
33
00

22
13

.0
0

Concept
IEC block library
Part: EXPERTS
840 USE 504 00 eng Version 2.6

© 2002 Schneider Electric All Rights Reserved

2

3

Table of Contents

About the book .5

Part I General information on the EXPERTS block library 7
Overview . 7

Chapter 1 Parameterizing functions and function blocks 9
Parameterizing functions and function blocks. 9

Part II EFB descriptions . 13
Overview . 13

Chapter 2 ERT_854_10: Data transfer EFB . 15

Chapter 3 ERT_TIME: Time transfer to the ERT854 31

Chapter 4 EXFR: Feedback data enable for Experts.35

Chapter 5 EXRB: Accepting feedback values from the expert 37

Chapter 6 EXWB: Transferring set points to the expert41

Chapter 7 MUX_DINTARR_125: Multiplexer for arrays of the
data type DIntArr125. 43

Chapter 8 MVB_IN: Data exchange between CPU and MVB-258A 45

Chapter 9 MVB_INFO: Requesting bus data via MVB.49

Chapter 10 MVB_OUT: Data exchange between AS-BMVB-258A and
CPU . 53

Chapter 11 MVB_RED: Switching redundant source ports 57

Chapter 12 SIMTSX: TSX Simulation .61

Chapter 13 ULEXSTAT: Expert Status Signals .63

4

Glossary .67

Index .91

840 USE 504 00 October 2002 5

About the book

At a Glance

Document Scope This documentation will help you in configuring the functions and the function blocks.

Validity Note This documentation applies to Concept 2.6 in Microsoft Windows 98, Microsoft
Windows 2000 and Microsoft Windows NT 4.x.

Related
Documents

User Comments We welcome your comments about this document. You can reach us by e-mail at
TECHCOMM@modicon.com

Note: Additional up-to-date tips can be found in the Concept README data.

Title of Documentation Reference Number

Concept Installation instructions 840 USE 502 00

Concept Installation Instructions 840 USE 503 00

Concept-EFB User Manual 840 USE 505 00

Concept LL984 Block Library 840 USE 506 00

About the book

6 840 USE 504 00 October 2002

840 USE 504 00 October 2002 7

I
General information on the
EXPERTS block library

Overview

Introduction This section contains general information about the EXPERTS block library.

What’s in this
part?

This part contains the following chapters:

Chapter Chaptername Page

1 Parameterizing functions and function blocks 9

General information

8 840 USE 504 00 October 2002

840 USE 504 00 October 2002 9

1
Parameterizing functions and
function blocks

Parameterizing functions and function blocks

Parameterization

10 840 USE 504 00 October 2002

General Each FFB consists of an operation, the operands needed for the operation and an
instance name or function counter.

Operation The operation determines which function is to be executed with the FFB, e.g. shift
register, conversion operations.

Operand The operand specifies what the operation is to be executed with. With FFBs, this
consists of formal and actual parameters.

FFB
(e.g. ON-delay)

Item name/
Function counter
(e.g. FBI_2_22 (18))

Operation
(e.g. TON)

Operand

Actual parameter
Variable, element of a

multi-element
variable, literal, direct

address
(e.g. ENABLE, EXP.1,
TIME, ERROR, OUT,

%4:0001)

Formal
parameter

(e.g.
IN,PT,Q,ET)

TON

ENABLE

EXP.1

TIME

EN

IN

PT

ENO

Q

ET

ERROR

OUT

%4:00001

FBI_2_22 (18)

Parameterization

840 USE 504 00 October 2002 11

Formal/actual
parameters

The formal parameter holds the place for an operand. During parameterization, an
actual parameter is assigned to the formal parameter.

The actual parameter can be a variable, a multi-element variable, an element of a
multi-element variable, a literal or a direct address.

Conditional/
unconditional
calls

"Unconditional" or "conditional" calls are possible with each FFB. The condition is
realized by pre-linking the input EN.
l Displayed EN

conditional calls (the FFB is only processed if EN = 1)
l EN not displayed

unconditional calls (FFB is always processed)

Calling functions
and function
blocks in IL and
ST

Information on calling functions and function blocks in IL (Instruction List) and ST
(Structured Text) can be found in the relevant chapters of the user manual.

Note: If the EN input is not parameterized, it must be disabled. Any input pin that
is not parameterized is automatically assigned a "0" value. Therefore, the FFB
should never be processed.

Parameterization

12 840 USE 504 00 October 2002

840 USE 504 00 October 2002 13

II
EFB descriptions

Overview

Introduction These EFB descriptions are listed in alphabetical order.

What’s in this
part?

This part contains the following chapters:

Note: The number of inputs of some EFBs can be increased to a maximum of 32
by changing the size of the FFB symbol vertically. Please refer to the description
of the individual EFBs to see which EFBs are involved.

Chapter Chaptername Page

2 ERT_854_10: Data transfer EFB 15

3 ERT_TIME: Time transfer to the ERT854 31

4 EXFR: Feedback data enable for Experts 35

5 EXRB: Accepting feedback values from the expert 37

6 EXWB: Transferring set points to the expert 41

7 MUX_DINTARR_125: MUX_DINTARR_125: Multiplexer for
arrays of the data type DIntArr125

43

8 MVB_IN: Data exchange between CPU and MVB-258A 45

9 MVB_INFO: Requesting bus data via MVB 49

10 MVB_OUT: Data exchange between AS-BMVB-258A and
CPU

53

11 MVB_RED: Switching redundant source ports 57

12 SIMTSX: TSX Simulation 61

13 ULEXSTAT: Expert Status Signals 63

EFB descriptions

14 840 USE 504 00 October 2002

840 USE 504 00 October 2002 15

2
ERT_854_10: Data transfer EFB

Overview

Introduction This chapter describes the ERT_854_10 block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 16

Representation 16

Mode of Functioning 19

EFB configuration 20

Data Flow 21

Simple example 25

Other functions 26

Use of the DPM_Time Structure for the synchronization of the internal ERT
clock

26

Using the ERT >EFB time data flow 27

ERT_854_10: Data transfer EFB

16 840 USE 504 00 October 2002

Brief description

Function
description

The ERT_854_10 EFB provides the programmer with a software interface to the
ERT 854 10 module. It allows easy access to functions like counters, time stamp,
status or time synchronization. Using the input and output registers, the
ERT_854_10 EFB can coordinate the flow of Multiplex data from the ERT to the
PLC. It also ensures that the intermediate counter values are stored in an internal
memory area until the data is complete, so a consistent set of all counter values is
made available to the statement list. A flag "New data" is always set for every data
type if the input data type was copied into the corresponding EFB output structure.
The parameters EN and ENO can also be configured.

Representation

Symbol Function Block representation:

ERT_854_10

BoolArr32Input

BOOLND_TT

ERT_10_TTagTT_Data

BOOLND_Count

UDIntArr32Cnt_Data

BOOLND_Stat

WORDStatus

SLOTINT
ACKBOOL
CL_TTBOOL
CL_CountBOOL
T_ENBOOL
Time_INDPM_Time

ERT_854_10: Data transfer EFB

840 USE 504 00 October 2002 17

Parameter
description

Description of the function block parameters:

Parameter Data type Meaning

SLOT INT The Slot index is assigned to the ERT-EFB from either the
QUANTUM EFB or DROP EFB and contains the configured
input and output references (3x and 4x registers)

ACK BOOL Event confirmation: Setting ACK signals that the user is ready
to receive the next result and deletes the TT_Data register. If
ACK remains set, "continuous operation" is done.

CL_TT BOOL Delete the ERT event FIFO buffer by setting CL_TT. Storage
of events is blocked until the CL_TT is reset to 0.

CL_Count BOOL Delete all ERT counters by setting CL_Count. Counting is
interrupted until CL_Count is reset to 0.

T_EN BOOL Enables a time transfer, e.g. from the ESI via Time_IN, if set

Time_IN DPM_Time Structure of the input time, e.g. from the ESI, for time
synchronization of the ERT (contains the edge controlled time
synchronization in the "Sync" element)

Input BOOLArr32 Output array for all 32 digital inputs in BOOL format
(also provided in the form of word references as 3x registers
1+2)

ND_TT BOOL Flag, new data in TT_Data structure: remains set until user
confirmation with ACK

TT_Data ERT_10_TTag Event message output structure with time stamp. An event is
held and NDTT is set to 1 until there is a user enable with ACK
= 1.

ND_Count BOOL Flag, new counter data in Cnt_Data structure: The value 1 is
set for only one cycle and is not acknowledged.

Cnt_Data UDIntArr32 Output array for 32 counter values (is overwritten after the
EFB has received a complete set of consistent counter values
(configured as:8, 16, 24, or 32).

ND_Stat BOOL Flag; new status data in status word: The value 1 is set for
only one cycle and is not acknowledged.

Status WORD Output word for EFB/ERT status (for internal details see Data
Flow, p. 21)

ERT_854_10: Data transfer EFB

18 840 USE 504 00 October 2002

Internal time
synchronization

Structure of DPM_Time for ERT internal time synchronization e.g. via the ESI:

Event structure Event structure of the ERT_10_TTag with 5 Byte time stamp (further information can
be found in Data Flow, p. 21):

Element Element type Meaning

Sync BOOL Clock synchronization with positive edge (hourly or on
command)

Ms WORD Time in milliseconds

Min BYTE Time invalid / minutes

Hour BYTE Summer time / hours

Day BYTE Day of the week / Day in the month

Mon BYTE Month

Year BYTE Year

Element Element type Meaning

User BYTE Complete time / user number [module number]

Input BYTE Event set type / No. of the first input

In BYTE Event data: 1, 2 or 8 managed positions

Ms WORD Time in milliseconds

Min BYTE Time invalid / minutes

Hour BYTE Summer time / hours

Day BYTE Day of the week / Day of the month

ERT_854_10: Data transfer EFB

840 USE 504 00 October 2002 19

Mode of Functioning

ERT data transfer The number of I/O words available on the local and remote subracks is limited to 64
inputs and 64 outputs. For this reason, the number of ERT modules which can be
used per local/remote backplane is limited to 9, with the currently selected minimum
requirements of 7 input words and 5 output words per module.

The size of the required ERT data transfer is considerably larger:
l 32 counters = 64 words,
l an event with a 5 byte time stamp = 4 words,
l 32 digital values and the ERT status = 3 words.
These inconsistent size requirements necessitate the use of a special transfer EFB
called ERT_854_10 to execute the required operations on the PLC and to adjust the
ERT representation of the data in Multiplex form. An EFB is required for every ERT
module.
To simplify matters, only the EFB parameters which will actually be used need to be
configured. This saves on the amount of configuration effort, particularly when the
counter inputs and event inputs are not mixed together. Unfortunately memory
cannot be reserved for this because Concept has occupied the outputs with invisible
dummy variables.
Basic structure of the ERT_854_10 input register block with seven 3x registers for
transfer from the ERT to the PLC

Basic structure
of the register
block

ERT_854_10 input register block:

Contents Function

Digital inputs 1 …. 16 Digitally processed input data which is cyclically updated (the
module’s input address corresponds to that of the digital standard
input modules, i.e. inputs 1 … 16 correspond to bits 15 … 0)

Digital inputs 17 …. 32

Transfer status IN transfer status (TS_IN)

MUX 1 Multiplex data block for block transfer

MUX 2 1 event with 5 byte time stamp or

MUX 3 2 counter values of possible configured maximum 32 or

MUX 4 1 status word

ERT_854_10: Data transfer EFB

20 840 USE 504 00 October 2002

Simplified structure of the ERT_854_10 output register block with five 4x registers
for the transfer of the SPS to the ERT
ERT_854_10 output register block:

EFB configuration

 EFB connection The EFB connection to the input and output references (3x and 4x registers) is
accomplished through a graphic connection to the ERT slot number, in the same
way as with analog modules. The currently available QUANTUM and DROP EFBs
from the ANA_IO library are used as follows: QUANTUM for local and DROP for
remote backplanes. These EFBs transfer an integer index to every specified slot,
which points to an internal data structure with the configured values. The module
parameters and the ID are stored there, in addition to the addresses and lengths of
the assigned input and output references (3x and 4x registers).
A significant improvement in the runtime can be achieved by deactivating the
QUANTUM or the DROP EFB after the first execution. The average runtime of the
ERT_854_10 EFB in a CPU x13-0x is approximately 0.6 ms, minimum 0.4 ms,
maximum 1.6 ms. Every Quantum or DROP-EFB runs on average at approximately
1 ms, min. approx. 0.9 ms, max. approx. 1.3 ms.

Contents Function

Transfer status OUT transfer status (TS_OUT)

MUX 1 Time data block for the ERT for the clock synchronization

MUX 2

MUX 3

MUX 4

Note: User interface is normally for the inputs and outputs of the ERT_854_10
EFB, not the 3x and 4x registers.

ERT_854_10: Data transfer EFB

840 USE 504 00 October 2002 21

Data Flow

Digital Inputs No flag for new data is provided for this input type. The digital inputs in the first two
input register words are updated every second cycle directly by the ERT. The EFB
makes the processed values available as Bool if the BoolArr32 output field has been
configured accordingly.

Counter Inputs Cyclic updating of the counter values takes significantly longer than for other data
types. Counter values are saved as a data record in "Cnt_Data" after a complete
series (configured as: 8, 16, 24 or 32) of time consistent counter values in multiplex
form has been transferred from the ERT. The flag for new data "ND_Count" is set
for one cycle.

Event Inputs As readiness to receive new events must be actively confirmed by the user, the
management of the registers becomes somewhat more complex (a handshake
mechanism is required). Event data remain in the data structure ERT_10_TTag and
the flag for new data "ND_TT" stays set until the "ACK" input is set by the user and
therefore requests a new event. The EFB responds to this by resetting "ND_TT" for
at least one cycle. After the new event has been sent to the ERT_10_TT register
structure, "ND_TT" is reset by the EFB. To prevent the new event data from being
overwritten, the user must take care that the "ACK" input is reset after the EFB has
reset the "ND_TT" flag. This state can then be kept stable to allow the user program
enough time for event processing. Each subsequent event which is recorded with
the ERT is temporarily stored within the event FIFO buffer.
New events are sent directly from the internal buffer of the EFB in intervals of at least
2 cycles for as long as the "ACK" input is set (for the special continuous operating
mode); the effect is, however, that the "ND_TT" only stays set for one cycle. In this
special mode, it is still the job of the user program to finish event processing before
"ND_TT" signals the transfer of other new events to the ERT_10_TT structure
because handshake protection by "ACK" is not available in this case.

ERT_854_10: Data transfer EFB

22 840 USE 504 00 October 2002

ERT_10_TTag ERT_10_TTag event structure with 5 byte time stamps

Note 1: Interpretation for Byte 2

Byte Bits Function

1 D0...D6 = Module No..
0...127
D7 = CT

Rough time: CT = 1 indicates that this time stamp contains
the whole time value including month and year in bytes 2 +
3. The Module no. can be set in any way in the parameter
screen.

2 D0…D5 = input no.
D6 = P1
D7 = P2

No. of the first input of the event group: 1...32
Type of the event message (P2, P1). 1.. 59 see Note 1:,
p. 22
[Month value if CT = 1]

3 D0…D7 = data from the
event group (D7…D0
with right alignment)

1, 2 or 8 managed positions
[Month value if CT = 1]

4 Time in milliseconds
(least significant byte)

0 ...
59999 milliseconds (max. 61100) see Note 2:, p. 23

5 Time in milliseconds
(most significant byte)

0 ...
59999 milliseconds (max. 61100) see Note 2:, p. 23 and
Note 3:, p. 23

6 D0...D5 = minutes
D6 = R
D7 = TI

Minutes: 0...59
Time invalid: TI = 1 means invalid time / reserved = 0 see
Note 3:, p. 23

7 D0...D4 = hours
D5 = R
D6 = R
D7 = DS

Hours: 0...23
Summer time: DS = 1 indicates that summer time is set
With switchover from ST -> WT, hour 2A has ST, and hour
2B has WT

8 D0...D4 = DOW
D5...D7 = DOM

Weekday: Mon-Sun = 1…7
Day of the month: 1...31
The code corresponds to CET and thus deviates from the
standard used in the US, Sun = 1.

D7 D6 Type of the event
message

D5...D0 No. of the first input of the event
group

 0 1 1 pin message 1 ... 32 Input pin number

 1 0 2 pin message 1, 3, 5, ...31 First input of the group

 1 1 8 pin message 1, 9, 17, 25 First input of the group

ERT_854_10: Data transfer EFB

840 USE 504 00 October 2002 23

Note 2: The value for the milliseconds is a maximum of 61100 ms with the second of
transition (61000 plus a tolerance of 100 milliseconds)

Note 3: For time stamps containing an invalid time (TI = 1), the time in milliseconds is set to
FFFF HEX. Minutes, hours and DOW/DOM values are invalid (i.e. undefined).

Rough Time
Output

If the "rough time declaration" has been activated during the ERT configuration, the
transfer of the complete time (with month/year) is executed under the following
conditions: when the month changes, after the module restarts, during every start or
stop of the PLC user program, when the event FIFO buffer is deleted, when the clock
is started or set. The transfer of this complete time output without the data input
values is "triggered" basically takes place through a correct time stamped event. If
this does not happen the values remain "stuck" in the ERT until an event occurs.
Within the time stamp of a "rough time output", the CT bit is always set so that byte
2 contains the information about the month, byte 3 the information about the year
and bytes 4 to 8 show the same time stamp values of the triggering event, which is
immediately followed by the event message for rough time output.

Status Inputs The flag for new status data "ND_Stat" is set for one cycle. The status inputs can be
overwritten after 2 query cycles.
The status word contains EFB and ERT error bits

Assignments of
the Error Bits

Internal structure of the EFB/ERT status word:

EFB error bits ERT error bits

D15
...

D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

ERT_854_10: Data transfer EFB

24 840 USE 504 00 October 2002

ERT Error Bits D8 ... D0 ERT error bits

When configuring the , p. Sreens parameter, some of these errors can be assigned
to grouped error messages with the "F" light as well as the module’s error byte within
the status table. All other errors are then defined as warnings.
D11 ... D9 reserved

EFB Error Bits D15 ... D12 EFB error bits:

Bit Abbreviation Meaning

D0 FW Firmware errors, self test errors within EPROM, RAM or DPM (severe
module errors)

D1 FP Parameter errors (severe internal errors)

D2 TE External time reference error (time-basis signal disrupted or not
available)

D3 TU Time became invalid

D4 TA Time is not synchronized (Free running mode, permanent running
without time error message, see also:Without power reserve, p. 27

D5 PF FIFO buffer overflow (loss of the most recent event data)

D6 PH FIFO buffer half full

D7 DC Dechattering active (some event data lost)

D8 CE ERT communication error (procedure errors or time out)

Bin. Hex. Meaning

1000 8 HEX EFB communication time out

0101 5 HEX Wrong slot

0110 6 HEX Health status bit is not set (ERT appears not to be available)

other values internal error

ERT_854_10: Data transfer EFB

840 USE 504 00 October 2002 25

Online error
display

The following ERT/ERB error messages are displayed in the Online → Event
viewer Concept window with an error number and explanation.
EFB error messages:

ERT error messages:

Simple example

Structure
diagram

Principle structure

Message Error Meaning

-2710 User error 11 EFB communication time out

-2711 [User error 12] = EFB internal error

-2712 [User error 13] = EFB internal error

-2713 [User error 14] = EFB internal error

-2714 [User error 15] = EFB internal error

-2715 [User error 16] = Wrong slot

-2716 [User error 17] Health status bit is not set (ERT appears not to be available)

-2717 [User error 18] EFB internal error

Message Error Meaning

-2700 User error 1] ERT internal error

...

-2707 [User error 8] ERT internal error

-2704 [User error 5] ERT communication timeout (e.g. EFB disabled too long)

QUANTUM

SLOT1

SLOT2

SLOT3

IN3

ERT_854_10

Input

ND_TT

TT_Data

ND_Count

Cnt_Data

ND_Stat

Status

SLOT

ACK

CL_TT

CL_Count

T_EN

Time_IN

FBI-XXX

1

1

DPM_Time
STRUCTURE with
cyclically actualized
Time (of ESI module)

User data structure

BoolArr32
ARRAY for 32
Digital inputs

ERT_10_T-Tag
STRUCTURE
saves an event
with time stamp

UDIntArr32
ARRAY for 32
Counter inputs

Status word

ERT_854_10: Data transfer EFB

26 840 USE 504 00 October 2002

Other functions

Input markers Setting the input marker "CL_TT" causes the FIFO buffer event of the ERT to be
cleared. Setting the markers for one cycle is sufficient.
Setting the input marker "CL_Count" causes the ERT counter to be cleared by the
ERT. Setting the markers for one cycle is sufficient.

Use of the DPM_Time Structure for the synchronization of the internal ERT clock

Time
synchronization

If the time can not be synchronized through a standard time receiver, the time
information can alternatively be transferred from the 140 ESI 062 01 communication
module. The ESI makes the updated time available in a DPM_Time structure directly
using the "Time_IN" parameter. The data structure can also be filled by the user
program and the corresponding bits can be set. In this manner, the time can also
be set, for example, by the CPU.

With power
reserve

As soon as the "clock" parameter of the ERT is configured to "internal clock" with a
power reserve not equal to zero (i.e. not free running), the EFB must use the time
provided by the ESI for synchronizing the internal ERT clock. Until the first
synchronization has taken place, the ERT sends back "status" output word with the
bit "invalid time" set (Bit 3 TU).
The conditions of the first synchronization of the internal ERT using above the
DPM_Time structure are:
The EFB Parameter "T_EN" must change from 0 to 1 to enable the time setting.

The time in "TIME_IN" provided by ESI must be represented as follows:
l valid (i.e. the bit for the message "time invalid" in "Min" value must not be set),
l and the values in "Ms" must change continually.
If, at a later point in time, the time data is invalid or no longer set, the TU changes to
1 after the configured power reserve has run out.

The synchronization/setting of the internal ERT clock takes place using the
DPM_Time structure, if:
l EFB-Parameter "T_EN" is set to 1 to enable the time setting.
l The time data in "Time_IN" provided by ESI are valid (i.e. the "Time invalid" Bit in

the "Min"value must not be set).
l The status of the DPM_Time element "Sync" changes from 0 to 1. This change

is done every complete hour by the 140 ESI 062 01, but can also be triggered by
a suitable telecontrol command.

ERT_854_10: Data transfer EFB

840 USE 504 00 October 2002 27

The precision of the ESI and ERT synchronized time can be influenced by delay
caused by the PLC cycle time, as well as by the cumulative components, which
reflect the differences of the ERT software clock (< 360 milliseconds/second).

Without power
reserve

If the "clock" parameter of the ERT was configured as an "internal clock" in free
running mode (with a power reserve of zero), the internal clock starts with a default
setting at hour 0 on 1/1/1990. In this case, the time can also be provided by using
the DPM_Time data structure of the 140 ESI 062 01 module, as described above.
As there is no power reserve to "run out", the time will never be invalid and the bit
"Time not synchronized" is always set in the "status" output word (Bit 4 TA) which
is returned by the EFB, .

Using the ERT >EFB time data flow

Application
Examples:

This section shows an internal function which is made available by the ERT for
diagnostics and development. It covers the cyclic transfer of the ERT internal time
to the corresponding EFB in greater intervals. This time can be used for display or
setting the PLC clock and so on, irrespective of whether it comes from the free-
running internal clock or was synchronized through an external reference clock
signal. The time appears as a DPM_Time structure beginning at word 4 of the IN
register block of the ERT. The following diagram shows the program elements
involved in selection.

Startup
information:

During the I/O addressing, the IN references 30001 …30007 were assigned to an
ERT_854_10. The IN transfer status (TS_IN) in the third word of the register block
is sent to an OR_WORD block. A DPM_Time structure is defined in the variable
editor as Variable Mux_IN in the fourth word of the IN register block and has
address 30004 ... 30007. This variable is given as an input to the MOVE block. The
MOVE block output is a DPM_Time structure defined by the variable editor as
variable ERT_Time.
Typical recording mechanism for ERT time data

Note: The ERT_854_10-EFB must be active and error free.

OR_WORD

%3:0003
16#FF1F

EQ_WORD

16#FFBF

R_TRIG

ND_TimeQCLK

MOVE

ERT_Time

EN

Mux_IN
ENO

(DPM_Time
Struktur)

(DPM_Time
Struktur)

(BOOL)

ERT_854_10: Data transfer EFB

28 840 USE 504 00 October 2002

Explanation: The MOVE block transfers the time data (which is cyclically stored in the MUX range
of the IN register block) to the DPM_Time structure ERT_Time of the user as soon
as the OR_WORD and the EQ_WORD block signal for a time data transfer. R_TRIG
provides a signal in "ND_Time" for one cycle to allow further processing of the time
data. The BOOL "Sync" element value of the ERT_Time should begin to "tick" during
each new transfer from the ERT. There is a new transfer after a maximum of each
200 PLC cycles.

Example 1: Using
time values for
display (or with
SET_TOD-EFB)

A number of simple logical operations is needed to obtain a meaningful display of
the time information of the DPM_Time structure. The same commands can also be
used for the ERT_10_T Tag structure. As example 2 deals with setting the PLC
clock while using the SET_TOD-EFB, individual values are directly converted into
the required formats.

SET_TOD requires that the WORD millisecond value "ms" is converted into a BYTE
second value. The BYTE minute value "Min" contains the error bit which must be
removed (values greater than 127 are invalid).
Conversion of the WORD millisecond value into a seconds BYTE

The BYTE value "Day" contains week and calendar day values. The weekday
Monday is displayed as 1 in the DPM_Time structure. The weekday parameter in
SET_TOD uses the value 1 for Sunday.

Note: The reference data editor (RDE) can provide the "ms" value directly in the
Uns-Dec-WORD format and the "Min" value in the Dec-BYTE format.

WORD_TO_UINT

ERT_Time.Ms

AND_BYTE

ERT_Time.Min
16#3F

Ert_Mina

DIV_UINT

1000

UINT_TO_BYTE

Ert_Seca

ERT_854_10: Data transfer EFB

840 USE 504 00 October 2002 29

Removing/restoring the bit for the summer time of the "Hour" value.

The BYTE value "Day" contains week and calendar day values. The weekday
Monday is displayed as 1 in the DPM_Time structure. The weekday parameter in
SET_TOD uses the value 1 for Sunday.
Using the calendar day and weekday based on Monday

Further steps must be taken to convert the weekday based on the value of 1 for
Monday into the value of 1 for Sunday.
Calculating the remainder values (Mod) and addition for converting the weekday
values

AND_BYTE

ERT_Time.Hour
16#1F

Ert_Hours

BYTE_TO_BIT

Bit1

Bit2

Bit3

Bit4

Bit5

Bit6

Day_light_saving_timeBit7

INERT_Time.Hour Bit0

BIT_TO_BYTE

Bit0

Bit1

Bit2

Bit3

Bit4

Bit5

Bit6

Bit7

DOW_Monday

AND_BYTE

ERT_Time.Day
16#1F

Ert_Cal_Day

BYTE_TO_BIT

Bit1

Bit2

Bit3

Bit4

Bit5

Bit6

Bit7

INERT_Time.Day Bit0
1 - 7
1 = Monday

BYTE_TO_INT

DOW_Monday

MOD_INT

7

ADD_INT

1

INT_TO_BYTE

DOW_Sunday

ERT_854_10: Data transfer EFB

30 840 USE 504 00 October 2002

Example 2:
Setting the PLC
clock with the
SET_TOD EFB
while using ERT
time data

All the parameter values required for the SET_TOD-EFB were created in example
1. The "ND_Time" signal required for transferring the time into the DPM_Time
structure with the MOVE block is combined with a user enable here (e.g. only once
per hour) to set the PLC clock only when new, error-free time data have been
transferred by the ERT. (The ERT error bits are never set when the internal clock is
in free run mode).
The SET_TOD-EFB is in the HSBY group of the SYSTEM block library. If it is used,
the clock must be activated by storing the TIME OF DAY register in the SPECIALS
range of the configuration with 4x addresses.

User-enabled setting system for the PLC clock while using the SET_TOD-EFB

Note: The "status" parameter value is not exactly synchronized with the time data
flow and for this reason can only "tend" to reflect the correct value.

SET_TOD

TOD_CNFS_PULSE

D_WEEKDOW_Sunday
MONTHERT_Time.Mon
DAYErt_Cal_Day
YEARERT_Time.Year
HOURErt_Hours
MINUTEErt_Mins
SECONDErt_Secs

WORD_TO_BIT

Bit0

Bit1

Bit2

Bit3

Bit4

Bit5

.

Bit15

INERT_854_10
Status

AND_BOOL

ND_Time

User_Enable

840 USE 504 00 October 2002 31

3
ERT_TIME: Time transfer to the
ERT854

Overview

Introduction This chapter describes the ERT_TIME block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 32

Representation 33

ERT_TIME: Time transfer to the ERT854

32 840 USE 504 00 October 2002

Brief description

Function
description

The function block reads the DCF time from the ESI 062 00 in order to enable
synchronization of the internal clocks of all ERT modules in a TSX Quantum
eliminating the need for the ERT modules having to be equipped with DCF
receivers. The synchronization process is repeated hourly.
After the synchronization process, all ERT modules will show the same time.
However, exact time synchronization with the "ESI time" cannot be achieved. Time
deviation to the ESI 062 00 depends on the position of the block in the user program
and on program runtime. There is maximum equality with program runtime if the
block is located directly at program start.
The core of the function block are the ESI_IN and SLOTSTR parameters. ESI_IN is
the parameter where the ESI 062 stores "its" DCF time, and the slots for all ERT
modules that are to be synchronized with this time are determined in SLOTSTR.
The parameters EN and ENO can additionally be projected‘ .

ERT_TIME: Time transfer to the ERT854

840 USE 504 00 October 2002 33

Representation

Symbol Block representation:

Parameter
description

Block parameter description:

ERT_TIME

DINTERR_DINTESI_INESI_In
SLOTSTRSlotStr

Parameter Data type Meaning

ESI_IN ESI_In Data structure which stores the DCF time received by the ESI.
Enter here the exact name used with the ESI 062 00.

SLOTSTR SlotStr Enter the slots of all the ERT modules whose time is to be
synchronized with this block here. The data structure comprises 32
elements which the slot numbers of your ERT modules must be
assigned to according to row. The numbers correspond to those in
the I/O map. The remaining fields must be "0". Up to 14 ERT
modules can be entered; any additional entries will be ignored.

ERR_DINT DINT The 32 bits are error bits for the ERT module indicated in
SLOTSTR. Each bit corresponds to one element of SLOTSTR. The
transfer has been free of errors if all bits = 0.
Meaning of the bits:
l Bit 0 = 1:

Error during transfer to 1st ERT 854
l Bit 1 = 1:

Error during transfer to 2nd ERT 854
l Bit 3 = 1:

...
Note: The bits are counted from right to left.

ERT_TIME: Time transfer to the ERT854

34 840 USE 504 00 October 2002

840 USE 504 00 October 2002 35

4
EXFR: Feedback data enable for
Experts

Overview

Introduction This chapter describes the EXFR block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 36

Representation 36

EXFR: Feedback data enable for Experts

36 840 USE 504 00 October 2002

Brief description

Function
description

The function can be applied to the expert modules 140 ERT 854 00 and
140 ESI 062 00.
It will write a "0" to a byte in the 3x reference range of the expert (transfer status) in
order to facilitate data transfer from an expert into State RAM of the PLC.
The write enable is revoked automatically after transfer completion, leaving the data
write protected. EFB must be reinvoked before the next data transfer.

The parameters EN and ENO can additionally be projected.

Representation

Symbol Block representation:

Parameter
description

Description of the block parameters:

Note: Use this function only once in text languages (IL and ST), otherwise a faulty
code will be generated.

EXFR

STATUSBYTE

Parameters Data type Meaning

STATUS BYTE Only the "tstat" structure element of the expert data structure
should be referenced here. Example: "xxx.in.tstat" with xxx as
the name of the variable for the derived data type ESI_In or
ERT_In assigned in the Variable editor.

840 USE 504 00 October 2002 37

5
EXRB: Accepting feedback values
from the expert

Overview

Introduction This chapter describes the EXRB block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 38

Representation 38

Runtime error 39

EXRB: Accepting feedback values from the expert

38 840 USE 504 00 October 2002

Brief description

Function
description

The function can be applied to the expert modules 140 ERT 000 00 and
140 ESI 062 00.
It copies expert feedback values and status data from the expert’s dual port ram into
the 3x-registers of the state RAM. This occurs directly upon execution of the EFB.
Write access to the destination area must have been enabled by the "EXFR" EFB
before the transfer.
The CPU automatically determines register addresses from the configuration data
present in the I/O component list and experts dual port ram.
The parameters EN and ENO can additionally be projected.

Representation

Symbol Block representation:

Parameter
description

Description of the block parameters:

EXRB

INTSLOTINT
FTYPEINT

Parameters Data type Meaning

SLOT INT Module slot number.

FTYPE INT Field type to be read:
1 = Feedback data field
5 = status field 1
2, 6, 7 = reserved for future applications. Currently not to be used!

OUT INT Access execution status
0 = field was read without errors
not equal to 0 = error during reading of field (see Runtime error,
p. 39)

EXRB: Accepting feedback values from the expert

840 USE 504 00 October 2002 39

Runtime error

Error message Error messages and their Significance

Error
number

Meaning Corrective Action

-2940 Invalid parameter Examine the EFB parameter
assignments

-2941 Internal error Contact the hotline

-2942 Another task’s I/O operation is still
active.

Contact the hotline

-2943 Mode = end-transfer active. Start the EFB again later

-2945 Destination area access not enabled Enable destination area access with
"EXFR"

-2946 Expert not mounted or in wrong slot Examine the EFB parameter
assignments and/or the I/O component
list entry

-2947 Expert not connected or recognized Check the hardware configuration,
perform a hardware reset

-2948 Field is not configured Examine the EFB parameter
assignments

-2949 Internal error Contact the hotline

-2950 No/wrong expert mounted. check the hardware configuration

-2951 Wrong firmware or expert mode check the hardware configuration

-2952 Synchronization error Perform a hardware reset

-2953 Elementary data transfer error Perform a hardware reset

-2954 Loadable "ULEX" not present or
"ULEX" misbehavior.

Load "ULEX" or contact the hotline

-2955 Source buffer not in use Start the EFB again later

EXRB: Accepting feedback values from the expert

40 840 USE 504 00 October 2002

840 USE 504 00 October 2002 41

6
EXWB: Transferring set points to
the expert

Overview

Introduction This chapter describes the EXWB block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 42

Representation 42

Runtime error 42

EXWB: Transferring set points to the expert

42 840 USE 504 00 October 2002

Brief description

Function
description

The function can be applied to the expert modules 140 ERT 000 00 and
140 ESI 062 00.
It copies expert command data from 4x- -Reference area of the PLC state memory
into the expert’s dual port ram. This occurs directly upon execution of the EFB.
The CPU automatically determines register addresses from the configuration data
present in the I/O component list and experts dual port ram.
The parameters EN and ENO can additionally be projected.

Representation

Symbol Block representation:

Parameter
description

Description of the block parameters:

Runtime error

Runtime error Runtime error see EXRB (See Runtime error, p. 39).

EXWB

INTSLOTINT
FTYPEINT

Parameters Data type Meaning

SLOT INT Module slot number.

FTYPE INT Field type to be written:
2 = command data field
1, 5, 6, 7 = reserved for future applications. Currently not to be
used!

OUT INT 0 = field was written without errors
not equal to 0 = error occurred while field was being written (see
Runtime errors of the EXRB block (See Runtime error, p. 39)).

840 USE 504 00 October 2002 43

7
MUX_DINTARR_125: Multiplexer
for arrays of the data type
DIntArr125

Overview

Introduction This chapter describes the MUX_DINTARR_125 block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 44

Representation 44

Runtime error 44

MUX_DINTARR_125: Multiplexer for arrays of the data type DIntArr125

44 840 USE 504 00 October 2002

Brief description

Function
description

Use this function to address and select a single element in an array.
The parameters EN and ENO can additionally be projected.

Representation

Symbol Block representation:

Parameter
description

Description of the MUX_DINTARR_125: block parameter

Description of the DIntArr125 block parameter:

Runtime error

Error message There will be an error message when the authorized value range for the parameter
"NO" is violated. The error number is also entered at the output of the EFB.

MUX_DINTARR_125

DINTDINTARRDIntARR125
NOINT

Parameters Data type Meaning

DINTARR DIntArr125 Array an element is to be selected from

NO INT Position in the array where the element to be selected is placed
(range 0 ... 124)

OUT DINT selected element

Element Data type Meaning

varname[1] DINT 1. element of the array

...

varname[125] DINT 125. element of the array

840 USE 504 00 October 2002 45

8
MVB_IN: Data exchange between
CPU and MVB-258A

Overview

Introduction This chapter describes the MVB_IN block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 46

Representation 46

Detailed description 47

MVB_IN: Data exchange between CPU and MVB-258A

46 840 USE 504 00 October 2002

Brief description

Function
description

This function block realizes data exchange between MVB258A and CPU. The data
block length in this case is subject to number and type of the variables. A data block
with a maximum of 1024 words can be distributed onto 300 ports. Use the
DATASNK data structure to copy the data block into the CPU.
Restrictions:
l Authorized word length of sink ports = 1024
l Up to 300 source and 300 sink ports can be addressed
l If not addressing any source ports, up to 500 sink ports can be configured
l The function block cannot be used with Concept simulators.
The parameters EN and ENO can additionally be projected.

Representation

Symbol Block representation:

MVB_IN

INTERROR

ANYDAT_SNK

MVB_STATUSSTATUS

SLOTUINT
OFF_SNKUINT

MVB_IN: Data exchange between CPU and MVB-258A

840 USE 504 00 October 2002 47

Parameter
description

Description of the block parameters:

Detailed description

Runtime
Optimization

In order to achieve optimum performance with regard to runtime routine of the MVB
Function blocks, the number of words to be transferred must be adjusted according
to the respective user program.
If there is no array optimization, all (1024) words in every program cycle of the user
program are edited.

Word count
adjustment

Word count configuration:

Parameter Data type Meaning

SLOT UINT Enter the AS-BMVB-258A slot in the primary backplane here.
Since the first two slots are occupied by the CPU, the
communications module can only be installed on slots 3, 4 or 5.

OFF_SNK UINT An offset can be set using these parameters. This value is entered
in bytes.

ERROR INT The ERROR output has four different signal states:0:
0: no errors
1: invalid slot address (only 3 -5 authorized in basic rack)
2: a wrong module has been placed onto this backplane slot
4: the data block together with the offset is greater than 1024 or 0

DATA_SN
K

ANY This parameter contains the input data structure (up to 1024
words). The default of the DATA_SNK parameter is data type
ANY. In this case, either a self-defined data type or the predefined
data type MVB_IN which is defined as an array of 1024 words, can
be used.

STATUS MVB_STA
TUS

The status parameter is an array of 32 words. Each bit from the
array reflects the validity of a port. The bits are stored in ascending
order of the ports. The status bits are updated for all configured
ports. If the bit = "0", the port variable is valid. Accordingly, the port
variable is invalid if the bit = "1". All unused bits are set to "1" and
therefore invalid.

Step Action

1 Open the EXPERTS.DTY file from c:\Concept\Lib.

2 Adjust the ARRAY ranges as required.

3 Save the changes using File → Save and close the file.

MVB_IN: Data exchange between CPU and MVB-258A

48 840 USE 504 00 October 2002

840 USE 504 00 October 2002 49

9
MVB_INFO: Requesting bus data
via MVB

Overview

Introduction This chapter describes the MVB_INFO block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 50

Representation 50

Detailed description 51

MVB_INFO: Request bus data via MVB

50 840 USE 504 00 October 2002

Brief description

Function
description

With the MVB_INFO function block, bus data can be requested via the MVB. This
provides a view of information through the line, the configuration and through error
messages.

The parameters EN and ENO can additionally be projected.

Representation

Symbol Block representation:

Parameter
description

Description of the block parameters:

Note: The function block cannot be used with Concept simulators.

MVB_INFO

INTERROR

BOOLAL

BOOLCNF

BOOLERR

SLOTUINT

Parameters Data type Meaning

SLOT UINT Enter the ASB-MVB-258A slot in the primary backplane here.
Since the first two slots are occupied by the CPU, the
communications module can only be installed on slots 3, 4 or 5.

ERROR INT The MVB hardware configuration is checked with the ERROR
parameter.
The parameter displays three different states:
l 0: Error free function
l 1: An incorrect slot address has been entered
l 2: No communications module is installed on the

parameterized slot

AL BOOL The AL parameter informs about the active line.
AL=1 means Line_A is active..
AL= 1 means Line_2 is active.

CNF BOOL The CNF parameter provides the configuration status. A 0 value
means, there is no configuration error, and the MVB I/O task is
active. A 1 value means, there is a configuration error.

MVB_INFO: Request bus data via MVB

840 USE 504 00 October 2002 51

Detailed description

Runtime
Optimization

In order to achieve optimum performance with regard to runtime routine of the MVB
function blocks, the number of words to be transferred must be adjusted according
to the respective user program.
If there is no array optimization, all (1024) words in every program cycle of the user
program are edited.

Word count
adjustment

Word count configuration

Step Action

1 Open the file EXPERTS.DTY from c:\Concept\Lib

2 Adjust the ARRAY ranges as required.

3 Save the changes using File → Save and close the file.

MVB_INFO: Request bus data via MVB

52 840 USE 504 00 October 2002

840 USE 504 00 October 2002 53

10
MVB_OUT: Data exchange
between AS-BMVB-258A and CPU

Overview

Introduction This chapter describes the MVB_OUT block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 54

Representation 54

Detailed description 55

MVB_OUT: Data exchange between AS-BMVB-258A and CPU

54 840 USE 504 00 October 2002

Brief description

Function
description

This function block realizes data exchange between MVB258A and CPU. The data
block length in this case is subject to number and type of the variables. A data block
with a maximum of 1024 words can be distributed onto 300 ports. The data packets
are copied into the communications module using the DATA_SRC parameter.
Restrictions:
l The maximum word length of all source ports (incl. redundancy ports, if

configured) = 1024 words.
l Up to 300 source and 300 sink ports can be addressed
l If not addressing any sink ports, up to 750 source ports can be configured
l The function block cannot be used with Concept simulators.
The parameters EN and ENO can additionally be projected.

Representation

Symbol Block representation:

Parameter
description

Description of the block parameters:

MVB_OUT

INTERRORSLOTUINT
OFF_SRCUINT
DATA_SRCANY

Parameters Data type Meaning

SLOT UINT Enter the AS-BMVB-258A slot in the primary backplane here.
Since the first two slots are occupied by the CPU, the
communications module can only be installed on slots 3, 4 or 5.

OFF_SRC UINT An offset can be set using these parameters. This value is entered
in bytes.

DATA_SRC ANY This parameter contains the actual output data block (1024 words
max.).

ERROR INT The ERROR parameter output has four different signal states:
l 0: no errors
l 1: invalid slot address (only 3 -5 authorized in basic rack)
l 2: a wrong module has been placed onto this backplane slot
l 4: the data block together with the offset is greater than 1024

or 0

MVB_OUT: Data exchange between AS-BMVB-258A and CPU

840 USE 504 00 October 2002 55

Detailed description

Optimizing
runtime

In order to achieve optimum performance with regard to runtime routine of the MVB
Function blocks, the number of words that will be transferred has to be adjusted
according to the respective user program.
If there is no array optimization, all (1024) words in every program cycle of the user
program will be edited.

Adjustment of
wordcount

Configuration of Wordcount

Step Action

1 Open the EXPERTS.DTY file from c:\Concept\Lib.

2 Adjust the ARRAY range according to your own requirements.

3 Save the changes with File → Save and close the file.

MVB_OUT: Data exchange between AS-BMVB-258A and CPU

56 840 USE 504 00 October 2002

840 USE 504 00 October 2002 57

11
MVB_RED: Switching redundant
source ports

Overview

Introduction This chapter describes the MVB_RED block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 58

Representation 58

Detailed description 60

MVB_RED: Switching redundant source ports

58 840 USE 504 00 October 2002

Brief description

Function
description

MVB_RED is a function block for redundant source port switching. If there are
defined redundant source ports, they can be actuated actively or passively using the
EFBs.

The parameters EN and ENO can additionally be projected.

Representation

Symbol Block representation:

Note: The function block cannot be used with Concept simulators.

MVB_RED

BOOLDONE

INTSTATE

CLKBOOL
SLOTUINT
SETBOOL

MVB_RED: Switching redundant source ports

840 USE 504 00 October 2002 59

Parameter
description

Description of the block parameters:

Parameters Data type Meaning

CLK BOOL The SET parameter acceptance is achieved through transition
control. But the SET parameter is only analyzed if a positive
transition is applied at the CLK parameter.

SLOT UINT Enter the MVB-258A slot in the primary backplane here. Since the
first two slots are occupied by the CPU, the communications
module can only be installed on slots 3, 4 or 5.

SET BOOL Use this parameter (bit) to actuate the ports actively (1) or
passively (0).

DONT BOOL This parameter (response bit) uses status 0 or 1 to inform about
the redundant port status. This means, if the status = "0", the
redundant port is passively actuated, if it is = "1", it is actively
actuated.

STATE INT The status or an error code is provided through the STATE
parameter.
The individual messages mean the following:
l Status messages:

l 0: Redundancy is not configured
l 1: Switchover from passive to active
l 2: Redundant ports are active
l 3: Switchover from active to passive
l 4: Redundant ports are passive

l Error messages:
l -1: An incorrect slot address has been entered
l -2: No communications module is installed on the

parametered slot

MVB_RED: Switching redundant source ports

60 840 USE 504 00 October 2002

Detailed description

Runtime
Optimization

In order to achieve optimum performance with regard to runtime routine of the MVB
function blocks, the number of words to be transferred must be adjusted according
to the respective user program.
If there is no array optimization, all (1024) words in every program cycle of the user
program are edited.

Word count
adjustment

Word count configuration:

Step Action

1 Open the EXPERTS.DTY file from c:\Concept\Lib.

2 Adjust the ARRAY ranges as required.

3 Save the changes using File → Save and close the file.

840 USE 504 00 October 2002 61

12
SIMTSX: TSX Simulation

Overview

Introduction This chapter describes the SIMTSX block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 62

Representation 62

SIMTSX: TSX Simulation

62 840 USE 504 00 October 2002

Brief description

Function
description

The SIMTSX is a function used in conjunction with the SIMTSX software product to
test and validate PLC programs.
The parameters EN and ENO can additionally be projected.

Representation

Symbol Block representation:

Parameter
description

Description of the block parameters:

Note: This function is only for internal use.

SIMTSX

BOOLPARAMSIMAC_PARAM
TYPE_INPUINT

Parameters Data type Meaning

PARAM SIMAC_PARAM 3 4x registers

TYPE_INP UINT 1 = 1x
3 = 3x

STATUS BOOL 1 = execution OK

840 USE 504 00 October 2002 63

13
ULEXSTAT: Expert Status Signals

Overview

Introduction This chapter describes the ULEXSTAT block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 64

Representation 65

ULEXSTAT: Expert Status Signals

64 840 USE 504 00 October 2002

Brief description

Function
description

The function block can be applied to the expert modules.
l 140 NOA 611 00,
l 140 NOA 611 10,
l 140 ERT 854 00 and
l 140 ESI 062 00.

It provides detailed information covering
l hardware faults, recognized by the loadable "ULEX"
l software errors, occurring during the loadable "ULEX" execution
Should fault messages appear from several experts, the EFB always returns the
status signals of the expert with the lowest slot number.
The parameters EN and ENO can additionally be projected.

ULEXSTAT: Expert Status Signals

840 USE 504 00 October 2002 65

Representation

Symbol Block representation:

Parameter
description

Description of the block parameters:

ULEXSTAT

WORDSEMODNUM

WORDSELIMNUM

WORDSEERRCOD

WORDHERCKNUM

WORDHESLTNUM

WORDHEMODSTS

WORDHECHLSTS

Parameters Data type Meaning

SEMODNUM WORD 0: no software errors have occurred
not equal to 0: Software errors. The number displayed is an aid
to error localization. Please report when requested by the
hotline.

SELIMNUM WORD See above.

SEERRCOD WORD See above.

HERCKNUM WORD 0: Hardware faults were not noted.
1: Hardware fault recognized.

HESLTNUM WORD 0: no hardware faults noted.
1 .. 16: Slot number, for which the hardware fault was
recognized.

HEMODSTS WORD Module status. Identical with the "USERSTATUS" structure
element in the "EXPSTATUS" data structure.

HECHLSTS WORD Module fault code. Identical with the "ERRNO" structure
element in the "EXPSTATUS" data structure.

ULEXSTAT: Expert Status Signals

66 840 USE 504 00 October 2002

840 USE 504 00 October 2002 67

Glossary

Active window The window, which is currently selected. Only one window can be active at any one
given time. When a window is active, the heading changes color, in order to
distinguish it from other windows. Unselected windows are inactive.

Actual parameter Currently connected Input/Output parameters.

Addresses (Direct) addresses are memory areas on the PLC. These are found in the State RAM
and can be assigned input/output modules.
The display/input of direct addresses is possible in the following formats:
l Standard format (400001)
l Separator format (4:00001)
l Compact format (4:1)
l IEC format (QW1)

ANL_IN ANL_IN stands for the data type "Analog Input" and is used for processing analog
values. The 3x References of the configured analog input module, which is specified
in the I/O component list is automatically assigned the data type and should
therefore only be occupied by Unlocated variables.

ANL_OUT ANL_OUT stands for the data type "Analog Output" and is used for processing
analog values. The 4x-References of the configured analog output module, which is
specified in the I/O component list is automatically assigned the data type and
should therefore only be occupied by Unlocated variables.

ANY In the existing version "ANY" covers the elementary data types BOOL, BYTE, DINT,
INT, REAL, UDINT, UINT, TIME and WORD and therefore derived data types.

A

Glossary

68 840 USE 504 00 October 2002

ANY_BIT In the existing version, "ANY_BIT" covers the data types BOOL, BYTE and WORD.

ANY_ELEM In the existing version "ANY_ELEM" covers the elementary data types BOOL,
BYTE, DINT, INT, REAL, UDINT, UINT, TIME and WORD.

ANY_INT In the existing version, "ANY_INT" covers the data types DINT, INT, UDINT and
UINT.

ANY_NUM In the existing version, "ANY_NUM" covers the data types DINT, INT, REAL, UDINT
and UINT.

ANY_REAL In the existing version "ANY_REAL" covers the data type REAL.

Application
window

The window, which contains the working area, the menu bar and the tool bar for the
application. The name of the application appears in the heading. An application
window can contain several document windows. In Concept the application window
corresponds to a Project.

Argument Synonymous with Actual parameters.

ASCII mode American Standard Code for Information Interchange. The ASCII mode is used for
communication with various host devices. ASCII works with 7 data bits.

Atrium The PC based controller is located on a standard AT board, and can be operated
within a host computer in an ISA bus slot. The module occupies a motherboard
(requires SA85 driver) with two slots for PC104 daughter boards. From this, a
PC104 daughter board is used as a CPU and the others for INTERBUS control.

Back up data file
(Concept EFB)

The back up file is a copy of the last Source files. The name of this back up file is
"backup??.c" (it is accepted that there are no more than 100 copies of the source
files. The first back up file is called "backup00.c". If changes have been made on the
Definition file, which do not create any changes to the interface in the EFB, there is
no need to create a back up file by editing the source files (Objects → Source). If a
back up file can be assigned, the name of the source file can be given.

B

Glossary

840 USE 504 00 October 2002 69

Base 16 literals Base 16 literals function as the input of whole number values in the hexadecimal
system. The base must be denoted by the prefix 16#. The values may not be
preceded by signs (+/-). Single underline signs (_) between figures are not
significant.

Example
16#F_F or 16#FF (decimal 255)
16#E_0 or 16#E0 (decimal 224)

Base 8 literal Base 8 literals function as the input of whole number values in the octal system. The
base must be denoted by the prefix 3.63kg. The values may not be preceded by
signs (+/-). Single underline signs (_) between figures are not significant.

Example
8#3_1111 or 8#377 (decimal 255)
8#34_1111 or 8#340 (decimal 224)

Basis 2 literals Base 2 literals function as the input of whole number values in the dual system. The
base must be denoted by the prefix 0.91kg. The values may not be preceded by
signs (+/-). Single underline signs (_) between figures are not significant.

Example
2#1111_1111 or 2#11111111 (decimal 255)
2#1110_1111 or 2#11100000 (decimal 224)

Binary
connections

Connections between outputs and inputs of FFBs of data type BOOL.

Bit sequence A data element, which is made up from one or more bits.

BOOL BOOL stands for the data type "Boolean". The length of the data elements is 1 bit
(in the memory contained in 1 byte). The range of values for variables of this type is
0 (FALSE) and 1 (TRUE).

Bridge A bridge serves to connect networks. It enables communication between nodes on
the two networks. Each network has its own token rotation sequence – the token is
not deployed via bridges.

BYTE BYTE stands for the data type "Bit sequence 8". The input appears as Base 2 literal,
Base 8 literal or Base 1 16 literal. The length of the data element is 8 bit. A numerical
range of values cannot be assigned to this data type.

Glossary

70 840 USE 504 00 October 2002

Cache The cache is a temporary memory for cut or copied objects. These objects can be
inserted into sections. The old content in the cache is overwritten for each new Cut
or Copy.

Call up The operation, by which the execution of an operation is initiated.

Coil A coil is a LD element, which transfers (without alteration) the status of the horizontal
link on the left side to the horizontal link on the right side. In this way, the status is
saved in the associated Variable/ direct address.

Compact format
(4:1)

The first figure (the Reference) is separated from the following address with a colon
(:), where the leading zero are not entered in the address.

Connection A check or flow of data connection between graphic objects (e.g. steps in the SFC
editor, Function blocks in the FBD editor) within a section, is graphically shown as a
line.

Constants Constants are Unlocated variables, which are assigned a value that cannot be
altered from the program logic (write protected).

Contact A contact is a LD element, which transfers a horizontal connection status onto the
right side. This status is from the Boolean AND- operation of the horizontal
connection status on the left side with the status of the associated Variables/direct
Address. A contact does not alter the value of the associated variables/direct
address.

Data transfer
settings

Settings, which determine how information from the programming device is
transferred to the PLC.

C

D

Glossary

840 USE 504 00 October 2002 71

Data types The overview shows the hierarchy of data types, as they are used with inputs and
outputs of Functions and Function blocks. Generic data types are denoted by the
prefix "ANY".
l ANY_ELEM

l ANY_NUM
ANY_REAL (REAL)
ANY_INT (DINT, INT, UDINT, UINT)

l ANY_BIT (BOOL, BYTE, WORD)
l TIME

l System data types (IEC extensions)
l Derived (from "ANY" data types)

DCP I/O station With a Distributed Control Processor (D908) a remote network can be set up with a
parent PLC. When using a D908 with remote PLC, the parent PLC views the remote
PLC as a remote I/O station. The D908 and the remote PLC communicate via the
system bus, which results in high performance, with minimum effect on the cycle
time. The data exchange between the D908 and the parent PLC takes place at 1.5
Megabits per second via the remote I/O bus. A parent PLC can support up to 31
(Address 2-32) D908 processors.

DDE (Dynamic
Data Exchange)

The DDE interface enables a dynamic data exchange between two programs under
Windows. The DDE interface can be used in the extended monitor to call up its own
display applications. With this interface, the user (i.e. the DDE client) can not only
read data from the extended monitor (DDE server), but also write data onto the PLC
via the server. Data can therefore be altered directly in the PLC, while it monitors
and analyzes the results. When using this interface, the user is able to make their
own "Graphic-Tool", "Face Plate" or "Tuning Tool", and integrate this into the
system. The tools can be written in any DDE supporting language, e.g. Visual Basic
and Visual-C++. The tools are called up, when the one of the buttons in the dialog
box extended monitor uses Concept Graphic Tool: Signals of a projection can be
displayed as timing diagrams via the DDE connection between Concept and
Concept Graphic Tool.

Decentral
Network (DIO)

A remote programming in Modbus Plus network enables maximum data transfer
performance and no specific requests on the links. The programming of a remote
net is easy. To set up the net, no additional ladder diagram logic is needed. Via
corresponding entries into the Peer Cop processor all data transfer requests are
met.

Declaration Mechanism for determining the definition of a Language element. A declaration
normally covers the connection of an Identifier with a language element and the
assignment of attributes such as Data types and algorithms.

Glossary

72 840 USE 504 00 October 2002

Definition data
file (Concept
EFB)

The definition file contains general descriptive information about the selected FFB
and its formal parameters.

Derived data type Derived data types are types of data, which are derived from the Elementary data
types and/or other derived data types. The definition of the derived data types
appears in the data type editor in Concept.
Distinctions are made between global data types and local data types.

Derived Function
Block (DFB)

A derived function block represents the Call up of a derived function block type.
Details of the graphic form of call up can be found in the definition " Function block
(Item)". Contrary to calling up EFB types, calling up DFB types is denoted by double
vertical lines on the left and right side of the rectangular block symbol.
The body of a derived function block type is designed using FBD language, but only
in the current version of the programming system. Other IEC languages cannot yet
be used for defining DFB types, nor can derived functions be defined in the current
version.
Distinctions are made between local and global DFBs.

DINT DINT stands for the data type "double integer". The input appears as Integer literal,
Base 2 literal, Base 8 literal or Base 16 literal. The length of the data element is 32
bit. The range of values for variables of this data type is from –2 exp (31) to 2 exp
(31) –1.

Direct display A method of displaying variables in the PLC program, from which the assignment of
configured memory can be directly and indirectly derived from the physical memory.

Document
window

A window within an Application window. Several document windows can be opened
at the same time in an application window. However, only one document window
can be active. Document windows in Concept are, for example, sections, the
message window, the reference data editor and the PLC configuration.

Dummy An empty data file, which consists of a text header with general file information, i.e.
author, date of creation, EFB identifier etc. The user must complete this dummy file
with additional entries.

DX Zoom This property enables connection to a programming object to observe and, if
necessary, change its data value.

Glossary

840 USE 504 00 October 2002 73

Elementary
functions/
function blocks
(EFB)

Identifier for Functions or Function blocks, whose type definitions are not formulated
in one of the IEC languages, i.e. whose bodies, for example, cannot be modified with
the DFB Editor (Concept-DFB). EFB types are programmed in "C" and mounted via
Libraries in precompiled form.

EN / ENO (Enable
/ Error display)

If the value of EN is "0" when the FFB is called up, the algorithms defined by the FFB
are not executed and all outputs contain the previous value. The value of ENO is
automatically set to "0" in this case. If the value of EN is "1" when the FFB is called
up, the algorithms defined by the FFB are executed. After the error free execution of
the algorithms, the ENO value is automatically set to "1". If an error occurs during
the execution of the algorithm, ENO is automatically set to "0". The output behavior
of the FFB depends whether the FFBs are called up without EN/ENO or with EN=1.
If the EN/ENO display is enabled, the EN input must be active. Otherwise, the FFB
is not executed. The projection of EN and ENO is enabled/disabled in the block
properties dialog box. The dialog box is called up via the menu commands Objects
→ Properties... or via a double click on the FFB.

Error When processing a FFB or a Step an error is detected (e.g. unauthorized input value
or a time error), an error message appears, which can be viewed with the menu
command Online → Event display... . With FFBs the ENO output is set to "0".

Evaluation The process, by which a value for a Function or for the outputs of a Function block
during the Program execution is transmitted.

Expression Expressions consist of operators and operands.

FFB (functions/
function blocks)

Collective term for EFB (elementary functions/function blocks) and DFB (derived
function blocks)

Field variables Variables, one of which is assigned, with the assistance of the key word ARRAY
(field), a defined Derived data type. A field is a collection of data elements of the
same Data type.

FIR filter Finite Impulse Response Filter

E

F

Glossary

74 840 USE 504 00 October 2002

Formal
parameters

Input/Output parameters, which are used within the logic of a FFB and led out of the
FFB as inputs/outputs.

Function (FUNC) A Program organization unit, which exactly supplies a data element when executing.
A function has no internal status information. Multiple call ups of the same function
with the same input parameter values always supply the same output values.
Details of the graphic form of function call up can be found in the definition " Function
block (Item)". In contrast to the call up of function blocks, the function call ups only
have one unnamed output, whose name is the name of the function itself. In FBD
each call up is denoted by a unique number over the graphic block; this number is
automatically generated and cannot be altered.

Function block
(item) (FB)

A function block is a Program organization unit, which correspondingly calculates
the functionality values, defined in the function block type description, for the output
and internal variables, when it is called up as a certain item. All output values and
internal variables of a certain function block item remain as a call up of the function
block until the next. Multiple call up of the same function block item with the same
arguments (Input parameter values) supply generally supply the same output
value(s).
Each function block item is displayed graphically by a rectangular block symbol. The
name of the function block type is located on the top center within the rectangle. The
name of the function block item is located also at the top, but on the outside of the
rectangle. An instance is automatically generated when creating, which can
however be altered manually, if required. Inputs are displayed on the left side and
outputs on the right of the block. The names of the formal input/output parameters
are displayed within the rectangle in the corresponding places.
The above description of the graphic presentation is principally applicable to
Function call ups and to DFB call ups. Differences are described in the
corresponding definitions.

Function block
dialog (FBD)

One or more sections, which contain graphically displayed networks from Functions,
Function blocks and Connections.

Function block
type

A language element, consisting of: 1. the definition of a data structure, subdivided
into input, output and internal variables, 2. A set of operations, which is used with
the elements of the data structure, when a function block type instance is called up.
This set of operations can be formulated either in one of the IEC languages (DFB
type) or in "C" (EFB type). A function block type can be instanced (called up) several
times.

Glossary

840 USE 504 00 October 2002 75

Function counter The function counter serves as a unique identifier for the function in a Program or
DFB. The function counter cannot be edited and is automatically assigned. The
function counter always has the structure: .n.m

n = Section number (number running)
m = Number of the FFB object in the section (number running)

Generic data
type

A Data type, which stands in for several other data types.

Generic literal If the Data type of a literal is not relevant, simply enter the value for the literal. In this
case Concept automatically assigns the literal to a suitable data type.

Global derived
data types

Global Derived data types are available in every Concept project and are contained
in the DFB directory directly under the Concept directory.

Global DFBs Global DFBs are available in every Concept project and are contained in the DFB
directory directly under the Concept directory.

Global macros Global Macros are available in every Concept project and are contained in the DFB
directory directly under the Concept directory.

Groups (EFBs) Some EFB libraries (e.g. the IEC library) are subdivided into groups. This facilitates
the search for FFBs, especially in extensive libraries.

I/O component
list

The I/O and expert assemblies of the various CPUs are configured in the I/O
component list.

IEC 61131-3 International norm: Programmable controllers – part 3: Programming languages.

G

I

Glossary

76 840 USE 504 00 October 2002

IEC format (QW1) In the place of the address stands an IEC identifier, followed by a five figure address:
l %0x12345 = %Q12345
l %1x12345 = %I12345
l %3x12345 = %IW12345
l %4x12345 = %QW12345

IEC name
conventions
(identifier)

An identifier is a sequence of letters, figures, and underscores, which must start with
a letter or underscores (e.g. name of a function block type, of an item or section).
Letters from national sets of characters (e.g. ö,ü, é, õ) can be used, taken from
project and DFB names.
Underscores are significant in identifiers; e.g. "A_BCD" and "AB_CD" are
interpreted as different identifiers. Several leading and multiple underscores are not
authorized consecutively.
Identifiers are not permitted to contain space characters. Upper and/or lower case
is not significant; e.g. "ABCD" and "abcd" are interpreted as the same identifier.
Identifiers are not permitted to be Key words.

IIR filter Infinite Impulse Response Filter

Initial step
(starting step)

The first step in a chain. In each chain, an initial step must be defined. The chain is
started with the initial step when first called up.

Initial value The allocated value of one of the variables when starting the program. The value
assignment appears in the form of a Literal.

Input bits
(1x references)

The 1/0 status of input bits is controlled via the process data, which reaches the CPU
from an entry device.

Input parameters
(Input)

When calling up a FFB the associated Argument is transferred.

Input words
(3x references)

An input word contains information, which come from an external source and are
represented by a 16 bit figure. A 3x register can also contain 16 sequential input bits,
which were read into the register in binary or BCD (binary coded decimal) format.
Note: The x, which comes after the first figure of the reference type, represents a
five figure storage location in the user data store, i.e. if the reference 300201
signifies a 16 bit input word in the address 201 of the State RAM.

Instantiation The generation of an Item.

Note: The x, which comes after the first figure of the reference type, represents a
five figure storage location in the application data store, i.e. if the reference 100201
signifies an input bit in the address 201 of the State RAM.

Glossary

840 USE 504 00 October 2002 77

Instruction (IL) Instructions are "commands" of the IL programming language. Each operation
begins on a new line and is succeeded by an operator (with modifier if needed) and,
if necessary for each relevant operation, by one or more operands. If several
operands are used, they are separated by commas. A tag can stand before the
instruction, which is followed by a colon. The commentary must, if available, be the
last element in the line.

Instruction
(LL984)

When programming electric controllers, the task of implementing operational coded
instructions in the form of picture objects, which are divided into recognizable
contact forms, must be executed. The designed program objects are, on the user
level, converted to computer useable OP codes during the loading process. The OP
codes are deciphered in the CPU and processed by the controller’s firmware
functions so that the desired controller is implemented.

Instruction list
(IL)

IL is a text language according to IEC 1131, in which operations, e.g. conditional/
unconditional call up of Function blocks and Functions, conditional/unconditional
jumps etc. are displayed through instructions.

INT INT stands for the data type "whole number". The input appears as Integer literal,
Base 2 literal, Base 8 literal or Base 16 literal. The length of the data element is 16
bit. The range of values for variables of this data type is from –2 exp (15) to 2 exp
(15) –1.

Integer literals Integer literals function as the input of whole number values in the decimal system.
The values may be preceded by the signs (+/-). Single underline signs (_) between
figures are not significant.

Example
-12, 0, 123_456, +986

INTERBUS (PCP) To use the INTERBUS PCP channel and the INTERBUS process data
preprocessing (PDP), the new I/O station type INTERBUS (PCP) is led into the
Concept configurator. This I/O station type is assigned fixed to the INTERBUS
connection module 180-CRP-660-01.
The 180-CRP-660-01 differs from the 180-CRP-660-00 only by a clearly larger I/O
area in the state RAM of the controller.

Glossary

78 840 USE 504 00 October 2002

Item name An Identifier, which belongs to a certain Function block item. The item name serves
as a unique identifier for the function block in a program organization unit. The item
name is automatically generated, but can be edited. The item name must be unique
throughout the Program organization unit, and no distinction is made between
upper/lower case. If the given name already exists, a warning is given and another
name must be selected. The item name must conform to the IEC name conventions,
otherwise an error message appears. The automatically generated instance name
always has the structure: FBI_n_m

FBI = Function block item
n = Section number (number running)
m = Number of the FFB object in the section (number running)

Jump Element of the SFC language. Jumps are used to jump over areas of the chain.

Key words Key words are unique combinations of figures, which are used as special syntactic
elements, as is defined in appendix B of the IEC 1131-3. All key words, which are
used in the IEC 1131-3 and in Concept, are listed in appendix C of the IEC 1131-3.
These listed keywords cannot be used for any other purpose, i.e. not as variable
names, section names, item names etc.

Ladder Diagram
(LD)

Ladder Diagram is a graphic programming language according to IEC1131, which
optically orientates itself to the "rung" of a relay ladder diagram.

J

K

L

Glossary

840 USE 504 00 October 2002 79

Ladder Logic 984
(LL)

In the terms Ladder Logic and Ladder Diagram, the word Ladder refers to execution.
In contrast to a diagram, a ladder logic is used by engineers to draw up a circuit (with
assistance from electrical symbols),which should chart the cycle of events and not
the existing wires, which connect the parts together. A usual user interface for
controlling the action by automated devices permits ladder logic interfaces, so that
when implementing a control system, engineers do not have to learn any new
programming languages, with which they are not conversant.
The structure of the actual ladder logic enables electrical elements to be linked in a
way that generates a control output, which is dependant upon a configured flow of
power through the electrical objects used, which displays the previously demanded
condition of a physical electric appliance.
In simple form, the user interface is one of the video displays used by the PLC
programming application, which establishes a vertical and horizontal grid, in which
the programming objects are arranged. The logic is powered from the left side of the
grid, and by connecting activated objects the electricity flows from left to right.

Landscape
format

Landscape format means that the page is wider than it is long when looking at the
printed text.

Language
element

Each basic element in one of the IEC programming languages, e.g. a Step in SFC,
a Function block item in FBD or the Start value of a variable.

Library Collection of software objects, which are provided for reuse when programming new
projects, or even when building new libraries. Examples are the Elementary function
block types libraries.
EFB libraries can be subdivided into Groups.

Literals Literals serve to directly supply values to inputs of FFBs, transition conditions etc.
These values cannot be overwritten by the program logic (write protected). In this
way, generic and standardized literals are differentiated.
Furthermore literals serve to assign a Constant a value or a Variable an Initial value.
The input appears as Base 2 literal, Base 8 literal, Base 16 literal, Integer literal, Real
literal or Real literal with exponent.

Local derived
data types

Local derived data types are only available in a single Concept project and its local
DFBs and are contained in the DFB directory under the project directory.

Local DFBs Local DFBs are only available in a single Concept project and are contained in the
DFB directory under the project directory.

Local link The local network link is the network, which links the local nodes with other nodes
either directly or via a bus amplifier.

Local macros Local Macros are only available in a single Concept project and are contained in the
DFB directory under the project directory.

Glossary

80 840 USE 504 00 October 2002

Local network
nodes

The local node is the one, which is projected evenly.

Located variable Located variables are assigned a state RAM address (reference addresses 0x,1x,
3x, 4x). The value of these variables is saved in the state RAM and can be altered
online with the reference data editor. These variables can be addressed by symbolic
names or the reference addresses.

Collective PLC inputs and outputs are connected to the state RAM. The program
access to the peripheral signals, which are connected to the PLC, appears only via
located variables. PLC access from external sides via Modbus or Modbus plus
interfaces, i.e. from visualizing systems, are likewise possible via located variables.

Macro Macros are created with help from the software Concept DFB.
Macros function to duplicate frequently used sections and networks (including the
logic, variables, and variable declaration).
Distinctions are made between local and global macros.

Macros have the following properties:
l Macros can only be created in the programming languages FBD and LD.
l Macros only contain one single section.
l Macros can contain any complex section.
l From a program technical point of view, there is no differentiation between an

instanced macro, i.e. a macro inserted into a section, and a conventionally
created macro.

l Calling up DFBs in a macro
l Variable declaration
l Use of macro-own data structures
l Automatic acceptance of the variables declared in the macro
l Initial value for variables
l Multiple instancing of a macro in the whole program with different variables
l The section name, the variable name and the data structure name can contain up

to 10 different exchange markings (@0 to @9).

MMI Man Machine Interface

Multi element
variables

Variables, one of which is assigned a Derived data type defined with STRUCT or
ARRAY.
Distinctions are made between Field variables and structured variables.

M

Glossary

840 USE 504 00 October 2002 81

Network A network is the connection of devices to a common data path, which communicate
with each other via a common protocol.

Network node A node is a device with an address (164) on the Modbus Plus network.

Node address The node address serves a unique identifier for the network in the routing path. The
address is set directly on the node, e.g. with a rotary switch on the back of the
module.

Operand An operand is a Literal, a Variable, a Function call up or an Expression.

Operator An operator is a symbol for an arithmetic or Boolean operation to be executed.

Output
parameters
(Output)

A parameter, with which the result(s) of the Evaluation of a FFB are returned.

Output/discretes
(0x references)

An output/marker bit can be used to control real output data via an output unit of the
control system, or to define one or more outputs in the state RAM. Note: The x,
which comes after the first figure of the reference type, represents a five figure
storage location in the application data store, i.e. if the reference 000201 signifies
an output or marker bit in the address 201 of the State RAM.

Output/marker
words (4x
references)

An output/marker word can be used to save numerical data (binary or decimal) in
the State RAM, or also to send data from the CPU to an output unit in the control
system. Note: The x, which comes after the first figure of the reference type,
represents a five figure storage location in the application data store, i.e. if the
reference 400201 signifies a 16 bit output or marker word in the address 201 of the
State RAM.

N

O

Glossary

82 840 USE 504 00 October 2002

Peer processor The peer processor processes the token run and the flow of data between the
Modbus Plus network and the PLC application logic.

PLC Programmable controller

Program The uppermost Program organization unit. A program is closed and loaded onto a
single PLC.

Program cycle A program cycle consists of reading in the inputs, processing the program logic and
the output of the outputs.

Program
organization unit

A Function, a Function block, or a Program. This term can refer to either a Type or
an Item.

Programming
device

Hardware and software, which supports programming, configuring, testing,
implementing and error searching in PLC applications as well as in remote system
applications, to enable source documentation and archiving. The programming
device could also be used for process visualization.

Programming
redundancy
system
(Hot Standby)

A redundancy system consists of two identically configured PLC devices, which
communicate with each other via redundancy processors. In the case of the primary
PLC failing, the secondary PLC takes over the control checks. Under normal
conditions the secondary PLC does not take over any controlling functions, but
instead checks the status information, to detect mistakes.

Project General identification of the uppermost level of a software tree structure, which
specifies the parent project name of a PLC application. After specifying the project
name, the system configuration and control program can be saved under this name.
All data, which results during the creation of the configuration and the program,
belongs to this parent project for this special automation.
General identification for the complete set of programming and configuring
information in the Project data bank, which displays the source code that describes
the automation of a system.

Project data bank The data bank in the Programming device, which contains the projection information
for a Project.

P

Glossary

840 USE 504 00 October 2002 83

Prototype data
file (Concept
EFB)

The prototype data file contains all prototypes of the assigned functions. Further, if
available, a type definition of the internal

REAL REAL stands for the data type "real". The input appears as Real literal or as Real
literal with exponent. The length of the data element is 32 bit. The value range for
variables of this data type reaches from 8.43E-37 to 3.36E+38.

Real literal Real literals function as the input of real values in the decimal system. Real literals
are denoted by the input of the decimal point. The values may be preceded by the
signs (+/-). Single underline signs (_) between figures are not significant.

Example
-12.0, 0.0, +0.456, 3.14159_26

Real literal with
exponent

Real literals with exponent function as the input of real values in the decimal system.
Real literals with exponent are denoted by the input of the decimal point. The
exponent sets the key potency, by which the preceding number is multiplied to get
to the value to be displayed. The basis may be preceded by a negative sign (-). The
exponent may be preceded by a positive or negative sign (+/-). Single underline
signs (_) between figures are not significant. (Only between numbers, not before
or after the decimal poiont and not before or after "E", "E+" or "E-")

Example
-1.34E-12 or -1.34e-12
1.0E+6 or 1.0e+6
1.234E6 or 1.234e6

R

Note: Depending on the mathematic processor type of the CPU, various areas
within this valid value range cannot be represented. This is valid for values nearing
ZERO and for values nearing INFINITY. In these cases, a number value is not
shown in animation, instead NAN (Not A Number) oder INF (INFinite).

Glossary

84 840 USE 504 00 October 2002

Reference Each direct address is a reference, which starts with an ID, specifying whether it
concerns an input or an output and whether it concerns a bit or a word. References,
which start with the code 6, display the register in the extended memory of the state
RAM.
0x area = Discrete outputs
1x area = Input bits
3x area = Input words
4x area = Output bits/Marker words
6x area = Register in the extended memory

Register in the
extended
memory
(6x reference)

6x references are marker words in the extended memory of the PLC. Only LL984
user programs and CPU 213 04 or CPU 424 02 can be used.

RIO (Remote I/O) Remote I/O provides a physical location of the I/O coordinate setting device in
relation to the processor to be controlled. Remote inputs/outputs are connected to
the consumer control via a wired communication cable.

RP (PROFIBUS) RP = Remote Peripheral

RTU mode Remote Terminal Unit
The RTU mode is used for communication between the PLC and an IBM compatible
personal computer. RTU works with 8 data bits.

Rum-time error Error, which occurs during program processing on the PLC, with SFC objects (i.e.
steps) or FFBs. These are, for example, over-runs of value ranges with figures, or
time errors with steps.

Note: The x, which comes after the first figure of each reference type, represents
a five figure storage location in the application data store, i.e. if the reference
400201 signifies a 16 bit output or marker word in the address 201 of the State
RAM.

Glossary

840 USE 504 00 October 2002 85

SA85 module The SA85 module is a Modbus Plus adapter for an IBM-AT or compatible computer.

Section A section can be used, for example, to describe the functioning method of a
technological unit, such as a motor.
A Program or DFB consist of one or more sections. Sections can be programmed
with the IEC programming languages FBD and SFC. Only one of the named
programming languages can be used within a section.
Each section has its own Document window in Concept. For reasons of clarity, it is
recommended to subdivide a very large section into several small ones. The scroll
bar serves to assist scrolling in a section.

Separator format
(4:00001)

The first figure (the Reference) is separated from the ensuing five figure address by
a colon (:).

Sequence
language (SFC)

The SFC Language elements enable the subdivision of a PLC program organiza-
tional unit in a number of Steps and Transitions, which are connected horizontally
by aligned Connections. A number of actions belong to each step, and a transition
condition is linked to a transition.

Serial ports With serial ports (COM) the information is transferred bit by bit.

Source code data
file
(Concept EFB)

The source code data file is a usual C++ source file. After execution of the menu
command Library → Generate data files this file contains an EFB code framework,
in which a specific code must be entered for the selected EFB. To do this, click on
the menu command Objects → Source.

Standard format
(400001)

The five figure address is located directly after the first figure (the reference).

Standardized
literals

If the data type for the literal is to be automatically determined, use the following
construction: ’Data type name’#’Literal value’.

Example
INT#15 (Data type: Integer, value: 15),
BYTE#00001111 (data type: Byte, value: 00001111)
REAL#23.0 (Data type: Real, value: 23.0)

For the assignment of REAL data types, there is also the possibility to enter the
value in the following way: 23.0.
Entering a comma will automatically assign the data type REAL.

S

Glossary

86 840 USE 504 00 October 2002

State RAM The state RAM is the storage for all sizes, which are addressed in the user program
via References (Direct display). For example, input bits, discretes, input words, and
discrete words are located in the state RAM.

Statement (ST) Instructions are "commands" of the ST programming language. Instructions must be
terminated with semicolons. Several instructions (separated by semi-colons) can
occupy the same line.

Status bits There is a status bit for every node with a global input or specific input/output of Peer
Cop data. If a defined group of data was successfully transferred within the set time
out, the corresponding status bit is set to 1. Alternatively, this bit is set to 0 and all
data belonging to this group (of 0) is deleted.

Step SFC Language element: Situations, in which the Program behavior follows in
relation to the inputs and outputs of the same operations, which are defined by the
associated actions of the step.

Step name The step name functions as the unique flag of a step in a Program organization unit.
The step name is automatically generated, but can be edited. The step name must
be unique throughout the whole program organization unit, otherwise an Error
message appears.
The automatically generated step name always has the structure: S_n_m

S = Step
n = Section number (number running)
m = Number of steps in the section (number running)

Structured text
(ST)

ST is a text language according to IEC 1131, in which operations, e.g. call up of
Function blocks and Functions, conditional execution of instructions, repetition of
instructions etc. are displayed through instructions.

Structured
variables

Variables, one of which is assigned a Derived data type defined with STRUCT
(structure).
A structure is a collection of data elements with generally differing data types (
Elementary data types and/or derived data types).

SY/MAX In Quantum control devices, Concept closes the mounting on the I/O population SY/
MAX I/O modules for RIO control via the Quantum PLC with on. The SY/MAX
remote subrack has a remote I/O adapter in slot 1, which communicates via a
Modicon S908 R I/O system. The SY/MAX I/O modules are performed when
highlighting and including in the I/O population of the Concept configuration.

Symbol (Icon) Graphic display of various objects in Windows, e.g. drives, user programs and
Document windows.

Glossary

840 USE 504 00 October 2002 87

Template data
file
(Concept EFB)

The template data file is an ASCII data file with a layout information for the Concept
FBD editor, and the parameters for code generation.

TIME TIME stands for the data type "Time span". The input appears as Time span literal.
The length of the data element is 32 bit. The value range for variables of this type
stretches from 0 to 2exp(32)-1. The unit for the data type TIME is 1 ms.

Time span
literals

Permitted units for time spans (TIME) are days (D), hours (H), minutes (M), seconds
(S) and milliseconds (MS) or a combination thereof. The time span must be denoted
by the prefix t#, T#, time# or TIME#. An "overrun" of the highest ranking unit is
permitted, i.e. the input T#25H15M is permitted.

Example
t#14MS, T#14.7S, time#18M, TIME#19.9H, t#20.4D, T#25H15M,
time#5D14H12M18S3.5MS

Token The network "Token" controls the temporary property of the transfer rights via a
single node. The token runs through the node in a circulating (rising) address
sequence. All nodes track the Token run through and can contain all possible data
sent with it.

Traffic Cop The Traffic Cop is a component list, which is compiled from the user component list.
The Traffic Cop is managed in the PLC and in addition contains the user component
list e.g. Status information of the I/O stations and modules.

Transition The condition with which the control of one or more Previous steps transfers to one
or more ensuing steps along a directional Link.

T

Glossary

88 840 USE 504 00 October 2002

UDEFB User defined elementary functions/function blocks
Functions or Function blocks, which were created in the programming language C,
and are available in Concept Libraries.

UDINT UDINT stands for the data type "unsigned double integer". The input appears as
Integer literal, Base 2 literal, Base 8 literal or Base 16 literal. The length of the data
element is 32 bit. The value range for variables of this type stretches from 0 to
2exp(32)-1.

UINT UINT stands for the data type "unsigned integer". The input appears as Integer
literal, Base 2 literal, Base 8 literal or Base 16 literal. The length of the data element
is 16 bit. The value range for variables of this type stretches from 0 to (2exp16)-1.

Unlocated
variable

Unlocated variables are not assigned any state RAM addresses. They therefore do
not occupy any state RAM addresses. The value of these variables is saved in the
system and can be altered with the reference data editor. These variables are only
addressed by symbolic names.

Signals requiring no peripheral access, e.g. intermediate results, system tags etc,
should primarily be declared as unlocated variables.

Variables Variables function as a data exchange within sections between several sections and
between the Program and the PLC.
Variables consist of at least a variable name and a Data type.
Should a variable be assigned a direct Address (Reference), it is referred to as a
Located variable. Should a variable not be assigned a direct address, it is referred
to as an unlocated variable. If the variable is assigned a Derived data type, it is
referred to as a Multi-element variable.
Otherwise there are Constants and Literals.

Vertical format Vertical format means that the page is higher than it is wide when looking at the
printed text.

U

V

Glossary

840 USE 504 00 October 2002 89

Warning When processing a FFB or a Step a critical status is detected (e.g. critical input value
or a time out), a warning appears, which can be viewed with the menu command
Online → Event viewer... . With FFBs the ENO output remains at "1".

WORD WORD stands for the data type "Bit sequence 16". The input appears as Base 2
literal, Base 8 literal or Base 1 16 literal. The length of the data element is 16 bit. A
numerical range of values cannot be assigned to this data type.

W

Glossary

90 840 USE 504 00 October 2002

CBA

840 USE 504 00 October 2002 91

C
Counter Inputs

ERT 854 10, 21

D
Data exchange between AS-BMVB-258A
and CPU, 53
Data exchange between CPU and MVB-
258A, 45
Data Flow

ERT 854 10, 21
Digital Inputs

ERT 854 10, 21

E
EFB Error Bits

ERT 854 10, 24
Error Bits

ERT 854 10, 23
ERT 854 10 Data transfer EFB, 15
ERT Error Bits

ERT 854 10, 24
ERT_854_10, 15
ERT_TIME, 31
ERT_TIME Time transfer to the ERT854, 31
Event Inputs

ERT 854 10, 21
EXFR, 35
Expert status signals, 63

Experts
ERT_854_10, 15
ERT_TIME, 31
EXFR, 35
EXRB, 37
EXWB, 41
MUX_DINTARR_125, 43
MVB_IN, 45
MVB_INFO, 49
MVB_OUT, 53
MVB_RED, 57
SIMTSX, 61
ULEXSTAT, 63

EXRB, 37
Accepting feedback values from the
expert, 37

EXWB, 41

F
Feedback data enable for Experts, 35
Function

Parameterization, 9
Function block

Parameterization, 9

Index

Index

92 840 USE 504 00 October 2002

I
IO Control

EXFR, 35
MUX_DINTARR_125, 43
MVB_OUT, 53
MVB_RED, 57

M
Multiplexer for Arrays of the DIntArr125 data
type, 43
MUX_DINTARR_125, 43
MVB

MVB_IN, 45
MVB_INFO, 49

MVB_IN, 45
MVB_INFO, 49
MVB_OUT, 53
MVB_RED, 57

O
On Demand IO

EXRB, 37
EXWB, 41

P
Parameterization, 9

R
Requesting bus data via MVB, 49
Rough Time Output, 23
RTU

ERT_854_10, 15
ERT_TIME, 31

S
SIMTSX, 61

SIMTSX, 61
Status Inputs

ERT 854 10, 23
Switching redundant source ports, 57

T
Transferring set points to the expert, 41
TSX Simulation, 61

U
ULEX Status

ULEXSTAT, 63
ULEXSTAT, 63

