
33
00

22
08

.0
0

Concept
IEC block library
Part: AKFEFB
840 USE 504 00 eng Version 2.6

© 2002 Schneider Electric All Rights Reserved

2

3

Table of Contents

About the book .5

Part I General information about the AKFEFB library 7
Overview . 7

Chapter 1 Parameterizing functions and function blocks 9
Parameterizing functions and function blocks. 9

Part II EFB descriptions . 13
Overview . 13

Chapter 2 AKF_FL: Detection of any edge . 15

Chapter 3 AKF_TA: Switch off delay .17

Chapter 4 AKF_TE: Switch-on delay .21

Chapter 5 AKF_TI: Pulse . 25

Chapter 6 AKF_TS: Storing ON delay . 29

Chapter 7 AKF_TV: Extended pulse . 33

Chapter 8 AKF_ZR: Decremental counter . 37

Chapter 9 AKF_ZV: Incremental counter .41

Chapter 10 AKF_ZVR: Incremental/decremental counter 45

Glossary . 49

Index . 73

4

840 USE 504 00 October 2002 5

About the book

At a Glance

Document Scope This documentation is designed to help with the configuration of functions and
function blocks.

Validity Note This documentation applies to Concept 2.6 under Microsoft Windows 98, Microsoft
Windows 2000, Microsoft Windows XP and Microsoft Windows NT 4.x.

Related
Documents

User Comments We welcome your comments about this document. You can reach us by e-mail at
TECHCOMM@modicon.com

Note: There is additional up to date tips in the README data file in Concept.

Title of Documentation Reference Number

Concept Installation Instructions 840 USE 502 00

Concept User Manual 840 USE 503 00

Concept EFB User Manual 840 USE 505 00

Concept LL984 Block Library 840 USE 506 00

About the book

6 840 USE 504 00 October 2002

840 USE 504 00 October 2002 7

I
General information about the
AKFEFB library

Overview

Introduction This section contains general information on the AKFEFB block library.

What’s in this
part?

This part contains the following chapters:

Chapter Chaptername Page

1 Parameterizing functions and function blocks 9

General information

8 840 USE 504 00 October 2002

840 USE 504 00 October 2002 9

1
Parameterizing functions and
function blocks

Parameterizing functions and function blocks

Parameterization

10 840 USE 504 00 October 2002

General Each FFB consists of an operation, the operands needed for the operation and an
instance name or function counter.

Operation The operation determines which function is to be executed with the FFB, e.g. shift
register, conversion operations.

Operand The operand specifies what the operation is to be executed with. With FFBs, this
consists of formal and actual parameters.

FFB
(e.g. ON-delay)

Item name/
Function counter
(e.g. FBI_2_22 (18))

Operation
(e.g. TON)

Operand

Actual parameter
Variable, element of a

multi-element
variable, literal, direct

address
(e.g. ENABLE, EXP.1,
TIME, ERROR, OUT,

%4:0001)

Formal
parameter

(e.g.
IN,PT,Q,ET)

TON

ENABLE

EXP.1

TIME

EN

IN

PT

ENO

Q

ET

ERROR

OUT

%4:00001

FBI_2_22 (18)

Parameterization

840 USE 504 00 October 2002 11

Formal/actual
parameters

The formal parameter holds the place for an operand. During parameterization, an
actual parameter is assigned to the formal parameter.

The actual parameter can be a variable, a multi-element variable, an element of a
multi-element variable, a literal or a direct address.

Conditional/
unconditional
calls

"Unconditional" or "conditional" calls are possible with each FFB. The condition is
realized by pre-linking the input EN.
l Displayed EN

conditional calls (the FFB is only processed if EN = 1)
l EN not displayed

unconditional calls (FFB is always processed)

Calling functions
and function
blocks in IL and
ST

Information on calling functions and function blocks in IL (Instruction List) and ST
(Structured Text) can be found in the relevant chapters of the user manual.

Note: If the EN input is not parameterized, it must be disabled. Any input pin that
is not parameterized is automatically assigned a "0" value. Therefore, the FFB
should never be processed.

Parameterization

12 840 USE 504 00 October 2002

840 USE 504 00 October 2002 13

II
EFB descriptions

Overview

Introduction These EFB descriptions are in alphabetical order.

What’s in this
part?

This part contains the following chapters:

Chapter Chaptername Page

2 AKF_FL: Detection of any edge 15

3 AKF_TA: Switch off delay 17

4 AKF_TE: Switch-on delay 21

5 AKF_TI: Pulse 25

6 AKF_TS: Storing ON delay 29

7 AKF_TV: Extended pulse 33

8 AKF_ZR: Decremental counter 37

9 AKF_ZV: Incremental counter 41

10 AKF_ZVR: Incremental/decremental counter 45

EFB descriptions

14 840 USE 504 00 October 2002

840 USE 504 00 October 2002 15

2
AKF_FL: Detection of any edge

Overview

Introduction This chapter describes the AKF_FL block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 16

Representation 16

AKF_FL: Detection of any edge

16 840 USE 504 00 October 2002

Brief description

Function
description

The function block detects any edge (1 -> 0 und 0 -> 1) at the CLK input.
The output Q is for a cycle "1", if there is a transition from "0" to "1" or a transition
from "1" to "0" at CLK; otherwise, it remains at "0".
The parameters EN and ENO can be projected as additional parameters.

Representation

Symbol Block representation:

Parameter
description

Block parameter description:

AKF_FL

BOOLQCLKBOOL

Parameter Data type Meaning

CLK BOOL Clock input

Q BOOL Display of any edge

840 USE 504 00 October 2002 17

3
AKF_TA: Switch off delay

Overview

Introduction This chapter describes the AKF_TA block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 18

Representation 18

Detailed description 19

AKF_TA: Switch-off delay

18 840 USE 504 00 October 2002

Brief description

Function
description

The function block is used to delay the disconnection.
The delay time comprises a time base (TB) and a factor (SW). The delay time is
calculated from TB x SW.
The actual value is displayed at the TIW output and is calculated according to the
following formula: TIW = expired time / TB
With a 0 -> 1 edge at the IN input, the delay time is transferred to the TSW output
and the Q output is set to "1".
With a 1 -> 0 at the IN input, the internal timer is started and the current state is
displayed at the TIW output. When TIW equals TSW, the Q output is set to "0".
With a 0 -> 1 edge at the R input the internal timer is reset and the Q output is set to
"0".
The parameters EN and ENO can be projected as additional parameters.

Representation

Symbol Block representation:

Parameter
description

Block parameter description:

AKF_TA

BOOLQ

INTTIW

INTTSW

INBOOL
ZBTIME
SWINT
RBOOL

Parameter Data type Meaning

IN . BOOL Start delay

TB TIME Time basis of delay time

SW INT Delay time factor

R BOOL Reset input

Q BOOL Output

TIW INT internal time (actual timer value)

TSW INT Timer setpoint at time of 0 -> 1 edge at IN

AKF_TA: Switch-off delay

840 USE 504 00 October 2002 19

Detailed description

Timing diagram Timing diagram of the TA disconnection delay:

(1) If IN becomes "1", Q becomes "1".

(2) If IN becomes "0", the internal timer (TIW) is started.

(3) If the internal timer TIW reaches the value of TSW, Q becomes "0".

(4) If IN becomes "1", Q becomes "1" and the internal timer is stopped/reset.

(5) If IN becomes "1" before the internal Timer TIW has reached the value of TSW, the internal
time is stopped/reset, without Q becoming "0".

(6) If R becomes "1" and IN is "0", Q becomes "0" and the internal timer is stopped/reset.

(7) If R becomes "1" and IN is "1", Q becomes "0".

(8) If R becomes "0" and IN is "1", Q becomes "1".

(9) If R becomes "1", the internal timer is stopped/reset.

(10) If IN becomes "1" and R is "1", Q remains at "0".

TIW

TSW

(1)

Q

R

IN

(2)

(3) (4)

(2) (5) (2)

(2) (1)

(7) (8)

(2)

(3)

(10)

(9) (8) (7)

(6)

AKF_TA: Switch-off delay

20 840 USE 504 00 October 2002

840 USE 504 00 October 2002 21

4
AKF_TE: Switch-on delay

Overview

Introduction This chapter describes the AKF_TE block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 22

Representation 22

Detailed Description 23

AKF_TE: Switch-on delay

22 840 USE 504 00 October 2002

Brief description

Function
description

The function block is used as an activation delay.
The delay time comprises a time base (TB) and a factor (SW). The delay time is
calculated from TB x SW.
The actual value is displayed at the TIW output and is calculated according to the
following formula: TIW = expired time / TB
With a 0 -> 1 edge at the IN input the delay time is transferred to the TSW output,
the internal timer is started, and the current state is displayed at the TIW output.
If TIW equals TSW, the Q output is set to "1".
With a 0 -> 1 edge at the R input or a 1 -> 0 edge at the IN input, the internal timer
is reset and the Q output is set to "0".
The parameters EN and ENO can be projected as additional parameters.

Representation

Symbol Block representation:

Parameter
description

Block parameter description:

AKT_TE

BOOLQ

INTTIW

INTTSW

INBOOL
ZBTIME
SWINT
RBOOL

Parameter Data type Meaning

IN . BOOL Start delay

TB TIME Time basis of delay time

SW INT Delay time factor

R BOOL Reset input

Q BOOL Output

TIW INT Internal time (actual timer value)

TSW INT Timer setpoint at time of 0 -> 1 edge at IN

AKF_TE: Switch-on delay

840 USE 504 00 October 2002 23

Detailed Description

Timing diagram Timing diagram for activation delay TE:

(1) If IN becomes "1", the internal timer (TIW) is started.

(2) If the internal timer (TIW) reaches the value of TSW, Q becomes "1".

(3) If IN becomes "0", Q becomes "0" and the internal timer is stopped/reset.

(4) If IN becomes "0" before the internal timer (TIW) has reached the value of TSW, the
internal timer is stopped/reset without Q becoming "1".

(5) If R becomes "1", the internal timer is stopped/reset.

(6) If R becomes "1", Q becomes "0" and the internal timer is stopped/reset.

(7) If IN becomes "1" and R is "1", the internal timer is not started.

TIW

TSW (1)

Q

R

IN

(2) (3)

(1) (4) (1)

(5)

(1)

(2) (6)

(7)

AKF_TE: Switch-on delay

24 840 USE 504 00 October 2002

840 USE 504 00 October 2002 25

5
AKF_TI: Pulse

Overview

Introduction This chapter describes the AKF_TI block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 26

Representation 26

Detailed Description 27

AKF_TI: Pulse

26 840 USE 504 00 October 2002

Brief description

Function
description

The function block is used to generate a pulse that has a defined maximum duration.
The maximum pulse duration comprises a time base (TB) and a factor (SW). The
maximum pulse duration is calculated from TB x SW.
The actual value is displayed at the TIW output and is calculated according to the
following formula: TIW = expired time / TB
With a 0 -> 1 edge at the IN input, the maximum pulse duration is transferred to the
TSW output, the internal timer is started and the Q output is set to "1".
If TIW equals TSW, the Q output is set to "0", independent of the IN input.
With a 0 -> 1 edge at the R input the internal timer is reset and the Q output is set to
"0".
The parameters EN and ENO can be projected as additional parameters.

Representation

Symbol Block representation:

Parameter
description

Block parameter description:

AKT_TI

BOOLQ

INTTIW

INTTSW

INBOOL
ZBTIME
SWINT
RBOOL

Parameter Data type Meaning

IN . BOOL Start pulse

TB TIME Time basis of the pulse

SW INT Pulse factor

R BOOL Reset input

Q BOOL Output

TIW INT Internal time (actual timer value)

TSW INT Timer setpoint at time of 0 -> 1 edge at IN

AKF_TI: Pulse

840 USE 504 00 October 2002 27

Detailed Description

Timing diagram Timing diagram for TI pulse:

(1) If IN becomes "1", Q becomes "1", and the internal timer (TIW) is started.

(2) If the internal timer TIW reaches the value of TSW, Q becomes "0".

(3) If IN becomes "0", the internal timer is stopped/reset.

(4) If IN becomes "0", Q becomes "0" and the internal timer is stopped/reset.

(5) If R becomes "1" , Q becomes "0" and the internal timer is stopped/reset.

(6) If R becomes "1", the internal timer, is stopped/reset, independent of IN.

(7) If IN becomes "1" and R is "1", Q remains at "0".

(1)

Q

R

TIW

TSW

IN

(2)

(3)

(1) (4)

(1)

(5)

(1) (2) (6)

(7)

AKF_TI: Pulse

28 840 USE 504 00 October 2002

840 USE 504 00 October 2002 29

6
AKF_TS: Storing ON delay

Overview

Introduction This chapter describes the AKF_TS block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 30

Representation 30

Detailed Description 31

AKF_TS: Storing ON delay

30 840 USE 504 00 October 2002

Brief description

Function
description

The function block is used as a storing activation delay. Resetting of the output can
only be performed with the R input.
The delay time comprises a time base TB and a factor SW. The delay time is
calculated from TB x SW.
The current value is displayed at the TIW output and is calculated according to the
following formula: TIW = expired time / TB
With a 0 -> 1 edge at the IN input the delay time is transferred to the TSW output,
the Internal timer is started, and the current state is displayed at the TIW output.
If TIW equals TSW, the Q output is set to "1".
With a 0 -> 1 edge at the R input the Internal timer is reset and the Q output is set
to "0".
 The parameters EN and ENO can be projected as additional parameters.

Representation

Symbol Block representation:

Parameter
description

Block parameter description:

AKT_TS

BOOLQ

INTTIW

INTTSW

INBOOL
ZBTIME
SWINT
RBOOL

Parameter Data type Meaning

IN . BOOL Start delay

TB TIME Time basis of delay time

SW INT Delay time factor

R BOOL Reset input

Q BOOL Output

TIW INT internal time (actual timer value)

TSW INT Timer setpoint at time of 0 -> 1 edge at IN

AKF_TS: Storing ON delay

840 USE 504 00 October 2002 31

Detailed Description

Timing diagram Timing diagram for storing activation delay TS

(1) If IN becomes "1", the internal timer (TIW) is started.

(2) If the internal timer (TIW) reaches the value of TSW, Q becomes "1".

(3) Even if IN becomes "0", Q remains "1".

(4) If R becomes "1", the internal timer is stopped/reset and Q is set to "0".

(5) If R becomes "1" before the internal timer (TIW) has reached the value of TSW, the internal
timer is stopped/reset without Q having become "1".

(6) If IN becomes "1" and R is "1", the internal timer is not started.

TIW

TSW (1)

Q

R

IN

(2) (4)

(1)

(2) (4)

(1)

(5)

(6)(3)

AKF_TS: Storing ON delay

32 840 USE 504 00 October 2002

840 USE 504 00 October 2002 33

7
AKF_TV: Extended pulse

Overview

Introduction This chapter describes the AKF_TV block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 34

Representation 34

Detailed Description 35

AKF_TV: Extended pulse

34 840 USE 504 00 October 2002

Brief description

Function
description

The function block is used to generate an extended pulse.
The pulse duration comprises a time base (TB) and a factor (SW). The pulse
duration is calculated from TB x SW.
The actual value is displayed at the TIW output and is calculated according to the
following formula: TIW = expired time / TB
With a 0 -> 1 edge at the IN input, the pulse duration is transferred to the TSW
output, the internal timer is started and the Q output is set to "1".
The Q output remains at "1", independent of IN, until TIW equals TSW. The Q output
is now set to "0".
With a 0 -> 1 edge at the R input the internal timer is reset and the Q output is set to
"0".
The parameters EN and ENO can be projected as additional parameters.

Representation

Symbol Block representation:

Parameter
description

Block parameter description:

AKT_TV

BOOLQ

INTTIW

INTTSW

INBOOL
ZBTIME
SWINT
RBOOL

Parameter Data type Meaning

IN . BOOL Start pulse

TB TIME Time basis of the pulse

SW INT Pulse factor

R BOOL Reset input

Q BOOL Output

TIW INT Internal time (actual timer value)

TSW INT Timer setpoint at time of 0 -> 1 edge at IN

AKF_TV: Extended pulse

840 USE 504 00 October 2002 35

Detailed Description

Timing diagram Timing diagram for extended pulse TV:

(1) If IN becomes "1", Q becomes "1", and the internal timer (TIW) is started.

(2) If the internal timer (TIW) reaches the value of TSW, Q becomes "0".

(3) If IN becomes "1" again, the internal timer is restarted and Q becomes "1".

(4) If IN becomes "1" again, the internal timer is restarted and Q remains "1".

(5) If R becomes "1", Q becomes "0", independent of IN, and the internal timer is stopped/
reset.

(6) If IN becomes "1" and R is "1", Q remains at "0" and the internal timer is not started.

(1)

Q

R

TIW

TSW

IN

(2)

(3)

(2)

(3) (4)

(2)

(3)

(5)

(1)

(5)

(6)

AKF_TV: Extended pulse

36 840 USE 504 00 October 2002

840 USE 504 00 October 2002 37

8
AKF_ZR: Decremental counter

Overview

Introduction This chapter describes the AKF_ZR block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 38

Representation 39

Detailed Description 40

AKF_ZR: Decremental-counter

38 840 USE 504 00 October 2002

Brief description

Function
description

The function block is used for decrementing.
With a "1"-signal at the R input, the actual value and the Q output are set to"0".
With a 0 -> 1 edge at the S input, the SW input accepts the setpoint value which is
then displayed at the ZSWO output. The actual value is set to the setpoint value. A
comparison of setpoint value/actual value will not take place until a setpoint value
has been accepted at least once.
The Q output is set to "1" if the actual value is larger than "0" and smaller than the
setpoint value.
Given a 0 -> 1 edge at the IN input, the actual value (ZIWO) is decreased by 1 (to 0
as a minimum) and compared to the setpoint value (ZSWO).
The setpoint value (ZSW) and the actual value (ZIW) can be changed online through
the ZIW and ZSW inputs.

The parameters EN and ENO can be projected as additional parameters.

Note: In order for the counter to work correctly, the variable (actual value) which is
established at ZIW must also be established at ZIWO. The Variable (nominal
value), which is established at ZSW has also to be established at ZSWO.

AKF_ZR: Decremental-counter

840 USE 504 00 October 2002 39

Representation

Symbol Block representation:

Formulas Q = 1, if 0 < ZIWO < ZSWO

Parameter
description

Block parameter description:

AKF_ZR

BOOLQ

INTZIWO

INTZSWO

INBOOL
SBOOL
SWINT
RBOOL
ZIWINT
ZSWINT

Parameter Data type Meaning

IN . BOOL Trigger input

S BOOL Set input

SW INT Preset setpoint value

R BOOL Reset input

ZIW INT Control of the internal actual value

ZSW INT Control of internal setpoint value

Q BOOL Output

ZIWO INT Count value (display of actual value)

ZSWO INT Display of setpoint value

AKF_ZR: Decremental-counter

40 840 USE 504 00 October 2002

Detailed Description

Timing diagram Timing diagram for AKF_ZR decremental counter:

(1) If S becomes "1" and R is "0", the preset setpoint value SW is accepted and displayed at
the ZSWO output.

(2) If IN becomes "1", the actual counter value is decreased by "1" and Q set to "1".

(3) If IN becomes "1", the current counter value is decreased by "1".

(4) If IN becomes "1", the current counter value is decreased by "1". If this causes the counter
value (ZIWO) to become "0", the Q output is set to "0".

(5) If R becomes "1", the current counter value is set to "0".

(6) If S becomes "1" and R is "0", the preset setpoint value SW is accepted and Q is set to "0".

IN

S
R

SW

ZIWO

0

Q

(1)

(2)

(3)

(4) (1) (1)

(2)

(6)

(5)

(2)

(5)

840 USE 504 00 October 2002 41

9
AKF_ZV: Incremental counter

Overview

Introduction This chapter describes the ZV block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 42

Representation 43

Detailed Description 44

AKF_ZV: Up counter

42 840 USE 504 00 October 2002

Brief description

Function
description

The function block is used for incrementing.
With a "1"-signal at the R input, the actual value and the Q output are set to"0".
With a 0 -> 1 edge at the S input, the SW input accepts the setpoint value which is
displayed at the ZSWO output. The actual value is set to "0". A comparison of
setpoint value/actual value will not take place until a setpoint value has been
accepted at least once.
The Q output is set to "1" if the actual value is greater than "0" and less than the
setpoint value.
In the case of -> 1 edge at the IN input, the actual value (ZIWO) is increased by 1
and compared to the setpoint value (ZSWO).
The nominal value (ZSW) and the actual value (ZIW) can be changed online through
the ZIW and ZSW inputs.

The parameters EN and ENO can be projected as additional parameters.

Note: In order for the counter to work correctly, the variable (actual value) which is
established at ZIW must also be established at ZIWO. The variable (setpoint
value), which is established at ZSW has also to be established at ZSWO.

AKF_ZV: Up counter

840 USE 504 00 October 2002 43

Representation

Symbol Block representation:

Formula Q = 1, if 0 < ZIWO < ZSWO

Parameter
description

Block parameter description:

AKF_ZV

BOOLQ

INTZIWO

INTZSWO

INBOOL
SBOOL
SWINT
RBOOL
ZIWINT
ZSWINT

Parameter Data type Meaning

IN . BOOL Trigger input

S BOOL Set input

SW INT Preset setpoint value

R BOOL Reset input

ZIW INT Control of internal actual value

ZSW INT Control of internal nominal value

Q BOOL Output

ZIWO INT Count value (display of actual value)

ZSWO INT Display of setpoint value

AKF_ZV: Up counter

44 840 USE 504 00 October 2002

Detailed Description

Timing diagram Timing diagram for AKF_ZV incremental counter:

(1) If IN becomes "1" and R is "0", the actual value is increased by "1" and Q is set to "1".

(2) If R becomes "1", the actual value and Q are set to "0".

(3) If S becomes "1", the preset setpoint value is accepted.

(4) If IN becomes "1", the actual value is increased by "1". If this causes the actual value to
reach the setpoint value, Q is set to "0".

(5) If IN becomes "1", the actual value is increased by "1".

(6) If S becomes "1", the preset setpoint value is accepted and the actual value is set to "0".

(7) If S becomes "1", the preset setpoint value is accepted, and the actual value and Q are set
to "0".

SW = 2 SW = 3 SW = 2

IN

S

R

65535

ZIWO

0

0

Q

(1) (2)

(3)

(1) (4)

(5)

(5) (6)

(6) (1)

(7) (1)

(1)(2)

840 USE 504 00 October 2002 45

10
AKF_ZVR: Incremental/
decremental counter

Overview

Introduction This chapter describes the AKF_ZVR block.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Brief description 46

Representation 47

Detailed Description 48

AKF_ZVR: Incremental, decremental counter

46 840 USE 504 00 October 2002

Brief description

Function
description

The function block is used for incrementing/decrementing.
With a "1"-signal at the R input, the actual value and the Q output are set to"0".
With a 0 -> 1 edge at the S input, the SW input accepts the setpoint value which is
then displayed at the ZSWO output. The actual value does not change. A
comparison of setpoint value/actual value will not take place until a setpoint value
has been accepted at least once.
The Q output is set to "1" if the actual value is greater than or equal to the setpoint.
Given a 0 -> 1 edge at the IN_F input, the actual value (ZIWO) is increased by 1 and
compared to the setpoint value (ZSWO).
Given a 0 -> 1 edge at the IN_B input, the actual value (ZIWO) is decreased by 1
and compared to the setpoint value (ZSWO).
The nominal value (ZSW) and the actual value (ZIW) can be changed online through
the ZIW and ZSW inputs.

The parameters EN and ENO can be projected as additional parameters.

Note: In order for the counter to work correctly, the variable (actual value) which is
established at ZIW must also be established at ZIWO. The variable (setpoint
value), which is established at ZSW must also be established at ZSWO.

AKF_ZVR: Incremental, decremental counter

840 USE 504 00 October 2002 47

Representation

Symbol Block representation:

Formulas Q = 1, if ZIWO ZSWO

Parameter
description

Block parameter description:

AKF_ZVR

BOOLQ

INTZIWO

INTZSWO

IN_FBOOL
IN_BBOOL
SBOOL
SWINT
RBOOL
ZIWINT
ZSWINT

Parameter Data type Meaning

IN_F BOOL Trigger input, incrementing

IN_B BOOL Trigger input, decrementing

S BOOL Set input

SW INT Preset setpoint value

R BOOL Reset input

ZIW INT Control of internal actual value

ZSW INT Control of internal nominal value

Q BOOL Output

ZIWO INT Count value (display of actual value)

ZSWO INT Display of setpoint value

AKF_ZVR: Incremental, decremental counter

48 840 USE 504 00 October 2002

Detailed Description

Timing diagram Timing diagram for AKF_ZV incremental counter

(1) If IN_F becomes "1" and R is "0", the actual value is increased by "1".

(2) If IN_B becomes "1" and R is "0", the actual value is decreased by "1".

(3) If S becomes "1", the preset setpoint value is accepted.

(4) If IN_F becomes "1" and R is "0", the current value is increased by "1". If this causes the
actual value to reach the setpoint value, Q is set to "1".

(5) If R becomes "1", the actual value and Q are set to "0".

(6) If IN_B becomes "1" and R is "0", the actual value is decreased by "1". If this causes the
actual value to fall below the setpoint value, Q is set to "0".

(7) If IN_B becomes "1" and R is "0", the actual value is decreased by "1". If this causes the
actual value to reach the setpoint value, Q is set to "1".

(1)

IN_F

IN_B

S

R

ZIWO

SW

Q

(2) (2) (1)

(3)

(4)

(2)

(3)

(4)

(6)

(3)

(7) (1)

(5)

(3) (2)

(5)
(5)

840 USE 504 00 October 2002 49

Glossary

active window The window, which is currently selected. Only one window can be active at any one
given time. When a window is active, the heading changes color, in order to
distinguish it from other windows. Unselected windows are inactive.

Actual parameter Currently connected Input/Output parameters.

Addresses (Direct) addresses are memory areas on the PLC. These are found in the State RAM
and can be assigned input/output modules.
The display/input of direct addresses is possible in the following formats:
l Standard format (400001)
l Separator format (4:00001)
l Compact format (4:1)
l IEC format (QW1)

ANL_IN ANL_IN stands for the data type "Analog Input" and is used for processing analog
values. The 3x References of the configured analog input module, which is specified
in the I/O component list is automatically assigned the data type and should
therefore only be occupied by Unlocated variables.

ANL_OUT ANL_OUT stands for the data type "Analog Output" and is used for processing
analog values. The 4x-References of the configured analog output module, which is
specified in the I/O component list is automatically assigned the data type and
should therefore only be occupied by Unlocated variables.

ANY In the existing version "ANY" covers the elementary data types BOOL, BYTE, DINT,
INT, REAL, UDINT, UINT, TIME and WORD and therefore derived data types.

A

Glossary

50 840 USE 504 00 October 2002

ANY_BIT In the existing version, "ANY_BIT" covers the data types BOOL, BYTE and WORD.

ANY_ELEM In the existing version "ANY_ELEM" covers the elementary data types BOOL,
BYTE, DINT, INT, REAL, UDINT, UINT, TIME and WORD.

ANY_INT In the existing version, "ANY_INT" covers the data types DINT, INT, UDINT and
UINT.

ANY_NUM In the existing version, "ANY_NUM" covers the data types DINT, INT, REAL, UDINT
and UINT.

ANY_REAL In the existing version "ANY_REAL" covers the data type REAL.

Application
window

The window, which contains the working area, the menu bar and the tool bar for the
application. The name of the application appears in the heading. An application
window can contain several document windows. In Concept the application window
corresponds to a Project.

Argument Synonymous with Actual parameters.

ASCII mode American Standard Code for Information Interchange. The ASCII mode is used for
communication with various host devices. ASCII works with 7 data bits.

Atrium The PC based controller is located on a standard AT board, and can be operated
within a host computer in an ISA bus slot. The module occupies a motherboard
(requires SA85 driver) with two slots for PC104 daughter boards. From this, a
PC104 daughter board is used as a CPU and the others for INTERBUS control.

Back up data file
(Concept EFB)

The back up file is a copy of the last Source files. The name of this back up file is
"backup??.c" (it is accepted that there are no more than 100 copies of the source
files. The first back up file is called "backup00.c". If changes have been made on the
Definition file, which do not create any changes to the interface in the EFB, there is
no need to create a back up file by editing the source files (Objects → Source). If a
back up file can be assigned, the name of the source file can be given.

B

Glossary

840 USE 504 00 October 2002 51

Base 16 literals Base 16 literals function as the input of whole number values in the hexadecimal
system. The base must be denoted by the prefix 16#. The values may not be
preceded by signs (+/-). Single underline signs (_) between figures are not
significant.

Example
16#F_F or 16#FF (decimal 255)
16#E_0 or 16#E0 (decimal 224)

Base 8 literal Base 8 literals function as the input of whole number values in the octal system. The
base must be denoted by the prefix 3.63kg. The values may not be preceded by
signs (+/-). Single underline signs (_) between figures are not significant.

Example
8#3_1111 or 8#377 (decimal 255)
8#34_1111 or 8#340 (decimal 224)

Basis 2 literals Base 2 literals function as the input of whole number values in the dual system. The
base must be denoted by the prefix 0.91kg. The values may not be preceded by
signs (+/-). Single underline signs (_) between figures are not significant.

Example
2#1111_1111 or 2#11111111 (decimal 255)
2#1110_1111 or 2#11100000 (decimal 224)

Binary
connections

Connections between outputs and inputs of FFBs of data type BOOL.

Bit sequence A data element, which is made up from one or more bits.

BOOL BOOL stands for the data type "Boolean". The length of the data elements is 1 bit
(in the memory contained in 1 byte). The range of values for variables of this type is
0 (FALSE) and 1 (TRUE).

Bridge A bridge serves to connect networks. It enables communication between nodes on
the two networks. Each network has its own token rotation sequence – the token is
not deployed via bridges.

BYTE BYTE stands for the data type "Bit sequence 8". The input appears as Base 2 literal,
Base 8 literal or Base 1 16 literal. The length of the data element is 8 bit. A numerical
range of values cannot be assigned to this data type.

Glossary

52 840 USE 504 00 October 2002

Cache The cache is a temporary memory for cut or copied objects. These objects can be
inserted into sections. The old content in the cache is overwritten for each new Cut
or Copy.

Call up The operation, by which the execution of an operation is initiated.

Coil A coil is a LD element, which transfers (without alteration) the status of the horizontal
link on the left side to the horizontal link on the right side. In this way, the status is
saved in the associated Variable/ direct address.

Compact format
(4:1)

The first figure (the Reference) is separated from the following address with a colon
(:), where the leading zero are not entered in the address.

Connection A check or flow of data connection between graphic objects (e.g. steps in the SFC
editor, Function blocks in the FBD editor) within a section, is graphically shown as a
line.

Constants Constants are Unlocated variables, which are assigned a value that cannot be
altered from the program logic (write protected).

Contact A contact is a LD element, which transfers a horizontal connection status onto the
right side. This status is from the Boolean AND- operation of the horizontal
connection status on the left side with the status of the associated Variables/direct
Address. A contact does not alter the value of the associated variables/direct
address.

Data transfer
settings

Settings, which determine how information from the programming device is
transferred to the PLC.

C

D

Glossary

840 USE 504 00 October 2002 53

Data types The overview shows the hierarchy of data types, as they are used with inputs and
outputs of Functions and Function blocks. Generic data types are denoted by the
prefix "ANY".
l ANY_ELEM

l ANY_NUM
ANY_REAL (REAL)
ANY_INT (DINT, INT, UDINT, UINT)

l ANY_BIT (BOOL, BYTE, WORD)
l TIME

l System data types (IEC extensions)
l Derived (from "ANY" data types)

DCP I/O station With a Distributed Control Processor (D908) a remote network can be set up with a
parent PLC. When using a D908 with remote PLC, the parent PLC views the remote
PLC as a remote I/O station. The D908 and the remote PLC communicate via the
system bus, which results in high performance, with minimum effect on the cycle
time. The data exchange between the D908 and the parent PLC takes place at 1.5
Megabits per second via the remote I/O bus. A parent PLC can support up to 31
(Address 2-32) D908 processors.

DDE (Dynamic
Data Exchange)

The DDE interface enables a dynamic data exchange between two programs under
Windows. The DDE interface can be used in the extended monitor to call up its own
display applications. With this interface, the user (i.e. the DDE client) can not only
read data from the extended monitor (DDE server), but also write data onto the PLC
via the server. Data can therefore be altered directly in the PLC, while it monitors
and analyzes the results. When using this interface, the user is able to make their
own "Graphic-Tool", "Face Plate" or "Tuning Tool", and integrate this into the
system. The tools can be written in any DDE supporting language, e.g. Visual Basic
and Visual-C++. The tools are called up, when the one of the buttons in the dialog
box extended monitor uses Concept Graphic Tool: Signals of a projection can be
displayed as timing diagrams via the DDE connection between Concept and
Concept Graphic Tool.

Decentral
Network (DIO)

A remote programming in Modbus Plus network enables maximum data transfer
performance and no specific requests on the links. The programming of a remote
net is easy. To set up the net, no additional ladder diagram logic is needed. Via
corresponding entries into the Peer Cop processor all data transfer requests are
met.

Declaration Mechanism for determining the definition of a Language element. A declaration
normally covers the connection of an Identifier with a language element and the
assignment of attributes such as Data types and algorithms.

Glossary

54 840 USE 504 00 October 2002

Definition data
file (Concept
EFB)

The definition file contains general descriptive information about the selected FFB
and its formal parameters.

Derived data type Derived data types are types of data, which are derived from the Elementary data
types and/or other derived data types. The definition of the derived data types
appears in the data type editor in Concept.
Distinctions are made between global data types and local data types.

Derived Function
Block (DFB)

A derived function block represents the Call up of a derived function block type.
Details of the graphic form of call up can be found in the definition " Function block
(Item)". Contrary to calling up EFB types, calling up DFB types is denoted by double
vertical lines on the left and right side of the rectangular block symbol.
The body of a derived function block type is designed using FBD language, but only
in the current version of the programming system. Other IEC languages cannot yet
be used for defining DFB types, nor can derived functions be defined in the current
version.
Distinctions are made between local and global DFBs.

DINT DINT stands for the data type "double integer". The input appears as Integer literal,
Base 2 literal, Base 8 literal or Base 16 literal. The length of the data element is 32
bit. The range of values for variables of this data type is from –2 exp (31) to 2 exp
(31) –1.

Direct display A method of displaying variables in the PLC program, from which the assignment of
configured memory can be directly and indirectly derived from the physical memory.

Document
window

A window within an Application window. Several document windows can be opened
at the same time in an application window. However, only one document window
can be active. Document windows in Concept are, for example, sections, the
message window, the reference data editor and the PLC configuration.

Dummy An empty data file, which consists of a text header with general file information, i.e.
author, date of creation, EFB identifier etc. The user must complete this dummy file
with additional entries.

DX Zoom This property enables connection to a programming object to observe and, if
necessary, change its data value.

Glossary

840 USE 504 00 October 2002 55

Elementary
functions/
function blocks
(EFB)

Identifier for Functions or Function blocks, whose type definitions are not formulated
in one of the IEC languages, i.e. whose bodies, for example, cannot be modified with
the DFB Editor (Concept-DFB). EFB types are programmed in "C" and mounted via
Libraries in precompiled form.

EN / ENO (Enable
/ Error display)

If the value of EN is "0" when the FFB is called up, the algorithms defined by the FFB
are not executed and all outputs contain the previous value. The value of ENO is
automatically set to "0" in this case. If the value of EN is "1" when the FFB is called
up, the algorithms defined by the FFB are executed. After the error free execution of
the algorithms, the ENO value is automatically set to "1". If an error occurs during
the execution of the algorithm, ENO is automatically set to "0". The output behavior
of the FFB depends whether the FFBs are called up without EN/ENO or with EN=1.
If the EN/ENO display is enabled, the EN input must be active. Otherwise, the FFB
is not executed. The projection of EN and ENO is enabled/disabled in the block
properties dialog box. The dialog box is called up via the menu commands Objects
→ Properties... or via a double click on the FFB.

Error When processing a FFB or a Step an error is detected (e.g. unauthorized input value
or a time error), an error message appears, which can be viewed with the menu
command Online → Event display... . With FFBs the ENO output is set to "0".

Evaluation The process, by which a value for a Function or for the outputs of a Function block
during the Program execution is transmitted.

Expression Expressions consist of operators and operands.

FFB (functions/
function blocks)

Collective term for EFB (elementary functions/function blocks) and DFB (derived
function blocks)

Field variables Variables, one of which is assigned, with the assistance of the key word ARRAY
(field), a defined Derived data type. A field is a collection of data elements of the
same Data type.

FIR filter Finite Impulse Response Filter

E

F

Glossary

56 840 USE 504 00 October 2002

Formal
parameters

Input/Output parameters, which are used within the logic of a FFB and led out of the
FFB as inputs/outputs.

Function (FUNC) A Program organization unit, which exactly supplies a data element when executing.
A function has no internal status information. Multiple call ups of the same function
with the same input parameter values always supply the same output values.
Details of the graphic form of function call up can be found in the definition " Function
block (Item)". In contrast to the call up of function blocks, the function call ups only
have one unnamed output, whose name is the name of the function itself. In FBD
each call up is denoted by a unique number over the graphic block; this number is
automatically generated and cannot be altered.

Function block
(item) (FB)

A function block is a Program organization unit, which correspondingly calculates
the functionality values, defined in the function block type description, for the output
and internal variables, when it is called up as a certain item. All output values and
internal variables of a certain function block item remain as a call up of the function
block until the next. Multiple call up of the same function block item with the same
arguments (Input parameter values) supply generally supply the same output
value(s).
Each function block item is displayed graphically by a rectangular block symbol. The
name of the function block type is located on the top center within the rectangle. The
name of the function block item is located also at the top, but on the outside of the
rectangle. An instance is automatically generated when creating, which can
however be altered manually, if required. Inputs are displayed on the left side and
outputs on the right of the block. The names of the formal input/output parameters
are displayed within the rectangle in the corresponding places.
The above description of the graphic presentation is principally applicable to
Function call ups and to DFB call ups. Differences are described in the
corresponding definitions.

Function block
dialog (FBD)

One or more sections, which contain graphically displayed networks from Functions,
Function blocks and Connections.

Function block
type

A language element, consisting of: 1. the definition of a data structure, subdivided
into input, output and internal variables, 2. A set of operations, which is used with
the elements of the data structure, when a function block type instance is called up.
This set of operations can be formulated either in one of the IEC languages (DFB
type) or in "C" (EFB type). A function block type can be instanced (called up) several
times.

Function counter The function counter serves as a unique identifier for the function in a Program or
DFB. The function counter cannot be edited and is automatically assigned. The
function counter always has the structure: .n.m

n = Section number (number running)

Glossary

840 USE 504 00 October 2002 57

m = Number of the FFB object in the section (number running)

Generic data
type

A Data type, which stands in for several other data types.

Generic literal If the Data type of a literal is not relevant, simply enter the value for the literal. In this
case Concept automatically assigns the literal to a suitable data type.

Global derived
data types

Global Derived data types are available in every Concept project and are contained
in the DFB directory directly under the Concept directory.

Global DFBs Global DFBs are available in every Concept project and are contained in the DFB
directory directly under the Concept directory.

Global macros Global Macros are available in every Concept project and are contained in the DFB
directory directly under the Concept directory.

Groups (EFBs) Some EFB libraries (e.g. the IEC library) are subdivided into groups. This facilitates
the search for FFBs, especially in extensive libraries.

I/O component
list

The I/O and expert assemblies of the various CPUs are configured in the I/O
component list.

IEC 61131-3 International norm: Programmable controllers – part 3: Programming languages.

IEC format (QW1) In the place of the address stands an IEC identifier, followed by a five figure address:
l %0x12345 = %Q12345
l %1x12345 = %I12345
l %3x12345 = %IW12345
l %4x12345 = %QW12345

G

I

Glossary

58 840 USE 504 00 October 2002

IEC name
conventions
(identifier)

An identifier is a sequence of letters, figures, and underscores, which must start with
a letter or underscores (e.g. name of a function block type, of an item or section).
Letters from national sets of characters (e.g. ö,ü, é, õ) can be used, taken from
project and DFB names.
Underscores are significant in identifiers; e.g. "A_BCD" and "AB_CD" are
interpreted as different identifiers. Several leading and multiple underscores are not
authorized consecutively.
Identifiers are not permitted to contain space characters. Upper and/or lower case
is not significant; e.g. "ABCD" and "abcd" are interpreted as the same identifier.
Identifiers are not permitted to be Key words.

IIR filter Infinite Impulse Response Filter

Initial step
(starting step)

The first step in a chain. In each chain, an initial step must be defined. The chain is
started with the initial step when first called up.

Initial value The allocated value of one of the variables when starting the program. The value
assignment appears in the form of a Literal.

Input bits (1x
references)

The 1/0 status of input bits is controlled via the process data, which reaches the CPU
from an entry device.

Input parameters
(Input)

When calling up a FFB the associated Argument is transferred.

Input words (3x
references)

An input word contains information, which come from an external source and are
represented by a 16 bit figure. A 3x register can also contain 16 sequential input bits,
which were read into the register in binary or BCD (binary coded decimal) format.
Note: The x, which comes after the first figure of the reference type, represents a
five figure storage location in the user data store, i.e. if the reference 300201
signifies a 16 bit input word in the address 201 of the State RAM.

Instantiation The generation of an Item.

Note: The x, which comes after the first figure of the reference type, represents a
five figure storage location in the application data store, i.e. if the reference 100201
signifies an input bit in the address 201 of the State RAM.

Glossary

840 USE 504 00 October 2002 59

Instruction (IL) Instructions are "commands" of the IL programming language. Each operation
begins on a new line and is succeeded by an operator (with modifier if needed) and,
if necessary for each relevant operation, by one or more operands. If several
operands are used, they are separated by commas. A tag can stand before the
instruction, which is followed by a colon. The commentary must, if available, be the
last element in the line.

Instruction
(LL984)

When programming electric controllers, the task of implementing operational coded
instructions in the form of picture objects, which are divided into recognizable
contact forms, must be executed. The designed program objects are, on the user
level, converted to computer useable OP codes during the loading process. The OP
codes are deciphered in the CPU and processed by the controller’s firmware
functions so that the desired controller is implemented.

Instruction list
(IL)

IL is a text language according to IEC 1131, in which operations, e.g. conditional/
unconditional call up of Function blocks and Functions, conditional/unconditional
jumps etc. are displayed through instructions.

INT INT stands for the data type "whole number". The input appears as Integer literal,
Base 2 literal, Base 8 literal or Base 16 literal. The length of the data element is 16
bit. The range of values for variables of this data type is from –2 exp (15) to 2 exp
(15) –1.

Integer literals Integer literals function as the input of whole number values in the decimal system.
The values may be preceded by the signs (+/-). Single underline signs (_) between
figures are not significant.

Example
-12, 0, 123_456, +986

INTERBUS (PCP) To use the INTERBUS PCP channel and the INTERBUS process data
preprocessing (PDP), the new I/O station type INTERBUS (PCP) is led into the
Concept configurator. This I/O station type is assigned fixed to the INTERBUS
connection module 180-CRP-660-01.
The 180-CRP-660-01 differs from the 180-CRP-660-00 only by a clearly larger I/O
area in the state RAM of the controller.

Glossary

60 840 USE 504 00 October 2002

Item name An Identifier, which belongs to a certain Function block item. The item name serves
as a unique identifier for the function block in a program organization unit. The item
name is automatically generated, but can be edited. The item name must be unique
throughout the Program organization unit, and no distinction is made between
upper/lower case. If the given name already exists, a warning is given and another
name must be selected. The item name must conform to the IEC name conventions,
otherwise an error message appears. The automatically generated instance name
always has the structure: FBI_n_m

FBI = Function block item
n = Section number (number running)
m = Number of the FFB object in the section (number running)

Jump Element of the SFC language. Jumps are used to jump over areas of the chain.

Key words Key words are unique combinations of figures, which are used as special syntactic
elements, as is defined in appendix B of the IEC 1131-3. All key words, which are
used in the IEC 1131-3 and in Concept, are listed in appendix C of the IEC 1131-3.
These listed keywords cannot be used for any other purpose, i.e. not as variable
names, section names, item names etc.

Ladder Diagram
(LD)

Ladder Diagram is a graphic programming language according to IEC1131, which
optically orientates itself to the "rung" of a relay ladder diagram.

J

K

L

Glossary

840 USE 504 00 October 2002 61

Ladder Logic 984
(LL)

In the terms Ladder Logic and Ladder Diagram, the word Ladder refers to execution.
In contrast to a diagram, a ladder logic is used by engineers to draw up a circuit (with
assistance from electrical symbols),which should chart the cycle of events and not
the existing wires, which connect the parts together. A usual user interface for
controlling the action by automated devices permits ladder logic interfaces, so that
when implementing a control system, engineers do not have to learn any new
programming languages, with which they are not conversant.
The structure of the actual ladder logic enables electrical elements to be linked in a
way that generates a control output, which is dependant upon a configured flow of
power through the electrical objects used, which displays the previously demanded
condition of a physical electric appliance.
In simple form, the user interface is one of the video displays used by the PLC
programming application, which establishes a vertical and horizontal grid, in which
the programming objects are arranged. The logic is powered from the left side of the
grid, and by connecting activated objects the electricity flows from left to right.

Landscape
format

Landscape format means that the page is wider than it is long when looking at the
printed text.

Language
element

Each basic element in one of the IEC programming languages, e.g. a Step in SFC,
a Function block item in FBD or the Start value of a variable.

Library Collection of software objects, which are provided for reuse when programming new
projects, or even when building new libraries. Examples are the Elementary function
block types libraries.
EFB libraries can be subdivided into Groups.

Literals Literals serve to directly supply values to inputs of FFBs, transition conditions etc.
These values cannot be overwritten by the program logic (write protected). In this
way, generic and standardized literals are differentiated.
Furthermore literals serve to assign a Constant a value or a Variable an Initial value.
The input appears as Base 2 literal, Base 8 literal, Base 16 literal, Integer literal, Real
literal or Real literal with exponent.

Local derived
data types

Local derived data types are only available in a single Concept project and its local
DFBs and are contained in the DFB directory under the project directory.

Local DFBs Local DFBs are only available in a single Concept project and are contained in the
DFB directory under the project directory.

Local link The local network link is the network, which links the local nodes with other nodes
either directly or via a bus amplifier.

Local macros Local Macros are only available in a single Concept project and are contained in the
DFB directory under the project directory.

Glossary

62 840 USE 504 00 October 2002

Local network
nodes

The local node is the one, which is projected evenly.

Located variable Located variables are assigned a state RAM address (reference addresses 0x,1x,
3x, 4x). The value of these variables is saved in the state RAM and can be altered
online with the reference data editor. These variables can be addressed by symbolic
names or the reference addresses.

Collective PLC inputs and outputs are connected to the state RAM. The program
access to the peripheral signals, which are connected to the PLC, appears only via
located variables. PLC access from external sides via Modbus or Modbus plus
interfaces, i.e. from visualizing systems, are likewise possible via located variables.

Macro Macros are created with help from the software Concept DFB.
Macros function to duplicate frequently used sections and networks (including the
logic, variables, and variable declaration).
Distinctions are made between local and global macros.

Macros have the following properties:
l Macros can only be created in the programming languages FBD and LD.
l Macros only contain one single section.
l Macros can contain any complex section.
l From a program technical point of view, there is no differentiation between an

instanced macro, i.e. a macro inserted into a section, and a conventionally
created macro.

l Calling up DFBs in a macro
l Variable declaration
l Use of macro-own data structures
l Automatic acceptance of the variables declared in the macro
l Initial value for variables
l Multiple instancing of a macro in the whole program with different variables
l The section name, the variable name and the data structure name can contain up

to 10 different exchange markings (@0 to @9).

MMI Man Machine Interface

Multi element
variables

Variables, one of which is assigned a Derived data type defined with STRUCT or
ARRAY.
Distinctions are made between Field variables and structured variables.

M

Glossary

840 USE 504 00 October 2002 63

Network A network is the connection of devices to a common data path, which communicate
with each other via a common protocol.

Network node A node is a device with an address (164) on the Modbus Plus network.

Node address The node address serves a unique identifier for the network in the routing path. The
address is set directly on the node, e.g. with a rotary switch on the back of the
module.

Operand An operand is a Literal, a Variable, a Function call up or an Expression.

Operator An operator is a symbol for an arithmetic or Boolean operation to be executed.

Output
parameters
(Output)

A parameter, with which the result(s) of the Evaluation of a FFB are returned.

Output/discretes
(0x references)

An output/marker bit can be used to control real output data via an output unit of the
control system, or to define one or more outputs in the state RAM. Note: The x,
which comes after the first figure of the reference type, represents a five figure
storage location in the application data store, i.e. if the reference 000201 signifies
an output or marker bit in the address 201 of the State RAM.

Output/marker
words (4x
references)

An output/marker word can be used to save numerical data (binary or decimal) in
the State RAM, or also to send data from the CPU to an output unit in the control
system. Note: The x, which comes after the first figure of the reference type,
represents a five figure storage location in the application data store, i.e. if the
reference 400201 signifies a 16 bit output or marker word in the address 201 of the
State RAM.

N

O

Glossary

64 840 USE 504 00 October 2002

Peer processor The peer processor processes the token run and the flow of data between the
Modbus Plus network and the PLC application logic.

PLC Programmable controller

Program The uppermost Program organization unit. A program is closed and loaded onto a
single PLC.

Program cycle A program cycle consists of reading in the inputs, processing the program logic and
the output of the outputs.

Program
organization unit

A Function, a Function block, or a Program. This term can refer to either a Type or
an Item.

Programming
device

Hardware and software, which supports programming, configuring, testing,
implementing and error searching in PLC applications as well as in remote system
applications, to enable source documentation and archiving. The programming
device could also be used for process visualization.

Programming
redundancy
system (Hot
Standby)

A redundancy system consists of two identically configured PLC devices, which
communicate with each other via redundancy processors. In the case of the primary
PLC failing, the secondary PLC takes over the control checks. Under normal
conditions the secondary PLC does not take over any controlling functions, but
instead checks the status information, to detect mistakes.

Project General identification of the uppermost level of a software tree structure, which
specifies the parent project name of a PLC application. After specifying the project
name, the system configuration and control program can be saved under this name.
All data, which results during the creation of the configuration and the program,
belongs to this parent project for this special automation.
General identification for the complete set of programming and configuring
information in the Project data bank, which displays the source code that describes
the automation of a system.

Project data bank The data bank in the Programming device, which contains the projection information
for a Project.

P

Glossary

840 USE 504 00 October 2002 65

Prototype data
file (Concept
EFB)

The prototype data file contains all prototypes of the assigned functions. Further, if
available, a type definition of the internal

REAL REAL stands for the data type "real". The input appears as Real literal or as Real
literal with exponent. The length of the data element is 32 bit. The value range for
variables of this data type reaches from 8.43E-37 to 3.36E+38.

Real literal Real literals function as the input of real values in the decimal system. Real literals
are denoted by the input of the decimal point. The values may be preceded by the
signs (+/-). Single underline signs (_) between figures are not significant.

Example
-12.0, 0.0, +0.456, 3.14159_26

Real literal with
exponent

Real literals with exponent function as the input of real values in the decimal system.
Real literals with exponent are denoted by the input of the decimal point. The
exponent sets the key potency, by which the preceding number is multiplied to get
to the value to be displayed. The basis may be preceded by a negative sign (-). The
exponent may be preceded by a positive or negative sign (+/-). Single underline
signs (_) between figures are not significant. (Only between numbers, not before
or after the decimal poiont and not before or after "E", "E+" or "E-")

Example
-1.34E-12 or -1.34e-12
1.0E+6 or 1.0e+6
1.234E6 or 1.234e6

R

Note: Depending on the mathematic processor type of the CPU, various areas
within this valid value range cannot be represented. This is valid for values nearing
ZERO and for values nearing INFINITY. In these cases, a number value is not
shown in animation, instead NAN (Not A Number) oder INF (INFinite).

Glossary

66 840 USE 504 00 October 2002

Reference Each direct address is a reference, which starts with an ID, specifying whether it
concerns an input or an output and whether it concerns a bit or a word. References,
which start with the code 6, display the register in the extended memory of the state
RAM.
0x area = Discrete outputs
1x area = Input bits
3x area = Input words
4x area = Output bits/Marker words
6x area = Register in the extended memory

Register in the
extended
memory (6x
reference)

6x references are marker words in the extended memory of the PLC. Only LL984
user programs and CPU 213 04 or CPU 424 02 can be used.

RIO (Remote I/O) Remote I/O provides a physical location of the I/O coordinate setting device in
relation to the processor to be controlled. Remote inputs/outputs are connected to
the consumer control via a wired communication cable.

RP (PROFIBUS) RP = Remote Peripheral

RTU mode Remote Terminal Unit
The RTU mode is used for communication between the PLC and an IBM compatible
personal computer. RTU works with 8 data bits.

Rum-time error Error, which occurs during program processing on the PLC, with SFC objects (i.e.
steps) or FFBs. These are, for example, over-runs of value ranges with figures, or
time errors with steps.

Note: The x, which comes after the first figure of each reference type, represents
a five figure storage location in the application data store, i.e. if the reference
400201 signifies a 16 bit output or marker word in the address 201 of the State
RAM.

Glossary

840 USE 504 00 October 2002 67

SA85 module The SA85 module is a Modbus Plus adapter for an IBM-AT or compatible computer.

Section A section can be used, for example, to describe the functioning method of a
technological unit, such as a motor.
A Program or DFB consist of one or more sections. Sections can be programmed
with the IEC programming languages FBD and SFC. Only one of the named
programming languages can be used within a section.
Each section has its own Document window in Concept. For reasons of clarity, it is
recommended to subdivide a very large section into several small ones. The scroll
bar serves to assist scrolling in a section.

Separator format
(4:00001)

The first figure (the Reference) is separated from the ensuing five figure address by
a colon (:).

Sequence
language (SFC)

The SFC Language elements enable the subdivision of a PLC program organiza-
tional unit in a number of Steps and Transitions, which are connected horizontally
by aligned Connections. A number of actions belong to each step, and a transition
condition is linked to a transition.

Serial ports With serial ports (COM) the information is transferred bit by bit.

Source code data
file (Concept
EFB)

The source code data file is a usual C++ source file. After execution of the menu
command Library → Generate data files this file contains an EFB code framework,
in which a specific code must be entered for the selected EFB. To do this, click on
the menu command Objects → Source.

Standard format
(400001)

The five figure address is located directly after the first figure (the reference).

Standardized
literals

If the data type for the literal is to be automatically determined, use the following
construction: ’Data type name’#’Literal value’.

Example
INT#15 (Data type: Integer, value: 15),
BYTE#00001111 (data type: Byte, value: 00001111)
REAL#23.0 (Data type: Real, value: 23.0)

For the assignment of REAL data types, there is also the possibility to enter the
value in the following way: 23.0.
Entering a comma will automatically assign the data type REAL.

S

Glossary

68 840 USE 504 00 October 2002

State RAM The state RAM is the storage for all sizes, which are addressed in the user program
via References (Direct display). For example, input bits, discretes, input words, and
discrete words are located in the state RAM.

Statement (ST) Instructions are "commands" of the ST programming language. Instructions must be
terminated with semicolons. Several instructions (separated by semi-colons) can
occupy the same line.

Status bits There is a status bit for every node with a global input or specific input/output of Peer
Cop data. If a defined group of data was successfully transferred within the set time
out, the corresponding status bit is set to 1. Alternatively, this bit is set to 0 and all
data belonging to this group (of 0) is deleted.

Step SFC Language element: Situations, in which the Program behavior follows in
relation to the inputs and outputs of the same operations, which are defined by the
associated actions of the step.

Step name The step name functions as the unique flag of a step in a Program organization unit.
The step name is automatically generated, but can be edited. The step name must
be unique throughout the whole program organization unit, otherwise an Error
message appears.
The automatically generated step name always has the structure: S_n_m

S = Step
n = Section number (number running)
m = Number of steps in the section (number running)

Structured text
(ST)

ST is a text language according to IEC 1131, in which operations, e.g. call up of
Function blocks and Functions, conditional execution of instructions, repetition of
instructions etc. are displayed through instructions.

Structured
variables

Variables, one of which is assigned a Derived data type defined with STRUCT
(structure).
A structure is a collection of data elements with generally differing data types (
Elementary data types and/or derived data types).

SY/MAX In Quantum control devices, Concept closes the mounting on the I/O population SY/
MAX I/O modules for RIO control via the Quantum PLC with on. The SY/MAX
remote subrack has a remote I/O adapter in slot 1, which communicates via a
Modicon S908 R I/O system. The SY/MAX I/O modules are performed when
highlighting and including in the I/O population of the Concept configuration.

Symbol (Icon) Graphic display of various objects in Windows, e.g. drives, user programs and
Document windows.

Glossary

840 USE 504 00 October 2002 69

Template data
file (Concept
EFB)

The template data file is an ASCII data file with a layout information for the Concept
FBD editor, and the parameters for code generation.

TIME TIME stands for the data type "Time span". The input appears as Time span literal.
The length of the data element is 32 bit. The value range for variables of this type
stretches from 0 to 2exp(32)-1. The unit for the data type TIME is 1 ms.

Time span
literals

Permitted units for time spans (TIME) are days (D), hours (H), minutes (M), seconds
(S) and milliseconds (MS) or a combination thereof. The time span must be denoted
by the prefix t#, T#, time# or TIME#. An "overrun" of the highest ranking unit is
permitted, i.e. the input T#25H15M is permitted.

Example
t#14MS, T#14.7S, time#18M, TIME#19.9H, t#20.4D, T#25H15M,
time#5D14H12M18S3.5MS

Token The network "Token" controls the temporary property of the transfer rights via a
single node. The token runs through the node in a circulating (rising) address
sequence. All nodes track the Token run through and can contain all possible data
sent with it.

Traffic Cop The Traffic Cop is a component list, which is compiled from the user component list.
The Traffic Cop is managed in the PLC and in addition contains the user component
list e.g. Status information of the I/O stations and modules.

Transition The condition with which the control of one or more Previous steps transfers to one
or more ensuing steps along a directional Link.

T

Glossary

70 840 USE 504 00 October 2002

UDEFB User defined elementary functions/function blocks
Functions or Function blocks, which were created in the programming language C,
and are available in Concept Libraries.

UDINT UDINT stands for the data type "unsigned double integer". The input appears as
Integer literal, Base 2 literal, Base 8 literal or Base 16 literal. The length of the data
element is 32 bit. The value range for variables of this type stretches from 0 to
2exp(32)-1.

UINT UINT stands for the data type "unsigned integer". The input appears as Integer
literal, Base 2 literal, Base 8 literal or Base 16 literal. The length of the data element
is 16 bit. The value range for variables of this type stretches from 0 to (2exp16)-1.

Unlocated
variable

Unlocated variables are not assigned any state RAM addresses. They therefore do
not occupy any state RAM addresses. The value of these variables is saved in the
system and can be altered with the reference data editor. These variables are only
addressed by symbolic names.

Signals requiring no peripheral access, e.g. intermediate results, system tags etc,
should primarily be declared as unlocated variables.

Variables Variables function as a data exchange within sections between several sections and
between the Program and the PLC.
Variables consist of at least a variable name and a Data type.
Should a variable be assigned a direct Address (Reference), it is referred to as a
Located variable. Should a variable not be assigned a direct address, it is referred
to as an unlocated variable. If the variable is assigned a Derived data type, it is
referred to as a Multi-element variable.
Otherwise there are Constants and Literals.

Vertical format Vertical format means that the page is higher than it is wide when looking at the
printed text.

U

V

Glossary

840 USE 504 00 October 2002 71

Warning When processing a FFB or a Step a critical status is detected (e.g. critical input value
or a time out), a warning appears, which can be viewed with the menu command
Online → Event display... . With FFBs the ENO output remains at "1".

WORD WORD stands for the data type "Bit sequence 16". The input appears as Base 2
literal, Base 8 literal or Base 1 16 literal. The length of the data element is 16 bit. A
numerical range of values cannot be assigned to this data type.

W

Glossary

72 840 USE 504 00 October 2002

CBA

840 USE 504 00 October 2002 73

A
AKF_FL, 15
AKF_TA, 17
AKF_TE, 21
AKF_TI, 25
AKF_TS, 29
AKF_TV, 33
AKF_ZR, 37
AKF_ZV, 41
AKF_ZVR, 45
AKFEFB

AKF_FL, 15
AKF_TA, 17
AKF_TE, 21
AKF_TI, 25
AKF_TS, 29
AKF_TV, 33
AKF_ZR, 37
AKF_ZV, 41
AKF_ZVR, 45

C
Counters

AKF_ZR, 37
AKF_ZV, 41
AKF_ZVR, 45

D
Decremental counter, 37
Detection of any edge, 15

E
Edge detection

AKF_FL, 15
Extended pulse, 33

F
Function

Parameterization, 9
Function block

Parameterization, 9

I
Incremental counter, 41
Incremental/decremental counter, 45

P
Parameterization, 9
Pulse, 25

S
Storing activation delay, 29
Switch-off delay, 17
Switch-on delay, 21

Index

Index

74 840 USE 504 00 October 2002

T
Timer

AKF_TA, 17
AKF_TE, 21
AKF_TI, 25
AKF_TS, 29
AKF_TV, 33

