
33
00

22
10

.0
0

Concept
IEC Block Library
Part: COMM
840 USE 504 00 eng Version 2.6

© 2002 Schneider Electric All Rights Reserved

2

3

Table of Contents

About the Book . 5

Part I General information about the COMM module library . . 7
Overview . 7

Chapter 1 Parameterizing functions and function blocks 9
Parameterizing functions and function blocks . 10

Part II EFB descriptions . 13
Overview . 13

Chapter 2 CREAD_REG: Continuous register reading.15

Chapter 3 CREADREG: Continuous register reading. 21

Chapter 4 CWRITE_REG: Continuous register writing.27

Chapter 5 CWRITREG: Continuous register writing33

Chapter 6 IBS_READ: Reading variables via INTERBUS39

Chapter 7 IBS_SEND_REQ: Diagnostic query on the
INTERBUS Master 140 NOA 622 00. .41

Chapter 8 IBS_WRITE: Writing variables to INTERBUS PCP nodes43

Chapter 9 ICNT: Connect/disconnect an INTERBUS communication. . .45

Chapter 10 ICOM: Data transfer . 53

Chapter 11 MBP_MSTR: Modbus Plus Master .59

Chapter 12 MODBUSP_ADDR: Modbus Plus Address 105

Chapter 13 PORTSTAT: Modbus Port Status . 111

Chapter 14 READ_REG: Read register. 113

4

Chapter 15 READREG: Read register . 119

Chapter 16 RTXMIT: Full duplex Transfer
(Compact, Momentum, Quantum) . 125

Chapter 17 SYMAX_IP_ADDR: SY/MAX IP Address. 133

Chapter 18 TCP_IP_ADDR: TCP/IP Address . 137

Chapter 19 WRITE_REG: Write register . 141

Chapter 20 WRITEREG: Write register . 147

Chapter 21 XMIT: Transmit (Momentum) . 153

Chapter 22 XXMIT: Transmit (Compact, Momentum, Quantum) 159

Glossary .163

Index .187

840 USE 504 00 October 2002 5

About the Book

At a Glance

Document Scope This documentation is designed to help with the configuration of functions and
function blocks.

Validity Note This documentation applies to Concept 2.6 under Microsoft Windows 98, Microsoft
Windows 2000, Microsoft Windows XP and Microsoft Windows NT 4.x.

Related
Documents

User Comments We welcome your comments about this document. You can reach us by e-mail at
TECHCOMM@modicon.com

Note: There is additional up to date tips in the README data file in Concept.

Title of Documentation Reference Number

Concept Installation Instructions 840 USE 502 00

Concept User Manual 840 USE 503 00

Concept EFB User Manual 840 USE 505 00

Concept LL984 Block Library 840 USE 506 00

Modbus Plus network user manual 890 USE 100 00

Modbus Plus Bridge / Multiplexer User’s Guide GM-BM85-001

Quantum Ethernet TCI/IP module User’s Guide 890 USE 107 00

XMIT-IEC User Manual 840 USE 499 00

About the Book

6 840 USE 504 00 October 2002

840 USE 504 00 October 2002 7

I
General information about the
COMM module library

Overview

Introduction This section contains general information about the COMM module library.

What's in this
Part?

This part contains the following chapters:

Chapter Chapter Name Page

1 Parameterizing functions and function blocks 9

General information

8 840 USE 504 00 October 2002

840 USE 504 00 October 2002 9

1
Parameterizing functions and
function blocks

Parameterization

10 840 USE 504 00 October 2002

Parameterizing functions and function blocks

General Each FFB consists of an operation, the operands needed for the operation and an
instance name or function counter.

Operation The operation determines which function is to be executed with the FFB, e.g. shift
register, conversion operations.

FFB
(e.g. ON-delay)

Item name/
Function counter
(e.g. FBI_2_22 (18))

Operation
(e.g. TON)

Operand

Actual parameter
Variable, element of a

multi-element
variable, literal, direct

address
(e.g. ENABLE, EXP.1,
TIME, ERROR, OUT,

%4:0001)

Formal
parameter

(e.g.
IN,PT,Q,ET)

TON

ENABLE

EXP.1

TIME

EN

IN

PT

ENO

Q

ET

ERROR

OUT

%4:00001

FBI_2_22 (18)

Parameterization

840 USE 504 00 October 2002 11

Operand The operand specifies what the operation is to be executed with. With FFBs, this
consists of formal and actual parameters.

Formal/actual
parameters

The formal parameter holds the place for an operand. During parameterization, an
actual parameter is assigned to the formal parameter.

The actual parameter can be a variable, a multi-element variable, an element of a
multi-element variable, a literal or a direct address.

Conditional/
unconditional
calls

"Unconditional" or "conditional" calls are possible with each FFB. The condition is
realized by pre-linking the input EN.

� Displayed EN
conditional calls (the FFB is only processed if EN = 1)

� EN not displayed
unconditional calls (FFB is always processed)

Calling functions
and function
blocks in IL and
ST

Information on calling functions and function blocks in IL (Instruction List) and ST
(Structured Text) can be found in the relevant chapters of the user manual.

Note: If the EN input is not parameterized, it must be disabled. Any input pin that
is not parameterized is automatically assigned a "0" value. Therefore, the FFB
should never be processed.

Parameterization

12 840 USE 504 00 October 2002

840 USE 504 00 October 2002 13

II
EFB descriptions

Overview

Introduction These EFB descriptions are arranged in alphabetical order.

What's in this
Part?

This part contains the following chapters:

Note: The number of inputs of some EFBs can be increased to a maximum of 32
by changing the size of the FFB symbol vertically. Information on which EFBs have
this capability is given in the descriptions of the individual EFBs.

Chapter Chapter Name Page

2 CREAD_REG: Continuous register reading 15

3 CREADREG: Continuous register reading 21

4 CWRITE_REG: Continuous register writing 27

5 CWRITREG: Continuous register writing 33

6 IBS_READ: Reading variables via INTERBUS 39

7 IBS_SEND_REQ: Diagnostic query on the INTERBUS Master
140 NOA 622 00

41

8 IBS_WRITE: Writing variables to INTERBUS PCP nodes 43

9 ICNT: Connect/disconnect an INTERBUS communication 45

10 ICOM: Data transfer 53

11 MBP_MSTR: Modbus Plus Master 59

12 MODBUSP_ADDR: Modbus Plus Address 105

13 PORTSTAT: Modbus Port Status 111

14 READ_REG: Read register 113

15 READREG: Read register 119

16 RTXMIT: Full duplex Transfer (Compact, Momentum,
Quantum)

125

EFB Descriptions

14 840 USE 504 00 October 2002

17 SYMAX_IP_ADDR: SY/MAX IP Address 133

18 TCP_IP_ADDR: TCP/IP Address 137

19 WRITE_REG: Write register 141

20 WRITEREG: Write register 147

21 XMIT: Transmit (Momentum) 153

22 XXMIT: Transmit (Compact, Momentum, Quantum) 159

Chapter Chapter Name Page

840 USE 504 00 October 2002 15

2
CREAD_REG: Continuous
register reading

Overview

Introduction This chapter describes the CREAD_REG block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 16

Representation 16

Function mode 19

Parameter description 20

CREAD_REG: Continuous register reading

16 840 USE 504 00 October 2002

Brief description

Function
description

This Function block reads the register area continuously. It reads data from an
addressed node via Modbus Plus, TCP/IP-Ethernet or SY/MAX-Ethernet.

EN and ENO can be projected as additional parameters.

Representation

Symbol Block representation:

Parameter
description

Description of parameters:

Note: When programming a CREAD_REG function, you must be familiar with the
routing procedures used by your network. Modbus Plus routing path structures are
described in detail in "Modbus Plus Network Planning and Installation Guide". If
TCP/IP or SY/MAX Ethernet is

Note: For technical reasons, this function block does not allow the use of
programming languages ST and IL .

CREAD_REG

SLAVEREGDINT
NO_REGINT
AddrFldWordArr5

WORDREG_READ

WORDSTATUS

Parameter Data
type

Meaning

SLAVEREG DINT Offset address of the first 4x register in the slave to be read from

NO_REG INT Number of registers to be read from slave

AddrFld WordArr5 Data structure describing the Modbus Plus-address, TCI/IP
address or SY/MAX-IP address.

REG_READ WORD First 4x area register for read values

STATUS WORD Error code, see Runtime errors, p. 95

CREAD_REG: Continuous register reading

840 USE 504 00 October 2002 17

Elementary
description for
WordArr5 in
Modbus Plus

Elementary description for WordArr5 in Modbus Plus:

Elementary
description for
WordArr5 with
TCP/IP EtherNet

Elementary description for WordArr5 with TCP/IP EtherNet

Element Data type Meaning

WordArr5[1] WORD Low value byte:

Routing register 1 is used for address specification (routing path
addresses one of five) of the destination node during network
transfer.

The last byte in the routing path that is not zero is the destination
node.

High value byte:

Slot of the network adapter module (NOM), if any (only
Quantum).

WordArr5[2] WORD Routing register 2

WordArr5[3] WORD Routing register 3

WordArr5[4] WORD Routing register 4

WordArr5[5] WORD Routing register 5

Element Data type Meaning

WordArr5[1] WORD Low value byte:

MBP on Ethernet Transporter (MET) mapping index

High value byte:

Slot of the NOE module

WordArr5[2] WORD Byte 4 (MSB) of the 32-bit destination IP address

WordArr5[3] WORD Byte 3 of the 32-bit destination IP address

WordArr5[4] WORD Byte 2 of the 32-bit destination IP address

WordArr5[5] WORD Byte 1 (LSB) of the 32-bit destination IP address

CREAD_REG: Continuous register reading

18 840 USE 504 00 October 2002

Elementary
description for
WordArr5 with
SYMAX EtherNet

Elementary description for WordArr5 with SYMAX EtherNet

Element Data type Meaning

WordArr5[1] WORD Low value byte:

MBP on Ethernet Transporter (MET) mapping index

High value byte:

Slot of the NOE module

WordArr5[2] WORD Destination drop number (or set to FF hex)

WordArr5[3] WORD Terminator (set to FF hex)

WordArr5[4] WORD No significance

WordArr5[5] WORD No significance

CREAD_REG: Continuous register reading

840 USE 504 00 October 2002 19

Function mode

Function mode
of the
CREAD_REG
block

Although a large number of CREAD_REG function blocks can be programmed, only
four read operations may be active at the same time. In such a case it is insignificant
whether they are the result of this function block or others (e.g. MBP_MSTR, MSTR,
READ_REG). All function blocks use one data transaction path and require multiple
cycles to complete a job.

The entire routing information is contained in data structure WordArr5 of input
AddrFld. The type of function block connected to this input and thus the contents of
the data structure depend on the network used.

Please use:

� Modbus Plus for function block MODBUSP_ADDR
� TCP/IP Ethernet: the function block TCP_IP_ADDR
� SY/MAX Ethernet: the function block SYMAX_IP_ADDR

Note: A TCP/IP communication between a Quantum PLC (NOE 711 00) and a
Momentum PLC (all TCP/IP CPUs and all TCP/IP I/O modules) is only possible,
when only oneread or write job is carried out in every cycle. If several jobs are sent
per PLC cycle, the communication stops without generating an error message in
the status register of the function block.

Note: For experts:

The WordArr5 data structure can also be used with constants.

Note: This function block puts a heavy load on the network. The network load must
therefore be carefully monitored. If the network load is too high, the program logic
should be reorganized in order to work with the READ_REG function block, a
variation of this function block that does not operate in a continuous mode, but
under command control.

CREAD_REG: Continuous register reading

20 840 USE 504 00 October 2002

Parameter description

SLAVEREG Start of the area in the addressed slave from which the source data is read. The
source area always resides within the 4x register area. SLAVEREG expects the
source reference as offset within the 4x area. The leading "4" must be omitted (e.g.
59 (contents of the variables or value of the literal) = 40059).

The parameter can be specified as direct address, located variable, unlocated
variable or literal.

NO_REG Number of registers to be read from the addressed slave (1 ... 100). The parameter
can be entered as a Direct address, Located variable, Unlocated variable or Literal
. The parameter can be entered as a Direct address, Located variable or Unlocated
variable .

REG_READ This word parameter addresses the first register in a series of NO_REG registers,
listed one after the other, which are used as a destination data area. The parameter
must be entered as a Direct address or located Variable .

STATUS Error code, see Runtime errors, p. 95

840 USE 504 00 October 2002 21

3
CREADREG: Continuous register
reading

Overview

Introduction This chapter describes the CREADREG block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 22

Representation 23

Function mode 24

Parameter description 25

CREADREG: Continuous register reading

22 840 USE 504 00 October 2002

Brief description

Function
description

This Function block reads a register area continuously. It reads data from addressed
nodes via Modbus Plus.

EN and ENO can be configured as additional parameters.

Note: It is necessary to be familiar with the routing procedures of your network
when programming a CREADREG function. Modbus Plus routing path structures
are described in detail in "Modbus Plus Network Planning and Installation Guide".

Note: This function block only supports the local Modbus Plus interface (no NOM).

If using a NOM please work with the block CREAD_REG.

Note: This function block does not support TCP/IP- or SY/MAX-Ethernet.

If TCP/IP- or SY/MAX-Ethernet is needed, please use the block CREAD_REG.

Note: For technical reasons, this function block does not allow the use of ST and
IL programming languages.

CREADREG: Continuous register reading

840 USE 504 00 October 2002 23

Representation

Symbol Block representation

Parameter
description

Description of block parameters:

CREADREG

NODEADDRINT
ROUTPATHDINT
SLAVEREGDINT
NO_REGINT

WORDSTATUS

WORDREG_READ

Parameter Data type Meaning

NODEADDR INT Device address within the target segment

ROUTEPATH DINT Routing path to target segment

SLAVEREG DINT Offset address of the first 4x register in the slave to be read from

NO_REG INT Number of registers to be read by the slave

STATUS WORD Error code, see Runtime errors, p. 95

REG_READ WORD First 4x area register of the area, for values read

CREADREG: Continuous register reading

24 840 USE 504 00 October 2002

Function mode

Function mode
of CREADREG
blocks

Although a large number of CREADREG function blocks can be programmed, only
four read operations may be active at the same time. It makes no difference whether
these operations are performed using this function block or others (e.g.
MBP_MSTR, MSTR, READREG). All function blocks use one data transaction path
and require multiple cycles to complete a job.

The complete routing information must be separated into two parts:

� into the NOEADDR of the destination node (regardless of whether it is located in
the local segment or in another segment) and

� the routing path, in case there is a link via network bridges.

The resulting destination address consists of these two information components.

The routing path is a DINT data type, which is interpreted as a sequence of two-digit
information units. It is not necessary to use "00" extensions (e.g. both routing paths
4711 and 47110000 are valid, for NODEADDR 34 the result is destination reference
47.11.34.00.00).

Note: This function block puts a heavy load on the network; therefore the network
load must be carefully monitored. If the network load is too high, the program logic
should be reorganized, in order to work with the READREG function block, a
variation of this function block that does not operate in a continuous mode, but
under command control.

CREADREG: Continuous register reading

840 USE 504 00 October 2002 25

Parameter description

NODEADDR Identifies the node address within the target segment.

The parameter can be specified as direct address, located variable, unlocated
variable or literal.

ROUTPATH Identifies the routing path to the target segment. The two-digit information units run
from 01 … 64 (see Function mode, p. 24). If the slave resides in the local network
segment, ROUTPATH must be set to "0" or must be left unconnected.

The parameter can be specified as direct address, located variable, unlocated
variable or literal.

SLAVEREG Start of the area in the addressed slave from which the source data are read. The
source area always resides within the 4x register area. SLAVEREG expects the
source address as offset within the 4x area. The initial "4" must be omitted (e.g. 59
(contents of the variable or value of the literal) = 40059).

The parameter can be specified as direct address, located variable, unlocated
variable or literal.

NO_REG Number of registers to be read from slave processor (1 ... 100).

The parameter can be specified as direct address, located variable, unlocated
variable or literal.

STATUS Error code, see Runtime errors, p. 95

The parameter can be specified as direct address, located variable or unlocated
variable.

REG_READ This word parameter addresses the first register in a series of NO_REG successive
registers used as destination data area.

The parameter must be entered as a direct address or located variable.

CREADREG: Continuous register reading

26 840 USE 504 00 October 2002

840 USE 504 00 October 2002 27

4
CWRITE_REG: Continuous
register writing

Overview

Introduction This chapter describes the CWRITE_REG block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 28

Representation 28

Function mode 31

Parameter description 32

CWRITE_REG: Continuous register writing

28 840 USE 504 00 October 2002

Brief description

Function
description

The purpose of this Function block is to write the register area continuously. It
transfers data from the PLC via Modbus Plus, TCP/IP Ethernet or SY/MAX Ethernet
to an addressed slave.

EN and ENO can be configured as additional parameters.

Representation

Symbol Block representation:

Parameter
description

Description of parameters:

Note: You must be familiar with the routing procedures of the network when
programming a CWRITE_REG function. (Modbus Plus routing path structures) are
described in detail in "Modbus Plus Network Planning and Installation Guide". If
TCP/IP or SY/MAX EtherNet is imp

Note: For technical reasons, this function block does not allow the use of ST and
IL programming languages.

CWRITE_REG

SLAVEREGDINT
NO_REGINT
REG_WRITWORD
AddrFldWordArr5 WORDSTATUS

Parameter Data type Meaning

SLAVEREG DINT Offset address of the first 4x register in the slave to
be written to

NO_REG INT Number of registers to be written to slave

REG_WRIT WORD First 4x register of the source data area

AddrFld WordArr5 Data structure for transferring the Modbus Plus-
address, TCI/IP address or SY/MAX-IP address.

STATUS WORD MSTR error code, see Runtime errors, p. 95

CWRITE_REG: Continuous register writing

840 USE 504 00 October 2002 29

Elementary
description for
WordArr5 in
Modbus Plus

Elementary description for WordArr5 in Modbus Plus:

Elementary
description for
WordArr5 with
TCP/IP EtherNet

Elementary description for WordArr5 with TCP/IP EtherNet:

Element Data type Meaning

WordArr5[1] WORD Low value byte:

Routing register 1 is used for address specification (routing path
addresses one of five) of the destination node during network
transfer.

The last byte in the routing path that is not zero is the destination
node.

High value byte:

Slot of the network adapter module (NOM), if any.

WordArr5[2] WORD Routing register 2

WordArr5[3] WORD Routing register 3

WordArr5[4] WORD Routing register 4

WordArr5[5] WORD Routing register 5

Element Data type Meaning

WordArr5[1] WORD Low value byte:

MBP on Ethernet Transporter (MET) mapping index

High value byte:

Slots of the NOE module

WordArr5[2] WORD Byte 4 (MSB) of the 32-bit destination IP address

WordArr5[3] WORD Byte 3 of the 32-bit destination IP address

WordArr5[4] WORD Byte 2 of the 32-bit destination IP address

WordArr5[5] WORD Byte 1 (LSB) of the 32-bit destination IP address

CWRITE_REG: Continuous register writing

30 840 USE 504 00 October 2002

Elementary
description for
WordArr5 with
SYMAX EtherNet

Elementary description for WordArr5 with SYMAX EtherNet:

Element Data type Meaning

WordArr5[1] WORD Low value byte:

MBP on Ethernet Transporter (MET) mapping index

High value byte:

Slot of the NOE module

WordArr5[2] WORD Destination drop number (or set to FF hex)

WordArr5[3] WORD Terminator (set to FF hex)

WordArr5[4] WORD No significance

WordArr5[5] WORD No significance

CWRITE_REG: Continuous register writing

840 USE 504 00 October 2002 31

Function mode

CWRITE_REG
block Function
mode

Although a large number of CWRITE_REG function blocks can be programmed,
only four write operations may be active at the same time. It makes no difference
whether these operations are performed using this function block or others (e.g.
MBP_MSTR, MSTR, WRITE_REG). All function blocks use one data transaction
path and require multiple cycles to complete a job.

If several CWRITE_REG function blocks are used within an application, they must
at least differ in the values of their NO_REG or REG_WRITE parameters.

The entire routing information is contained in data structure WordArr5 of input
AddrFld. The type of function block connected to this input and thus the contents of
the data structure depend on the network used.

Please use:

� Modbus Plus for function block MODBUSP_ADDR
� TCP/IP Ethernet: the function block TCP_IP_ADDR
� SY/MAX Ethernet: the function block SYMAX_IP_ADDR

Note: A TCP/IP communication between a Quantum PLC (NOE 711 00) and a
Momentum PLC (all TCP/IP CPUs and all TCP/IP I/O modules) is only possible,
when only oneread or write job is carried out in every cycle. If several jobs are sent
per PLC cycle, the communication stops without generating an error message in
the status register of the function block.

Note: For experts:

The WordArr5 data structure can also be used with constants.

Note: This function block puts a heavy load on the network. The network load must
therefore be carefully monitored. If the network load is too high, the program logic
should be reorganized to work with the WRITE_REG function block, which is a
variant of this function block that does not operate in continuous mode but is
command driven.

CWRITE_REG: Continuous register writing

32 840 USE 504 00 October 2002

Parameter description

SLAVEREG Start of the area in the addressed slave to which the source data are written. The
destination area always resides within the 4x register area. SLAVEREG expects the
destination address as offset within the 4x area. The initial "4" must be omitted (e.g.
59 (contents of the variables or value of the literal) = 40059).

The parameter can be specified as direct address, located variable, unlocated
variable or Literal.

NO_REG Number of registers to be written to slave processor (1 ... 100). The parameter can
be specified as direct address , located variable, unlocated variable or Literal.

STATUS Error code, see Runtime errors, p. 95

The parameter can be specified as direct address, located variable or unlocated
variable.

REG_WRIT This word parameter addresses the first register in a series of NO_REG Successive
registers used as source data area.

The parameter must be entered as a direct address or located variable.

840 USE 504 00 October 2002 33

5
CWRITREG: Continuous register
writing

Overview

Introduction This chapter describes the CWRITEREG block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 34

Representation 35

Function mode 36

Parameter description 37

CWRITEREG: Continuous register writing

34 840 USE 504 00 October 2002

Brief description

Function
description

The purpose of this Function block to write the register area continuously. It transfers
data from the PLC via Modbus Plus to a specified slave destination processor.

EN and ENO can be configured as additional parameters.

Note: It is necessary to be familiar with the routing procedures of your network
when programming a CWRITEREG function. Modbus Plus routing path structures
will be described in detail in "Modbus Plus Network Planning and Installation
Guide".

Note: This function block only supports the local Modbus Plus interface (no NOM).

If using a NOM please work with the block CWRITE_REG.

Note: This function block does not support TCP/IP- or SY/MAX-Ethernet.

If TCP/IP- or SY/MAX-Ethernet is needed, please use the block CWRITE_REG.

Note: For technical reasons, this function block does not allow the use of ST and
IL programming languages.

CWRITEREG: Continuous register writing

840 USE 504 00 October 2002 35

Representation

Symbol Block representation

Parameter
description

Description of parameters:

CWRITREG

NODEADDRINT
ROUTPATHDINT
SLAVEREGDINT
NO_REGINT
REG_WRITWORD WORDSTATUS

Parameter Data type Meaning

NODEADDR INT Device address within the target segment

ROUTEPATH DINT Routing path to target segment

SLAVEREG DINT Offset address of the first 4x register in the slave to
be written to

NO_REG INT Number of registers to be written by the slave

REG_WRIT WORD First 4x register of the source data area

STATUS WORD Error code, see Runtime errors, p. 95

CWRITEREG: Continuous register writing

36 840 USE 504 00 October 2002

Function mode

Function mode
of CWRITEREG
blocks

Although an unlimited number of CWRITEREG function blocks can be programmed,
only four write operations may be active at the same time. It makes no difference
whether these operations are performed using this function block or others (e.g.,
MBP_MSTR, MSTR, WRITEREG). All function blocks use one data transaction path
and require multiple cycles to complete a job.

If several CWRITEREG function blocks are used within an application, they must at
least differ in the values of their NO_REG or REG_WRITE parameters.

The complete routing information must be separated into two parts:

� into the NODEADDR of the destination node (regardless of whether it is located
in the local segment or in another segment) and

� the routing path, in case there is a link via network bridges.

The destination address arising from this is made from these two items of
information.

The routing path is a DINT data type, which is interpreted as a sequence of two-digit
information units. Appended "00" are not required (e.g. both routing paths 4711 and
47110000 are valid, for NODEADDR 34 the result is destination reference
47.11.34.00.00).

Note: This function block puts a heavy load on the network. The network load must
therefore be carefully monitored. If the network load is too high, the program logic
should be reorganized to work with the WRITEREG function block, which is a
variant of this function block that does not operate in continuous mode, but is
command driven.

CWRITEREG: Continuous register writing

840 USE 504 00 October 2002 37

Parameter description

NODEADDR Identifies the node address within the target segment.

The parameter can be specified as direct address, located variable, unlocated
variable or Literal.

ROUTPATH Identifies the routing path to the target segment. The two-digit information units run
from 01 … 64 (see Function mode, p. 36). If the slave resides in the local network
segment, ROUTPATH must be set to "0" or must be left unconnected.

The parameter can be specified as direct address, located variable, unlocated
variable or Literal.

SLAVEREG Start of the destination area in the addressed slave to which the source data are
written. The source area always resides within the 4x register area. SLAVEREG
expects the destination reference as offset within the 4x area. The initial "4" must be
omitted (e.g. 59 (contents of the variable or value of the literal) = 40059).

The parameter can be specified as direct address, located variable, unlocated
variable or Literal.

NO_REG Number of registers to be written to slave processor (1 ... 100).

The parameter can be specified as direct address, located variable, unlocated
variable or Literal.

REG_WRIT This word parameter addresses the first register in a series of NO_REG successive
registers used as source data area.

The parameter must be specified as a direct address or located variable.

STATUS Reports MSTR error code, see Runtime errors, p. 95

The parameter can be specified as direct address, located variable or unlocated
variable.

CWRITEREG: Continuous register writing

38 840 USE 504 00 October 2002

840 USE 504 00 October 2002 39

6
IBS_READ: Reading variables via
INTERBUS

IBS_READ

40 840 USE 504 00 October 2002

Brief description

Function
description

You can use this function block to read data into the status RAM of the PLC from a
PCP slave connected over the INTERBUS.

Detailed
Description

The detailed description for the function block can be found in the NOA 622 User
Manual.

Note: EN and ENO should not be used in conjunction with this EFB, otherwise
output parameters may become frozen.

840 USE 504 00 October 2002 41

7
IBS_SEND_REQ: Diagnostic
query on the INTERBUS Master
140 NOA 622 00

IBS_SEND_REQ

42 840 USE 504 00 October 2002

Brief description

Function
description

You can use this function block to request data from a specified INTERBUS Master
NOA 622 00 and store it in the status RAM of the PLC.

Detailed
Description

The detailed description for the function block can be found in the NOA 622 User
Manual.

Note: EN and ENO should not be used in conjunction with this EFB, otherwise
output parameters may become frozen.

840 USE 504 00 October 2002 43

8
IBS_WRITE: Writing variables to
INTERBUS PCP nodes

IBS_WRITE

44 840 USE 504 00 October 2002

Brief description

Function
description

You can use this function block to write data from the status RAM of the PLC to a
PCP slave connected over the INTERBUS.

Detailed
Description

The detailed description for the function block can be found in the NOA 622 User
Manual.

Note: EN and ENO should not be used in conjunction with this EFB, otherwise
output parameters may become frozen.

840 USE 504 00 October 2002 45

9
ICNT: Connect/disconnect an
INTERBUS communication

Overview

Introduction This chapter describes the ICNT block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief Description 46

Representation 47

Runtime errors 49

ICNT: INTERBUS communication – connect/disconnect

46 840 USE 504 00 October 2002

Brief Description

Function
Description

The function block is used to create or break a communication connection. This is
done using the context management services Initiate and Abort.

As additional parameters, EN and ENO can be configured.

Note: This PCP communication block cannot be used with CPUs 140 CPU 434 12
and 140 CPU 534 14. When using these types of CPUs, please use the LL984
instruction ICNT in a LL984 section.

This LL984 instruction is not a part of the Concept delivery and must be added in
Concept as loadable. You can find this loabable on our homepage http://
www.schneiderautomation.com → Support & Services → Other Networks →
Software Library.

ICNT: INTERBUS communication – connect/disconnect

840 USE 504 00 October 2002 47

Representation

Symbol Block representation

Parameter
description

Description of parameters:

ICNT

SLOTBYTE
INITBOOL
IBCIBC

BOOLACTIVE

BOOLDONE

BOOLERROR

Parameter Data type Meaning

SLOT BYTE The Concept slot address corresponds to the appropriate
INTERBUS Master NOA 611 10.

INIT BOOL Is an edge controlled signal (0/1).

If INIT = 0/1 and SERVICE = 1 (element in datastructure IBC)
the connection to the INTERBUS PCP slaves is established by
using the Initiate service.

If INIT = 0/1 and SERVICE = 0 the connection will be severed by
using the Abort service, and internal bits are deleted (equivalent
to RESET in ICOM).

If an Abort request is received the function block tries to re-
establish the connection, provided a new 0/1 signal is available
at the INIT input.

IBC IBC For a description of the data structure, see IBC data structure,
p. 48

ACTIVE BOOL The setting of this binary output continues at 1 during the
execution of the specified service.

DONE BOOL Confirms that the service has been executed without any errors.

In case of Abort it should be reset to DONE = 0.

ERROR BOOL This binary output is set to 1 if a negative response has been
received, the link has been cancelled, or a parameterizing error
of the user has occured.

The remaining error information err_cd and err_cl in the data
structure IBC will be deleted after correcting the error.

ICNT: INTERBUS communication – connect/disconnect

48 840 USE 504 00 October 2002

IBC data
structure

IBC is a data structure with the following elements:

Reading the error message:

Element Element type Meaning

service BYTE Specifies the selected service (1: Initiate, 0: Abort)

err_cd BYTE Error number, see Err_cd (error code) when error class is 0,
p. 49

err_cl BYTE Error class, see Err_cl (error class), p. 49

cr BYTE Communication reference on the PCP slave

size BYTE not used

e_par BYTE is for special Error messages of the function block

index WORD not used

subindex BYTE not used

fillbyte_1 BYTE not used

fillword_1...
fillword_5

WORD Contains sections of the error message and is sent if:

1. If no connection could be established

2. If a connection is to be established, even though one
already exists

The following table shows how the error message should be
read. Further information regarding the error message can
be found both in the description of the data structure
elements err_cd and er_cl and in the documentation of the
PCP nodes.

fillword_6 WORD For internal use only

Element Meaning for a failed connect
attempt (High value byte/Low
value byte)

Meaning at failed connection
attempt during existing
connection (High byte/Low byte)

fillword_1 0000/Additional code Locally generated/Abort ID

fillword_2 Additional code/Send buffer Reason code/Abort detail

fillword_3 Send buffer/Receive buffer 0/0

fillword_4 Receive buffer/Service 0/0

fillword_5 818C Hex 81AD Hex

ICNT: INTERBUS communication – connect/disconnect

840 USE 504 00 October 2002 49

Runtime errors

Introduction Information on runtime errors that have occurred is to be found in the following
elements of the IBC data structure:

� Err_cl (error class)
� Err_cd (error code)
� e_par (error parameters)

Err_cl (error
class)

Error class key:

Err_cd (error
code) when error
class is 0

Meaning of error codes when error class is 0:

Error class Meaning

0 This type of error is registered with Initiate Request in case of an error during
connection establishment.

5 This type of error is registered in case of a service error.

6 This type of error is registered in case of an access error.

8 This type of error is registered in case of module-specific errors.

Error code Meaning Action

1 The sizes of the transmit buffer and
receive buffer of both communication
devices do not agree.

Using Receive CRL Request, adjust
the buffer size of the master module
to that of the INTERBUS node.

2 The services supported by the two
communication devices do not
correspond.

Using Receive CRL Request,
change the supported services of the
master module.

4 This error message is module-
specific.

Refer to the module description for
details.

ICNT: INTERBUS communication – connect/disconnect

50 840 USE 504 00 October 2002

Err_cd (error
code) when error
class is 5

Meaning of error codes when error class is 5:

Err_cd (error
code) when error
class is 6

Meaning of error codes when error class is 6:

Err_cd (error
code) when error
class is 8

Meaning of error codes when error class is 8:

Error code Meaning Action

1 This error only occurs during start or
stop. A start or stop command has
been transmitted twice. Since the
start or stop has already been
executed, it cannot be executed
again.

No action necessary.

5 This error only occurs during the "Get
OD" service: An illegal value has
been entered in the Access
Specification parameter.

Look up the valid values in the
module description and send the
service again.

Error code Meaning Action

2 Access to the module is not possible
due to a hardware error. Example:
power supply not available.

Correct the hardware error.

3 Limited access rights exist for the
module: e.g. read-only (write
protected), password-protected.

Look up the access rights in the
module description.

5 A service parameter has been given
an illegal value. For example, wrong
length or illegal subindex.

Using the module description, check
the parameters and send the service
again with the corrected values.

6 The service in use cannot be
performed in this module. For
example, a program sequence can
be started or stopped, but not read.

Look up the permissible services in
the description for this module.

7 Module does not exist. Probably a
typing mistake with the index.

Using the module description, check
the module index and re-initialize the
service.

Error code Meaning Action

0 Module-specific error For details refer to the module
description.

ICNT: INTERBUS communication – connect/disconnect

840 USE 504 00 October 2002 51

e_par (error
parameters)

Error parameter key:

Code (Hex) Meaning

F9 Internal error

FB INTERBUS Master not operational. NOA 611 10 faulty or not plugged in.

FC INTERBUS master has not been configured

FD Internal error

FE Internal error

FF Internal error

E1 Wrong number in IBC service word

E2 Wrong slot for NOA 611 10

E3 Wrong CR (<2 or >64)

E4 Internal error

E5 Timeout reached (over 24 sec after start of a service, e.g. initialize, abort,
read, write)

E6 No connection (if ICNT Enable = 0 and ICOM Enable = 1)

E8 Internal error

E9 Internal error

EA Error abort

EC Framing error (e.g. size, index, subindex)

ICNT: INTERBUS communication – connect/disconnect

52 840 USE 504 00 October 2002

840 USE 504 00 October 2002 53

10
ICOM: Data transfer

Overview

Introduction This chapter describes the ICOM block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief Description 54

Representation 54

Runtime error 57

ICOM: Data Transfer

54 840 USE 504 00 October 2002

Brief Description

Function
Description

The function block is used for normal data transfer with the services "Read" and
"Write" between the signal memory on the PLC and the INTERBUS-PCP-Slave.

As additional parameters, EN and ENO can be configured.

Representation

Symbol Block representation

Note: This PCP communication block cannot be used with CPUs 140 CPU 434 12
and 140 CPU 534 14. When using these types of CPUs, please use the LL984
instruction ICOM in a LL984 section.

This LL984 instruction is not a part of the Concept delivery and must be added in
Concept as loadable. You can find this loabable on our homepage http://
www.schneiderautomation.com → Support & Services → Other Networks →
Software Library.

ICOM

SLOTBYTE
STARTBOOL
RESETBOOL

IBCIBC
IBDIBD

BOOLACTIVE

BOOLDONE

BOOLERROR

ICOM: Data Transfer

840 USE 504 00 October 2002 55

Parameter
description

Description of parameters:

The input START is an edge controlled signal (0->1), but RESET has priority.

Parameter Data type Meaning

SLOT BYTE The Concept slot address corresponds to the appropriate
INTERBUS Master NOA 611 10.

START BOOL is an edge-controlled signal.

In case of START = 0/1 and SERVICE = 2 or 3 (element in
datastructure IBC) data will be send or received to the
INTERBUS PCP slaves.

During RESET = 0/1 no communication services are executed
and the EFB is waiting for a new signal.

RESET BOOL is an edge-controlled signal.

RESET = 0/1 is used to reset the function block in the default
status of the internal state machine.

IBC IBC For a description of the data structure, see IBC data structure,
p. 56

IBD IBD For a description of the data structure, see IBD data structure,
p. 57

ACTIVE BOOL This binary output is set to 1 as long as the specified service is
being executed.

DONE BOOL Signals that the treatment of the service is finished without any
failures.

DONE=1 is set, only in case of an errorless Read/Write service.

In case of a Reset it will be set as DONE=0.

ERROR BOOL This binary output is set to 1 when a negative response has
been received, the service execution has been canceled
through the RESET signal, or a parameterization failure of the
user has been occurred.

The error output is reset as soon as a new service has been
issued.

ICOM: Data Transfer

56 840 USE 504 00 October 2002

IBC data
structure

IBC is a data structure with the following elements:

Reading the error message:

Element Data type Meaning

service BYTE specifies the selected service (READ = 2, WRITE = 3)

err_cd BYTE Error number, see ICNT runtime error (See Err_cd (error code)
when error class is 0, p. 49)

err_cl BYTE Error class, see ICNT runtime error (See Err_cd (error code)
when error class is 0, p. 49)

cr BYTE Communications reference on the PCP slave

size BYTE contains the number of data bytes used within the "Data"
register area (max. 256)

e_par BYTE is not used for special Error messages of the function blocks

index WORD equivalent to the Index of the data object within the INTERBUS
PCP slave

subindex BYTE equivalent to the Subindex of the data object within the
INTERBUS PCP slave (The Index and the Subindex should be
taken out of the user manual of the Interbus PCP slave!)

fillbyte_1 BYTE not used

fillword_1 ...
fillword_5

WORD Contains sections of the error message and is sent when:

1. If no connection could be established

2. If a connection is to be established, even though one already
exists

The following table shows how the error message is read.
Further information regarding the error message can be found
within the data structure's elements err_cd and er_cl as well as
within the PCP node's documentation.

fillword_6 WORD For internal use only

Element Meaning for read or write
fault(High value byte/Low value
byte)

Meaning for service denial(High
value byte/Low value byte)

fillword_1 0/Additional code Detected here/Original invoke ID

fillword_2 Additional code/0 Reject PDU type/ Reject code

fillword_3 0/0 0/0

fillword_4 0/0 0/0

fillword_5 8181 or 8182 Hex 81AE Hex

ICOM: Data Transfer

840 USE 504 00 October 2002 57

IBD data
structure

IBD is a datastructure with the following elements:

Runtime error

Runtime error See ICNT description (See Runtime errors, p. 49)

Element Element type Meaning

IBD ARRAY (1 .. 128) OF
WORD

The datastructure IBD consists of 128 WORD
elements.

The number 256 relays to the parameter size within
the datastructure IBC.

ICOM: Data Transfer

58 840 USE 504 00 October 2002

840 USE 504 00 October 2002 59

11
MBP_MSTR: Modbus Plus Master

Overview

Introduction This chapter describes the MBP_MSTR block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 61

Representation 62

Function mode 63

Parameter description 64

Write data 68

Read data 70

Read local statistics 72

Clear local statistics 74

Write global data 76

Read global data 77

Get remote statistics 78

Clear remote statistics 80

Peer cop health 81

Optional module reset 82

Read CTE (Config extension table) 83

Write CTE (Config extension table) 85

Peer cop communications health status 87

Modbus Plus network statistics 89

TCP/IP Ethernet network statistics 94

Runtime errors 95

MBP_MSTR: Modbus Plus Master

60 840 USE 504 00 October 2002

Modbus Plus and SY/MAX Ethernet Error Codes 96

SY/MAX-specific error codes 98

TCP/IP Ethernet error codes 100

CTE error codes for SY/MAX and TCP/IP Ethernet 103

Topic Page

MBP_MSTR: Modbus Plus Master

840 USE 504 00 October 2002 61

Brief description

Function
description

With this Function block, it is possible to select one of 12 available network
communication operations.

EN and ENO can be configured as additional parameters.

Restrictions Note the following restrictions:

� Although a large number of MBP_MSTR function blocks can be programmed,
only four of them can be active at the same time. All function blocks use one data
transaction path and require multiple cycles to complete a job.

� A TCP/IP communication between a Quantum PLC (NOE 211 00) and a
Momentum PLC (all TCP/IP CPUs and all TCP/IP I/O modules) is only possible
if only oneread or write job is carried out in every cycle. If several jobs are sent
per PLC cycle, the communication stops without generating an error message in
the status register of the function block.

� In FBD and LD sections, the function block can only be used on the program
level, i.e. not in Derived Function Blocks (DFBs).

� For technical reasons, the function block does not allow the use of ST and IL
programming languages.

Note: As this function block supports 12 different network communication
operations, its parameterization is very complicated. Because of this, simplified
EFBs are available for reading and writing registers (READ_REG, CREAD_REG,
WRITE_REG, CWRITE_REG).

Note: You must be familiar with the routing procedures of your network when
programming an MSTR function. Modbus Plus routing path structures are
described in detail in the "Modbus Plus Network Planning and Installation Guide".
If TCP/TP or SY/MAX EtherNet is implemented, standard Ethernet IP router
products must be used. The "Quantum Ethernet TCP/IP Module User Guide"
provides a complete description of TCP/IP routing.

MBP_MSTR: Modbus Plus Master

62 840 USE 504 00 October 2002

Representation

Symbol Block representation:

Parameter
description

Block parameter description:

MBP_MSTR

ENABLEBOOL
ABORTBOOL

BOOLACTIVE

BOOLERROR

BOOLSUCCESS

WORDCONTROL

WORDDATABUF

Parameter Data type Meaning

ENABLE BOOL Enable MSTR function

ABORT BOOL Cancel active MSTR operation

ACTIVE BOOL Operation is active

ERROR BOOL Faulty operation

SUCCESS BOOL Operation completed successfully

CONTROL WORD First 4x register of the MSTR control block

DATABUF WORD First 4x register of the data field

MBP_MSTR: Modbus Plus Master

840 USE 504 00 October 2002 63

Function mode

Function mode
of MBP_MSTR
blocks

Using the MBP_MSTR block, one of 12 available network communication
operations can be triggered via the network. Each operation receives a code.
Whether the operations are available depends on the type of network used.

Valid function
codes

Valid function codes:

Legend:

Code Function Modbus
Plus

TCP/IP
Ethernet

SY/MAX
Ethernet

1 Write data X X X

2 Read data X X X

3 Get local statistics X X -

4 Clear local statistics X X -

5 Write global data X - -

6 Read global data X - -

7 Get remote statistics X X -

8 Clear remote statistics (See Clear remote
statistics, p. 80)

X X -

9 Peer Cop Status (Peer Cop Health) X - -

10 Reset optional module - X X

11 Read CTE (Config extension) - X X

12 Write CTE (Config extension) - X X

X Yes

- No

MBP_MSTR: Modbus Plus Master

64 840 USE 504 00 October 2002

Parameter description

ENABLE When ON, the operation specified in the first CONTROL register is enabled.

ABORT When ON, the currently active operation is aborted.

ACTIVE ON, if the operation is active.

ERROR ON, if the operation was aborted without success.

SUCCESS ON, if the operation concluded successfully.

DATABUF The 4x register specified is the first in a group of successive output/marker words,
making up the data field. For operations providing data, e.g. the write operation, the
data field is the data source. For operations receiving data, e.g. the read operation,
the data field is the data sink.

In the case of Ethernet CTE Read and Write operations, the middle input stores the
contents of the Ethernet configuration extension table in a series of registers.

CONTROL This word parameter addresses the first of several successive 4x registers. The
control block is contained in these registers. The first register displayed contains a
number from 1 to 12, which provides the operation code of the Modbus operation to
be performed. The contents of the sequence registers are determined by the
operation.

The structure of the control block differs according to the network used:

� Modbus Plus
� TCP/IP Ethernet
� SY/MAX Ethernet

MBP_MSTR: Modbus Plus Master

840 USE 504 00 October 2002 65

Control block for
Modbus Plus

Control block for Modbus Plus:

Routing register
1 (4x + 4) in
Modbus Plus

If a Modbus Plus network option module (NOM) in the rack of a Quantum controller
is addressed as destination node, the value in the high value byte represents the
physical slot of the NOM, i.e. if the NOM is inserted in slot 7 of the rack, the high
value byte of control register 1 looks as follows:

High value byte Slots 1 to 16

Low value byte Destination address (binary value between 1 and 64 (normal) or 65 > 255
(extended))

Register Contents

4x indicates one of the Operations which are valid for Modbus Plus.

4x + 1 indicates the Error status.

4x +2 indicates the length (number of registers transferred)

4x +3 indicates MSTR operation-dependent information

4x +4 Routing register 1 is used to specify the address (routing path address one
of five) of the destination node during a network transfer.

The last byte in the routing path that is not zero, is the destination mode.

4x +5 Routing register 2

4x +6 Routing register 3

4x +7 Routing register 4

4x +8 Routing register 5

0 0 0 0 0 1 1 1 0 x x x x x x x

High value byte Low value byte

MBP_MSTR: Modbus Plus Master

66 840 USE 504 00 October 2002

Control block for
TCP/IP Ethernet

Control block for TCP/IP Ethernet:

Routing register
(4x + 4) in TCP/IP
Ethernet

If a NOE in the rack of a Quantum controller is addressed as destination node, the
value in the high value byte represents the physical NOE slot and the value in the
low value byte represents the MBP on Ethernet (MET) mapping index, i.e. if the NOE
is plugged in at Slot 7 of the rack and the MET mapping index is 6, the first element
of the data structure appears as follows:

High value byte Slots 1 to 16

Low value byte MBP on Ethernet Transporter (MET) mapping index

Register Contents

4x indicates one of the Operations which are valid for TCP/IP.

4x + 1 indicates the Error status (See Runtime errors, p. 95).

4x +2 indicates the length (number of registers transferred)

4x +3 indicates MSTR operation-dependent information

4x +4 Routing register,

Low value byte:

MBP on Ethernet Transporter (MET) mapping index

High value byte:

Slot of the NOE module

4x +5 Byte 4 (MSB) of the 32-bit destination IP address

4x +6 Byte 3 of the 32-bit destination IP address

4x +7 Byte 2 of the 32-bit destination IP address

4x +8 Byte 1 (LSB) of the 32-bit destination IP address

0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0

High value byte Low value byte

MBP_MSTR: Modbus Plus Master

840 USE 504 00 October 2002 67

Control block for
SY/MAX Ethernet

Control block for SY/MAX Ethernet:

Routing register
(4x + 4) in
SY/MAX Ethernet

If a NOE in the rack of a Quantum controller is addressed as destination node, the
value in the high value byte represents the physical NOE slot and the value in the
low value byte represents the MBP on Ethernet (MET) mapping index, i.e. if the NOE
is plugged in at Slot 7 of the rack and the MET mapping index is 6, the first element
of the data structure appears as follows:

High value byte Slots 1 to 16

Low value byte MBP on Ethernet Transporter (MET) mapping index

Register Contents

4x indicates one of the Operations which are valid for SY/MAX.

4x + 1 indicates the Error status.

4x +2 indicates the length (number of registers transferred)

4x +3 indicates MSTR operation-dependent information

4x +4 Routing register,

Low value byte:

MBP on Ethernet Transporter (MET) mapping index

High value byte:

Slot of the NOE module

4x +5 Destination drop number (or set to FF hex)

4x +6 Terminator (set to FF hex)

0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0

High value byte Low value byte

MBP_MSTR: Modbus Plus Master

68 840 USE 504 00 October 2002

Write data

Brief description The write operation transfers data to an addressed node. The transaction utilizes a
master transaction path and may require several cycles.

An attempt to program the MBP_MSTR in such a way that it writes to its own station
address will generate an error in the 4x+1 register of the block. However, it is
possible to perform a write operation to a non-existing slave register. The slave
detects the status logs it. This can last for several cycles.

Network
implementation

The write operation can be performed on Modbus Plus, TCP/IP Ethernet and SY/
MAX Ethernet networks.

Use of control
blocks for
Modbus Plus
(CONTROL)

Control block for Modbus Plus (CONTROL):

Register Meaning

4x 1 = Write data

4x+1 indicates the Error status.

4x+2 Number of registers sent to slave

4x+3 Determines the 4x starting register in the slave to which the data must be
written (e.g. 1 = 40001, 49=40049)

4x+4 …

4x+8

Routing register 1 is used to specify the address (routing path address one
of five) of the destination node during a network transfer.

The last byte in the routing path that is not zero, is the destination mode.

MBP_MSTR: Modbus Plus Master

840 USE 504 00 October 2002 69

Use of control
blocks for TCP/IP
Ethernet
(CONTROL)

Control block for TCP/IP Ethernet (CONTROL):

Use of control
blocks for
SY/MAX Ethernet
(CONTROL)

Control block for SY/MAX Ethernet (CONTROL)

Register Meaning

4x 1 = Write data

4x+1 indicates the Error status.

4x+2 Number of registers sent to slave

4x+3 Determines the 4x starting register in the slave to which the data must be
written (e.g. 1 = 40001, 49=40049)

4x+4 Routing register,

Low value byte: MBP on Ethernet Transporter (MET) mapping index

High value byte:

Network adapter module slot

4x+5 …

4x+8

Each register contains one byte of the 32-bit IP address

Register Meaning

4x 1 = Write data

4x+1 indicates the Error status.

4x+2 Number of registers sent to slave

4x+3 Determines the 4x starting register in the slave to which the data must be
written (e.g. 1 = 40001, 49=40049)

4x+4 Routing register,

Slot ID

Low value byte:

Destination drop number

High value byte:

Network adapter module slot

4x+5 …

4x+8

Terminator:

FF hex

MBP_MSTR: Modbus Plus Master

70 840 USE 504 00 October 2002

Read data

Brief description The read operation transfers data from a specified node on the network. The
transaction utilizes a master transaction path and may require several cycles.

An attempt to program the MBP_MSTR in such a way that it reads from its own
station address will generate an error in the 4x+1 register of the block. But it is
possible to perform a read operation on a non-existing register of the slave. The
slave detects the status logs it. This can last for several cycles.

Network
implementation

The read operation can be performed on Modbus Plus, TCP/IP Ethernet and
SY/MAX Ethernet networks.

Use of control
blocks for
Modbus Plus
(CONTROL)

Control block for Modbus Plus (CONTROL):

Register Meaning

4x 2 = Read data

4x+1 indicates the Error status.

4x+2 Number of registers to be read from the slave

4x+3 Determines the 4x starting register in the slave from which the data must be
read (e.g. 1 = 40001, 49 = 40049)

4x+4 …

4x+8

Routing register 1 is used to specify the address (routing path address one
of five) of the destination node during a network transfer.

The last byte in the routing path that is not zero, is the destination mode.

MBP_MSTR: Modbus Plus Master

840 USE 504 00 October 2002 71

Use of control
blocks for TCP/IP
Ethernet
(CONTROL)

Control block for TCP/IP Ethernet (CONTROL):

Use of control
blocks for
SY/MAX Ethernet
(CONTROL)

Control block for SY/MAX Ethernet (CONTROL)

Register Meaning

4x 2 = Read data

4x+1 indicates the Error status.

4x+2 Number of registers to be read from the slave

4x+3 Determines the 4x starting register in the slave from which the data must be
read (e.g. 1 = 40001, 49 = 40049)

4x+4 Routing register,

Low value byte:

MBP on Ethernet Transporter (MET) mapping index

High value byte:

Network adapter module slot

4x+5 …

4x+8

Each register contains one byte of the 32-bit IP address

Register Meaning

4x 2 = Read data

4x+1 indicates the Error status.

4x+2 Number of registers to be read from the slave

4x+3 Determines the 4x starting register in the slave to which the data must be
written (e.g. 1 = 40001, 49=40049)

4x+4 Routing register,

Slot ID

Low value byte:

Destination drop number

High value byte:

Network adapter module slot

4x+5 …

4x+8

Terminator:

FF hex

MBP_MSTR: Modbus Plus Master

72 840 USE 504 00 October 2002

Read local statistics

Brief description This operation reads the data from the local node. The operation is carried out in one
scan and does not require a master transaction path.

Network
implementation

The write operation can be performed on Modbus Plus, TCP/IP Ethernet and
SY/MAX Ethernet networks:

� List of available Modbus Plus network statistics (See Modbus Plus network
statistics, p. 89)

� List of TCP/IP Ethernet network statistics (See TCP/IP Ethernet network
statistics, p. 94)

Use of control
blocks for
Modbus Plus
(CONTROL)

Control block for Modbus Plus (CONTROL):

Register Meaning

4x 3 = Read local statistics

4x+1 indicates the Error status.

4x+2 Number of registers to be read from the local statistics (1...32)

4x+3 First register from which the statistics table must be read (Reg1=0)

4x+4 Routing register 1 is used to specify the address (routing path address one
of five) of the destination node during a network transfer.

The last byte in the routing path that is not zero, is the destination mode.

Note: If your controller does not support any Modbus Plus option modules (S985s
or NOMs), the High value byte of the 4x+4 register will not be used and the bits of
the High value byte must all be set to 0.

MBP_MSTR: Modbus Plus Master

840 USE 504 00 October 2002 73

Use of control
blocks for TCP/IP
Ethernet
(CONTROL)

Control block for TCP/IP Ethernet (CONTROL)

Register Meaning

4x 3 = Read local statistics

4x+1 indicates the Error status.

4x+2 Number of registers to be read from the local statistics (1...32)

4x+3 First register from which the statistics table must be read (Reg1=0)

4x+4 Routing register,

High value byte:

Network adapter module slot

4x+5 …

4x+8

no significance

MBP_MSTR: Modbus Plus Master

74 840 USE 504 00 October 2002

Clear local statistics

Brief description This operation deletes the statistics concerning the local node. The operation is
carried out in one scan and does not require a master transaction path.

Network
implementation

The operation can be performed on Modbus Plus and TCP/IP Ethernet networks.

� List of available Modbus Plus network statistics (See Modbus Plus network
statistics, p. 89)

� List of TCP/IP Ethernet network statistics (See TCP/IP Ethernet network
statistics, p. 94)

Use of control
blocks for
Modbus Plus
(CONTROL)

Control block for Modbus Plus (CONTROL):

Note: If the "Clear local statistics" operation is edited, only the words 13 to 22 in
the statistics table are cleared.

Register Meaning

4x 4 = Clear local statistics

4x+1 indicates the Error status.

4x+2 Reserved

4x+3 Reserved

4x+4 Routing register 1 is used to specify the address (routing path address one
of five) of the destination node during a network transfer.

The last byte in the routing path that is not zero, is the destination mode.

Note: If your controller does not support any Modbus Plus option modules (S985s
or NOMs), the High value byte of the 4x+4 register will not be used and the bits of
the High value byte must all be set to 0.

MBP_MSTR: Modbus Plus Master

840 USE 504 00 October 2002 75

Use of control
blocks for TCP/IP
Ethernet
(CONTROL)

Control block for TCP/IP Ethernet (CONTROL):

Register Meaning

4x 4 = Clear local statistics

4x+1 indicates the Error status.

4x+2 Reserved

4x+3 Reserved

4x+4 Routing register,

High value byte:

Network adapter module slot

4x+5 …

4x+8

Reserved

MBP_MSTR: Modbus Plus Master

76 840 USE 504 00 October 2002

Write global data

Brief description This operation transfers data to the communication processor of the current node,
so that it can be sent via the network, as soon as the node receives the token. This
data can be received by all nodes connected to the local network. The operation is
carried out in one scan and does not require a master transaction path.

Network
implementation

The operation can only be performed on Modbus Plus networks.

Use of control
blocks for
Modbus Plus
(CONTROL)

Control block for Modbus Plus (CONTROL):

Register Meaning

4x 5 = Write global data

4x+1 indicates the Error status.

4x+2 Number of registers to be sent from State RAM into global data memory
(comm processor) (1...32)

4x+3 Reserved

4x+4 Routing address 1

If this is the second of two local nodes, set the value of the High value byte
to 1.

Note: If your controller does not support any Modbus Plus option modules (S985s
or NOMs), the High value byte of the 4x+4 register will not be used and the bits of
the High value byte must all be set to 0.

MBP_MSTR: Modbus Plus Master

840 USE 504 00 October 2002 77

Read global data

Brief description This operation reads data from the communications processor of any node
connected to the network that sends out global data. The operation can take several
cycles, if the global data is not currently available with the nodes called. If global data
is available, the operation runs down in one cycle. A master transaction path is not
required.

Network
implementation

The operation can only be performed on Modbus Plus networks.

Use of control
blocks for
Modbus Plus
(CONTROL)

Control block for Modbus Plus (CONTROL):

Register Meaning

4x 6 = Read global data

4x+1 indicates the Error status.

4x+2 Number of registers to be sent from global data memory (comm processor)
(1...32)

4x+3 Display of registers available in scanned node (will be automatically
updated)

4x+4 Routing register 1 is used to specify the address (routing path address one
of five) of the destination node during a network transfer.

The last byte in the routing path that is not zero, is the destination mode.

Note: If your controller does not support any Modbus Plus option modules (S985s
or NOMs), the High value byte of the 4x+4 register will not be used and the bits of
the High value byte must all be set to 0.

MBP_MSTR: Modbus Plus Master

78 840 USE 504 00 October 2002

Get remote statistics

Brief description This operation reads the data referring to remote nodes on the network (see Modbus
Plus network statistics, p. 89 and TCP/IP Ethernet network statistics, p. 94). This
operation can last for several cycles and does not require a master data transaction
path.

With each query, the remote communications processor supplies a complete
statistics table even if the query does not refer to the entire table. MBP_MSTR will
then copy only those words into the identified 4x registers that you queried.

Network
implementation

The operation can be performed on Modbus Plus and TCP/IP Ethernet networks.

Use of control
blocks for
Modbus Plus
(CONTROL)

Control block for Modbus Plus (CONTROL):

Register Meaning

4x 7 = Get remote statistics

4x+1 indicates the Error status.

4x+2 Number of registers to be read from the statistics data field (1...54) The size
of the data field may not be exceeded.

4x+3 First register from which the node statistics must be read. The number of
available statistics registers may not be exceeded.

4x+4 …

4x+8

Routing address 1 … 5 of the node.

Refers to routing path addresses one to five. The last byte if the routing path
that is different from zero is the destination node.

MBP_MSTR: Modbus Plus Master

840 USE 504 00 October 2002 79

Use of control
blocks for TCP/IP
Ethernet
(CONTROL)

Control block for TCP/IP Ethernet (CONTROL):

Register Meaning

4x 7 = Get remote statistics

4x+1 indicates the Error status.

4x+2 Number of registers to be read from the statistics data field (1...54) The size
of the data field may not be exceeded.

4x+3 First register from which the node statistics must be read. The number of
available statistics registers may not be exceeded.

4x+4 Routing register,

High value byte:

Network adapter module slot

4x+5 …

4x+8

Each register contains one byte of the 32-bit IP address

MBP_MSTR: Modbus Plus Master

80 840 USE 504 00 October 2002

Clear remote statistics

Brief description This operation clears the statistics concerning remote nodes on the network from the
data field of the local node. This operation can last for several cycles and employs
one single master data transaction path.

Network
implementation

The write operation can be performed on Modbus Plus and TCP/IP Ethernet
networks.

Use of control
blocks for
Modbus Plus
(CONTROL)

Control block for Modbus Plus (CONTROL):

Use of control
blocks for TCP/IP
Ethernet
(CONTROL)

Control block for TCP/IP Ethernet (CONTROL):

Note: If the "Clear remote statistics"operation is edited, only the words 13 through
22 of the statistics table (see Modbus Plus network statistics, p. 89 and TCP/IP
Ethernet network statistics, p. 94) will be deleted.

Register Meaning

4x 8 = Clear remote statistics

4x+1 indicates the Error status.

4x+2 Reserved

4x+3 Reserved

4x+4 …

4x+8

Routing register 1 is used to specify the address (routing path address one
of five) of the destination node during a network transfer.

The last byte in the routing path that is not zero, is the destination mode.

Register Meaning

4x 8 = Clear remote statistics

4x+1 indicates the Error status.

4x+2 Reserved

4x+3 Reserved

4x+4 Routing register,

High value byte:

Network adapter module slot

4x+5 … 4x+8 Each register contains one byte of the 32-bit IP address

MBP_MSTR: Modbus Plus Master

840 USE 504 00 October 2002 81

Peer cop health

Brief description This operation reads the selected data from the peer cop communications health
table and downloads the respective data into the specified 4x registers of State
RAM. The Peer cop communications health table is 12 words long, MBP_MSTR
indexes all words with 0 through 11.

Network
implementation

The operation can only be performed on Modbus Plus networks.

Use of control
blocks for
Modbus Plus
(CONTROL)

Control block for Modbus Plus (CONTROL):

Register Meaning

4x 9 = Peer cop health

4x+1 indicates the Error status.

4x+2 Number of words wanted by the peer cop table (1..0,12)

4x+3 First word to be read from the peer cop table (0...11; 0=first word in peer cop
table and 11=last word in peer cop table)

4x+4 Routing address 1

If this is the second of two local nodes, set the High value byte to 1.

Note: If your controller does not support any Modbus Plus option modules (S985s
or NOMs), the High value byte of the 4x+4 register will not be used and the bits of
the High value byte must all be set to 0.

MBP_MSTR: Modbus Plus Master

82 840 USE 504 00 October 2002

Optional module reset

Brief description The "Reset option module" operation leads a Quantum NOE option module to start
a reset cycle to reset its working environment.

Network
implementation

The write operation can be performed on TCP/IP Ethernet and SY/MAX Ethernet
networks.

Use of control
blocks for TCP/IP
Ethernet
(CONTROL)

Control block for TCP/IP Ethernet (CONTROL):

Use of control
blocks for SY/
MAX Ethernet
(CONTROL)

Control block for SY/MAX Ethernet (CONTROL)

Register Meaning

4x 10 = Optional module reset

4x+1 indicates the Error status.

4x+2 no significance

4x+3 no significance

4x+4 Routing register,

The number shown in the High value byte in area 1 through 16 indicates the
slot where the option module is located.

4x+5 …

4x+8

no significance

Register Meaning

4x 10 = Optional module reset

4x+1 indicates the Error status.

4x+2 no significance

4x+3 no significance

4x+4 Routing register,

High value byte:

Network adapter module slot

4x+5 …

4x+8

no significance

MBP_MSTR: Modbus Plus Master

840 USE 504 00 October 2002 83

Read CTE (Config extension table)

Brief description The "Read CTE" operation reads a given number of bytes from the Ethernet
configuration extension table in the specified buffer in the PLC memory. The bytes
to be read start with a byte offset at the start of the CTE. The contents of the Ethernet
CTE table is displayed on output DATABUF.

Network
implementation

The write operation can be performed on TCP/IP Ethernet and SY/MAX Ethernet
networks.

Use of control
blocks for TCP/IP
Ethernet
(CONTROL)

Control block for TCP/IP Ethernet (CONTROL):

Register Meaning

4x 11 = Read CTE (Config extension table)

4x+1 Indicates the Error status.

4x+2 No significance

4x+3 No significance

4x+4 Routing register,

Low value byte = mapping index

Either a value displayed in the byte of the register or is not used.

or

High value byte = slot ID

Network adapter module slot

4x+5 …

4x+8

The number shown in the Low value byte in area 1 through 16 indicates the
slot where the option module is located.

MBP_MSTR: Modbus Plus Master

84 840 USE 504 00 October 2002

Use of control
blocks for
SY/MAX Ethernet
(CONTROL)

Control block for SY/MAX Ethernet (CONTROL)

CTE Indicator
implementation
(DATABUF)

The values in the Ethernet configuration extension table (CTE) are displayed in a
series of registers on output DATABUF when a CTE read operation is implemented.
DATABUF contains the first of 11 contiguous 4x registers. The registers display the
following CTE data:

CTE Indicator implementation (DATABUF)

Register Meaning

4x 11 = Read CTE (Config extension table)

4x+1 Indicates the Error status.

4x+2 Number of words transferred

4x+3 Byte offset in the PLC register structure, specifying from where the CTE
bytes are read.

4x+4 Routing register,

High value byte:

Slots of the NOE module

4x+5 …

4x+8

Terminator:

FF hex

Parameter Register Contents

Frame type 4x 1 = 802.3

2 = Ethernet

IP address 4x+1 First byte of the IP address

4x+2 Second byte of the IP address

4x+3 Third byte of the IP address

4x+4 Fourth byte of the IP address

Lower netmask 4x+5 High word:

4x+6 Low word:

Gateway 4x+7 First byte of the gateway

4x+8 Second byte of the gateway

4x+9 Third byte of the gateway

4x+10 Fourth byte of the gateway

MBP_MSTR: Modbus Plus Master

840 USE 504 00 October 2002 85

Write CTE (Config extension table)

Brief description The "Write CTE" operation writes the CTE configuration table from the specified
data (DATABUF) to a specified Ethernet configuration extension table or to a
specific slot.

Network
implementation

The write operation can be performed on TCP/IP Ethernet and SY/MAX Ethernet
networks.

Use of control
blocks for TCP/IP
Ethernet
(CONTROL)

Control block for TCP/IP Ethernet (CONTROL):

Register Meaning

4x 12 = Write CTE (Config extension table)

4x+1 indicates the Error status.

4x+2 No significance

4x+3 No significance

4x+4 Routing register,

Low value byte = mapping index

Either a value displayed in the byte of the register or is not used.

or

High value byte = slot ID

Network adapter module slot

4x+5 …

4x+8

The number shown in the Low value byte in area 1 through 16 indicates the
slot where the option module is located.

MBP_MSTR: Modbus Plus Master

86 840 USE 504 00 October 2002

Use of control
blocks for
SY/MAX Ethernet
(CONTROL)

Control block for SY/MAX Ethernet (CONTROL)

CTE Indicator
implementation
(DATABUF)

The values in the Ethernet extension table (CTE) are displayed in a series of
registers on output DATABUF when a CTE write operation is implemented.
DATABUF contains the first of 11 contiguous 4x registers. The registers are used to
transfer the following CTE data:

CTE Indicator implementation (DATABUF)

Register Meaning

4x 12 = Write CTE (Config extension table)

4x+1 indicates the Error status.

4x+2 Number of words transferred

4x+3 Byte offset in the PLC register structure specifying where the CTE bytes are
written.

4x+4 Routing register,

High value byte = slot ID

Slots of the NOE module

Low value byte = Destination drop number

4x+5 Terminator:

FF hex

4x+5…

4x+8

No significance

Parameter Register Contents

Frame type 4x 1 = 802.3

2 = Ethernet

IP address 4x+1 First byte of the IP address

4x+2 Second byte of the IP address

4x+3 Third byte of the IP address

4x+4 Fourth byte of the IP address

Lower netmask 4x+5 High word:

4x+6 Low word:

Gateway 4x+7 First byte of the gateway

4x+8 Second byte of the gateway

4x+9 Third byte of the gateway

4x+10 Fourth byte of the gateway

MBP_MSTR: Modbus Plus Master

840 USE 504 00 October 2002 87

Peer cop communications health status

Peer cop
communications
health status

The table containing the Peer cop status information fills 12 consecutive registers,
which can be indexed with the numbers 0 to 11 in an MBP_MSTR operation. Each
individual bit of the table words is used to present one aspect of communications
health that refers to a specific node on the Modbus Plus network.

Relation bit
network node

The bits of the words 0 to 3 represent the health at the global communications input
of nodes 1 to 64. The bits of words 4 to 7 represent the health of the output of a
specific node.

The bits in words 8 to 11 represent the health of the input of a specific node.

Status type Word index Relation bit network node

Global input 0

1

2

3

Specific output 4

5

6

7

Specific input 8

9

10

11

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

MBP_MSTR: Modbus Plus Master

88 840 USE 504 00 October 2002

Health bit status The status of the peer cop health bit indicates the current communications status of
its assigned node. A health bit will be set when the associated node accepts input
for its peer cop data block or when it receives a signal that another node has
accepted specific output data from its peer cop output data block. A health bit will be
deleted when the associated data block did not take up any communication within
the configured peer cop health timeout period.

All health bits will be deleted when interface command "put peer cop" is executed
during PLC startup. The table values become valid when the Token has been
completely bypassed, after the interface command "put peer cop" has been carried
out. The health bit of a specific node is always zero when the assigned peer cop
input is zero.

MBP_MSTR: Modbus Plus Master

840 USE 504 00 October 2002 89

Modbus Plus network statistics

Modbus Plus
network
statistics

The following table shows the statistics available on Modbus Plus. You can obtain
this data by running the corresponding MBP_MSTR operation (Modbus function
codes 8).

Modbus Plus network statistics:

Note: If you edit the "Clear local statistics" or "Clear remote statistics" operation,
only words 13 to 22 in the statistics table are cleared.

Word Bits Meaning

00 Node type ID

0 Unknown node type

1 PLC node

2 Modbus bridge node

3 Host computer node

4 Bridge Plus node

5 Peer I/O node

01 0 ... 11 Software version number as hexadecimal value (to read this, isolate
bits 12-15 from the word)

12 ... 14 Reserved

15 Defines error counters from word 15.

The high bit defines the use of error counters in word 15. The low half
of the high value byte together with the low value byte contain the
software
version.

02 Network address of this station

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Software version number
(as hexadecimal value)

Error counter from word 15 (see word 15)

MBP_MSTR: Modbus Plus Master

90 840 USE 504 00 October 2002

03 MAC status variable:

0 Startup status

1 Offline status indicator signals

2 Duplicated offline status

3 Idle status

4 Token utilization status

5 Work response status

6 Token transfer status

7 Response request status

8 Status check of transfer

9 Token request status

10 Response request status

04 Peer status (LED code); indicates status of this device relative to the
network:

0 Monitor connect operation

32 Normal connect operation

64 Never receives token

96 Single station

128 Duplicate station

05 Token transfer counter; incremented every time this station receives
the token

06 Token cycle time in ms

07 LOW Bitmap data master failure during token ownership

HIGH Bitmap program master failure during token ownership

08 LOW Bitmap activity token ownership of the data master

HIGH Bitmap activity token ownership of the program master

09 LOW Bitmap activity token ownership of the data slave

HIGH Bitmap activity token ownership of the program slave

10 LOW

HIGH Bitmap transfer request command data slave/slave poll

11 LOW Bitmap response transfer request program master/master poll

HIGH Bitmap transfer request command program slave/slave poll

12 LOW Bitmap connect status of the program master

HIGH Bitmap automatic logout of program slave

Word Bits Meaning

MBP_MSTR: Modbus Plus Master

840 USE 504 00 October 2002 91

13 LOW Pretransfer delay error counter

HIGH Receive buffer DMA overrun error counter

14 LOW Reception count repeat command

HIGH Error counter data block size

15 If bit 15 of word 1 is not set, word 15 has the following significance:

LOW Receiver error count collision abort

HIGH Receive error count alignment

If bit 15 of word 1 is set, word 15 has the following significance:

LOW Data block error on cable B

HIGH Data block error on cable B

16 LOW CRC receiver error count

HIGH Error counter wrong packet length

17 LOW Error counter wrong link address

HIGH Error counter DMA underflow transfer buffer storage

18 LOW Error counter wrong internal packet length

HIGH Error counter wrong MAC function code

19 LOW Communication retry counter

HIGH Error counter communication failed

20 LOW Counter package receipt successful

HIGH Error counter no response receipt

21 LOW Error counter unexpected response receipt

HIGH Error counter unexpected path

22 LOW Error counter unexpected response

HIGH Error counter skipped transaction

23 LOW Bitmap active station table, nodes 1 through 8

HIGH Bitmap active station table, nodes 9 through 16

24 LOW Bitmap active station table, nodes 17 through 24

HIGH Bitmap active station table, nodes 25 through 32

25 LOW Bitmap active station table, nodes 33 through 40

HIGH Bitmap active station table, nodes 41 through 48

26 LOW Bitmap active station table, nodes 49 through 56

HIGH Bitmap active station table, nodes 57 through 64

27 LOW Bitmap token station table, nodes 1 through 8

HIGH Bitmap token station table, nodes 9 through 16

Word Bits Meaning

MBP_MSTR: Modbus Plus Master

92 840 USE 504 00 October 2002

28 LOW Bitmap token station table, nodes 17 through 24

HIGH Bitmap token station table, nodes 25 through 32

29 LOW Bitmap token station table, nodes 33 through 40

HIGH Bitmap token station table, nodes 41 through 48

30 LOW Bitmap token station table, nodes 49 through 56

HIGH Bitmap token station table, nodes 57 through 64

31 LOW Global data existence bitmap table, nodes 1 through 8

HIGH Global data existence bitmap table, nodes 9 through 16

32 LOW Global data existence bitmap table, nodes 17 through 24

HIGH Global data existence bitmap table, nodes 25 through 32

33 LOW Global data existence bitmap table, nodes 33 through 40

HIGH Global data existence bitmap table, nodes 41 through 48

34 LOW Global data existence bitmap table, nodes 49 through 56

HIGH Global data existence bitmap table, nodes 57 through 64

35 LOW Bitmap receive buffer used, buffers 1 through 8

HIGH Bitmap receive buffer used, buffers 9 through 16

36 LOW Bitmap receive buffer used, buffers 17 through 24

HIGH Bitmap receive buffer used, buffers 25 through 32

37 LOW Bitmap receive buffer used, buffers 33 through 40

HIGH Counter of activated processed commands for station administration

38 LOW Counter for command activation, output path 1 of data master

HIGH Counter for command activation, output path 2 of data master

39 LOW Counter for command activation, output path 3 of data master

HIGH Counter for command activation, output path 4 of data master

40 LOW Counter for command activation, output path 5 of data master

HIGH Counter for command activation, output path 6 of data master

41 LOW Counter for command activation, output path 7 of data master

HIGH Counter for command activation, output path 8 of data master

42 LOW Counter for command processing, input path 41 of data slave

HIGH Counter for command processing, input path 42 of data slave

43 LOW Counter for command processing, input path 43 of data slave

HIGH Counter for command processing, input path 44 of data slave

44 LOW Counter for command processing, input path 45 of data slave

HIGH Counter for command processing, input path 46 of data slave

Word Bits Meaning

MBP_MSTR: Modbus Plus Master

840 USE 504 00 October 2002 93

45 LOW Counter for command processing, input path 47 of data slave

HIGH Counter for command processing, input path 48 of data slave

46 LOW Counter for command activation, output path 81 of program master

HIGH Counter for command activation, output path 82 of program master

47 LOW Counter for command activation, output path 83 of program master

HIGH Counter for command activation, output path 84 of program master

48 LOW Counter for command activation, output path 85 of program master

HIGH Counter for command activation, output path 86 of program master

49 LOW Counter for command activation, output path 87 of program master

HIGH Counter for command activation, output path 88 of program master

50 LOW Counter for command processing, input path C1 of program slave

HIGH Counter for command processing, input path C2 of program slave

51 LOW Counter for command processing, input path C3 of program slave

HIGH Counter for command processing, input path C4 of program slave

52 LOW Counter for command processing, input path C5 of program slave

HIGH Counter for command processing, input path C6 of program slave

53 LOW Counter for command processing, input path C7 of program slave

HIGH Counter for command processing, input path C8 of program slave

Word Bits Meaning

MBP_MSTR: Modbus Plus Master

94 840 USE 504 00 October 2002

TCP/IP Ethernet network statistics

TCP/IP Ethernet
network
statistics

A TCP/IP Ethernet plugboard replies to the "Get local statistics" and "Set local
statistics" commands using the following information:

Word Meaning

00 - 02 MAC address

e.g. MAC address 00 00 54 00 12 34 is displayed as
follows:

03 Plugboard status:

0x0001 = Running

0x4000 = APPI LED (1=ON, 0 = OFF)

0x8000 = LED Connection

04 and 05 Number of receiver interrupts

06 and 07 Number of transfer interrupts

08 and 09 Transfer timeout error count

10 and 11 Collision detection error count

12 and 13 Omitted packets

14 and 15 Memory error count

16 and 17 Number of groove restarts performed by the driver

18 and 19 Receive framing error count

20 and 21 Overflow error count receiver

22 and 23 Receive CRC error counter

24 and 25 Receive buffer error counter

26 and 27 Transfer buffer error counter

28 and 29 Transfer bin underflow counter

30 and 31 Late collision counter

32 and 33 Lost carrier counter

34 and 35 Number of retries

Word
00
01
02

Contents
00
00
34

00
54
12

MBP_MSTR: Modbus Plus Master

840 USE 504 00 October 2002 95

Runtime errors

Runtime errors In the event that an error occurs during an MSTR operation, a hexadecimal error
code is displayed in the 4x+1 register of the control block (CONTROL).

Function error codes are network-specific:

� Modbus Plus and SY/MAX Ethernet Error Codes (See Modbus Plus and SY/MAX
Ethernet Error Codes, p. 96)

� SY/MAX-specific error codes (See SY/MAX-specific error codes, p. 98)
� TCP/IP Ethernet error codes (See TCP/IP Ethernet error codes, p. 100)
� CTE error codes for SY/MAX and TCP/IP Ethernet (See CTE error codes for SY/

MAX and TCP/IP Ethernet, p. 103)

36 and 37 IP address

e.g. the IP address 198.202.137.113 (or c6 CA 89 71) is represented as
follows:

Word Meaning

Word
36
37

Contents
89
C6

71
CA

MBP_MSTR: Modbus Plus Master

96 840 USE 504 00 October 2002

Modbus Plus and SY/MAX Ethernet Error Codes

Form of the
function error
code

Function error codes for Modbus Plus and SY/MAX Ethernet transactions appear as
Mmss, where:

� M is the high code
� m is the low code
� ss is a subcode

Hexadecimal
error code

Hexadecimal error code for Modbus Plus and SY/MAX Ethernet:

Hex. error
code

Meaning

1001 Abort by user

2001 An operation type that is not supported was specified in the control block

2002 One or more control block parameters were modified while the MSTR
element was active (this only applies to operations which require several
cycles for completion). Control block parameters may only be modified in
inactive MSTR components.

2003 Illegal value in the length field of the control block

2004 Illegal value in the offset field of the control block

2005 Illegal value in the length and offset fields of the control block

2006 Unauthorized data field on slave

2007 Unauthorized network field on slave

2008 Unauthorized network routing path on slave

2009 Routing path equivalent to own address

200A Attempting to retrieve more global data words than available

30ss Unusual response by Modbus slave (See ss hexadecimal value in 30ss error
code, p. 97)

4001 Inconsistent response by Modbus slave

5001 Inconsistent response by network

6mss Routing path error (See ss hexadecimal value in 6mss error code, p. 97)

Subfield m shows where the error occurred (a 0 value means local node, 2
means 2nd device in route, etc).

MBP_MSTR: Modbus Plus Master

840 USE 504 00 October 2002 97

ss hexadecimal
value in 30ss
error code

ss hexadecimal value in 30ss error code:

ss hexadecimal
value in 6mss
error code

The ss subfield in error code 6mss is as follows:

ss hex. value Meaning

01 Slave does not support requested operation

02 Non-existent slave registers were requested

03 An unauthorized data value was requested

05 Slave has accepted a lengthy program command

06 Function cannot currently be carried out: lengthy command running

07 Slave has rejected lengthy program command

Note: Subfield m in error code 6mss is an index in the routing information that
shows where an error has been detected (a 0 value indicates the local node, 2
means the second device in the route, etc.).

ss
hexadecimal
value

Meaning

01 No response receipt

02 Access to program denied

03 Node out of service and unable to communicate

04 Unusual response received

05 Router-node data path busy

06 Slave out of order

07 Wrong destination address

08 Unauthorized node type in routing path

10 Slave has rejected the command

20 Slave has lost an activated transaction

40 Unexpected master output path received

80 Unexpected response received

F001 Wrong destination node specified for MSTR operation

MBP_MSTR: Modbus Plus Master

98 840 USE 504 00 October 2002

SY/MAX-specific error codes

SY/MAX-specific
error codes

When utilizing SY/MAX Ethernet, three additional types of errors may appear in the
4x+1 register of the control block (CONTROL).

The error codes have the following meaning:

� 71xx Error: Errors found by the SY/MAX remote device
� 72xx Error: Errors found by the server
� 73xx Error: Errors found by the Quantum translator

SY/MAX-specific
HEX error code

SY/MAX-specific HEX error code:

Hex. error
code

Meaning

7101 Invalid opcode found by the SY/MAX remote device

7103 Invalid address found by the SY/MAX remote device

7109 Attempt to write to a read only register found by the SY/MAX remote device

F710 Receiver overrun found by the SY/MAX remote device

7110 Invalid length found by the SY/MAX remote device

7111 Remote device not active, no connection (occurs when retry attempts and
timeout have been used up), found by the SY/MAX remote device

7113 Invalid parameter in a read operation found by the SY/MAX remote device

711D Invalid route found by the SY/MAX remote device

7149 Invalid parameter in a write operation found by the SY/MAX remote device

714B Invalid drop number found by the SY/MAX remote device

7101 Invalid opcode found by the SY/MAX server

7203 Invalid address found by the SY/MAX server

7209 Attempt to write to a read only register found by the SY/MAX server

F720 Receiver overrun found by the SY/MAX server

7210 Invalid length found by the SY/MAX server

7211 Remote device not active, no connection (occurs when retry attempts and
timeout have been used up), found by the SY/MAX server

7213 Invalid parameter in a read operation found by the SY/MAX server

721D Invalid route found by the SY/MAX server

7249 Invalid parameter in a write operation found by the SY/MAX server

724B Invalid drop number found by the SY/MAX server

7301 Invalid opcode in an MSTR block request from the Quantum translator

7303 Read/Write QSE module status (200 route address out of range)

MBP_MSTR: Modbus Plus Master

840 USE 504 00 October 2002 99

7309 Attempt to write to a read only register when a status write is carried out (200
route)

731D Invalid route found by the Quantum translator.

Valid routes:

� dest_drop, 0xFF
� 200, dest_drop, 0xFF
� 100+drop, dest_drop, 0xFF
� All other routing values produce an error

734B One of the following errors occurred:

� No CTE (configuration extension table) has been configured
� No CTE table entry has been made for the QSE model slot number
� No valid drop has been specified
� The QSE module has not been reset after the creation of the CTE.

Note: After writing and configuring the CTE and downloading to the QSE
module, you must reset the QSE module in order for the modifications to
become effective.

� When using an MSTR instruction no valid slot or drop has been specified

Hex. error
code

Meaning

MBP_MSTR: Modbus Plus Master

100 840 USE 504 00 October 2002

TCP/IP Ethernet error codes

TCP/IP Ethernet
error codes

An error in an MSTR routine via TCP/IP Ethernet may produce one of the following
errors in the MSTR control block:

The error code appears as Mmss, where:

� M is the high code
� m is the low code
� ss is a subcode

HEX error codes
TCP/IP Ethernet

HEX error codes TCP/IP Ethernet:

ss hexadecimal
value in 30ss
error code

ss hexadecimal value in 30ss error code:

Hex. Error
code

Meaning

1001 Abort by user

2001 An operation type that is not supported was specified in the control block

2002 One or more control block parameters were modified while the MSTR
element was active (this only applies to operations which require several
cycles for completion). Control block parameters may only be modified in
inactive MSTR components.

2003 Invalid value in the length field of the control block

2004 Invalid value in the offset field of the control block

2005 Invalid value in the length and offset fields of the control block

2006 Unauthorized data field on slave

3000 Generic Modbus failure code

30ss Exceptional response by Modbus slave (See ss hexadecimal value in 30ss
error code, p. 100)

4001 Inconsistent response by Modbus slave

ss hex. Value Meaning

01 Slave does not support requested operation

02 Non-existing slave registers were requested

03 An unauthorized data value was requested

05 Slave has accepted a lengthy program command

06 Function cannot currently be carried out: lengthy command running

07 Slave has rejected lengthy program command

MBP_MSTR: Modbus Plus Master

840 USE 504 00 October 2002 101

HEX error codes
TCP/IP Ethernet
network

An error on the TCP/IP Ethernet network itself may produce one of the following
errors in the 4x+1 register of the control block (CONTROL).

HEX error codes TCP/IP Ethernet network:

Hex. Error
code

Meaning

5004 Interrupted system invocation

5005 I/O error

5006 No such address

5009 The socket descriptor is not valid

500C Not enough storage space

500D Authorization denied

5011 Entry exists

5016 An argument is not valid

5017 An internal table has no more space

5020 There is interference on the connection

5023 This operation would be blocking and the socket is non-blocking

5024 The socket is non-blocking and the connection cannot be closed down

5025 The socket is non-blocking and a previous connection attempt has not been
concluded

5026 Socket operation on a non-socket

5027 The destination address is not valid

5028 Message too long

5029 Wrong type of protocol for the socket

502A Protocol not available

502B Protocol not supported

502C Socket type not supported

502D Operation not supported at socket

502E Protocol family not supported

F502 Address family not supported

5030 Address is already in use

5031 Address not available

5032 Network is out of order

5033 Network cannot be reached

5034 Network shut down the connection during reset

5035 The connection was terminated by the peer

5036 The connection was reset by the peer

MBP_MSTR: Modbus Plus Master

102 840 USE 504 00 October 2002

5037 An internal buffer is required, but cannot be assigned

5038 The socket is already connected

5039 The socket is not connected

503A Cannot transmit after the socket has been shut off

503B Too many references; cannot splice

503C Connection timed out

503D The connection attempt was denied

5040 Host is out of order

5041 The destination host could not be reached from this node

5042 Directory not empty

5046 NI_INIT returned -1

5047 The MTU is not valid

5048 The hardware length is not valid

5049 The route specified cannot be found

504A Collision when invoking Select; these conditions have already been selected
by another job

504B The job ID is not valid

F001 In reset mode

Hex. Error
code

Meaning

MBP_MSTR: Modbus Plus Master

840 USE 504 00 October 2002 103

CTE error codes for SY/MAX and TCP/IP Ethernet

CTE error codes
for SY/MAX and
TCP/IP Ethernet

The following error codes are displayed in the 4x+1 register of the control block
(CONTROL) if there is a problem with the Ethernet configuration extension table
(CTE) in your program configuration.

CTE error codes for SY/MAX and TCP/IP Ethernet:

Hex. Error
code

Meaning

7001 There is no Ethernet configuration extension

7002 The CTE is not available for access

7003 The offset is not valid

7004 Offset + length are not valid

7005 Bad data field in the CTE

MBP_MSTR: Modbus Plus Master

104 840 USE 504 00 October 2002

840 USE 504 00 October 2002 105

12
MODBUSP_ADDR:
Modbus Plus Address

Overview

At a Glance This chapter describes the MODBUSP_ADDR block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 106

Representation 107

Detailed Description 109

MODBUSP_ADDR: Modbus Plus Address

106 840 USE 504 00 October 2002

Brief description

Function
description

This function block enables the input of Modbus Plus addressed for the
REAG_REG, CREAD_REG, WRITE_REG and CWRITE_REG function blocks. The
address is transferred in the form of a data structure.

EN and ENO can be projected as additional parameters.

Note: You must be familiar with your network when programming the
MODBUSP_ADDR function block. Modbus Plus routing path structures are
described in detail in "Modbus Plus Network Planning and Installation Guide".

MODBUSP_ADDR: Modbus Plus Address

840 USE 504 00 October 2002 107

Representation

Symbol Block representation:

Parameter
description

Block parameter description:

MODBUSP_ADDR

Slot_IDBYTE

Routing1BYTE
Routing2BYTE
Routing3BYTE
Routing4BYTE
Routing5BYTE

DATADATA

WordArr5AddrFld

Parameter Data type Meaning

Slot_ID BYTE Slot ID

Slots of the NOM module

Routing1 BYTE Routing 1 is used for address specification (routing path
addresses one of five) of the destination node during network
transfer.

The last byte in the routing path that is not zero is the destination
node.

Routing2 BYTE Routing2

Routing3 BYTE Routing3

Routing4 BYTE Routing4

Routing5 BYTE Routing5

AddrFld WordArr5 Data structure used to transfer the Modbus Plus address

MODBUSP_ADDR: Modbus Plus Address

108 840 USE 504 00 October 2002

Elementary
description of
WordArr5

Elementary description for WordArr5

Element Data type Meaning

WordArr5[1] WORD Routing register 1

Low value byte:

used for address specification (routing path addresses one of
five) of a destination node during network transfer.

The last byte in the routing path that is not zero is the destination
node.

High value byte:

Slot of the network adapter module (NOM), if any.

WordArr5[2] WORD Routing register 2

WordArr5[3] WORD Routing register 3

WordArr5[4] WORD Routing register 4

WordArr5[5] WORD Routing register 5

MODBUSP_ADDR: Modbus Plus Address

840 USE 504 00 October 2002 109

Detailed Description

Slot_ID If a Modbus Plus network option module (NOM) in the rack of a Quantum controller
is addressed as the destination node, the value at the Slot_ID input represents the
physical NOM slot, i.e. if the NOM is plugged in at Slot 7 of the rack, the value
appears as follows:

Routing x The Routing x input is used for address specification (routing path addresses one
from five) of the destination node during network transfer. The last byte in the routing
path that is not zero is the destination node.

Routing register
1

If a Modbus Plus network option module (NOM) in the rack of a Quantum controller
is addressed as destination node, the value in the more significant byte represents
the physical slot of the NOM, i.e. if the NOM is inserted in slot 7 of the rack, the more
significant byte of control register 1 looks as follows:

High value byte Slots 1 ... 16

Low value byte Destination address (binary value between 1 and 64 (normal) or 65 > 255
(extended))

0 0 0 0 0 1 1 1

0 x x x x x x x

Destination address (binary value between 1 and 64 (normal) or 65 > 255 (extended))

0 0 0 0 0 1 1 1 0 x x x x x x x

High value byte Low value byte

MODBUSP_ADDR: Modbus Plus Address

110 840 USE 504 00 October 2002

840 USE 504 00 October 2002 111

13
PORTSTAT: Modbus Port Status

Overview

Introduction This chapter describes the PORTSTAT block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 112

Representation 112

PORTSTAT: Modbus Port Status

112 840 USE 504 00 October 2002

Brief description

Function
description

The function block is used to read the status information of a local Modbus port.

This provides the following information:

� Counter status
� Availability of the Modbus ports

Representation

Symbol Block representation:

Parameter
description

Description of the block parameters:

PORTSTAT

BOOLFREE

TIMEOFFTIME

UDINTMSGCNT

STARTBOOL

PORTBYTE

Parameter Data type Meaning

START BOOL 1 (TRUE) = Status information about the selected Ports
(PORT) is given to the outputs.

0 (FALSE) = Outputs are set to 0.

PORT BYTE 1 = Local Modbus port No. 1 (for Quantum, Compact,
Momentum)

2 = Local Modbus port No. 2 (only for Momentum)

Note: Other values are invalid, the outputs are set to 0 in this
case.

FREE BOOL 1 (TRUE) = Port is inactive, i.e. not in use.

0 (FALSE) = Port is in use, e.g. by a XXMIT or RTXMIT
block; or is it currently in use as a communication interface
to an external Modbus master (MMI, SCADA, ...).

OFFTIME TIME Gives the elapsed time (in ms) during which the port was
continuously inactive.

MSGCNT UDINT Number of external Modbus Master requests

840 USE 504 00 October 2002 113

14
READ_REG: Read register

Overview

Introduction This chapter describes the READ_REG block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 114

Representation 115

Function mode 117

Parameter description 118

READ_REG: Read register

114 840 USE 504 00 October 2002

Brief description

Function
description

If requested, this function block will read a register area once (rising edge of the REQ
input). It reads data from an addressed slave via Modbus Plus, TCP/IP-Ethernet or
SY/MAX-Ethernet.

EN and ENO can be projected as additional parameters.

Note: You must be familiar with the routing procedures of your network when
programming a READ_REG function. Modbus Plus routing path structures will be
described in detail in "Modbus Plus Network Planning and Installation Guide". If
TCP/IP or SY/MAX EtherNet is im

Note: For technical reasons, this function block does not allow use of the
programming languages ST and IL.

READ_REG: Read register

840 USE 504 00 October 2002 115

Representation

Symbol Block representation:

Parameter
description

Block parameter description:

Elementary
description for
WordArr5 in
Modbus Plus

Elementary description for WordArr5 in Modbus Plus:

READ_REG

REQBOOL
SLAVEREGINT

NO_REGDINT
AddrFldWordArr5

BOOLNDR

BOOLERROR

WORDREG_READ

WORDSTATUS

Parameter Data type Meaning

REQ BOOL Start read operation once

SLAVEREG DINT Offset address of the first 4x register in the slave to be read from

NO_REG INT Number of registers to be read from slave

AddrFld WordArr5 Data structure describing the Modbus Plus-address, TCP/IP
address or SY/MAX-IP address.

NDR BOOL Set to "1" for one cycle after reading new data

ERROR BOOL Set to "1" for one scan in case of error

STATUS WORD Error code, see Runtime errors, p. 95

REG_READ WORD First 4x area register for read values

Element Data type Meaning

WordArr5[1] WORD Low value byte:

Routing register 1 is used for address specification (routing path
addresses one of five) of the destination node during network
transfer.

The last byte in the routing path that is not zero is the destination
node.

High value byte:

Slot of the network adapter module (NOM), if any.

WordArr5[2] WORD Routing register 2

WordArr5[3] WORD Routing register 3

WordArr5[4] WORD Routing register 4

WordArr5[5] WORD Routing register 5

READ_REG: Read register

116 840 USE 504 00 October 2002

Elementary
description for
WordArr5 with
TCP/IP EtherNet

Elementary description for WordArr5 with TCP/IP EtherNet:

Elementary
description for
WordArr5 with
SYMAX EtherNet

Elementary description for WordArr5 with SYMAX EtherNet:

Element Data type Meaning

WordArr5[1] WORD Low value byte:

MBP on Ethernet Transporter (MET) mapping index

High value byte:

Slot of the NOE module

WordArr5[2] WORD Byte 4 (MSB) of the 32-bit destination IP address

WordArr5[3] WORD Byte 3 of the 32-bit destination IP address

WordArr5[4] WORD Byte 2 of the 32-bit destination IP address

WordArr5[5] WORD Byte 1 (LSB) of the 32-bit destination IP address

Element Data type Meaning

WordArr5[1] WORD Low value byte:

MBP on Ethernet Transporter (MET) mapping index

High value byte:

Slot of the NOE module

WordArr5[2] WORD Destination drop number (or set to FF hex)

WordArr5[3] WORD Terminator (set to FF hex)

WordArr5[4] WORD No significance

WordArr5[5] WORD No significance

READ_REG: Read register

840 USE 504 00 October 2002 117

Function mode

Function mode
of READ_REG
blocks

Although a large number of READ_REG function blocks can be programmed, only
four read operations may be active at the same time. In such a case it is insignificant
whether they are the result of this function block or of other read operations (e.g.
MBP_MSTR, MSTR, CREAD_REG). All function blocks use one data transaction
path and require multiple cycles to complete a job.

The entire routing information is contained in data structure WordArr5 of input
AddrFld. The type of function block connected to this input and thus the contents of
the data structure depend on the network used.

Please use:

� Modbus Plus for function block MODBUSP_ADDR
� TCP/IP Ethernet: the function block TCP_IP_ADDR
� SY/MAX Ethernet: the function block SYMAX_IP_ADDR

Note: A TCP/IP communication between a Quantum PLC (NOE 711 00) and a
Momentum PLC (all TCP/IP CPUs and all TCP/IP I/O modules) is only possible,
when only oneread or write job is carried out in every cycle. If several jobs are sent
per PLC cycle, the communication stops without generating an error message in
the status register of the function block.

Note: For experts:

The WordArr5 data structure can also be used with constants.

READ_REG: Read register

118 840 USE 504 00 October 2002

Parameter description

REQ A rising edge triggers the read transaction.

The parameter can be specified as direct address, located variable, unlocated
variable or Literal.

SLAVEREG Start of the area in the addressed slave from which the source data is read. The
source area always resides within the 4x register area. SLAVEREG expects the
source reference as offset within the 4x area. The leading "4" must be omitted (e.g.
59 (contents of the variables or value of the literal) = 40059).

The parameter can be specified as direct address, located variable, unlocated
variable or Literal.

NO_REG Number of registers to be read from the addressed slave (1 ... 100).

The parameter can be specified as direct address, located variable, unlocated
variable or Literal.

NDR Transition to ON state for one program cycle signifies receipt of new data ready to
be processed.

The parameter can be specified as direct address, located variable or unlocated
variable.

ERROR Transition to ON state for one program cycle signifies detection of a new error.

The parameter can be specified as direct address, located variable or unlocated
variable.

REG_READ This word parameter addresses the first register in a series of NO_REG registers
lying in series used as destination data area.

The parameter must be entered as a direct address or located variable.

STATUS Error code, see Runtime errors, p. 95

The parameter can be specified as direct address, located variable or unlocated
variable.

840 USE 504 00 October 2002 119

15
READREG: Read register

Overview

Introduction This chapter describes the READREG block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 120

Representation 121

Function mode 122

Parameter description 123

READREG: Read register

120 840 USE 504 00 October 2002

Brief description

Function
description

If requested, this Function block will read a register area once (rising edge of the
REQ input). It reads data from an addressed slave via Modbus Plus.

EN and ENO can be configured as additional parameters.

Note: It is necessary to be familiar with the routing procedures of your network
when programming a READREG function. Modbus Plus routing path structures are
described in detail in "Modbus Plus Network Planning and Installation Guide".

Note: This function block only supports the local Modbus Plus interface (no NOM).

If using a NOM please work with the block CREAD_REG.

Note: This function block does not support TCP/IP- or SY/MAX-Ethernet.

If TCP/IP- or SY/MAX-Ethernet is needed, please use the block CREAD_REG.

Note: For technical reasons, this function block does not allow the use of ST and
IL programming languages.

READREG: Read register

840 USE 504 00 October 2002 121

Representation

Symbol Block representation

Parameter
description

Description of parameters:

READREG

REQBOOL
NODEADDRINT
ROUTPATHDINT
SLAVEREGDINT

NO_REGINT

BOOLNDR

BOOLERROR

WORDSTATUS

WORDREG_READ

Parameter Data type Meaning

REQ BOOL Start read operation once

NODEADDR INT Device address within the target segment

ROUTEPATH DINT Routing path to target segment

SLAVEREG DINT Offset address of the first 4x register in the slave to
be read from

NO_REG INT Number of registers to be read from slave

NDR BOOL Set to "1" for one cycle after reading new data

ERROR BOOL Set to "1" for one cycle in case of error

STATUS WORD Error code, see (See Runtime errors, p. 95)

REG_READ WORD First 4x area register for read values

READREG: Read register

122 840 USE 504 00 October 2002

Function mode

READREG block
Function mode

Although a large number of READREG function blocks can be programmed, only
four read operations may be active at the same time. In such a case it is insignificant
whether they are the result of this function block or of other read operations (e.g.
MBP_MSTR, MSTR, CREAD_REG). All function blocks use one data transaction
path and require multiple cycles to complete a job. The status signals NDR and
ERROR report the function block state to the user program.

The complete routing information must be separated into two parts:

� into the NOEADDR of the destination node (regardless of whether it is located in
the local segment or in another segment) and

� the routing path, in case there is a link via bridges.

The destination address arising from this is made from these two parts of
information.

The routing path is a DINT data type, which is interpreted as a sequence of two-digit
information units. Appended "00" are not required (e.g. both routing paths 4711 and
47110000 are valid, for NODEADDR 34 the result is destination reference
47.11.34.00.00).

READREG: Read register

840 USE 504 00 October 2002 123

Parameter description

REQ A rising edge triggers the read transaction.

The parameter can be specified as direct address, located variable, unlocated
variable or literal.

NODEADDR Identifies the node address within the target segment.

The parameter can be specified as direct address, located variable, unlocated
variable or literal.

ROUTPATH Identifies the routing path to the target segment. The two-digit information units run
from 01 … 64 (see Function mode, p. 122). If the slave resides in the local network
segment, ROUTPATH must be set to "0" or must be left unconnected.

The parameter can be specified as direct address, located variable, unlocated
variable or literal.

SLAVEREG Start of the area in the addressed slave from which the source data is read. The
source area always resides within the 4x register area. SLAVEREG expects the
source reference as offset within the 4x area. The leading "4" must be omitted (e.g.
59 (contents of the variables or value of the literal) = 40059).

The parameter can be specified as direct address, located variable, unlocated
variable or literal.

NO_REG Number of registers to be read from slave processor (1 100).

The parameter can be specified as direct address, located variable, unlocated
variable or literal.

NDR Transition to ON state for one program scan signifies receipt of new data ready to
be processed.

The parameter can be specified as direct address, located variable or unlocated
variable.

ERROR Transition to ON state for one program scan signifies detection of a new error.

The parameter can be specified as direct address, located variable or unlocated
variable.

READREG: Read register

124 840 USE 504 00 October 2002

STATUS Error code, see Runtime errors, p. 95

The parameter can be specified as direct address, located variable or unlocated
variable.

REG_READ This word parameter addresses the first register in a series of NO_REG registers
lying in series used as destination data area.

The parameter must be entered as a direct address or located variable.

840 USE 504 00 October 2002 125

16
RTXMIT: Full duplex Transfer
(Compact, Momentum, Quantum)

At a Glance

Introduction This chapter describes the RTXMIT function block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief Description 126

Representation 127

Runtime Errors 132

RTXMIT: Full duplex Transfer (Compact, Momentum, Quantum)

126 840 USE 504 00 October 2002

Brief Description

Function
Description

The function block provides full duplex communication through the local Modbus
port.

On Momentum PLCs the second local Modbus port is supported as well. The
function block combines two main functions into one, these are simple message
reception and simple message transmission.

Detailed
Description

The detailed description for the RTXMIT function block can be found in the XMIT-
IEC User Manual.

Note: The RTXMIT does NOT support Modbus protocol or modem functions.

Note: EN and ENO should NOT be used with the RTXMIT, otherwise the output
parameters may freeze.

RTXMIT: Full duplex Transfer (Compact, Momentum, Quantum)

840 USE 504 00 October 2002 127

Representation

Symbol Representation of the Block

RTXMIT

BOOLActiveTx

BOOLErrorTx

BOOLDoneTx

BOOLActiveRx

BOOLErrorRx

BOOLDoneRx

UINTCountRx

TxStartBOOL
TxBuffANY
TxLengthUINT
RxStartBOOL
RxResetBOOL
RxLengthUINT
RxBckSpcBOOL
PortBYTE
BaudRateUINT
DataBitsBYTE
StopBitsBYTE

ParityBOOL
EvenPariBOOL

FlowCtrlBOOL

FlowSoftBOOL
FlowBlckUINT

UDINTAllCtRx

WORDStatusTx
WORDStatusRx

ANYBuffRx

BegDel1BYTE
BegDel2BYTE
EndDelCtBYTE
EndDel1BYTE

EndDel2BYTE

EchoBOOL

BegDelCtBYTE

RTXMIT: Full duplex Transfer (Compact, Momentum, Quantum)

128 840 USE 504 00 October 2002

Parameter
Description

Description of the block parameter

Parameters Data type Significance

TxStart BOOL On a rising edge (FALSE->TRUE) the EFB begins with the send
operation. This operation would work concurrently to an ongoing
reception. If this parameter transitions from TRUE to FALSE an
ongoing transmission will be aborted without any error being
generated. After a transmission process completed (with or
without success) a new process won't be triggered before the
next rising edge happening to TxStart.

TxBuff ANY A variable of any datatype, it contains the 'to be sent' character
stream in Intel format.

TxLength UINT This parameter specifies the full amount of characters to be sent
from TxBuff. Without the use of data flowcontrol (RTS/CTS or
XON/XOFF), the amount of characters to be sent from TxBuff
may not exceed 1024. With data flow control being activated
TxLength may go as high as 2^16, as FlowBlck specifies the
number of characters being transmitted with one message
frame.

RxStart BOOL On a rising edge (FALSE->TRUE) the EFB begins with the
receive operation. This operation would work concurrently to an
ongoing transmission. In case this parameter carries the value
TRUE after the reception process completed (DoneTx = TRUE),
following characters being received won't be stored in RxBuff
anymore. A new reception process won't be triggerd before the
next rising edge happing to RxStart.

RxReset BOOL If TRUE, the following stream of characters being received will
be stored at the begin of BuffRx. Also output parameter CountRx
will be set to zero. At the same time current values of input
parameters RxLength, Strt_Cnt, Strt_Dl1, Strt_Dl2, End_Cnt,
End_Dl1, End_Dl2, RxBckSpc will be used from then on.

RxLength UINT Max. number of characters to be received. In case this value
exceeds the size of RxBuff no error will be generated, but the
size of RxBuff will be used instead. After the given number of
characters has been received the output parameter DoneRx
transitions to TRUE, and the receive operation will end at that
time.

RTXMIT: Full duplex Transfer (Compact, Momentum, Quantum)

840 USE 504 00 October 2002 129

RxBckSpc BOOL While this parameter is being set to TRUE a received character
of value 8 (backspace) will cause the one character being
received before the backspace to be overwritten by the
character being received after the backspace. Also, in this mode
the output CountRx will decrease its value with each backspace
being received, till it's 0. The EFB will consider the value of
RxBckSpc only while RxStart transitions from FALSE to TRUE
or while RxReset is TRUE (whereby RxStart needs to be TRUE
at that time).

Port BYTE Local port number (1 or 2)

The 2nd port is supported on Momentum PLCs only.

Note: On Momentum PLCs the EFB will switch to RS485 if the
assigned port has been configured as such, otherwise the port
will be run in RS232 mode.

Baudrate UINT Bits per second for transmission and reception, allowed values
are: 50, 75, 110, 134, 150, 300, 600, 1200, 1800, 2000, 2400,
3600, 4800, 7200, 9600, 19200

DataBits BYTE Databits per transmitted and received character (8 or 7)

StopBits BYTE Stopbits per transmitted and received character (1 or 2)

Parity BOOL If TRUE, parity check will be enabled (odd or even depends on
EvenPari).

If FALSE no parity check will be used.

EvenPari BOOL If TRUE and Parity = TRUE, even parity check will be used.

If FALSE and Parity = TRUE, odd parity check will be used.

FlowCtrl BOOL If TRUE, the next triggered transmission will consider either
RTS/CTS or XON/XOFF (depends on FlowSoft)for data flow
control. Receive operations won't use data flow control, since
the PLC internal buffer is big enough (512 byte) to avoid losing
any character between two PLC scans.

FlowSoft BOOL If TRUE, the data flow of transmissions will be controled by
using the XON/XOFF handshaking method.

Parameters Data type Significance

RTXMIT: Full duplex Transfer (Compact, Momentum, Quantum)

130 840 USE 504 00 October 2002

FlowBlck UINT Used only if FlowCtrl equals TRUE!

This parameter specifies the number of characters being sent as
one frame as soon as the transmitter obtains permission to sent
through the selected data flow control mechanism.

If FlowBlck is set to 0 the EFB will internally use 1 instead, as
this is the minimum amount of characters to be sent in one
frame.

If FlowBlck is set to a higher value than TxLength the EFB will
internally use TxLength instead, as this is the maximum amount
of characters to be sent in one frame. In order to increase data
throughput (only one frame can be transmitted per PLC scan)
the value assigned to FlowBlck needs to be increased.

BegDelCt BYTE Number of start delimiter. This parameter assigns how many
characters are being used for the start delimiter. Allowed values
are: 0, 1, 2. In case the value exceeds 2 the EFB won't generate
an error, but would use the max. of 2 instead.

BegDel1 BYTE This is the first (of max. 2) character of the start delimiter.

BegDel2 BYTE This is the second (of max. 2) character of the start delimiter.

EndDelCt BYTE Number of end delimiter. This parameter assigns how many
characters are being used for the end delimiter. Allowed values
are: 0, 1, 2. In case the value exceeds 2 the EFB won't generate
an error, but would use the max. of 2 instead.

EndDel1 BYTE This is the first (of max. 2) character of the end delimiter.

EndDel2 BYTE This is the second (of max. 2) character of the end delimiter.

Echo BOOL If TRUE, all characters being received during transmission will
be discarded. In RS485 2-wire mode this parameter would need
to be set TRUE, otherwise each just-transmitted character
would be received immediately afterwards.

ActiveTx BOOL If TRUE, a previously initiated send operation is still ongoing.

ErrorTx BOOL If TRUE, a previously initiated send operation failed, StatusTx.

In such case StatusTx will carry an error code that helps to
identify the reason for a failure.

DoneTx BOOL If TRUE, a previously initiated send operation finsihed with
success.

ActiveRx BOOL If TRUE, a previously initiated receive operation is still ongoing.

ErrorRx BOOL If TRUE, a previously initiated receive operation failed.

In such case StatusRx will carry an error code that helps to
identify the reason for a failure.

Parameters Data type Significance

RTXMIT: Full duplex Transfer (Compact, Momentum, Quantum)

840 USE 504 00 October 2002 131

Port-Parameters New port parameters being assigned to input parameters Port, Baudrate, DataBits,
StopBits, Parity and EvenPari will only be used after both parts of the EFB (receiver
and transmitter) have been shutdown (TxStart = FALSE and RxStart = FALSE) and
at least one of them has been (re-)started again.

DoneRx BOOL If TRUE, a previously initiated receive operation finsihed with
success.

CountRx UINT Number of characters being received since last initiated receive
operation.

This output parameter will be set back to 0 after RxReset has
been set to TRUE. Also this number does decrease upon
reception of a backspace character in case RxBckSpc is set to
TRUE.

AllCtRx UDINT Number of ALL characters being received since the last rising
edge happened at RxStart.

This output will also stay at its value after RxReset has been set
to TRUE.

BuffRx ANY A variable of any datatype, it is used to store the received
characters in Intel format.

StatusTx WORD Will be 0 if there's no error for the send operation, otherwise
error code (See Runtime Errors, p. 132).

StatusRx WORD Will be 0 if there's no error for the receive operation, otherwise
error code (See Runtime Errors, p. 132).

Parameters Data type Significance

RTXMIT: Full duplex Transfer (Compact, Momentum, Quantum)

132 840 USE 504 00 October 2002

Runtime Errors

Error code (at
StatusTx and
StatusRx

Error code (at StatusTx and StatusRx

Error Code Description

0 No error, either EFB is turned off completely (TxStart and RxStart are FALSE)
or the ongoing process works properly.

8003 (hex) The assigned Modbus port does not exist (>1 on Quantum and Compact, >2
on Momentum).

or

Another EFB is using the assigned Modbus port already.

8304 (hex) The assigned Modbus port is used by a 984-Loadable (like XMIT).

8305 (hex) Illegal baudrate being assigned.

8307 (hex) Illegal number of data bits being assigned.

8308 (hex) Illegal number of stop bits being assigned.

840 USE 504 00 October 2002 133

17
SYMAX_IP_ADDR: SY/MAX IP
Address

Overview

Introduction This chapter describes the SYMAX_IP_ADDR block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 134

Representation 135

Detailed description 136

SYMAX_IP_ADDR: SY/MAX IP Address

134 840 USE 504 00 October 2002

Brief description

Function
description

This Function Block enables the input of SY/MAX IP addressed for the REAG_REG,
CREAD_REG, WRITE_REG and CWRITE_REG Function Blocks. The address is
transferred in the form of a data structure.

The parameters EN and ENO can additionally be projected.

Note: You must be familiar with your network when programming the
SYMAX_IP_ADDR function block.

SYMAX_IP_ADDR: SY/MAX IP Address

840 USE 504 00 October 2002 135

Representation

Symbol Block representation

Parameter
description

Description of parameters:

Elementary
description of
WordArr5

Elementary description for WordArr5

SYMAX_IP_ADDR

DROP_NrBYTE
SLOT_IDBYTE

DestDropWORD

TerminatWORD

WordArr5AddrFld

Parameter Data type Meaning

Drop_No BYTE MBP on Ethernet Transporter (MET) mapping index

Slot_ID BYTE Slots of the NOE module

DestDrop WORD Destination drop number (or set to FF hex)

Terminat WORD Terminator (set to FF hex)

AddrFld WordArr5 Data structure used to transfer the SY/MAX IP address

Element Data type Meaning

WordArr5[1] WORD High value byte:

Slots of the NOE module

Low value byte:

MBP on Ethernet Transporter (MET) mapping index

WordArr5[2] WORD Destination drop number (or set to FF hex)

WordArr5[3] WORD Terminator (set to FF hex)

WordArr5[4] WORD No significance

WordArr5[5] WORD No significance

SYMAX_IP_ADDR: SY/MAX IP Address

136 840 USE 504 00 October 2002

Detailed description

Drop_No The MBP to Ethernet Transporter (MET) mapping index is given at the Drop_Nr
input, i.e. if MET is 6, the value appears as follows:

Slot_ID If an NOE in the rack of a Quantum controller is addressed as a destination node,
the value at the Slot_ID input represents the physical NOE slot, i.e. if the NOE is
plugged in at Slot 7 of the rack, the value appears as follows:

AddrFld If an NOE in the rack of a Quantum controller is addressed as a destination node,
the value in the High value byte represents the physical slot of the NOE and the Low
value byte represents the MBP on Ethernet Transporter (MET) mapping index, i.e.
if the NOE is inserted in slot 7 of the rack and the MET mapping index is 6, the first
element of the data structure looks as follows:

High value byte Slots 1 to 16

Low value byte MBP on Ethernet Transporter (MET) mapping index

0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0

most significant byte least significant byte

840 USE 504 00 October 2002 137

18
TCP_IP_ADDR: TCP/IP Address

Overview

Introduction This chapter describes the TCP_IP_ADDR block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 138

Representation 139

Detailed Description 140

TCP_IP_ADDR: TCP/IP Address

138 840 USE 504 00 October 2002

Brief description

Function
description

This Function Block enables the input of TCP/IP addresses for the READ_REG,
CREAD_REG, WRITE_REG and CWRITE_REG Function Blocks. The address is
transferred in the form of a data structure.

The parameters EN and ENO can additionally be projected.

Note: You must be familiar with your network when programming the
TCP_IP_ADDR Function Block. The "Quantum Ethernet TCP/IP Module User
Guide" provides a complete description of the TCP/IP routing.

TCP_IP_ADDR: TCP/IP Address

840 USE 504 00 October 2002 139

Representation

Symbol Block representation:

Parameter
description

Description of parameters:

Elementary
description of
WordArr5

Elementary description for WordArr5

TCP_IP_ADDR

Map_IdxBYTE
Slot_IDBYTE

Ip_B4BYTE
Ip_B3BYTE
Ip_B2BYTE
Ip_B1BYTE

WordArr5AddrFld

Parameter Data
type

Meaning

Map_Idx BYTE Map index

MBP on Ethernet Transporter (MET) mapping index

Slot_ID BYTE Slot ID

Slot of the NOE module

Ip_B4 BYTE Byte 4 (MSB) of the 32-bit destination IP address

Ip_B3 BYTE Byte 3 of the 32-bit destination IP address

Ip_B2 BYTE Byte 2 of the 32-bit destination IP address

Ip_B1 BYTE Byte 1 (LSB) of the 32-bit destination IP address

AddrFld WordArr5 Data structure used to transfer the TCP/IP address

Element Data type Meaning

WordArr5[1] WORD High value byte:

Slot of the NOE module

Low value byte:

MBP on Ethernet Transporter (MET) mapping index

WordArr5[2] WORD Byte 4 of the 32-bit destination IP address

WordArr5[3] WORD Byte 3 of the 32-bit destination IP address

WordArr5[4] WORD Byte 2 of the 32-bit destination IP address

WordArr5[5] WORD Byte 1 of the 32-bit destination IP address

TCP_IP_ADDR: TCP/IP Address

140 840 USE 504 00 October 2002

Detailed Description

Map_Idx The MBP on Ethernet Transporter (MET) mapping index is given at the Map_Idx
input, i.e. if MET is 6, the value appears as follows:

Slot_ID If an NOE in the rack of a Quantum controller is addressed as destination node, the
value at the Slot_ID input represents the physical NOE slot, i.e. if the NOE is
plugged in at Slot 7 of the rack, the value appears as follows:

AddrFld If an NOE in the rack of a Quantum controller is addressed as a destination node,
the value in the High value byte represents the physical slot of the NOE and the Low
value byte represents the MBP on Ethernet Transporter (MET) mapping index, i.e.
if the NOE is inserted in slot 7 of the rack and the MET mapping index is 6, the first
element of the data structure looks as follows:

High value byte Slots 1 ... 16

Low value byte MBP on Ethernet Transporter (MET) mapping index

0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0

High value byte Low value byte

840 USE 504 00 October 2002 141

19
WRITE_REG: Write register

Overview

Introduction This chapter describes the WRITE_REG block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief description 142

Representation 142

Function mode 145

Parameter description 146

WRITE_REG: Write register

142 840 USE 504 00 October 2002

Brief description

Function
description

If requested, this Function block will write a register area once (rising edge of the
REQ input). It transfers data from the PLC via Modbus Plus, TCP/IP Ethernet or SY/
MAX Ethernet to an addressed slave.

EN and ENO can be configured as additional parameters.

Representation

Symbol Block representation:

Parameter
description

Description of parameters:

Note: You must be familiar with the routing procedures of your network when
programming a WRITE_REG function. Modbus Plus routing path structures will be
described in detail in "Modbus Plus Network Planning and Installation Guide".

Note: For technical reasons, this function block does not allow the use of ST and
IL programming languages.

WRITE_REG

REQBOOL
SLAVEREGDINT
NO_REGINT

REG_WRITWORD
AddrFldWordArr5

BOOLDONE

BOOLERROR

WORDSTATUS

Parameter Data type Meaning

REQ BOOL Start write operation once

SLAVEREG DINT Offset address of the first 4x register in the slave to be written to

NO_REG INT Number of registers to be written from slave

AddrFld WordArr5 Data structure transferring the Modbus Plus-address, TCP/IP
address or SY/MAX-IP address.

REG_WRIT WORD First 4x register of the source data area

DONE BOOL Set to "1" for one scan after writing data

ERROR BOOL Set to "1" for one scan in case of error

STATUS WORD Error code, see Runtime errors, p. 95

WRITE_REG: Write register

840 USE 504 00 October 2002 143

Elementary
description for
WordArr5 in
Modbus Plus

Elementary description for WordArr5 in Modbus Plus:

Elementary
description for
WordArr5 with
TCP/IP EtherNet

Elementary description for WordArr5 with TCP/IP EtherNet:

Element Data type Meaning

WordArr5[1] WORD Low value byte:

Routing register 1 is used for address specification (routing path
addresses one of five) of the destination node during network
transfer.

The last byte in the routing path that is not zero is the destination
node.

High value byte:

Slot of the network adapter module (NOM), if any.

WordArr5[2] WORD Routing register 2

WordArr5[3] WORD Routing register 3

WordArr5[4] WORD Routing register 4

WordArr5[5] WORD Routing register 5

Element Data type Meaning

WordArr5[1] WORD High value byte:

Slot of the NOE module

Low value byte:

MBP on Ethernet Transporter (MET) mapping index

WordArr5[2] WORD Byte 4 (MSB) of the 32-bit destination IP address

WordArr5[3] WORD Byte 3 of the 32-bit destination IP address

WordArr5[4] WORD Byte 2 of the 32-bit destination IP address

WordArr5[5] WORD Byte 1 (LSB) of the 32-bit destination IP address

WRITE_REG: Write register

144 840 USE 504 00 October 2002

Elementary
description for
WordArr5 with
SYMAX EtherNet

Elementary description for WordArr5 with SYMAX EtherNet:

Element Data type Meaning

WordArr5[1] WORD High value byte:

Slot of the NOE module

Low value byte:

MBP on Ethernet Transporter (MET) mapping index

WordArr5[2] WORD Destination drop number (or set to FF hex)

WordArr5[3] WORD Terminator (set to FF hex)

WordArr5[4] WORD No significance

WordArr5[5] WORD No significance

WRITE_REG: Write register

840 USE 504 00 October 2002 145

Function mode

Function mode
of the
WRITE_REG
module

Although a large number of WRITE_REG function blocks can be programmed, only
four write operations may be active at the same time. In such a case it is insignificant
whether they are the result of this function block or of other write operations (e.g.
MBP_MSTR, MSTR, CWRITE_REG). All function blocks use one data transaction
path and require multiple cycles to complete a job.

If several WRITE_REG function blocks are used within an application, they must at
least differ in the values of their NO_REG or REG_WRITE parameters.

The status signals DONE and ERROR report the function block state to the user
program.

The entire routing information is contained in data structure WordArr5 of input
AddrFld. The type of function block connected to this input and thus the contents of
the data structure depend on the network used.

Please use:

� Modbus Plus for function block MODBUSP_ADDR (See MODBUSP_ADDR:
Modbus Plus Address, p. 105)

� TCP/IP Ethernet: the function block TCP_IP_ADDR (See TCP_IP_ADDR: TCP/
IP Address, p. 137)

� SY/MAX Ethernet: the function block SYMAX_IP_ADDR (See
SYMAX_IP_ADDR: SY/MAX IP Address, p. 133)

Note: A TCP/IP communication between a Quantum PLC (NOE 711 00) and a
Momentum PLC (all TCP/IP CPUs and all TCP/IP I/O modules) is only possible,
when only oneread or write job is carried out in every cycle. If several jobs are sent
per PLC cycle, the communication stops without generating an error message in
the status register of the function block.

Note: For experts:

The WordArr5 data structure can also be used with constants.

WRITE_REG: Write register

146 840 USE 504 00 October 2002

Parameter description

REQ A rising edge triggers the write transaction.

The parameter can be specified as Direct address, Located variable, Unlocated
variable or Literal.

SLAVEREG Start of the destination area in the addressed slave to which the source data is
written. The source area always resides within the 4x register area. SLAVEREG
expects the destination reference as offset within the 4x area. The leading "4" must
be omitted (e.g. 59 (contents of the variables or value of the literal) = 40059).

The parameter can be specified as Direct address, Located variable, Unlocated
variable or Literal.

NO_REG Number of registers to be written to slave processor (1 ... 100).

The parameter can be specified as Direct address, Located variable, Unlocated
variable or Literal.

REG_WRIT This word parameter addresses the first register in a series of NO_REG registers
lying in series used as source data area.

The parameter must be entered as a direct address or located variable.

DONE Transition to ON state for one program scan signifies data have been transferred.

The parameter can be specified as Direct address, Located variable or Unlocated
variable .

ERROR Transition to ON state for one program scan signifies detection of a new error.

The parameter can be specified as Direct address, Located variable or Unlocated
variable.

STATUS Error code, see Runtime errors, p. 95

The parameter can be specified as Direct address, Located variable or Unlocated
variable.

840 USE 504 00 October 2002 147

20
WRITEREG: Write register

Overview

Introduction This chapter describes the WRITEREG block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Short description 148

Representation 149

Function mode 150

Parameter description 151

WRITEREG: Write register

148 840 USE 504 00 October 2002

Short description

Function
description

If requested, this function block will write a register area once (rising edge of the
REQ input). It transfers data from the PLC via Modbus Plus to an addressed slave.

EN and ENO can be configured as additional parameters.

Note: It is necessary to be familiar with the routing procedures of your network
when programming a WRITEREG function. Modbus Plus routing path structures
will be described in detail in "Modbus Plus Network Planning and Installation
Guide".

Note: This function block only supports the local Modbus Plus interface (no NOM).

If using a NOM please work with the block WRITE_REG.

Note: This function block does not support TCP/IP or SY/MAX Ethernet.

If TCP/IP- or SY/MAX-Ethernet is needed, please use the block WRITE_REG.

Note: For technical reasons use of the programming languages ST and IL is not
allowed by this function block

WRITEREG: Write register

840 USE 504 00 October 2002 149

Representation

Symbol Representation of the block:

Parameter
description

Description of the block parameter:

WRITEREG

REQBOOL
NODEADDRINT
ROUTPATHDINT
SLAVEREGDINT

NO_REGINT
REG_WRITWORD

BOOLDONE

BOOLERROR

WORDSTATUS

Parameter Data type Meaning

REQ BOOL Start write operation once

NODEADDR INT Device address within the target segment

ROUTEPATH DINT Routing path to target segment

SLAVEREG DINT Offset address of the first 4x register in the slave to
be written to

NO_REG INT Number of registers to be written from slave

REG_WRIT WORD First 4x register of the source data area

DONE BOOL Set to "1" for one scan after writing data

ERROR BOOL Set to "1" for one scan in case of error

STATUS WORD Error code, see Runtime errors, p. 95

WRITEREG: Write register

150 840 USE 504 00 October 2002

Function mode

Function mode
of WRITEREG
blocks

Although a large number of WRITEREG function blocks can be programmed, only
four write operations may be active at the same time. In such a case it is insignificant
whether they are the result of this function block or of other write operations (e.g.
MBP_MSTR, MSTR, CWRITE_REG). All function blocks use one data transaction
path and require multiple cycles to complete a job.

If several WRITEREG function blocks are used within an application, they must at
least differ in the values of their NO_REG or REG_WRITE parameters.

The status signals DONE and ERROR report the function block state to the user
program.

The complete routing information must be separated into two parts:

� into the NODEADDR of the destination node (regardless of whether it is located
in the local segment or in another segment) and

� the routing path, in case there is a link via network bridges.

The destination address arising from this is made from these two items of
information.

The routing path is a DINT data type, which is interpreted as a sequence of two-digit
information units. Appended "00" are not required (e.g. both routing paths 4711 and
47110000 are valid, for NODEADDR 34 the result is destination reference
47.11.34.00.00).

WRITEREG: Write register

840 USE 504 00 October 2002 151

Parameter description

REQ A rising edge triggers the write transaction.

The parameter can be specified as direct address, located variable, unlocated
variable or Literal.

NODEADDR Identifies the node address within the target segment.

The parameter can be specified as direct address, located variable, unlocated
variable or Literal.

ROUTPATH Identifies the routing path to the target segment. The two-digit information units run
from 01 … 64 (see Function mode, p. 150). If the slave resides in the local network
segment, ROUTPATH must be set to "0" or must be left unconnected.

The parameter can be specified as direct address, located variable, unlocated
variable or Literal.

SLAVEREG Start of the destination area in the addressed slave to which the source data is
written. The source area always resides within the 4x register area. SLAVEREG
expects the destination reference as offset within the 4x area. The leading "4" must
be omitted (e.g. 59 (contents of the variables or value of the literal) = 40059).

The parameter can be specified as direct address, located variable, unlocated
variable or Literal.

NO_REG Number of registers to be written to slave processor (1 ... 100).

The parameter can be specified as direct address, located variable, unlocated
variable or Literal.

REG_WRIT This word parameter addresses the first register in a series of NO_REG registers
lying in series used as source data area.

The parameter must be entered as a direct address or located variable.

DONE Transition to ON state for one program scan signifies data have been transferred.

The parameter can be specified as direct address, located variable or unlocated
variable.

WRITEREG: Write register

152 840 USE 504 00 October 2002

ERROR Transition to ON state for one program scan signifies detection of a new error.

The parameter can be specified as direct address, located variable or unlocated
variable.

STATUS Error code, see (See Runtime errors, p. 95)

The parameter can be specified as direct address, located variable or unlocated
variable.

840 USE 504 00 October 2002 153

21
XMIT: Transmit (Momentum)

At a Glance

Introduction This chapter describes the XMIT function block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief Description 154

Representation 155

XMIT: Transmit (Momentum)

154 840 USE 504 00 October 2002

Brief Description

Function
Description

The XMIT (Transmit) function block sends Modbus messages from a "master" PLC
to multiple slave PLCs or sends ASCII character strings from the PLC's Modbus
slave port#1 or port#2 to ASCII printers and terminals. XMIT sends these messages
over telephone dialup modems, radio modems, or simply direct connection.XMIT
comes with three modes: a communication mode, port status mode and a
conversion mode. XMIT performs general ASCII input functions in the
communication mode including simple ASCII and terminated ASCII. You may
import and export ASCII or binary data into your PLC and convert it into various
binary data or ASCII to send to DCE devices based upon the needs of your
application. The block has builtin diagnostics that checks to make sure no other
XMIT blocks are active in the PLC on the same port. Within the XMIT block a control
table allows you to control the communications link between the PLC and DCE (Data
Communication Equipment) devices attached to Modbus port #1 or port#2 of the
PLC. The XMIT block does NOT activate the port LED when it is transmitting
data.Remember, the Modbus protocol is a "master/slave" protocol. Modbus is
designed to have only one master polling multiple slaves. Therefore, when using
the XMIT block in a network with multiple masters, contention resolution and
collision avoidance is your responsibility and may easily be addressed through
ladder logic programming. paragraph of overview block.

EN and ENO can be configured as additional parameters

Using Modbus Remember, the Modbus protocol is a "master/slave" protocol. Modbus is designed
to have only one master polling multiple slaves. Therefore, when using the XMIT
block in a network with multiple masters, contention resolution and collision
avoidance is your responsibility and may easily be addressed through user logic
programming.

Restrictions This function block controls Modbus port #1 and #2 of the Momentum CPUs.It can
be used with the stripped exec onlyThe XMIT function block works just as its LL984
counterpart, but without ASCII string conversion, copy and compare functions and
without the Port Status functions.

Software and
Hardware
Required

When using the Momentum PLCs the XMIT function block it is a builtin.

Detailed
Description

The detailed description for the XMIT function block can be found in the XMIT-IEC
User Manual.

XMIT: Transmit (Momentum)

840 USE 504 00 October 2002 155

Representation

Symbol Representation of the block

Parameter
Description

Description of the block parameter

XMIT

MSG_OUTANY
SETXMIT_SET
PORTBYTE
STARTBOOL
ABORTBOOL

ANYMSG_IN

XMIT_CFGCFG

BOOLOP_ACT

BOOLNO_SUC

BOOLOP_SUC

DINTExt

Parameters Data type Meaning

SET XMIT_SET Data structure for the XMIT configuration

MSG_OUT ANY Message to be sent (must be in 4x range)

PORT BYTE Selection of communications interface

START BOOL 1: Starts XMIT operation

ABORT BOOL 1: Aborts current XMIT operation

MSG_IN ANY Incoming message (must be in 4x range)

CFG XMIT_CFG Data structure with all components of the XMIT
configuration, including the automatically set and not
used variables. Only for display and must be in 4x
range.

OP_ACT BOOL 1: XMIT operation in progress

NO_SUC BOOL 1: There is an error or the current XMIT operation is
aborted.

OP_SUC BOOL 1: XMIT operation successfully completed

Ext DINT not presently in use

XMIT: Transmit (Momentum)

156 840 USE 504 00 October 2002

XMIT_SET Data
Structure

Description of data structure

Element Data type Meaning

BaudRate WORD This component corresponds to the 4x+3 register
(data rate) of the LL984 XMIT instruction.

DataBits BYTE This component corresponds to the 4x+4 register
(data bits) of the LL984 XMIT instruction.

Parity BYTE This component corresponds to the 4x+5 register
(parity) of the LL984 XMIT instruction.

StopBits BYTE This component corresponds to the 4x+6 register
(stop bits) of the LL984 XMIT instruction.

CommandWord WORD This component corresponds to the 4x+8 register
(command word) of the LL984 XMIT instruction.

MessageLen WORD This component corresponds to the 4x+10 register
(message length) of the LL984 XMIT instruction. (In
case of a terminated ASCII receipt, this component
will be set automatically.)

RespTimeOut WORD This component corresponds to the 4x+11 register
(response time-out (ms)) of the LL984 XMIT
instruction.

RetryLimit WORD This component corresponds to the 4x+12 register
(retry limit) of the LL984 XMIT instruction.

XmStartDelay WORD This component corresponds to the 4x+13 register
(start of transmission delay (ms)) of the LL984 XMIT
instruction.

XmEndDelay WORD This component corresponds to the 4x+14 register
(end of transmission delay (ms)) of the LL984 XMIT
instruction.

XMIT: Transmit (Momentum)

840 USE 504 00 October 2002 157

XMIT_CFG Data
Structure

Description of data structure

Element Data type Meaning

FaultStatus WORD This component corresponds to the 4x+1 register
(fault status) of the LL984 XMIT instruction.

UserAvail_1 WORD This component corresponds to the 4x+2 register
(available to user) of the LL984 XMIT instruction.

BaudRate WORD This component corresponds to the 4x+3 register
(data rate) of the LL984 XMIT instruction.

DataBits WORD This component corresponds to the 4x+4 register
(data bits) of the LL984 XMIT instruction.

Parity WORD This component corresponds to the 4x+5 register
(parity) of the LL984 XMIT instruction.

StopBits WORD This component corresponds to the 4x+6 register
(stop bits) of the LL984 XMIT instruction.

UserAvail_2 WORD This component corresponds to the 4x+7 register
(available to user) of the LL984 XMIT instruction.

CommandWord WORD This component corresponds to the 4x+8 register
(command word) of the LL984 XMIT instruction.

MessagePtr WORD This component corresponds to the 4x+9 register
(message pointer) of the LL984 XMIT instruction.

MessageLen WORD This component corresponds to the 4x+10 register
(message length) of the LL984 XMIT instruction.

RespTimeOut WORD This component corresponds to the 4x+11 register
(response time-out (ms)) of the LL984 XMIT
instruction.

RetryLimit WORD This component corresponds to the 4x+12 register
(retry limit) of the LL984 XMIT instruction.

XmStartDelay WORD This component corresponds to the 4x+13 register
(start of transmission delay (ms)) of the LL984 XMIT
instruction.

XmEndDelay WORD This component corresponds to the 4x+14 register
(end of transmission delay (ms)) of the LL984 XMIT
instruction.

CurrentRetry WORD This component corresponds to the 4x+15 register
(current retry) of the LL984 XMIT instruction.

XMIT: Transmit (Momentum)

158 840 USE 504 00 October 2002

840 USE 504 00 October 2002 159

22
XXMIT: Transmit (Compact,
Momentum, Quantum)

At a Glance

Introduction This chapter describes the XXMIT function block.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Brief Description 160

Representation 161

XXMIT: Transmit (Compact, Momentum, Quantum)

160 840 USE 504 00 October 2002

Brief Description

Function
Description

The XXMIT (Transmit) function block sends Modbus messages from a "master" PLC
to multiple slave PLCs or sends ASCII character strings from the PLC's Modbus
slave port#1 (on Momentum PLCs also port#2 is supported) to ASCII printers and
terminals. XXMIT sends these messages over telephone dialup modems, radio
modems, or simply direct connections. XXMIT performs general ASCII input
functions in the communication mode including simple ASCII and terminated ASCII.
You may import and export ASCII or binary data into your PLC. The block has builtin
diagnostics that checks to make sure no other XXMIT blocks are active in the PLC
on the same port. Within the XXMIT block control inputs allows you to control the
communications link between the PLC and DCE (Data Communication Equipment)
devices attached to Modbus port #1 or port#2 of the PLC. The XXMIT block does
NOT activate the port LED when it is transmitting data.

Restrictions The following restrictions apply to the XXMIT function block:

XXMIT does not support::

� ASCII string conversion
� copy and compare functions
� Port Status functions

Note: EN and ENO should NOT be used with the XXMIT, otherwise the output
parameters may freeze.

Note: Momentum only supports one Stopbit.

Note: Port 2 only supported by Momentum PLCs

XXMIT: Transmit (Compact, Momentum, Quantum)

840 USE 504 00 October 2002 161

Software and
Hardware
Required

Software

The XXMIT function block requires the following software

� A minimum of Concept 2.2 Service Release 2
� IEC exec version

Hardware

The following hardware is not supported by the XXMIT function block:

� PLCs which do not support IEC languages
� Soft PLC
� All Atrium PLCs
� IEC Simulator

Memory
Requirements

The usage of one or more XXMIT EFBs in an IEC application consumes
approximately 15.5 KByte program (code) memory.For each instance of this EFB
included in the user program, additional data memory between 2.5 and 3 Kbyte is
allocated.

Detailed
Description

The detailed description for the XXMIT function block can be found in the XMIT-IEC
User Manual.

Representation

Symbol Representation of the Block

XXMIT

BOOLActive

BOOLDone

BOOLError

ANYMsgIn

INTReoCount

INTStatus

INTRetry

StartBOOL
CommandWORD
MsgOutANY
MsgLenINT
PortBYTE
BauderateINT
DatabitsBYTE
StopbitsBYTE
ParityBYTE
RespToutBYTE

RetryLmtINT
StartDlyINT
EndDlyINT

XXMIT: Transmit (Compact, Momentum, Quantum)

162 840 USE 504 00 October 2002

Parameter
Description

Description of the block parameter

Parameters Data type Significance

Start BOOL Value of 1 starts XXMIT operation

Command WORD Specifies the command to be performed

MsgOut ANY Message to be sent

MsgLen INT Message length of output message

Port BYTE Selection of communications interface

Baudrate INT Baudrate

Databits BYTE Databits

Stopbits BYTE Stopbits

Parity BYTE Parity

RespTout INT Time to wait for a valid response

RetryLmt INT Number of retries until receiving a valid response

StartDly INT Waiting time before message transmit.

EndDly INT Waiting time after message transmit

Active BOOL Value of 1 indicates that an XXMIT operation is in
progress

Done BOOL Value of 1 indicates that the XXMIT operation has
been completed successfully

Error BOOL Value of 1 indicates that an error has ocured or that
the current XXMIT operation is terminated

MsgIn ANY Incoming message

RecCount INT Displaythe number of received characters

Status INT Display a fault code generated by the XXMIT block

Retry INT Indicates the current number of retry attempts made
by the XXMIT block

840 USE 504 00 October 2002 163

Glossary

Active Window The window, which is currently selected. Only one window can be active at any
given time. When a window is active, the color of the title bar changes, so that it is
distinguishable from the other windows. Unselected windows are inactive.

Actual
Parameters

Current connected Input / Output Parameters.

Addresses (Direct) addresses are memory ranges in the PLC. They are located in the State
RAM and can be assigned Input/Output modules.

The display/entry of direct addresses is possible in the following formats:

� Standard Format (400001)
� Separator Format (4:00001)
� Compact format (4:1)
� IEC Format (QW1)

ANL_IN ANL_IN stands for the "Analog Input" data type and is used when processing analog
values. The 3x-References for the configured analog input module, which were
specified in the I/O component list, are automatically assigned data types and
should therefore only be occupied with Unlocated Variables.

ANL_OUT ANL_OUT stands for the "Analog Output" data type and is used when processing
analog values. The 4x-References for the configured analog input module, which
were specified in the I/O component list, are automatically assigned data types and
should therefore only be occupied with Unlocated Variables.

ANY In the above version "ANY" covers the BOOL, BYTE, DINT, INT, REAL, UDINT,
UINT, TIME and WORD elementary data types and related Derived Data Types.

A

Glossary

164 840 USE 504 00 October 2002

ANY_BIT In the above version "ANY_BIT" covers the BOOL, BYTE and WORD data types.

ANY_ELEM In the above version "ANY_ELEM" covers the BOOL, BYTE, DINT, INT, REAL,
UDINT, UINT, TIME and WORD data types.

ANY_INT In the above version "ANY_INT" covers the DINT, INT, UDINT and UINT data types.

ANY_NUM In the above version "ANY_NUM" covers the DINT, INT, REAL, UDINT and UINT
data types.

ANY_REAL In the above version "ANY_REAL" covers the REAL data type.

Application
Window

The window containing the workspace, menu bar and the tool bar for the application
program. The name of the application program appears in the title bar. An
application window can contain several Document windows. In Concept the
application window corresponds to a Project.

Argument Synonymous with Actual parameters.

ASCII-Mode The ASCII (American Standard Code for Information Interchange) mode is used to
communicate with various host devices. ASCII works with 7 data bits.

Atrium The PC based Controller is located on a standard AT board, and can be operated
within a host computer in an ISA bus slot. The module has a motherboard (requiring
SA85 driver) with two slots for PC104 daughter-boards. In this way, one PC104
daughter-board is used as a CPU and the other as the INTERBUS controller.

Backup file
(Concept-EFB)

The backup file is a copy of the last Source coding file. The name of this backup file
is "backup??.c" (this is assuming that you never have more than 100 copies of the
source coding file). The first backup file has the name "backup00.c". If you have
made alterations to the Definitions file, which do not cause any changes to the EFB
interface, the generation of a backup file can be stopped by editing the source
coding file (Objects → Source). If a backup file is created, the source file can be
entered as the name.

Base 16 literals Base 16 literals are used to input whole number values into the hexadecimalsystem.
The base must be denoted using the prefix 16#. The values can not have any signs
(+/-). Single underscores (_) between numbers are not significant.

B

Glossary

840 USE 504 00 October 2002 165

Example

16#F_F or 16#FF (decimal 255)

16#E_0 or 16#E0 (decimal 224)

Base 2 literals Base 2 literals are used to input whole number values into the dualsystem. The base
must be denoted using the prefix 2#. The values can not have any signs (+/-). Single
underscores (_) between numbers are not significant.

Example

2#1111_1111 or 2#11111111 (decimal 255)

2#1110_0000 or 2#11100000 (decimal 224)

Base 8 literals Base 8 literals are used to input whole number values into the octosystem. The base
must be denoted using the prefix 8#. The values can not have any signs (+/-). Single
underscores (_) between numbers are not significant.

Example

8#3_77 or 8#377 (decimal 255)

8#34_0 or 8#340 (decimal 224)

Binary
Connections

Connections between FFB outputs and inputs with the data type BOOL.

Bitsequence A data element, which consists of one or more bits.

BOOL BOOL stands for the data type "boolean". The length of the data element is 1 bit
(occupies 1 byte in the memory). The value range for the variables of this data type
is 0 (FALSE) and 1 (TRUE).

Bridge A bridge is a device, which connects networks. It enables communication between
nodes on two networks. Each network has its own token rotation sequence - the
token is not transmitted via the bridge.

BYTE BYTE stands for the data type "bit sequence 8". Entries are made as base 2 literal,
base 8 literal or base 16 literal. The length of the data element is 8 bits. A numerical
value range can not be assigned to this data type.

Glossary

166 840 USE 504 00 October 2002

Clipboard The clipboard is a temporary memory for cut or copied objects. These objects can
be entered in sections. The contents of the clipboard are overwritten with each new
cut or copy.

Coil A coil is a LD element which transfers the status of the horizontal short on its left
side, unchanged, to the horizontal short on its right side. In doing this, the status is
saved in the relevant variable/direct address.

Compact format
(4:1)

The first digit (the Reference) is separated from the address that follows by a colon
(:) where the leading zeros are not specified.

Constants Constants are Unlocated variables, which are allocated a value that cannot be
modified by the logic program (write protected).

Contact A contact is a LD element, which transfers a status on the horizontal link to its right
side. This status comes from the boolean AND link of the status of the horizontal link
on the left side, with the status of the relevant variable/direct address. A contact
does not change the value of the relevant variable/direct address.

Data transfer
settings

Settings which determine how information is transferred from your programming
device to the PLC.

Data Types The overview shows the data type hierarchy, as used for inputs and outputs of
functions and function blocks. Generic data types are denoted using the prefix
"ANY".

� ANY_ELEM
� ANY_NUM

ANY_REAL (REAL)
ANY_INT (DINT, INT, UDINT, UINT)

� ANY_BIT (BOOL, BYTE, WORD)
� TIME

� System Data types (IEC Extensions)
� Derived (from "ANY" data types)

C

D

Glossary

840 USE 504 00 October 2002 167

DCP I/O drop A remote network with a super-ordinate PLC can be controlled using a Distributed
Control Processor (D908). When using a D908 with remote PLC, the super-ordinate
PLC considers the remote PLC as a remote I/O drop. The D908 and the remote PLC
communicate via the system bus, whereby a high performance is achieved with
minimum effect on the cycle time. The data exchange between the D908 and the
super-ordinate PLC takes place via the remote I/O bus at 1.5Mb per second. A
super-ordinate PLC can support up to 31 D908 processors (addresses 2-32).

DDE (Dynamic
Data Exchange)

The DDE interface enables a dynamic data exchange between two programs in
Windows. The user can also use the DDE interface in the extended monitor to
invoke their own display applications. With this interface, the user (i.e. the DDE
client) can not only read data from the extended monitor (DDE server), but also write
data to the PLC via the server. The user can therefore alter data directly in the PLC,
while monitoring and analyzing results. When using this interface, the user can
create their own "Graphic Tool", "Face Plate" or "Tuning Tool" and integrate into the
system. The tools can be written in any language, i.e. Visual Basic, Visual C++,
which supports DDE. The tools are invoked, when the user presses one of the
buttons in the Extended Monitor dialog field. Concept Graphic Tool: Configuration
signals can be displayed as a timing diagram using the DDE connection between
Concept and Concept Graphic Tool.

Declaration Mechanism for specifying the definition of a language element. A declaration usually
covers the connection of an identifier to a language element and the assignment of
attributes such as data types and algorithms.

Definitions file
(Concept-EFB)

The definitions file contains general descriptive information on the selected EFB and
its formal parameters.

Derived Data
Type

Derived data types are data types, which are derived from Elementary Data Types
and/or other derived data types. The definition of derived data types is found in the
Concept data type editor.

A distinction is made between global data types and local data types.

Derived Function
Block (DFB)

A derived function block represents the invocation of a derived function block type.
Details of the graphic form of the invocation can be found in the "Functional block
(instance)". In contrast to the invocation of EFB types, invocations of DFB types are
denoted by double vertical lines on the left and right hand side of the rectangular
block symbol.

The body of a derived function block type is designed using FBD language, LD
language, ST language, IL language, however, this is only the case in the current
version of the programming system. Furthermore, derived functions can not yet be
defined in the current version.

A distinction is made between local and global DFBs.

Glossary

168 840 USE 504 00 October 2002

Device Address The device address is used to uniquely denote a network device in the routing path.
The address is set on the device directly, e.g. using the rotary switch on the back of
the modules.

DFB Code The DFB code is the section's DFB code, which can be executed. The size of the
DFB code is mainly dependant upon the number of blocks in the section.

DFB instance
data

The DFB instance data is internal data from the derived function block used in the
program.

DINT DINT stands for the data type "double length whole number (double integer)".
Entries are made as integer literal, base 2 literal, basis 8 literal or base 16 literal. The
length of the data element is 32 bits. The value range for variables of this datatype
reaches from -2 exp (31) to 2 exp (31) -1.

Direct
Representation

A method of displaying variables in the PLC program, from which the assignment to
the logical memory can be directly - and indirectly to the physical memory - derived.

Document
Window

A window within an application window. Several document windows can be open at
the same time in an application window. However, only one document window can
ever be active. Document windows in Concept are, for example, sections, the
message window, the reference data editor and the PLC configuration.

DP (PROFIBUS) DP = Remote Peripheral

Dummy An empty file, which consists of a text heading with general file information, such as
author, date of creation, EFB designation etc. The user must complete this dummy
file with further entries.

DX Zoom This property enables the user to connect to a programming object, to monitor and,
if necessary change, its data value.

EFB code The EFB code is the section's EFB code, which can be executed. In addition the
used EFBs count in DFBs.

Elementary
functions/
function blocks
(EFB)

Identifier for Functions or Function blocks, whose type definitions are not formulated
in one of the IEC languages, i.e. whose body for example can not be modified with
the DFB editor (Concept-DFB). EFB types are programmed in "C" and are prepared
in a pre-compiled form using libraries.

E

Glossary

840 USE 504 00 October 2002 169

EN / ENO (Enable
/ Error signal)

If the value of EN is equal to "0" when the FFB is invoked, the algorithms that are
defined by the FFB will not be executed and all outputs keep their previous values.
The value of ENO is in this case automatically set to "0". If the value of EN is equal
to "1", when the FFB is invoked, the algorithms which are defined by the FFD will be
executed. After the error-free execution of these algorithms, the value of ENO is
automatically set to "1". If an error occurs during the execution of these algorithms,
ENO is automatically set to "0". The output behavior of the FFB is independent of
whether the FFBs are invoked without EN/ENO or with EN=1. If the EN/ENO display
is switched on, it is imperative that the EN input is switched on. Otherwise, the FFB
is not executed. The configuration of EN and ENO is switched on or off in the Block
Properties dialog box. The dialog box can be invoked with the Objects →
Properties... menu command or by double-clicking on the FFB.

Error If an error is recognized during the processing of a FFB or a step (e.g. unauthorized
input values or a time error), an error message appears, which can be seen using
the Online → Online events... menu command. For FFBs, the ENO output is now
set to "0".

Evaluation The process, through which a value is transmitted for a Function or for the output of
a Function block during Program execution.

FFB (Functions/
Function blocks)

Collective term for EFB (elementary functions/function blocks) and DFB (Derived
function blocks)

Field variables A variable, which is allocated a defined derived data type with the key word ARRAY
(field). A field is a collection of data elements with the same data type.

FIR Filter (Finite Impulse Response Filter) a filter with finite impulse answer

Formal
parameters

Input / Output parameters, which are used within the logic of a FFB and led out of
the FFB as inputs/outputs.

Function (FUNC) A program organization unit, which supplies an exact data element when
processing. a function has no internal status information. Multiple invocations of the
same function using the same input parameters always supply the same output
values.

F

Glossary

170 840 USE 504 00 October 2002

Details of the graphic form of the function invocation can be found in the "Functional
block (instance)". In contrast to the invocation of the function blocks, function
invocations only have a single unnamed output, whose name is the same as the
function. In FBD each invocation is denoted by a unique number via the graphic
block, this number is automatically generated and can not be altered.

Function block
(Instance) (FB)

A function block is a program organization unit, which correspondingly calculates the
functionality values that were defined in the function block type description, for the
outputs and internal variable(s), if it is invoked as a certain instance. All internal
variable and output values for a certain function block instance remain from one
function block invocation to the next. Multiple invocations of the same function block
instance with the same arguments (input parameter values) do not therefore
necessarily supply the same output value(s).

Each function block instance is displayed graphically using a rectangular block
symbol. The name of the function block type is stated in the top center of the
rectangle. The name of the function block instance is also stated at the top, but
outside of the rectangle. It is automatically generated when creating an instance,
but, depending on the user's requirements, it can be altered by the user. Inputs are
displayed on the left side of the block and outputs are displayed on the right side.
The names of the formal input/output parameters are shown inside the rectangle in
the corresponding places.

The above description of the graphic display is especially applicable to the function
invocation and to DFB invocations. Differences are outlined in the corresponding
definitions.

Function Block
Dialog (FBD)

One or more sections, which contain graphically displayed networks from Functions,
Function blocks and Connections.

Function block
type

A language element, consisting of: 1. the definition of a data structure, divided into
input, output and internal variables; 2. a set of operations, which are performed with
elements of the data structure, when a function block type instance is invoked. This
set of operations can either be formulated in one of the IEC languages (DFB type)
or in "C" (EFB type). A function block type can be instanced (invoked) several times.

Function
Number

The function number is used to uniquely denote a function in a program or DFB. The
function number can not be edited and is automatically assigned. The function
number is always formed as follows: .n.m

n = section number (current number)

m = Number of the FFB object in the section (current number)

Glossary

840 USE 504 00 October 2002 171

Generic Data
Type

A data type, which stands in place of several other data types.

Generic literals If the literal's data type is not relevant, simply specify the value for the literal. If this
is the case, Concept automatically assigns the literal a suitable data type.

Global Data Global data are Unlocated variables.

Global derived
data types

Global derived data types are available in each Concept project and are occupied in
the DFB directory directly under the Concept directory.

Global DFBs Global DFBs are available in each Concept project. The storage of the global DFBs
is dependant upon the settings in the CONCEPT.INI file.

Global macros Global macros are available in each Concept project and are occupied in the DFB
directory directly under the Concept directory.

Groups (EFBs) Some EFB libraries (e.g. the IEC library) are divided into groups. This facilitates EFB
location especially in expansive libraries.

Host Computer Hardware and software, which support programming, configuring, testing, operating
and error searching in the PLC application as well as in a remote system application,
in order to enable source documentation and archiving. The programming device
can also be possibly used for the display of the process.

I/O Map The I/O and expert modules from the various CPUs are configured in the I/O map.

Icon Graphical representation of different objects in Windows, e.g. drives, application
programs and document windows.

G

H

I

Glossary

172 840 USE 504 00 October 2002

IEC 61131-3 International standard: Programmable Logic Controls - Part 3: Programming
languages.

IEC Format
(QW1)

There is an IEC type designation in initial position of the address, followed by the
five-figure address.

� %0x12345 = %Q12345
� %1x12345 = %I12345
� %3x12345 = %IW12345
� %4x12345 = %QW12345

IEC name
conventions
(identifier)

An identifier is a sequence of letters, numbers and underscores, which must begin
with either a letter or underscore (i.e. the name of a function block type, an instance,
a variable or a section). Letters of a national typeface (i.e.: ö,ü, é, õ) can be used,
except in project and DFB names.

Underscores are significant in identifiers; e.g. "A_BCD" and "AB_CD" are
interpreted as two separate identifiers. Several leading and multiple successive
underscores are not allowed.

Identifiers should not contain any spaces. No differentiation is made between upper
and lower case, e.g. "ABCD" and "abcd" are interpreted as the same identifier.

Identifiers should not be Keywords.

IEC Program
Memory

The IEC memory consists of the program code, EFB code, the section data and the
DFB instance data.

IIR Filter (Infinite Impulse Response Filter) a filter with infinite impulse answer

Initial step The first step in a sequence. A step must be defined as an initial step for each
sequence. The sequence is started with the initial step when first invoked.

Initial value The value, which is allocated to a variable when the program is started. The values
are assigned in the form of literals.

Input bits (1x
references)

The 1/0 status of the input bits is controlled via the process data, which reaches from
an input device to the CPU.

Input parameter
(Input)

Upon invocation of a FFB, this transfers the corresponding argument.

Note: The x, which follows the initial reference type number, represents a five-
figure storage location in the user data memory, i.e. the reference 100201 signifies
an output or marker bit at the address 201 in the State RAM.

Glossary

840 USE 504 00 October 2002 173

Input words (3x
references)

An input word contains information, which originates from an external source and is
represented by a 16 bit number. A 3x register can also contain 16 sequential input
bits, which were read into the register in binary or BCD (binary coded decimal)
format. Note: The x, which follows the initial reference type number, represents a
five-figure storage location in the user data memory, i.e. the reference 300201
signifies an input word at the address 201 in the State RAM.

Input/output
marker bits (0x
references)

An input/output marker bit can be used to control real output data using an output
unit of the control system, or to define one or more discrete outputs in the state RAM.
Note: The x, which follows the initial reference type number, represents a five-figure
storage location in the user data memory, i.e. the reference 000201 signifies an
output or marker bit at the address 201 in the State RAM.

Instance Name An identifier, which belongs to a certain function block instance. The instance name
is used to clearly denote a function block within a program organization unit. The
instance name is automatically generated, but it can be edited. The instance name
must be unique throughout the whole program organization unit, and is not case
sensitive. If the name entered already exists, you will be warned and you will have
to choose another name. The instance name must comply with the IEC name
conventions otherwise an error message appears. The automatically generated
instance name is always formed as follows: FBI_n_m

FBI = Function Block Instance

n = section number (current number)

m = Number of the FFB object in the section (current number)

Instancing Generating an Instance.

Instruction (IL) Instructions are the "commands" of the IL programming language. Each instruction
begins on a new line and is performed by an operator with a modifier if necessary,
and if required for the current operation, by one or more operands. If several
operands are used, they are separated by commas. A character can come before
the instruction, which is then followed by a colon. The commentary must, where
available, be the last element of the line.

Instruction
(LL984)

When programming electrical controls, the user should implement operation-coded
instructions in the form of picture objects, which are divided into a recognizable
contact form. The designed program objects are, on a user level, converted to
computer usable OP codes during the download process. The OP codes are
decoded in the CPU and processed by the firmware functions of the controller in a
way that the required control is implemented.

Glossary

174 840 USE 504 00 October 2002

Instruction (ST) Instructions are the "commands" of the ST programming language. Instructions
must be concluded by semicolons. Several instructions can be entered in one line
(separated by semicolons).

Instruction list
(IL)

IL is a text language according to IEC 1131, which is shown in operations, i.e.
conditional or unconditional invocations of Functions blocks and Functions,
conditional or unconditional jumps etc. through instructions.

INT INT stands for the data type "whole number (integer)". Entries are made as integer
literal, base 2 literal, basis 8 literal or base 16 literal. The length of the data element
is 16 bits. The value range for variables of this datatype reaches from -2 exp (15) to
2 exp (15) -1.

Integer literals Integer literals are used to input whole number values into the decimalsystem. The
values can have a preceding sign (+/-). Single underscores (_) between numbers
are not significant.

Example

-12, 0, 123_456, +986

INTERBUS (PCP) The new INTERBUS (PCP) I/O drop type is entered into the Concept configurator,
to allow use of the INTERBUS PCP channel and the INTERBUS process data pre-
processing (PDV). This I/O drop type is assigned the INTERBUS switching module
180-CRP-660-01.

The 180-CRP-660-01 differs from the 180-CRP-660-00 only in the fact that it has a
clearly larger I/O range in the control state RAM.

Invocation The process, through which an operation is carried out.

Jump Element of the SFC language. Jumps are used to skip zones in the sequence.

J

Glossary

840 USE 504 00 October 2002 175

Keywords Keywords are unique combinations of characters, which are used as special
syntactical components, as defined in Appendix B of the IEC 1131-3. All keywords
which are used in the IEC 1131-3 and therefore in Concept, are listed in Appendix
C of the IEC 1131-3. These keywords may not be used for any other purpose, i.e.
not as variable names, section names, instance names etc.

Ladder Diagram
(LD)

Ladder Diagram is a graphic programming dialog according to IEC1131, which is
optically oriented to the "rung" of a relay contact plan.

Ladder Logic 984
(LL)

The terms Ladder Logic and Ladder Diagram refer to the word Ladder being
executed. In contrast to a circuit diagram, a ladder diagram is used by electrotech-
nicians to display an electrical circuit (using electrical symbols), which should show
the course of events and not the existing wires, which connect the parts with each
other. A usual user interface for controlling the actions of automation devices
permits a Ladder Diagram interface, so that electrotechnicians do not have to learn
new programming languages to be able to implement a control program.

The structure of the actual Ladder Diagram enables the connection of electric
elements in such a way that generates a control output, which is dependant upon a
logical power flow through used electrical objects, which displays the previously
requested condition of a physical electrical device.

In simple form, the user interface is a video display processed by the PLC
programming application, which sets up vertical and horizontal grid, in which
programming objects are classified. The diagram contains the power grid on the left
side, and when connected to activated objects, the power shifts from left to right.

Landscape Landscape means that when looking at the printed text, the page is wider than it is
high.

Language
Element

Every basic element in one of the IEC programming languages, e.g. a step in SFC,
a function block instance in FBD or the initial value of a variable.

Library Collection of software objects, which are intended for re-use when programming
new projects, or even building new libraries. Examples are the libraries of the
Elementary function block types.

K

L

Glossary

176 840 USE 504 00 October 2002

EFB libraries can be divided up into Groups.

Link A control or data flow connection between graphical objects (e.g. steps in the SFC
Editor, function blocks in the FBD Editor) within a section, represented graphically
as a line.

Literals Literals are used to provide FFB inputs, and transition conditions etc using direct
values. These values can not be overwritten by the program logic (read only). A
distinction is made between generic and standardized literals.

Literals are also used to allocate a constant, a value or a variable an initial value.

Entries are made as base 2 literal, base 8 literal, basis 16 literal, integer literal, real
literal or real literal with exponent.

Local derived
data types

Local derived data types are only available in a single Concept project and the local
DFBs and are placed in the DFB directory under the project directory.

Local DFBs Local DFBs are only available in a single Concept project and are placed in the DFB
directory under the project directory.

Local Link The local network is the network, which connects the local nodes with other nodes
either directly or through bus repeaters.

Local macros Local macros are only available in a single Concept project and are placed in the
DFB directory under the project directory.

Local network
nodes

The local node is the one, which is currently being configured.

Located variable A state RAM address (reference addresses 0x, 1x, 3x,4x) is allocated to located
variables. The value of these variables is saved in the state RAM and can be
modified online using the reference data editor. These variables can be addresses
using their symbolic names or their reference addresses.

All inputs and outputs of the PLC are connected to the state RAM. The program can
only access peripheral signals attached to the PLC via located variables. External
access via Modbus or Modbus Plus interfaces of the PLC, e.g. from visualization
systems, is also possible via located variables.

Macro Macros are created with the help of the Concept DFB software.

M

Glossary

840 USE 504 00 October 2002 177

Macros are used to duplicate frequently used sections and networks (including their
logic, variables and variable declaration).

A distinction is made between local and global macros.

Macros have the following properties:

� Macros can only be created in the FBD and LD programming languages.
� Macros only contain one section.
� Macros can contain a section of any complexity.
� In programming terms, there is no difference between an instanced macro, i.e. a

macro inserted into a section and a conventionally created section.
� DFB invocation in a macro
� Declaring variables
� Using macro-specific data structures
� Automatic transfer of the variables declared in the macro.
� Initial value for variables
� Multiple instancing of a macro in the entire program with differing variables
� The name of the section, variable names and data structure names can contain

up to 10 different exchange marks (@0 to @9).

MMI Man-Machine-Interface

Multi element
variables

Variables to which a Derived data type defined with STRUCT or ARRAY is allocated.

A distinction is made here between field variables and structured variables.

Network A network is the collective switching of devices to a common data path, which then
communicate with each other using a common protocol.

Network node A node is a device with an address (1...64) on the Modbus Plus network.

Node Node is a programming cell in a LL984 network. A cell/node consists of a 7x11
matrix, i.e. 7 rows of 11 elements.

Operand An operand is a literal, a variable, a function invocation or an expression.

N

O

Glossary

178 840 USE 504 00 October 2002

Operator An operator is a symbol for an arithmetic or boolean operation, which is to be carried
out.

Output
parameter
(outputs):

A parameter, through which the result(s) of the evaluation of a FFB is/are returned.

Output/marker
words (4x
references)

An output / marker word can be used to save numerical data (binary or decimal) in
the state RAM, or to send data from the CPU to an output unit in the control system.
Note: The x, which follows the initial reference type number, represents a five-figure
storage location in the user data memory, i.e. the reference 400201 signifies a 16 bit
output or marker word at the address 201 in the State RAM.

Peer CPU The Peer CPU processes the token execution and the data flow between the
Modbus Plus network and the PLC user logic.

PLC Memory programmable controller

Portrait Portrait means that the sides are larger than the width when printed.

Print-out Expressions consist of operators and operands.

Program The uppermost program organization unit. A program is closed on a single PLC
download.

Program
organization unit

A function, a function block, or a Program. This term can refer to either a type or an
instance.

Program
redundancy
system (Hot
Standby)

A redundancy system consists of two identically configured PLC machines, which
communicate with one another via redundancy processors. In the case of a
breakdown of the primary PLC, the secondary PLC takes over the control check.
Under normal conditions, the secondary PLC does not take over the control function,
but checks the status information, in order to detect errors.

Project General description for the highest level of a software tree structure, which specifies
the super-ordinate project name of a PLC application. After specifying the project
name you can save your system configuration and your control program under this
name. All data that is created whilst setting up the configuration and program,
belongs to this super-ordinate project for this specific automation task.

P

Glossary

840 USE 504 00 October 2002 179

General description for the complete set of programming and configuration
information in the project database, which represents the source code that
describes the automation of a system.

Project database The database in the host computer, which contains the configuration information for
a project.

Prototype file
(Concept-EFB)

The prototype file contains all the prototypes of the assigned functions. In addition,
if one exists, a type definition of the internal status structure is specified.

REAL REAL stands for the data type "floating point number". The entry can be real-literal
or real-literal with an exponent. The length of the data element is 32 bits. The value
range for variables of this data type extends from +/- 3.402823E+38.

Real literals Real literals are used to input floating point values into the decimal system. Real
literals are denoted by a decimal point. The values can have a preceding sign (+/-).
Single underscores (_) between numbers are not significant.

Example

-12.0, 0.0, +0.456, 3.14159_26

Real literals with
exponents

Real literals with exponents are used to input floating point values into the decimal
system. Real literals with exponents are identifiable by a decimal point. The
exponent indicates the power of ten, with which the existing number needs to be
multiplied in order to obtain the value to be represented. The base can have a
preceding negative sign (-). The exponent can have a preceding positive or negative
sign (+/-). Single underscores (_) between numbers are not significant. (Only
between numbers, not before or after the decimal point and not before or after "E",
"E+" or "E-")

Example

R

Note: Dependent on the mathematical processor type of the CPU, different ranges
within this permissable value range cannot be represented. This applies to values
that are approaching ZERO and for values that approach INFINITY. In these cases
NAN (Not A Number) or INF (INFinite will be displayed in the animation mode
instead of a number value.

Glossary

180 840 USE 504 00 October 2002

-1.34E-12 or -1.34e-12

1.0E+6 or 1.0e+6

1.234E6 or 1.234e6

Reference Every direct address is a reference that begins with an indicator, which specifies
whether it is an input or an output and whether it is a bit or a word. References that
begin with the code 6, represent registers in the extended memory of the state RAM.

0x range = Coils

1x range = Discrete inputs

3x range = Input registers

4x range = Output registers

6x range = Register in the extended memory

Register in the
extended
memory (6x-
reference)

6x references are holding registers in the extended memory of the PLC. They can
only be used with LL984 user programs and only with a CPU 213 04 or CPU 424 02.

Remote Network
(DIO)

Remote programming in the Modbus Plus network enables maximum performance
when transferring data and dispenses of the need for connections. Programming a
remote network is simple. Setting up a network does not require any additional
ladder logic to be created. All requirements for data transfer are fulfilled via
corresponding entries in the Peer Cop Processor.

RIO (Remote I/O) Remote I/O indicates a physical location of the I/O point controlling devices with
regard to the CPU controlling them. Remote inp./outputs are connected to the
controlling device via a twisted communication cable.

RTU-Mode Remote Terminal Unit

The RTU mode is used for communication between the PLC and an IBM compatible
personal computer. RTU works with 8 data bits.

Runtime error Errors, which appear during program processing on the PLC, in SFC objects (e.g.
Steps) or FFBs. These are, for example, value range overflows with figures or timing
errors with steps.

Note: The x, which follows each initial reference type number, represents a five-
figure storage location in the user data memory, i.e. the reference 400201 signifies
a 16 bit output or marker word at the address 201 in the State RAM.

Glossary

840 USE 504 00 October 2002 181

SA85 module The SA85 module is a Modbus Plus adapter for IBM-AT or compatible computers.

Scan A scan consists of reading the inputs, processing the program logic and outputting
the outputs.

Section A section can for example be used to describe the mode of functioning of a
technological unit such as a motor.

A program or DFB consists of one or more sections. Sections can be programmed
with the IEC programming languages FBD and SFC. Only one of the named
programming languages may be used within a section at any one time.

Each section has its own document window in Concept. For reasons of clarity, it is
however useful to divide a very large section into several small ones. The scroll bar
is used for scrolling within a section.

Section Code Section Code is the executable code of a section. The size of the Section Code is
mainly dependent upon the number of blocks in the section.

Section Data Section data is the local data in a section such as e.g. literals, connections between
blocks, non-connected block inputs and outputs, internal status memory of EFBs.

Separator
Format (4:00001)

The first digit (the reference) is separated from the five figure address that follows
by a colon (:).

Sequence
language (SFC)

The SFC Language Elements enable a PLC program organization unit to be divided
up into a number of Steps and Transitions, which are connected using directional
Links. A number of actions belong to each step, and transition conditions are
attached to each transition.

Serial
Connections

With serial connections (COM) the information is transferred bit by bit.

Source code file
(Concept-EFB)

The source code file is a normal C++ source file. After executing the Library →
Create files menu command, this file contains an EFB-code frame, in which you
have to enter a specific code for the EFB selected. To do this invoke the Objects →
Source menu command.

S

Note: Data which appears in the DFBs of this section is not section data.

Glossary

182 840 USE 504 00 October 2002

Standard Format
(400001)

The five figure address comes directly after the first digit (the reference).

Standardized
literals

If you would like to manually determine a literal's data type, this may be done using
the following construction: ’Data type name’#’value of the literal’.

Example

INT#15 (Data type: integer, value: 15),

BYTE#00001111 (Data type: byte, value: 00001111)

REAL#23.0 (Data type: real, value: 23.0)

To assign the data type REAL, the value may also be specified in the following
manner: 23.0.

Entering a comma will automatically assign the data type REAL.

State RAM The state RAM is the memory space for all variables, which are accessed via
References (Direct representation) in the user program. For example, discrete
inputs, coils, input registers, and output registers are situated in the state RAM.

Status Bits For every device with global inputs or specific inp./outputs of Peer Cop data, there
is a status bit. If a defined group of data has been successfully transferred within the
timeout that has been set, the corresponding status bit is set to 1. If this is not the
case, this bit is set to 0 and all the data belonging to this group is deleted (to 0).

Step SFC-language element: Situation, in which the behavior of a program occurs,
regarding its inputs and outputs of those operations which are defined by the actions
belonging to the step.

Step name The step name is used to uniquely denote a step in a program organization unit. The
step name is generated automatically, but it can be edited. The step name must be
unique within the entire program organization unit, otherwise an error message will
appear.

The automatically generated step name is always formed as follows: S_n_m

S = step

n = section number (current number)

m = Number of the step in the section (current number)

Structured text
(ST)

ST is a text language according to IEC 1131, in which operations, e.g. invocations
of Function blocks and Functions, conditional execution of instructions, repetitions
of instructions etc. are represented by instructions.

Glossary

840 USE 504 00 October 2002 183

Structured
variables

Variables to which a Derived data type defined with STRUCT (structure) is allocated.

A structure is a collection of data elements with generally different data types
(elementary data types and/or derived data types).

SY/MAX In Quantum control devices, Concept includes the providing of I/O-map SY/MAX-I/
O modules for remote contolling by the Quantum PLC. The SY/MAX remote
backplane has a remote I/O adapter in slot 1, which communicates via a Modicon
S908 R I/O System. The SY/MAX-I/O modules are executed for you for labelling and
inclusion in the I/O map of the Concept configuration.

Template file
(Concept-EFB)

The template file is an ASCII file with layout information for the Concept FBD Editor,
and the parameters for code creation.

TIME TIME stands for the data type "time". The entry is time literal. The length of the data
element is 32 bits. The value range for variables of this data type extends from 0 to
2exp(32)-1. The unit for the TIME data type is 1 ms.

Time literals Permissable units for times (TIME) are days (D), hours (H), minutes (M), seconds
(S) and milliseconds (MS) or combinations of these. The time must be marked with
the prefix t#, T#, time# or TIME#. The "overflow" of the unit with the highest value is
permissible, e.g. the entry T#25H15M is allowed.

Example

t#14MS, T#14.7S, time#18M, TIME#19.9H, t#20.4D, T#25H15M,
time#5D14H12M18S3.5MS

Token The network "token" controls the temporary possession of the transfer right via a
single device. The token passes round the devices in a rotating (increasing) address
sequence. All devices follow the token rotation and can receive all the possible data
that is sent with it.

Total IEC
memory

The total IEC memory consists of the IEC program memory and the global data.

Traffic Cop The traffic cop is an IO map, which is generated from the user-IO map. The traffic
cop is managed in the PLC and in addition to the user IO map, contains e.g. status
information on the I/O stations and modules.

T

Glossary

184 840 USE 504 00 October 2002

Transition The condition, in which the control of one or more predecessor steps passes to one
or more successor steps along a directed link.

UDEFB User-defined elementary functions/function blocks

Functions or function blocks, which were created in the C programming language,
and which Concept provides in libraries.

UDINT UDINT stands for the data type "unsigned double integer". Entries are made as
integer literal, base 2 literal, basis 8 literal or base 16 literal. The length of the data
element is 32 bits. The value range for variables of this data type extends from 0 to
2exp(32)-1.

UINT UINT stands for the data type "unsigned integer". Entries are made as integer literal,
base 2 literal, basis 8 literal or base 16 literal. The length of the data element is 16
bits. The value range for variables of this data type extends from 0 to (2exp 16)-1.

Unlocated
variable

Unlocated variables are not allocated a state RAM address. They therefore do not
occupy any state RAM addresses. The value of these variables is saved in the
internal system and can be changed using the reference data editor. These
variables are only addressed using their symbolic names.

Signals requiring no peripheral access, e.g. intermediate results, system tags etc.,
should be primarily declared as unlocated variables.

Variables Variables are used to exchange data within a section, between several sections and
between the program and the PLC.

Variables consist of at least one variable name and one data type.

If a variable is assigned a direct address (reference), it is called a located variable.
If the variable has no direct address assigned to it, it is called an unlocated variable.
If the variable is assigned with a derived data type, it is called a multi element
variable.

U

V

Glossary

840 USE 504 00 October 2002 185

There are also constants and literals.

Warning If a critical status is detected during the processing of a FFB or a step (e.g. critical
input values or an exceeded time limit), a warning appears, which can be seen using
the Online → Event Viewer... menu command. For FFBs, the ENO remains set to
"1".

WORD WORD stands for the data type "bit sequence 16". Entries are made as base 2
literal, base 8 literal or base 16 literal. The length of the data element is 16 bits. A
numerical value range can not be assigned to this data type.

W

Glossary

186 840 USE 504 00 October 2002

CBA

840 USE 504 00 October 2002 187

C
COMM

CREAD_REG, 15
CREADREG, 21
CWRITE_REG, 27
CWRITREG, 33
IBS_READ, 39
IBS_SEND_REQ, 41
IBS_WRITE, 43
ICNT, 45
ICOM, 53
MBP_MSTR, 59
MODBUSP_ADDR, 105
PORTSTAT, 111
READ_REG, 113
READREG, 119
RTXMIT, 125
SYMAX_IP_ADDR, 133
TCP_IP_ADDR, 137
WRITE_REG, 141
WRITEREG, 147
XMIT, 153
XXMIT, 159

Common
CREAD_REG, 15
CWRITE_REG, 27
MODBUSP_ADDR, 105
READ_REG, 113
SYMAX_IP_ADDR, 133
TCP_IP_ADDR, 137
WRITE_REG, 141

Continuoous register writing, 33

Continuous register reading, 15, 21
Continuous register writing, 27
CREAD_REG, 15
CREADREG, 21
CWRITE_REG, 27
CWRITREG, 33

D
Data transfer, 53
Diagnostic query on the INTERBUS Master
140 NOA 622 00, 41

F
Full duplex, 125
Function

Parameterization, 9, 10
Function block

Parameterization, 9, 10

Index

Index

188 840 USE 504 00 October 2002

I
IBS_NOA

IBS_READ, 39
IBS_SEND_REQ, 41
IBS_WRITE, 43
ICNT, 45
ICOM, 53

IBS_READ, 39
IBS_SEND_REQ, 41
IBS_WRITE, 43
ICNT, 45
ICOM, 53
INTERBUS communication connect/
disconnect, 45

M
MBP

CREADREG, 21
CWRITREG, 33
MBP_MSTR, 59
READREG, 119
WRITEREG, 147

MBP_MSTR, 59
Modbus Plus Address, 105
Modbus Plus Master, 59
Modbus Port Status, 111
MODBUSP_ADDR, 105

P
Parameterization, 9, 10
PORTSTAT, 111

R
Read register, 113, 119
READ_REG, 113
Reading variables via INTERBUS, 39
READREG, 119
RTU

RTXMIT, 125
XMIT, 153
XXMIT, 159

RTXMIT, 125

S
SY/MAX IP Address, 133
SYMAX_IP_ADDR, 133

T
TCP/IP Address, 137
TCP_IP_ADDR, 137
Transmit, 153, 159

W
Write register, 141, 147
WRITE_REG, 141
WRITEREG, 147
Writing variables to INTERBUS PCP nodes,
43

X
XMIT, 153
XXMIT, 159

