hysteresis, and MN_IND 
displays the fact that X is smaller than MN_HIGH.

Diagram Delimiters with hysteresis INDLIM 

MN_IND

MX_IND

X 

MX_LOW

MX_HIGH

MN_LOW
MN_HIGH

X

Time



INDLIM_***: Indicator signal for delimiters with hysteresis

74 840 USE 504 00 October 2002



840 USE 504 00 October 2002 75

21
INT_TO_BCD: Conversion from 
INT to 16 Bit BCD

Overview

Introduction This chapter describes the INT_TO_BCD block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 76

Representation 76



INT_TO_BCD: Conversion from INT to 16 Bit BCD

76 840 USE 504 00 October 2002

Brief description

Function 
description

This function converts an INT data type input value into a 16 Bit BCD output value 
(8-4-2-1-Code).
The valid input value range is 0  9 999 (Dec.).
If no valid BCD coded value is created at input, a runtime error is reported and the 
input value passes unchanged to the output.
EN and ENO can be configured as additional parameters.

Example Example of an INT -> BCD conversion

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

Data type Dec. value Hex. value (= BCD-value)

Input value INT 9 753 -

Output value INT -26 797 9753

INT_TO_BCD

INTBCD_VALINT VALUE

Parameter Data type Meaning

VALUE INT INT input value (valid value range 0 - 9 999)

BCD_VAL INT 16 Bit BCD output value



840 USE 504 00 October 2002 77

22
INT_TO_DBCD: Conversion from 
INT to 32 Bit BCD

Overview

Introduction This chapter describes the INT_TO_DBCD block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 78

Representation 78



INT_TO_DBCD: Conversion from INT to 32 Bit BCD

78 840 USE 504 00 October 2002

Brief description

Function 
description

This function converts an INT data type input value into a 32 Bit BCD output value 
(8-4-2-1-Code).
The valid input value range is 0  32 767 (Dec.).
If no valid value is created at input, a runtime error is reported and the input value 
passes unchanged to the output.
EN and ENO can be configured as additional parameters.

Example Example of an INT -> DBCD conversion

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

Data type Dec. value Hex. value (= BCD-value)

Input value INT 13 579 -

Output value DINT 79 225 0001 3579

INT_TO_DBCD

DINTBCD_VALINT VALUE

Parameter Data type Meaning

VALUE INT INT input value (valid value range 0 - 32767)

BCD_VAL DINT 32 Bit BCD output value



840 USE 504 00 October 2002 79

23
LIMIT_IND_***: Limit with indicator

Overview

Introduction This chapter describes the LIMIT_IND_*** block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 80

Representation 80



LIMIT_IND_***: Limit with indicator

80 840 USE 504 00 October 2002

Brief description

Function 
description

This function block transfers the unchanged input value (IN) to the output OUT, if the 
input value is not less than the minimum value (MN) and does not exceed the 
maximum value (MX). If the input value (IN) is less than the minimum value (MN), 
the minimum value will be transferred to the output. If the input value (IN) exceeds 
the maximum value (MX), the maximum value is transferred to the output.
Furthermore, a signal indicates the violation of a minimum or maximum value. If the 
value at input IN is less than the value at input MN, output MN_IND becomes "1". If 
the value at input IN exceeds the value at input MX, the output MX_IND becomes 
"1".
Data types of the ANY_ELEM group can be processed.
The data types of the input values MN, IN, MX as well as of the output value OUT 
must be identical. A specific function is available to process each of the different 
data types.
It is possible to project EN and ENO as additional parameters.

Representation

Symbol Block representation: 

Formula Block formula:
OUT = IN, if (IN ≤ MX) & IN ≥ MN
OUT = MN, if (IN < MN)
OUT = MX, if (IN > MX)

MN_IND = 0, if IN ≥ MN
MN_IND = 1, if IN < MN

MX_IND = 0, if IN ≤ MX
MX_IND = 1, if IN > MX

LIMIT_IND_***

BOOLMN_IND

***OUT

BOOLMX_IND

MN***
IN***
MX***

*** = INT, DINT, UINT, UDINT, REAL, TIME,
BOOL, BYTE, WORD



LIMIT_IND_***: Limit with indicator

840 USE 504 00 October 2002 81

Parameter 
description

Block parameter description:

Parameter Data type Meaning

MN INT, DINT, UINT, UDINT, REAL, 
TIME, BOOL, BYTE, WORD

Limit of minimum value

IN INT, DINT, UINT, UDINT, REAL, 
TIME, BOOL, BYTE, WORD

Input

MX INT, DINT, UINT, UDINT, REAL, 
TIME, BOOL, BYTE, WORD

Limit of maximum value

MN_IND BOOL Display of minimum value violation

OUT INT, DINT, UINT, UDINT, REAL, 
TIME, BOOL, BYTE, WORD

Output

MX_IND BOOL Display of maximum value violation



LIMIT_IND_***: Limit with indicator

82 840 USE 504 00 October 2002



840 USE 504 00 October 2002 83

24
LOOKUP_TABLE1: Traverse 
progression with 1st degree 
interpolation

Overview

Introduction This chapter describes the LOOKUP_TABLE1 block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 84

Representation 84

Detailed description 85



LOOKUP_TABLE1: Traverse progression with 1st degree interpolation

84 840 USE 504 00 October 2002

Brief description

Function 
description

This function block linearizes characteristic curves by means of interpolation. The 
function block works with variable width.
The number of XiYi inputs can be increased to 30 by modifying the size of the block 
frame vertically. This corresponds to a maximum of 15 support point pairs. 
The number of inputs must be even.
The X values must be in ascending order.
It is possible to project EN and ENO as additional parameters.

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

LOOKUP_TABLE

REALY

BOOLQXHI

BOOLQXLO

XREAL
XiYi1REAL
XiYi2REAL
::
XiYinREAL
XiYimREAL

Parameter Data type Meaning

XiYi1 REAL X-coordinate 1st support point

XiYi2 REAL Y-coordinate 1st support point

XiYin REAL X-coordinate mth support point

XiYim REAL Y-coordinate mth support point

X REAL Input variable

Y REAL Output variable

QXHI BOOL Display: X > Xm

QXLO BOOL Indicator signal X < X1



LOOKUP_TABLE1: Traverse progression with 1st degree 

840 USE 504 00 October 2002 85

Detailed description

Parameter 
description

Each two sequential inputs (XiYi) represent a support point pair. The first input XiYi 
corresponds to X1, the next one to Y1, the one after that to X2, etc.
For all types of input value in X found between these support points, the 
corresponding Y output value is interpolated, while the traverse progression 
between the support points is viewed linearly.
For X < X1 Y is = Y1

For X > X1 is Y = Y1
If the value at input X is higher than the value of the last support point Xm, the output 
QXHI becomes "1".
If the value at input X is less than the value of the first support point X1, the output 
QXLO becomes "1".

Principle of 
interpolation

Traverse progression with 1st degree interpolation  

Y

0 X

Ym

Yi+1
Ym-1
Y

Yi

Xi X Xi+1 Xm-1Xm



LOOKUP_TABLE1: Traverse progression with 1st degree interpolation

86 840 USE 504 00 October 2002

Interpolation The following algorithm applies to a Point y:

for Xi ≤ X ≤ Xi+1 and i = 1 ... (m-1)
Assuming: X1 ≤ X2 ≤ ... ≤ Xi ≤ Xi+1 ≤ ... ≤ Xm-1 ≤ Xm

The X values must be in ascending order.
Two consecutive X values can be identical. This could cause a discrete curve 
progression.
In this instance, the special case applies:
Y = 0.5 x (Yi + Yi+1)
for
Xi = X = Xi+1 und i = 1 ... (m-1)

Y Yi
Y j 1+( ) Yj–

X j 1+( ) Xj–
---------------------------- X Xi–( )×+=



840 USE 504 00 October 2002 87

25
NEG_***: Negation

Overview

Introduction This chapter describes the NEG_*** block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 88

Representation 88

Runtime error 89



NEG_***: Negation

88 840 USE 504 00 October 2002

Brief description

Function 
description

The Function negates the input value and delivers the result at the OUT output.
Data types of the ANY_NUM group can be processed.
The negation causes a sign reversal, e.g.
 6 ->  -6
-4 ->   4

The data types of the input and output values must be identical. A specific function 
is available to process each of the different data types.
It is possible to project EN and ENO as additional parameters.

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

Note: When the data types are processedDINT and INT it is not possible to convert 
very long negative values into positive ones. However, the ENO output is not set 
to 0 when this error occurs.

Note: When the data types are processedUDINT and UINT there is always an 
Error message.

NEG_***

******
*** = INT, DINT, UINT, UDINT, REAL

Parameter Data type Meaning

IN INT, DINT, UINT, UDINT, REAL Input

OUT INT, DINT, UINT, UDINT, REAL Negated output



NEG_***: Negation

840 USE 504 00 October 2002 89

Runtime error

Runtime error A violation of the value range at the input during the execution of the function will 
cause an error message to appear.
An Error message appears, when
l the value range of the input is exceeded or
l an input value of the data type UDINT or UINT is to be converted.



NEG_***: Negation

90 840 USE 504 00 October 2002



840 USE 504 00 October 2002 91

26
REAL_AS_WORD: Type 
conversion

Overview

Introduction This chapter describes the REAL_AS_WORD block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 92

Representation 92



 REAL_AS_WORD: Type conversion

92 840 USE 504 00 October 2002

Brief description

Function 
description

This function block converts one input word from Data type REAL to 2 output values 
of data type WORD.
The individual words of the REAL input are assigned to the outputs according to the 
output names.
It is possible to project EN and ENO as additional parameters.

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

REAL_AS_WORD

WORDLOW

WORDHIGH

INREAL

Parameter Data type Meaning

IN REAL Input

LOW WORD less significant word

HIGH WORD more significant word



840 USE 504 00 October 2002 93

27
SAH: Detecting and holding with 
rising edge

Overview

Introduction This chapter describes the SAH block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 94

Representation 94



SAH: Detecting and holding with rising edge

94 840 USE 504 00 October 2002

Brief description

Function 
description

The function block transfers the input value PV to the OUT output when first called 
up. With a rising edge (0 to 1) at input CLK, the input value IN is transferred to the 
OUT output. This value remains at the output until the next rising edge causes a new 
value to be loaded from IN to OUT.
The data types of the input values IN, PV and of the output value OUT must be 
identical.
The parameters EN and ENO can additionally be projected.

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

SAH

INANY
CLKBOOL
PVANY

ANYOUT

Parameter Data type Meaning

IN ANY Input value

CLK BOOL Clock input

PV ANY Preset value

OUT ANY Output value



840 USE 504 00 October 2002 95

28
SIGN_***: Sign evaluation

Overview

Introduction This chapter describes the SIGN_*** block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 96

Representation 96



SIGN_***: Sign evaluation

96 840 USE 504 00 October 2002

Brief description

Function 
description

The function is used to detect negative signs.
Data types of the ANY_NUM group can be processed.
With a value ≥ 0 at the input, the output becomes "0". With a value < 0 at the input, 
the output becomes "1".

A specific function is available to process each of the different data types.
EN and ENO can be configured as additional parameters.

Representation

Symbol Block representation: 

Formula Block formula:
OUT = 1, if IN < 0
OUT = 0, if IN ≥ 0

Note: Different processing of REAL and INT values results in the following 
behavior for signed 0 (+/-0):
-0.0 -> SIGN_REAL -> 1
-0 -> SIGN_INT/DINT -> 0
+0.0 -> SIGN_REAL -> 0
+0 -> SIGN_INT/DINT -> 0

SIGN_***

BOOL***

*** = INT, DINT, UINT, UDINT, REAL

Note: Different processing of REAL and INT values results in the following 
behavior for signed 0 (+/-0):
-0.0 -> SIGN_REAL -> 1
-0 -> SIGN_INT/DINT -> 0
+0.0 -> SIGN_REAL -> 0
+0 -> SIGN_INT/DINT -> 0



SIGN_***: Sign evaluation

840 USE 504 00 October 2002 97

Parameter 
description

Block parameter description:

Parameter Data type Meaning

IN INT, DINT, UINT, UDINT, REAL Signed input

OUT BOOL Sign evaluation



SIGN_***: Sign evaluation

98 840 USE 504 00 October 2002



840 USE 504 00 October 2002 99

29
TIME_AS_WORD: Type 
conversion

Overview

Introduction This chapter describes the TIME_AS_WORD block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 100

Representation 100



TIME_AS_WORD: Type conversion

100 840 USE 504 00 October 2002

Brief description

Function 
description

The function block converts one input word from Data type TIME to 2 output values 
of data type WORD.
The individual words of the TIME input are assigned to the outputs according to the 
output names.
It is possible to project EN and ENO as additional parameters.

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

TIME_AS_WORD

WORDLOW

WORDHIGH

INTIME

Parameter Data type Meaning

IN TIME Input

LOW WORD less significant word

HIGH WORD more significant word



840 USE 504 00 October 2002 101

30
TOF_P: Off Delay with Pause

Overview

Introduction This chapter describes the TOF_P block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 102

Representation 102

Detailed description 103



TOF_P: Off Delay with Pause

102 840 USE 504 00 October 2002

Brief description

Function 
description

The function block is used as Off delay.
A 0 -> 1 edge on input IN triggers a reset.
A 1 -> 0 edge on input IN starts the timer function.
If the elapsed time (output ET) reaches the value defined on input PT, output Q is 
set to "0".
When the function block is first called the initial state of ET is "0".
With a "1" signal on input PAUSE, the timer is stopped and all values are frozen. If 
the input PAUSE becomes "0" again, the timer continues.
PAUSE has the highest priority. With a 1 -> 0 edge on input PAUSE, the block is no 
longer processed in this cycle. The block continues processing in the next cycle.
EN and ENO can be configured as additional parameters.

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

Note: Input EN cannot be used as pause function for the function block.
The elapsed time is still measured even when input EN becomes "0". If input EN 
becomes "1" again, output ET is updated and executes a jump.
However, if PAUSE is "1" when EN becomes "0", the pause is continued after EN 
becomes "1" until PAUSE becomes "0". In this case, there is no jump on output ET.

TOF_P

INBOOL
PTTIME
PAUSEBOOL

BOOLQ

TIMEET

Parameter Data type Meaning

IN BOOL 0 -> 1: Reset
1 -> 0: Start timer

PT TIME Preset delay time

PAUSE BOOL 1: The timer values are frozen.

Q BOOL Output

ET TIME Elapsed time



TOF_P: Off Delay with Pause

840 USE 504 00 October 2002 103

Detailed description

Timing diagram Representation of the Off delay TOF_P: 

t0 If IN becomes "1" and PAUSE is "1", Q remains "0" and the internal time is not started 
(PAUSE has priority above IN).

t1 If IN becomes "0" while PAUSE is "1", the block remains inactive.

t2 If PAUSE becomes "0" while IN is "0", the block remains inactive.

t3 If IN becomes "1", Q becomes "1".

t4 If IN becomes "0", the internal time (ET) is started.

t5 If IN becomes "1" before the internal time has reached the value of PT, the internal time is 
reset without Q becoming "0".

t6 If PAUSE becomes "1", Q remains "1" (the block is inactive).

t7 If IN and PAUSE become "0", the internal time is started in the next cycle.

t8 If the internal time reaches the value of PT, Q becomes "0". 

t9 If IN becomes "1", Q becomes "1" and the internal time is reset.

t10 If IN becomes "0", the internal time is started.

PAUSE

time

IN

Q

PT

t0 t2t1 t4t3 t5 t6 t7 t9t8 t10 t11 t13 t14t12

ET



TOF_P: Off Delay with Pause

104 840 USE 504 00 October 2002

t11 If PAUSE becomes "1" before the internal time has reached the value of PT, the internal 
time is stopped without Q becoming "0".

t12 If PAUSE becomes "0", the internal time (ET) continues.

t13 If the internal time reaches the value of PT, Q becomes "0". 

t14 If IN becomes "1", Q becomes "1" and the internal time is reset.



840 USE 504 00 October 2002 105

31
TON_P: On Delay with Pause

Overview

Introduction This chapter describes the TON_P block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 106

Representation 106

Detailed description 107



TON_P: On Delay

106 840 USE 504 00 October 2002

Brief description

Function 
description

The function block is used as On delay.
A 1 -> 0 edge on input IN triggers a reset.
A 0 -> 1 edge on input IN starts the timer function.
If the elapsed time (output ET) reaches the value defined on input PT, output Q is 
set to "1".
When the function block is first called the initial state of ET is "0".
With a "1" signal on input PAUSE, the timer is stopped and all values are frozen. If 
the input PAUSE becomes "0" again, the timer continues.
PAUSE has the highest priority. With a 1 -> 0 edge on input PAUSE, the block is no 
longer processed in this cycle. The block continues processing in the next cycle.
EN and ENO can be configured as additional parameters.

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

Note: Input EN cannot be used as pause function for the function block.
The elapsed time is still measured even when input EN becomes "0". If input EN 
becomes "1" again, output ET is updated and executes a jump.
However, if PAUSE is "1" when EN becomes "0", the pause is continued after EN 
becomes "1" until PAUSE becomes "0". In this case, there is no jump on output ET.

TON_P

INBOOL
PTTIME
PAUSEBOOL

BOOLQ

TIMEET

Parameter Data type Meaning

IN BOOL 0 -> 1: Start timer
1 -> 0: Reset

PT TIME Preset delay time

PAUSE BOOL 1: The timer values are frozen.

Q BOOL Output

ET TIME Elapsed time



TON_P: On Delay

840 USE 504 00 October 2002 107

Detailed description

Timing diagram Representation of the On delay TON_P: 

t0 If IN becomes "1" and PAUSE is "1", Q remains "0" and the internal time is not started 
(PAUSE has priority above IN).

t1 If IN becomes "0" while PAUSE is "1", the block remains inactive.

t2 If PAUSE becomes "0" while IN is "0", the block remains inactive.

t3 If IN becomes "1", the internal time (ET) is started.

t4 If IN becomes "0" before the internal time has reached the value of PT, the internal time is 
reset without Q becoming "1".

t5 If IN becomes "1", the internal time (ET) is started.

t6 If PAUSE becomes "1" before the internal time has reached the value of PT, the internal 
time is stopped without Q becoming "1".

t7 If IN and PAUSE become "0", the internal time is reset in the next cycle without Q 
becoming "1".

t8 If IN becomes "1", the internal time (ET) is started.

PAUSE

time

IN

Q

PT

t0 t2t1 t4t3 t5 t6 t7 t9t8 t10 t11 t13 t14 t15t12

ET

t17t16



TON_P: On Delay

108 840 USE 504 00 October 2002

t9 If PAUSE becomes "1" before the internal time has reached the value of PT, the internal 
time is stopped without Q becoming "1".

t10 If PAUSE becomes "0", the internal time (ET) continues.

t11 If the internal time reaches the value of PT, Q becomes "1". 

t12 If IN becomes "0", Q becomes "0" and the internal time is reset.

t13 If IN becomes "1", the internal time (ET) is started.

t14 If the internal time reaches the value of PT, Q becomes "1". 

t15 If PAUSE becomes "1", Q remains "1".

t16 If IN becomes "0" while PAUSE is "1", Q remains "1" and ET is not reset (the block is 
inactive).

t17 If PAUSE becomes "0" while IN is "0", Q becomes "0" in the next cycle and the internal 
time is reset.



840 USE 504 00 October 2002 109

32
TRIGGER: Detection of all types of 
edges

Overview

Introduction This chapter describes the TRIGGER block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 110

Representation 110



TRIGGER: Detection of all types of edges

110 840 USE 504 00 October 2002

Brief description

Function 
description

The Function block recognizes all types of edges (1 -> 0 and 0 -> 1) at input CLK.
Output EDGE becomes "1" if there is a transition from "0" to "1" or from "1" to "0" at 
CLK; otherwise it remains on "0".
If there is a transition from "0" to "1" at input CLK, output RISE becomes "1"; if there 
is a transition from "1" to "0" at input CLK, output FALL becomes "1"; if neither of 
these two instances occurs, both outputs become "0".
The parameters EN and ENO can additionally be projected.

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

TRIGGER

BOOLRISE

BOOLEDGE

BOOLFALL

CLKBOOL

Parameter Data type Meaning

CLK BOOL Clock input

RISE BOOL Indicator signal of rising edge

EDGE BOOL Indicator of all types of edges

FALL BOOL Indicator signal of falling edge



840 USE 504 00 October 2002 111

33
UDINT_AS_WORD: Type 
conversion

Overview

Introduction This chapter describes the UDINT_AS_WORD block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 112

Representation 112



UDINT_AS_WORD: Type conversion

112 840 USE 504 00 October 2002

Brief description

Function 
description

The function block converts one input word from Data type UDINT to 2 output values 
of data type WORD.
The individual words of the UDINT input are assigned to the outputs according to the 
output names.
It is possible to project EN and ENO as additional parameters.

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

UDINT_AS_WORD

WORDLOW

WORDHIGH

INUDINT

Parameter Data type Meaning

IN UDINT Input

LOW WORD less significant word

HIGH WORD more significant word



840 USE 504 00 October 2002 113

34
WORD_AS_BYTE: Type 
conversion

Overview

Introduction This chapter describes the WORD_AS_BYTE block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 114

Representation 114



 WORD_AS_BYTE: Type conversion

114 840 USE 504 00 October 2002

Brief description

Function 
description

The function block converts one input word from Data type WORD to two output 
values of data type BYTE.
The individual bytes of the word at the input are assigned to the outputs according 
to the output names.
The parameters EN and ENO can additionally be projected.

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

WORD_AS_BYTE

BYTELOW

BYTEHIGH

INWORD

Parameter Data type Meaning

IN WORD Input

LOW BYTE less significant byte

HIGH BYTE more significant byte



840 USE 504 00 October 2002 115

35
WORD_AS_DINT: Type 
conversion

Overview

Introduction This chapter describes the WORD_AS_DINT block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 116

Representation 116



 WORD_AS_DINT: Type conversion

116 840 USE 504 00 October 2002

Brief description

Function 
description

The Function converts 2 input words from Data type WORD to an output value of 
data type DINT.
The input values are assigned to the word at the output according to the input 
names.
The parameters EN and ENO can additionally be projected.

Representation

Symbol Block representation: 

Formula Block formula:

Parameter 
description

Block parameter description:

WORD_AS_DINT

DINTLOWWORD
HIGHWORD

OUT HIGH LOW,{ }=

Parameter Data type Meaning

LOW WORD less significant word

HIGH WORD more significant word

OUT DINT Output value



840 USE 504 00 October 2002 117

36
WORD_AS_REAL: Type 
conversion

Overview

Introduction This chapter describes the WORD_AS_REAL block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 118

Representation 118



 WORD_AS_REAL: Type conversion

118 840 USE 504 00 October 2002

Brief description

Function 
description

The Function converts 2 input words from Data type WORD to an output value of 
data type REAL.
The input values are assigned to the word at the output according to the input 
names.
It is possible to project EN and ENO as additional parameters.

Representation

Symbol Block representation: 

Formula Block formula:

Parameter 
description

Block parameter description:

WORD_AS_REAL

REALLOWWORD
HIGHWORD

OUT HIGH LOW,{ }=

Parameter Data type Meaning

LOW WORD less significant word

HIGH WORD more significant word

OUT REAL Output value



840 USE 504 00 October 2002 119

37
WORD_AS_TIME: Type 
conversion

Overview

Introduction This chapter describes the WORD_AS_TIME block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 120

Representation 120



 WORD_AS_TIME: Type conversion

120 840 USE 504 00 October 2002

Brief description

Function 
description

The Function converts 2 input words from Data type WORD to an output value of 
data type TIME.
The input values are assigned to the word at the output according to the input 
names.
The parameters EN and ENO can additionally be projected.

Representation

Symbol Block representation: 

Formula Block formula:

Parameter 
description

Block parameter description:

WORD_AS_TIME

TIMELOWWORD
HIGHWORD

OUT HIGH LOW,{ }=

Parameter Data type Meaning

LOW WORD less significant word

HIGH WORD more significant word

OUT TIME Output value



840 USE 504 00 October 2002 121

38
WORD_AS_UDINT: Type 
conversion

Overview

Introduction This chapter describes the WORD_AS_UDINT block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 122

Representation 122



 WORD_AS_UDINT: Type conversion

122 840 USE 504 00 October 2002

Brief description

Function 
description

The Function converts 2 input words from Data type WORD to an output value of 
data type UDINT.
The input values are assigned to the word at the output according to the input 
names.
It is possible to project EN and ENO as additional parameters.

Representation

Symbol Block representation: 

Formula Block formula:

Parameter 
description

Block parameter description:

WORD_AS_UDINT

UDINTLOWWORD
HIGHWORD

OUT HIGH LOW,{ }=

Parameter Data type Meaning

LOW WORD less significant word

HIGH WORD more significant word

OUT UDINT Output value



840 USE 504 00 October 2002 123

39
WORD_TO_BIT: Type conversion

Overview

Introduction This chapter describes the WORD_TO_BIT block.

What’s in this 
chapter?

This chapter contains the following topics:

Topic Page

Brief description 124

Representation 125



 WORD_TO_BIT: Type conversion

124 840 USE 504 00 October 2002

Brief description

Function 
description

The function block converts one input word from Data type WORD to 16 output 
values of data type BOOL.
The individual bits of the word at the input are assigned to the outputs according to 
the output names. 

The parameters EN and ENO can additionally be projected.

BIT0 (2   )

BIT15 (2    )

0

15

BIT1 (2   )1

BIT14 (2    )14

215 21 20214

WORD



 WORD_TO_BIT: Type conversion

840 USE 504 00 October 2002 125

Representation

Symbol Block representation: 

Parameter 
description

Block parameter description:

WORD_TO_BIT

BOOLBIT0

BOOLBIT1

BOOLBIT2

BOOLBIT3

BOOLBIT4

BOOLBIT5

BOOLBIT6

BOOLBIT7

BOOLBIT8

BOOLBIT9
BOOLBIT10

BOOLBIT11

BOOLBIT12

BOOLBIT13

BOOLBIT14

BOOLBIT15

WORD

Parameter Data type Meaning

IN WORD Input

BIT0 BOOL Output BIT0

BIT1 BOOL Output BIT1

: : :

BIT15 BOOL Output BIT15



 WORD_TO_BIT: Type conversion

126 840 USE 504 00 October 2002



840 USE 504 00 October 2002 127

Glossary

Active window The window, which is currently selected. Only one window can be active at any one 
given time. When a window is active, the heading changes color, in order to 
distinguish it from other windows. Unselected windows are inactive.

Actual parameter Currently connected Input/Output parameters.

Addresses (Direct) addresses are memory areas on the PLC. These are found in the State RAM 
and can be assigned input/output modules.
The display/input of direct addresses is possible in the following formats:
l Standard format (400001)
l Separator format (4:00001)
l Compact format (4:1)
l IEC format (QW1)

ANL_IN ANL_IN stands for the data type "Analog Input" and is used for processing analog 
values. The 3x References of the configured analog input module, which is specified 
in the I/O component list is automatically assigned the data type and should 
therefore only be occupied by Unlocated variables.

ANL_OUT ANL_OUT stands for the data type "Analog Output" and is used for processing 
analog values. The 4x-References of the configured analog output module, which is 
specified in the I/O component list is automatically assigned the data type and 
should therefore only be occupied by Unlocated variables.

ANY In the existing version "ANY" covers the elementary data types BOOL, BYTE, DINT, 
INT, REAL, UDINT, UINT, TIME and WORD and therefore derived data types.

A



Glossary

128 840 USE 504 00 October 2002

ANY_BIT In the existing version, "ANY_BIT" covers the data types BOOL, BYTE and WORD.

ANY_ELEM In the existing version "ANY_ELEM" covers the elementary data types BOOL, 
BYTE, DINT, INT, REAL, UDINT, UINT, TIME and WORD.

ANY_INT In the existing version, "ANY_INT" covers the data types DINT, INT, UDINT and 
UINT.

ANY_NUM In the existing version, "ANY_NUM" covers the data types DINT, INT, REAL, UDINT 
and UINT.

ANY_REAL In the existing version "ANY_REAL" covers the data type REAL.

Application 
window

The window, which contains the working area, the menu bar and the tool bar for the 
application. The name of the application appears in the heading. An application 
window can contain several document windows. In Concept the application window 
corresponds to a Project.

Argument Synonymous with Actual parameters.

ASCII mode American Standard Code for Information Interchange. The ASCII mode is used for 
communication with various host devices. ASCII works with 7 data bits.

Atrium The PC based controller is located on a standard AT board, and can be operated 
within a host computer in an ISA bus slot. The module occupies a motherboard 
(requires SA85 driver) with two slots for PC104 daughter boards. From this, a 
PC104 daughter board is used as a CPU and the others for INTERBUS control.

Back up data file 
(Concept EFB)

The back up file is a copy of the last  Source files. The name of this back up file is 
"backup??.c" (it is accepted that there are no more than 100 copies of the source 
files. The first back up file is called "backup00.c". If changes have been made on the 
Definition file, which do not create any changes to the interface in the EFB, there is 
no need to create a back up file by editing the source files (Objects → Source). If a 
back up file can be assigned, the name of the source file can be given.

B



Glossary

840 USE 504 00 October 2002 129

Base 16 literals Base 16 literals function as the input of whole number values in the hexadecimal 
system. The base must be denoted by the prefix 16#. The values may not be 
preceded by signs (+/-). Single underline signs ( _ ) between figures are not 
significant.

Example 
16#F_F or 16#FF (decimal 255)
16#E_0 or 16#E0 (decimal 224)

Base 8 literal Base 8 literals function as the input of whole number values in the octal system. The 
base must be denoted by the prefix 3.63kg. The values may not be preceded by 
signs (+/-). Single underline signs ( _ ) between figures are not significant.

Example 
8#3_1111 or 8#377 (decimal 255) 
8#34_1111 or 8#340 (decimal 224) 

Basis 2 literals Base 2 literals function as the input of whole number values in the dual system. The 
base must be denoted by the prefix 0.91kg. The values may not be preceded by 
signs (+/-). Single underline signs ( _ ) between figures are not significant.

Example 
2#1111_1111 or 2#11111111 (decimal 255) 
2#1110_1111 or 2#11100000 (decimal 224) 

Binary 
connections

Connections between outputs and inputs of FFBs of data type BOOL.

Bit sequence A data element, which is made up from one or more bits.

BOOL BOOL stands for the data type "Boolean". The length of the data elements is 1 bit 
(in the memory contained in 1 byte). The range of values for variables of this type is 
0 (FALSE) and 1 (TRUE).

Bridge A bridge serves to connect networks. It enables communication between nodes on 
the two networks. Each network has its own token rotation sequence – the token is 
not deployed via bridges.

BYTE BYTE stands for the data type "Bit sequence 8". The input appears as Base 2 literal, 
Base 8 literal or Base 1 16 literal. The length of the data element is 8 bit. A numerical 
range of values cannot be assigned to this data type.



Glossary

130 840 USE 504 00 October 2002

Cache The cache is a temporary memory for cut or copied objects. These objects can be 
inserted into sections. The old content in the cache is overwritten for each new Cut 
or Copy.

Call up The operation, by which the execution of an operation is initiated.

Coil A coil is a LD element, which transfers (without alteration) the status of the horizontal 
link on the left side to the horizontal link on the right side. In this way, the status is 
saved in the associated Variable/ direct address.

Compact format 
(4:1)

The first figure (the Reference) is separated from the following address with a colon 
(:), where the leading zero are not entered in the address.

Connection A check or flow of data connection between graphic objects (e.g. steps in the SFC 
editor, Function blocks in the FBD editor) within a section, is graphically shown as a 
line.

Constants Constants are Unlocated variables, which are assigned a value that cannot be 
altered from the program logic (write protected).

Contact A contact is a LD element, which transfers a horizontal connection status onto the 
right side. This status is from the Boolean AND- operation of the horizontal 
connection status on the left side with the status of the associated Variables/direct 
Address. A contact does not alter the value of the associated variables/direct 
address.

C



Glossary

840 USE 504 00 October 2002 131

Data transfer 
settings

Settings, which determine how information from the programming device is 
transferred to the PLC.

Data types The overview shows the hierarchy of data types, as they are used with inputs and 
outputs of Functions and Function blocks. Generic data types are denoted by the 
prefix "ANY".
l ANY_ELEM

l ANY_NUM
ANY_REAL (REAL)
ANY_INT (DINT, INT, UDINT, UINT)

l ANY_BIT (BOOL, BYTE, WORD)
l TIME

l System data types (IEC extensions)
l Derived (from "ANY" data types)

DCP I/O station With a Distributed Control Processor (D908) a remote network can be set up with a 
parent PLC. When using a D908 with remote PLC, the parent PLC views the remote 
PLC as a remote I/O station. The D908 and the remote PLC communicate via the 
system bus, which results in high performance, with minimum effect on the cycle 
time. The data exchange between the D908 and the parent PLC takes place at 1.5 
Megabits per second via the remote I/O bus. A parent PLC can support up to 31 
(Address 2-32) D908 processors.

DDE (Dynamic 
Data Exchange)

The DDE interface enables a dynamic data exchange between two programs under 
Windows. The DDE interface can be used in the extended monitor to call up its own 
display applications. With this interface, the user (i.e. the DDE client) can not only 
read data from the extended monitor (DDE server), but also write data onto the PLC 
via the server. Data can therefore be altered directly in the PLC, while it monitors 
and analyzes the results. When using this interface, the user is able to make their 
own "Graphic-Tool", "Face Plate" or "Tuning Tool", and integrate this into the 
system. The tools can be written in any DDE supporting language, e.g. Visual Basic 
and Visual-C++. The tools are called up, when the one of the buttons in the dialog 
box extended monitor uses Concept Graphic Tool: Signals of a projection can be 
displayed as timing diagrams via the DDE connection between Concept and 
Concept Graphic Tool.

D



Glossary

132 840 USE 504 00 October 2002

Decentral 
Network (DIO)

A remote programming in Modbus Plus network enables maximum data transfer 
performance and no specific requests on the links. The programming of a remote 
net is easy. To set up the net, no additional ladder diagram logic is needed. Via 
corresponding entries into the Peer Cop processor all data transfer requests are 
met.

Declaration Mechanism for determining the definition of a Language element. A declaration 
normally covers the connection of an Identifier with a language element and the 
assignment of attributes such as Data types and algorithms.

Definition data 
file (Concept 
EFB)

The definition file contains general descriptive information about the selected FFB 
and its formal parameters.

Derived data type Derived data types are types of data, which are derived from the Elementary data 
types and/or other derived data types. The definition of the derived data types 
appears in the data type editor in Concept.
Distinctions are made between global data types and local data types.

Derived Function 
Block (DFB)

A derived function block represents the Call up of a derived function block type. 
Details of the graphic form of call up can be found in the definition " Function block 
(Item)". Contrary to calling up EFB types, calling up DFB types is denoted by double 
vertical lines on the left and right side of the rectangular block symbol.
The body of a derived function block type is designed using FBD language, but only 
in the current version of the programming system. Other IEC languages cannot yet 
be used for defining DFB types, nor can derived functions be defined in the current 
version.
Distinctions are made between local and global DFBs.

DINT DINT stands for the data type "double integer". The input appears as  Integer literal, 
Base 2 literal, Base 8 literal or Base 16 literal. The length of the data element is 32 
bit. The range of values for variables of this data type is from –2 exp (31) to 2 exp 
(31) –1.

Direct display A method of displaying variables in the PLC program, from which the assignment of 
configured memory can be directly and indirectly derived from the physical memory.

Document 
window

A window within an Application window. Several document windows can be opened 
at the same time in an application window. However, only one document window 
can be active. Document windows in Concept are, for example, sections, the 
message window, the reference data editor and the PLC configuration.

Dummy An empty data file, which consists of a text header with general file information, i.e. 
author, date of creation, EFB identifier etc. The user must complete this dummy file 
with additional entries.



Glossary

840 USE 504 00 October 2002 133

DX Zoom This property enables connection to a programming object to observe and, if 
necessary, change its data value.

Elementary 
functions/
function blocks 
(EFB)

Identifier for Functions or Function blocks, whose type definitions are not formulated 
in one of the IEC languages, i.e. whose bodies, for example, cannot be modified with 
the DFB Editor (Concept-DFB). EFB types are programmed in "C" and mounted via 
Libraries in precompiled form.

EN / ENO (Enable 
/ Error display)

If the value of EN is "0" when the FFB is called up, the algorithms defined by the FFB 
are not executed and all outputs contain the previous value. The value of ENO is 
automatically set to "0" in this case. If the value of EN is "1" when the FFB is called 
up, the algorithms defined by the FFB are executed. After the error free execution of 
the algorithms, the ENO value is automatically set to "1". If an error occurs during 
the execution of the algorithm, ENO is automatically set to "0". The output behavior 
of the FFB depends whether the FFBs are called up without EN/ENO or with EN=1. 
If the EN/ENO display is enabled, the EN input must be active. Otherwise, the FFB 
is not executed. The projection of EN and ENO is enabled/disabled in the block 
properties dialog box. The dialog box is called up via the menu commands Objects 
→ Properties... or via a double click on the FFB.

Error When processing a FFB or a Step an error is detected (e.g. unauthorized input value 
or a time error), an error message appears, which can be viewed with the menu 
command Online → Event viewer... . With FFBs the ENO output is set to "0".

Evaluation The process, by which a value for a Function or for the outputs of a Function block 
during the Program execution is transmitted.

Expression Expressions consist of operators and operands.

FFB (functions/
function blocks)

Collective term for EFB (elementary functions/function blocks) and DFB (derived 
function blocks)

Field variables Variables, one of which is assigned, with the assistance of the key word ARRAY 
(field), a defined Derived data type. A field is a collection of data elements of the 
same Data type.

E

F



Glossary

134 840 USE 504 00 October 2002

FIR filter Finite Impulse Response Filter

Formal 
parameters

Input/Output parameters, which are used within the logic of a FFB and led out of the 
FFB as inputs/outputs.

Function (FUNC) A Program organization unit, which exactly supplies a data element when executing. 
A function has no internal status information. Multiple call ups of the same function 
with the same input parameter values always supply the same output values.
Details of the graphic form of function call up can be found in the definition " Function 
block (Item)". In contrast to the call up of function blocks, the function call ups only 
have one unnamed output, whose name is the name of the function itself. In FBD 
each call up is denoted by a unique number over the graphic block; this number is 
automatically generated and cannot be altered.

Function block 
(item) (FB)

A function block is a Program organization unit, which correspondingly calculates 
the functionality values, defined in the function block type description, for the output 
and internal variables, when it is called up as a certain item. All output values and 
internal variables of a certain function block item remain as a call up of the function 
block until the next. Multiple call up of the same function block item with the same 
arguments (Input parameter values) supply generally supply the same output 
value(s).
Each function block item is displayed graphically by a rectangular block symbol. The 
name of the function block type is located on the top center within the rectangle. The 
name of the function block item is located also at the top, but on the outside of the 
rectangle. An instance is automatically generated when creating, which can 
however be altered manually, if required. Inputs are displayed on the left side and 
outputs on the right of the block. The names of the formal input/output parameters 
are displayed within the rectangle in the corresponding places.
The above description of the graphic presentation is principally applicable to 
Function call ups and to DFB call ups. Differences are described in the 
corresponding definitions.

Function block 
dialog (FBD)

One or more sections, which contain graphically displayed networks from Functions, 
Function blocks and Connections.

Function block 
type

A language element, consisting of: 1. the definition of a data structure, subdivided 
into input, output and internal variables, 2. A set of operations, which is used with 
the elements of the data structure, when a function block type instance is called up. 
This set of operations can be formulated either in one of the IEC languages (DFB 
type) or in "C" (EFB type). A function block type can be instanced (called up) several 
times.



Glossary

840 USE 504 00 October 2002 135

Function counter The function counter serves as a unique identifier for the function in a  Program or 
DFB. The function counter cannot be edited and is automatically assigned. The 
function counter always has the structure: .n.m

n = Section number (number running)
m = Number of the FFB object in the section (number running)

Generic data 
type

A Data type, which stands in for several other data types.

Generic literal If the Data type of a literal is not relevant, simply enter the value for the literal. In this 
case Concept automatically assigns the literal to a suitable data type.

Global derived 
data types

Global Derived data types are available in every Concept project and are contained 
in the DFB directory directly under the Concept directory.

Global DFBs Global DFBs are available in every Concept project and are contained in the DFB 
directory directly under the Concept directory.

Global macros Global Macros are available in every Concept project and are contained in the DFB 
directory directly under the Concept directory.

Groups (EFBs) Some EFB libraries (e.g. the IEC library) are subdivided into groups. This facilitates 
the search for FFBs, especially in extensive libraries.

I/O component 
list

The I/O and expert assemblies of the various CPUs are configured in the I/O 
component list.

IEC 61131-3 International norm: Programmable controllers – part 3: Programming languages.

G

I



Glossary

136 840 USE 504 00 October 2002

IEC format (QW1) In the place of the address stands an IEC identifier, followed by a five figure address:
l %0x12345 = %Q12345
l %1x12345 = %I12345
l %3x12345 = %IW12345
l %4x12345 = %QW12345

IEC name 
conventions 
(identifier)

An identifier is a sequence of letters, figures, and underscores, which must start with 
a letter or underscores (e.g. name of a function block type, of an item or section). 
Letters from national sets of characters (e.g.  ö,ü, é, õ) can be used, taken from 
project and DFB names.
Underscores are significant in identifiers; e.g. "A_BCD" and "AB_CD" are 
interpreted as different identifiers. Several leading and multiple underscores are not 
authorized consecutively.
Identifiers are not permitted to contain space characters. Upper and/or lower case 
is not significant; e.g. "ABCD" and "abcd" are interpreted as the same identifier.
Identifiers are not permitted to be Key words.

IIR filter Infinite Impulse Response Filter

Initial step 
(starting step)

The first step in a chain. In each chain, an initial step must be defined. The chain is 
started with the initial step when first called up.

Initial value The allocated value of one of the variables when starting the program. The value 
assignment appears in the form of a  Literal.

Input bits 
(1x references)

The 1/0 status of input bits is controlled via the process data, which reaches the CPU 
from an entry device.

Input parameters 
(Input)

When calling up a FFB the associated  Argument is transferred.

Input words 
(3x references)

An input word contains information, which come from an external source and are 
represented by a 16 bit figure. A 3x register can also contain 16 sequential input bits, 
which were read into the register in binary or BCD (binary coded decimal) format. 
Note: The x, which comes after the first figure of the reference type, represents a 
five figure storage location in the user data store, i.e. if the reference 300201 
signifies a 16 bit input word in the address 201 of the State RAM.

Instantiation The generation of an Item.

Note: The x, which comes after the first figure of the reference type, represents a 
five figure storage location in the application data store, i.e. if the reference 100201 
signifies an input bit in the address 201 of the State RAM.



Glossary

840 USE 504 00 October 2002 137

Instruction (IL) Instructions are "commands" of the IL programming language. Each operation 
begins on a new line and is succeeded by an operator (with modifier if needed) and, 
if necessary for each relevant operation, by one or more operands. If several 
operands are used, they are separated by commas. A tag can stand before the 
instruction, which is followed by a colon. The commentary must, if available, be the 
last element in the line.

Instruction 
(LL984)

When programming electric controllers, the task of implementing operational coded 
instructions in the form of picture objects, which are divided into recognizable 
contact forms, must be executed. The designed program objects are, on the user 
level, converted to computer useable OP codes during the loading process. The OP 
codes are deciphered in the CPU and processed by the controller’s firmware 
functions so that the desired controller is implemented.

Instruction list 
(IL)

IL is a text language according to IEC 1131, in which operations, e.g. conditional/
unconditional call up of Function blocks and Functions, conditional/unconditional 
jumps etc. are displayed through instructions.

INT INT stands for the data type "whole number". The input appears as  Integer literal, 
Base 2 literal, Base 8 literal or Base 16 literal. The length of the data element is 16 
bit. The range of values for variables of this data type is from –2 exp (15) to 2 exp 
(15) –1.

Integer literals Integer literals function as the input of whole number values in the decimal system. 
The values may be preceded by the signs (+/-). Single underline signs ( _ ) between 
figures are not significant.

Example 
-12, 0, 123_456, +986

INTERBUS (PCP) To use the INTERBUS PCP channel and the INTERBUS process data 
preprocessing (PDP), the new I/O station type INTERBUS (PCP) is led into the 
Concept configurator. This I/O station type is assigned fixed to the INTERBUS 
connection module 180-CRP-660-01.
The 180-CRP-660-01 differs from the 180-CRP-660-00 only by a clearly larger I/O 
area in the state RAM of the controller.



Glossary

138 840 USE 504 00 October 2002

Item name An Identifier, which belongs to a certain Function block item. The item name serves 
as a unique identifier for the function block in a program organization unit. The item 
name is automatically generated, but can be edited. The item name must be unique 
throughout the Program organization unit, and no distinction is made between 
upper/lower case. If the given name already exists, a warning is given and another 
name must be selected. The item name must conform to the IEC name conventions, 
otherwise an error message appears. The automatically generated instance name 
always has the structure: FBI_n_m

FBI = Function block item
n = Section number (number running)
m = Number of the FFB object in the section (number running)

Jump Element of the SFC language. Jumps are used to jump over areas of the chain.

Key words Key words are unique combinations of figures, which are used as special syntactic 
elements, as is defined in appendix B of the IEC 1131-3. All key words, which are 
used in the IEC 1131-3 and in Concept, are listed in appendix C of the IEC 1131-3. 
These listed keywords cannot be used for any other purpose, i.e. not as variable 
names, section names, item names etc.

Ladder Diagram 
(LD)

Ladder Diagram is a graphic programming language according to  IEC1131, which 
optically orientates itself to the "rung" of a relay ladder diagram.

J

K

L



Glossary

840 USE 504 00 October 2002 139

Ladder Logic 984 
(LL)

In the terms Ladder Logic and Ladder Diagram, the word Ladder refers to execution. 
In contrast to a diagram, a ladder logic is used by engineers to draw up a circuit (with 
assistance from electrical symbols),which should chart the cycle of events and not 
the existing wires, which connect the parts together. A usual user interface for 
controlling the action by automated devices permits ladder logic interfaces, so that 
when implementing a control system, engineers do not have to learn any new 
programming languages, with which they are not conversant.
The structure of the actual ladder logic enables electrical elements to be linked in a 
way that generates a control output, which is dependant upon a configured flow of 
power through the electrical objects used, which displays the previously demanded 
condition of a physical electric appliance.
In simple form, the user interface is one of the video displays used by the PLC 
programming application, which establishes a vertical and horizontal grid, in which 
the programming objects are arranged. The logic is powered from the left side of the 
grid, and by connecting activated objects the electricity flows from left to right.

Landscape 
format

Landscape format means that the page is wider than it is long when looking at the 
printed text.

Language 
element

Each basic element in one of the IEC programming languages, e.g. a Step in  SFC, 
a Function block item in FBD or the Start value of a variable.

Library Collection of software objects, which are provided for reuse when programming new 
projects, or even when building new libraries. Examples are the Elementary function 
block types libraries.
EFB libraries can be subdivided into Groups.

Literals Literals serve to directly supply values to inputs of FFBs, transition conditions etc. 
These values cannot be overwritten by the program logic (write protected). In this 
way, generic and standardized literals are differentiated.
Furthermore literals serve to assign a Constant a value or a Variable an Initial value. 
The input appears as Base 2 literal, Base 8 literal, Base 16 literal, Integer literal, Real 
literal or Real literal with exponent.

Local derived 
data types

Local derived data types are only available in a single Concept project and its local 
DFBs and are contained in the DFB directory under the project directory.

Local DFBs Local DFBs are only available in a single Concept project and are contained in the 
DFB directory under the project directory.

Local link The local network link is the network, which links the local nodes with other nodes 
either directly or via a bus amplifier.

Local macros Local Macros are only available in a single Concept project and are contained in the 
DFB directory under the project directory.



Glossary

140 840 USE 504 00 October 2002

Local network 
nodes

The local node is the one, which is projected evenly.

Located variable Located variables are assigned a state RAM address (reference addresses 0x,1x, 
3x, 4x). The value of these variables is saved in the state RAM and can be altered 
online with the reference data editor. These variables can be addressed by symbolic 
names or the reference addresses.

Collective PLC inputs and outputs are connected to the state RAM. The program 
access to the peripheral signals, which are connected to the PLC, appears only via 
located variables. PLC access from external sides via Modbus or Modbus plus 
interfaces, i.e. from visualizing systems, are likewise possible via located variables.

Macro Macros are created with help from the software Concept DFB.
Macros function to duplicate frequently used sections and networks (including the 
logic, variables, and variable declaration).
Distinctions are made between local and global macros.

Macros have the following properties:
l Macros can only be created in the programming languages FBD and LD.
l Macros only contain one single section.
l Macros can contain any complex section.
l From a program technical point of view, there is no differentiation between an 

instanced macro, i.e. a macro inserted into a section, and a conventionally 
created macro.

l Calling up DFBs in a macro
l Variable declaration
l Use of macro-own data structures
l Automatic acceptance of the variables declared in the macro
l Initial value for variables
l Multiple instancing of a macro in the whole program with different variables
l The section name, the variable name and the data structure name can contain up 

to 10 different exchange markings (@0 to @9).

MMI Man Machine Interface

Multi element 
variables

Variables, one of which is assigned a  Derived data type defined with STRUCT or 
ARRAY.
Distinctions are made between Field variables and structured variables.

M



Glossary

840 USE 504 00 October 2002 141

Network A network is the connection of devices to a common data path, which communicate 
with each other via a common protocol.

Network node A node is a device with an address (164) on the Modbus Plus network.

Node address The node address serves a unique identifier for the network in the routing path. The 
address is set directly on the node, e.g. with a rotary switch on the back of the 
module.

Operand An operand is a Literal, a Variable, a Function call up or an Expression.

Operator An operator is a symbol for an arithmetic or Boolean operation to be executed.

Output 
parameters 
(Output)

A parameter, with which the result(s) of the Evaluation of a FFB are returned.

Output/discretes 
(0x references)

An output/marker bit can be used to control real output data via an output unit of the 
control system, or to define one or more outputs in the state RAM. Note: The x, 
which comes after the first figure of the reference type, represents a five figure 
storage location in the application data store, i.e. if the reference 000201 signifies 
an output or marker bit in the address 201 of the State RAM.

Output/marker 
words 
(4x references)

An output/marker word can be used to save numerical data (binary or decimal) in 
the State RAM, or also to send data from the CPU to an output unit in the control 
system. Note: The x, which comes after the first figure of the reference type, 
represents a five figure storage location in the application data store, i.e. if the 
reference 400201 signifies a 16 bit output or marker word in the address 201 of the 
State RAM.

N

O



Glossary

142 840 USE 504 00 October 2002

Peer processor The peer processor processes the token run and the flow of data between the 
Modbus Plus network and the PLC application logic.

PLC Programmable controller

Program The uppermost Program organization unit. A program is closed and loaded onto a 
single PLC.

Program cycle A program cycle consists of reading in the inputs, processing the program logic and 
the output of the outputs.

Program 
organization unit

A Function, a Function block, or a Program. This term can refer to either a Type or 
an  Item.

Programming 
device

Hardware and software, which supports programming, configuring, testing, 
implementing and error searching in PLC applications as well as in remote system 
applications, to enable source documentation and archiving. The programming 
device could also be used for process visualization.

Programming 
redundancy 
system 
(Hot Standby)

A redundancy system consists of two identically configured PLC devices, which 
communicate with each other via redundancy processors. In the case of the primary 
PLC failing, the secondary PLC takes over the control checks. Under normal 
conditions the secondary PLC does not take over any controlling functions, but 
instead checks the status information, to detect mistakes.

Project General identification of the uppermost level of a software tree structure, which 
specifies the parent project name of a PLC application. After specifying the project 
name, the system configuration and control program can be saved under this name. 
All data, which results during the creation of the configuration and the program, 
belongs to this parent project for this special automation.
General identification for the complete set of programming and configuring 
information in the Project data bank, which displays the source code that describes 
the automation of a system.

Project data bank The data bank in the Programming device, which contains the projection information 
for a Project.

P



Glossary

840 USE 504 00 October 2002 143

Prototype data 
file 
(Concept EFB)

The prototype data file contains all prototypes of the assigned functions. Further, if 
available, a type definition of the internal

REAL REAL stands for the data type "real". The input appears as Real literal or as Real 
literal with exponent. The length of the data element is 32 bit. The value range for 
variables of this data type reaches from 8.43E-37 to 3.36E+38.

Real literal Real literals function as the input of real values in the decimal system. Real literals 
are denoted by the input of the decimal point. The values may be preceded by the 
signs (+/-). Single underline signs ( _ ) between figures are not significant.

Example 
-12.0, 0.0, +0.456, 3.14159_26

Real literal with 
exponent

Real literals with exponent function as the input of real values in the decimal system. 
Real literals with exponent are denoted by the input of the decimal point. The 
exponent sets the key potency, by which the preceding number is multiplied to get 
to the value to be displayed. The basis may be preceded by a negative sign (-). The 
exponent may be preceded by a positive or negative sign (+/-). Single underline 
signs ( _ ) between figures are not significant. (Only between numbers, not before 
or after the decimal poiont and not before or after "E", "E+" or "E-") 

Example 
-1.34E-12 or -1.34e-12 
1.0E+6 or 1.0e+6
1.234E6 or 1.234e6

R

Note: Depending on the mathematic processor type of the CPU, various areas 
within this valid value range cannot be represented. This is valid for values nearing 
ZERO and for values nearing INFINITY. In these cases, a number value is not 
shown in animation, instead NAN (Not A Number) oder INF (INFinite).



Glossary

144 840 USE 504 00 October 2002

Reference Each direct address is a reference, which starts with an ID, specifying whether it 
concerns an input or an output and whether it concerns a bit or a word. References, 
which start with the code 6, display the register in the extended memory of the state 
RAM. 
0x area = Discrete outputs 
1x area = Input bits 
3x area = Input words 
4x area = Output bits/Marker words 
6x area = Register in the extended memory

Register in the 
extended 
memory 
(6x reference)

6x references are marker words in the extended memory of the PLC. Only LL984 
user programs and CPU 213 04 or CPU 424 02 can be used.

RIO (Remote I/O) Remote I/O provides a physical location of the I/O coordinate setting device in 
relation to the processor to be controlled. Remote inputs/outputs are connected to 
the consumer control via a wired communication cable.

RP (PROFIBUS) RP = Remote Peripheral

RTU mode Remote Terminal Unit
The RTU mode is used for communication between the PLC and an IBM compatible 
personal computer. RTU works with 8 data bits.

Rum-time error Error, which occurs during program processing on the PLC, with SFC objects (i.e. 
steps) or FFBs. These are, for example, over-runs of value ranges with figures, or 
time errors with steps.

Note: The x, which comes after the first figure of each reference type, represents 
a five figure storage location in the application data store, i.e. if the reference 
400201 signifies a 16 bit output or marker word in the address 201 of the State 
RAM.



Glossary

840 USE 504 00 October 2002 145

SA85 module The SA85 module is a Modbus Plus adapter for an IBM-AT or compatible computer.

Section A section can be used, for example, to describe the functioning method of a 
technological unit, such as a motor.
A Program or DFB consist of one or more sections. Sections can be programmed 
with the IEC programming languages FBD and SFC. Only one of the named 
programming languages can be used within a section.
Each section has its own  Document window in Concept. For reasons of clarity, it is 
recommended to subdivide a very large section into several small ones. The scroll 
bar serves to assist scrolling in a section.

Separator format 
(4:00001)

The first figure (the Reference) is separated from the ensuing five figure address by 
a colon (:).

Sequence 
language (SFC)

The SFC Language elements enable the subdivision of a PLC program organiza-
tional unit in a number of Steps and Transitions, which are connected horizontally 
by aligned Connections. A number of actions belong to each step, and a transition 
condition is linked to a transition.

Serial ports With serial ports (COM) the information is transferred bit by bit.

Source code data 
file 
(Concept EFB)

The source code data file is a usual C++ source file. After execution of the menu 
command Library → Generate data files this file contains an EFB code framework, 
in which a specific code must be entered for the selected EFB. To do this, click on 
the menu command Objects → Source.

Standard format 
(400001)

The five figure address is located directly after the first figure (the  reference).

Standardized 
literals

If the data type for the literal is to be automatically determined, use the following 
construction: ’Data type name’#’Literal value’.

Example 
INT#15 (Data type: Integer, value: 15), 
BYTE#00001111 (data type: Byte, value: 00001111) 
REAL#23.0 (Data type: Real, value: 23.0)

For the assignment of REAL data types, there is also the possibility to enter the 
value in the following way: 23.0. 
Entering a comma will automatically assign the data type REAL.

S



Glossary

146 840 USE 504 00 October 2002

State RAM The state RAM is the storage for all sizes, which are addressed in the user program 
via References (Direct display). For example, input bits, discretes, input words, and 
discrete words are located in the state RAM.

Statement (ST) Instructions are "commands" of the ST programming language. Instructions must be 
terminated with semicolons. Several instructions (separated by semi-colons) can 
occupy the same line.

Status bits There is a status bit for every node with a global input or specific input/output of Peer 
Cop data. If a defined group of data was successfully transferred within the set time 
out, the corresponding status bit is set to 1. Alternatively, this bit is set to 0 and all 
data belonging to this group (of 0) is deleted.

Step SFC Language element: Situations, in which the Program behavior follows in 
relation to the inputs and outputs of the same operations, which are defined by the 
associated actions of the step.

Step name The step name functions as the unique flag of a step in a Program organization unit. 
The step name is automatically generated, but can be edited. The step name must 
be unique throughout the whole program organization unit, otherwise an Error 
message appears. 
The automatically generated step name always has the structure: S_n_m

S = Step 
n = Section number (number running)
m = Number of steps in the section (number running)

Structured text 
(ST)

ST is a text language according to IEC 1131, in which operations, e.g. call up of 
Function blocks and Functions, conditional execution of instructions, repetition of 
instructions etc. are displayed through instructions.

Structured 
variables

Variables, one of which is assigned a  Derived data type defined with STRUCT 
(structure).
A structure is a collection of data elements with generally differing data types 
(Elementary data types and/or derived data types).

SY/MAX In Quantum control devices, Concept closes the mounting on the I/O population 
SY/MAX I/O modules for RIO control via the Quantum PLC with on. The SY/MAX 
remote subrack has a remote I/O adapter in slot 1, which communicates via a 
Modicon S908 R I/O system. The SY/MAX I/O modules are performed when 
highlighting and including in the I/O population of the Concept configuration.

Symbol (Icon) Graphic display of various objects in Windows, e.g. drives, user programs and 
Document windows.



Glossary

840 USE 504 00 October 2002 147

Template data 
file 
(Concept EFB)

The template data file is an ASCII data file with a layout information for the Concept 
FBD editor, and the parameters for code generation.

TIME TIME stands for the data type "Time span". The input appears as Time span literal. 
The length of the data element is 32 bit. The value range for variables of this type 
stretches from 0 to 2exp(32)-1. The unit for the data type TIME is 1 ms.

Time span 
literals

Permitted units for time spans (TIME) are days (D), hours (H), minutes (M), seconds 
(S) and milliseconds (MS) or a combination thereof. The time span must be denoted 
by the prefix t#, T#, time# or TIME#. An "overrun" of the highest ranking unit is 
permitted, i.e. the input T#25H15M is permitted.

Example 
t#14MS, T#14.7S, time#18M, TIME#19.9H, t#20.4D, T#25H15M, 
time#5D14H12M18S3.5MS

Token The network "Token" controls the temporary property of the transfer rights via a 
single node. The token runs through the node in a circulating (rising) address 
sequence. All nodes track the Token run through and can contain all possible data 
sent with it.

Traffic Cop The Traffic Cop is a component list, which is compiled from the user component list. 
The Traffic Cop is managed in the PLC and in addition contains the user component 
list e.g. Status information of the I/O stations and modules.

Transition The condition with which the control of one or more Previous steps transfers to one 
or more ensuing steps along a directional Link.

T



Glossary

148 840 USE 504 00 October 2002

UDEFB User defined elementary functions/function blocks
Functions or Function blocks, which were created in the programming language C, 
and are available in Concept Libraries.

UDINT UDINT stands for the data type "unsigned double integer". The input appears as  
Integer literal, Base 2 literal, Base 8 literal or Base 16 literal. The length of the data 
element is 32 bit. The value range for variables of this type stretches from 0 to 
2exp(32)-1.

UINT UINT stands for the data type "unsigned integer". The input appears as  Integer 
literal, Base 2 literal, Base 8 literal or Base 16 literal. The length of the data element 
is 16 bit. The value range for variables of this type stretches from 0 to (2exp16)-1.

Unlocated 
variable

Unlocated variables are not assigned any state RAM addresses. They therefore do 
not occupy any state RAM addresses. The value of these variables is saved in the 
system and can be altered with the reference data editor. These variables are only 
addressed by symbolic names.

Signals requiring no peripheral access, e.g. intermediate results, system tags etc, 
should primarily be declared as unlocated variables.

Variables Variables function as a data exchange within sections between several sections and 
between the Program and the PLC.
Variables consist of at least a variable name and a Data type.
Should a variable be assigned a direct Address (Reference), it is referred to as a 
Located variable. Should a variable not be assigned a direct address, it is referred 
to as an  unlocated variable. If the variable is assigned a Derived data type, it is 
referred to as a Multi-element variable.
Otherwise there are Constants and Literals.

Vertical format Vertical format means that the page is higher than it is wide when looking at the 
printed text.

U

V



Glossary

840 USE 504 00 October 2002 149

Warning When processing a FFB or a Step a critical status is detected (e.g. critical input value 
or a time out), a warning appears, which can be viewed with the menu command 
Online → Event viewer... . With FFBs the ENO output remains at "1".

WORD WORD stands for the data type "Bit sequence 16". The input appears as Base 2 
literal, Base 8 literal or Base 1 16 literal. The length of the data element is 16 bit. A 
numerical range of values cannot be assigned to this data type.

W



Glossary

150 840 USE 504 00 October 2002



CBA

840 USE 504 00 October 2002 151

A
Arithmetic

AVE_***, 19
NEG_***, 87
SIGN_***, 95

AVE_***, 19
Averaging, 19
AVGMV, 23
AVGMV_K, 27

B
BCD_TO_INT, 31
BCDConverter

BCD_TO_INT, 31
DBCD_TO_DINT, 53
DBCD_TO_INT, 55
DINT_TO_DBCD, 63
INT_TO_BCD, 75
INT_TO_DBCD, 77

BIT_TO_BYTE, 33
BIT_TO_WORD, 37
BYTE_AS_WORD, 41
BYTE_TO_BIT, 43

C
Conversion from 16 Bit BCD to INT, 31
Conversion from 32 Bit BCD to DINT, 53
Conversion from 32 Bit BCD to INT, 55
Conversion from DINT to 32 Bit BCD, 63
Conversion from INT to 16 Bit BCD, 75

Conversion from INT to 32 Bit BCD, 77
Converter

BIT_TO_BYTE, 33
BIT_TO_WORD, 37
BYTE_AS_WORD, 41
BYTE_TO_BIT, 43
DINT_AS_WORD, 61
REAL_AS_WORD, 91
TIME_AS_WORD, 99
UDINT_AS_WORD, 111
WORD_AS_BYTE, 113
WORD_AS_DINT, 115
WORD_AS_REAL, 117
WORD_AS_TIME, 119
WORD_AS_UDINT, 121
WORD_TO_BIT, 123

Counter
CTD_***, 45
CTU_***, 47
CTUD_***, 49
DIVMOD_***, 65

CTD_***, 45
CTU_***, 47
CTUD_***, 49

D
DBCD_TO_DINT, 53
DBCD_TO_INT, 55
Dead zone, 57
DEAD_ZONE_REAL, 57
Detecting and holding with rising edge, 93

Index



Index

152 840 USE 504 00 October 2002

Detection of all types of edges, 109
DINT_AS_WORD, 61
DINT_TO_DBCD, 63
Division and Modulo, 65
DIVMOD_***, 65
Down counter, 45

E
Edge detection

TRIGGER, 109
EXTENDED

TOF_P, 101
TON_P, 105

Extended
AVE_***, 19
AVGMV, 23
AVGMV_K, 27
BCD_TO_INT, 31
BIT_TO_BYTE, 33
BIT_TO_WORD, 37
BYTE_AS_WORD, 41
BYTE_TO_BIT, 43
CTD_***, 45
CTU_***, 47
CTUD_***, 49
DBCD_TO_DINT, 53
DBCD_TO_INT, 55
DEAD_ZONE_REAL, 57
DINT_AS_WORD, 61

DINT_TO_DBCD, 63
DIVMOD_***, 65
HYST_***, 67
INDLIM_***, 71
INT_TO_BCD, 75
INT_TO_DBCD, 77
LIMIT_IND_***, 79
LOOKUP_TABLE1, 83
NEG_***, 87
REAL_AS_WORD, 91
SAH, 93
SIGN_***, 95
TIME_AS_WORD, 99
TRIGGER, 109
UDINT_AS_WORD, 111
WORD_AS_BYTE, 113
WORD_AS_DINT, 115
WORD_AS_REAL, 117
WORD_AS_TIME, 119
WORD_AS_UDINT, 121
WORD_TO_BIT, 123

F
Floating mean with fixed window size, 23
Floating mean with frozen correction factor, 
27
Function

Parameterization, 11
Function block

Parameterization, 11

H
HYST_***, 67

I
Indicator signal for delimiters with hysteresis, 
71
Indicator signal for maximum value delimiter 
with hysteresis, 67
INDLIM_***, 71
INT_TO_BCD, 75
INT_TO_DBCD, 77



Index

840 USE 504 00 October 2002 153

L
Limit with indicator, 79
LIMIT_IND_***, 79
LOOKUP_TABLE1, 83

M
Measurement

AVGMV, 23
AVGMV_K, 27
DEAD_ZONE_REAL, 57
HYST_***, 67
INDLIM_***, 71
LOOKUP_TABLE1, 83
SAH, 93

N
NEG_***, 87
Negation, 87

O
Off Delay with Pause, 101
On Delay with Pause, 105

P
Parameterization, 11

R
REAL_AS_WORD, 91

S
SAH, 93
Selection

LIMIT_IND_***, 79
Sign evaluation, 95
SIGN_***, 95

T
TIME_AS_WORD, 99
Timer

TOF_P, 101
TON_P, 105

TOF_P, 101
TON_P, 105
Traverse progression with 1st degree 
interpolation, 83
TRIGGER, 109
Type conversion, 33, 37, 41, 43, 61, 91, 99, 
111, 113, 115, 117, 119, 121, 123

U
UDINT_AS_WORD, 111
Up counter, 47
Up/down counter, 49

W
WORD_AS_BYTE, 113
WORD_AS_DINT, 115
WORD_AS_REAL, 117
WORD_AS_TIME, 119
WORD_AS_UDINT, 121
WORD_TO_BIT, 123



Index

154 840 USE 504 00 October 2002


