Concept IEC block library Part: ANA_IO Volume 2 840 USE 504 00 eng Version 2.6

© 2002 Schneider Electric All Rights Reserved

Table of Contents

Part I	General information on the ANA_IO block library 1 Overview
Chapter 1	Parameterizing functions and function blocks3Parameterizing functions and function blocks3
Chapter 2	Operating Analog Modules7Overview7Editing analog values8Scaling and configuration sections8Configuration EFBs11Scaling EFBs17Debugging-EFBs18Application example for Quantum19
Chapter 3	Operating INTERBUS with Compact.21Diagram of the INTERBUS structure with EFBs21
Chapter 4	Analog value processing with Momentum23At a Glance23Procedure for Analog value processing with Momentum24Example analog value processing with Momentum26
Part II	EFB descriptions
Chapter 5	ACI030: Configuring the Quantum module ACI 030 0033
Chapter 6	ACI040: Configuring the Quantum module ACI 040 0037

Chapter 7	ACO020: Configuring the Quantum module ACO 020 00 41
Chapter 8	ACO130: Configuring the Quantum module ACO 130 00 45
Chapter 9	ADU204: Configuring the Compact module ADU 204 49
Chapter 10	ADU205: Configuring the Compact module ADU 205 53
Chapter 11	ADU206: Configuring the Compact module ADU 206/ADU 256
Chapter 12	ADU214: Configuring the Compact module ADU 214 61
Chapter 13	All330: Configuring the Quantum module All 330 00 65
Chapter 14	All33010: Configuring the Quantum module All 330 10 69
Chapter 15	AIO330: Configuring the Quantum module AIO 330 00 73
Chapter 16	AMM090: Configuring the Quantum module AMM 09077
Chapter 17	ANA_16I: Configuring the module AAI 140 0081
Chapter 18	ANA_4I_M: Configuring the module AAI 520 40 87
Chapter 19	ANA_4I_2O: Configuring the TIO-module BAM 096 00 95
Chapter 20	ANA_4I_2O_C: Configuring the TIO-module BAM 096 00 105
Chapter 21	ANA_4I_2O_V: Configuring the TIO-module BAM 096 00 109
Chapter 22	ANA_40: Configuring the module BAO 126 00 113
Chapter 23	ANA_8I: Configuring the module AAI 030 00, BAI 036 00 119
Chapter 24	ARI030: Configuring the Quantum module ARI 030 10 125
Chapter 25	ATI030: Configuring the Quantum module ATI 030 00 129
Chapter 26	AVI030: Configuring the Quantum module AVI 030 00 133
Chapter 27	AVO020: Configuring the Quantum module AVO 020 00 137
Chapter 28	BKF_201: Configuring the Compact module BKF 201 139
Chapter 29	BNO_671: Configuring the TIO-module BNO 671 00 147
Chapter 30	COMPACT: Configuring a main rack
Chapter 31	DAU202: Configuring the Compact module DAU 202 / DAU 252 / DAU 282

Chapter 32	DAU204: Configuring the Compact module DAU 204161		
Chapter 33	DAU208: Configuring the Compact module DAU 208165		
Chapter 34	DIG_16I: Configuring the TIO-module BDI 346 00 / 546 50 / 746 50169		
Chapter 35	DIG_16I_12O_MON: Configuring the module ADM 390 10175		
Chapter 36	DIG_16I_16O: Configuring the TIO-module BDM 346 00181		
Chapter 37	DIG_160: Configuring the TIO-modules BDO 346 00 / BDO 946 50187		
Chapter 38	DROP: Configuring a I/O Station subrack193		
Chapter 39	I_DBSET: Writing internal data structure ANL_IN 197		
Chapter 40	I_DEBUG: Monitoring internal data structure ANL_IN199		
Chapter 41	I_FILTER: Linearization for analog-inputs		
Chapter 42	I_NORM: Standardized analog input		
Chapter 43	I_NORM_WARN: Standardized analog-input with warning status		
Chapter 44	I_PHYS: Physical analog-input		
Chapter 45	I_PHYS_WARN: Physical analog-input with		
0 / /0	warning-status		
Chapter 46	I_RAW: Raw value analog input		
Chapter 47	I_RAWSIM: Simulated raw value analog input		
Chapter 48	I_SCALE: Scaled analog input223		
Chapter 49	I_SCALE_WARN: Scaled analog input with warnings status		
Chapter 50	I_SET: Set information from analog input channels 231		
Chapter 51			
	IMIO_IN: Immediate I/O module input		
Chapter 52	IMIO_IN: Immediate I/O module input239IMIO_OUT: Immediate I/O module output243		
Chapter 52 Chapter 53			

Chapter 54	NOA_611: Configuring the Quantum module NOA 611 00/NOA 611 10 255	
Chapter 55	O_DBSET: Write internal data structure ANL_OUT 261	
Chapter 56	O_DEBUG: Monitoring internal data structure ANL_OUT 263	
Chapter 57	O_FILTER: Linearization for analog outputs	
Chapter 58	O_NORM: Standardized analog output	
Chapter 59	O_NORM_WARN: Standardized analog output with warning status	
Chapter 60	O_PHYS: Physical analog output	
Chapter 61	O_PHYS_WARN: Physical analog output with warning-status	
Chapter 62	O_RAW: Raw value analog output	
Chapter 63	O_SCALE: Scaled analog output	
Chapter 64	O_SCALE_WARN: Scaled analog output with warnings status	
Chapter 65	O_SET: Set information from analog output channels 293	
Chapter 66	QPR_16I_12O: Configuring the TIO-module QPR 346 00 / 10 / 20 / 21	
Chapter 67	QUANTUM: Configuring a main rack	
Chapter 68	R_INT_WORD: Type conversion (REAL -> INT -> WORD) 311	
Chapter 69	R_UINT_WORD: Type conversion (REAL -> UINT -> WORD)	
Chapter 70	SCALRTOW: Scaling (REAL -> WORD)	
Chapter 71	SCALWTOR: Scaling (WORD -> REAL)	
Chapter 72	UNI_I: Configuring universal TIO input modules	
Chapter 73	UNI_I_O: Configuring universal TIO input/output modules	
Chapter 74	UNI_O: Configuring universal TIO output modules 331	
Chapter 75	W_INT_REAL: Type conversion (WORD -> INT -> REAL)335	

Chapter 76	W_UINT_REAL: Type conversion (WORD -> UINT -> REAL)
Chapter 77	XBP: Configuring a primary backplane expander
Chapter 78	XDROP: Configuring a I/O Station Backplane
Glossary	
Index	

About the book

At a Glance		
Document Scope	This documentation is designed to help with th function blocks.	e configuration of functions and
Validity Note This documentation applies to Concept 2.6 under Microsoft Windows 9 Windows 2000, Windows XP and Microsoft Windows NT 4.x.		
	Note: There is additional up to date tips in the	README data file in Concept.
Related Documents		
	Title of Documentation	Reference Number
	Concept Installation Instructions	840 USE 502 00
	Concept User Manual	840 USE 503 00
	Concept EFB User Manual	840 USE 505 00
	Concept LL984 Block Library	840 USE 506 00
User Comments	We welcome your comments about this docum TECHCOMM@modicon.com	nent. You can reach us by e-mail at

About the book

I_DBSET: Writing internal data structure ANL_IN

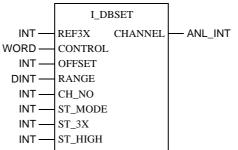
Overview At a Glance This chapter describes the block I_DBSET. What's in this chapter contains the following topics: This chapter contains the following topics: Topic Page Brief description 198 Representation 198

840 USE 504 00 October 2002

I_DBSET: Writing internal data structure ANL_IN

Brief description

Function description


Note: The Function block is not usually needed.

The function block can be used to set information for the input channels (ANL_IN). EN and ENO can be projected as additional parameters.

Representation

Symbol

Block representation:

Parameter description

Block parameter description:

Parameter	Data type	Meaning
REF3X	INT	3x raw value register
CONTROL	WORD	Control word (internal use only)
OFFSET	INT	Input null shift
RANGE	DINT	Input range (resolution)
CH_NO	INT	Channel number
ST_MODE	INT	Status mode (internal use only)
ST_3X	INT	3x status register
ST_HIGH	INT	Identifies high byte or low byte of status register
CHANNEL	ANL_IN	Channel to be written

I_DEBUG: Monitoring internal data structure ANL_IN

40

Overview

At a Glance

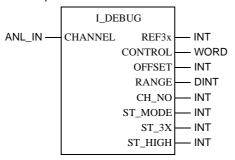
This chapter describes the block I_DEBUG.

This chapter contains the following topics:	
Торіс	Page
Representation	200
Brief description	200

I_DEBUG: Monitoring internal data structure ANL_IN

Brief description

Function description


Note: The Function block is not usually needed.

The function block can be used to display information for the input channels (ANL_IN). EN and ENO can be projected as additional parameters.

Representation

Symbol

Block representation:

Parameter
description

Block parameter description:		
Parameter	Data type	Meaning
CHANNEL	ANL_IN	channel to be monitored
REF3X	INT	3x raw value register
CONTROL	WORD	Control word (internal use only)
OFFSET	INT	Input null shift
RANGE	DINT	Input range (resolution)
CH_NO	INT	Channel number
ST_MODE	INT	Status mode (internal use only)
ST_3X	INT	3x status register
ST_HIGH	INT	Identifies high byte or low byte of status register

I_FILTER: Linearization for analog-inputs

Overview

At a Glance

This chapter describes the block I_FILTER.

This chapter contains the following topics: Topic	Page
Brief description	202
Representation	202
Detailed description	203
Runtime error	205

I_FILTER: Linearization for analog-inputs

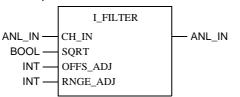
Brief description

Function description

3 different adjustments are available:

- Linearizing with square root (standardized range)
- Correction of the "Offset" (zero offset compensation)
- Correction of "Range" (gain)

Note: Correction of the automatically set values for "Offset" and "Range" is not normally necessary.


The function enables the adjustment of characteristic curves for analog input values.

EN and ENO can be projected as additional parameters.

Representation

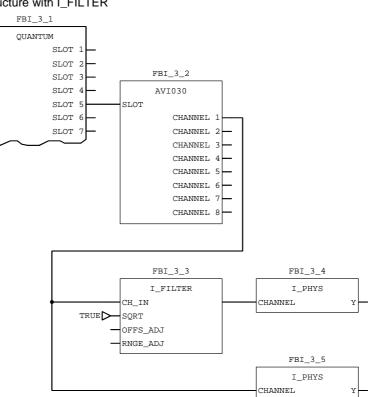
Symbol

Block representation:

Parameter description

Block parameter description:

Parameter	Data type	Meaning
CH_IN	ANL_IN	Input value
SQRT	BOOL	Square root filter 1: Filter active 0: Filter inactive
OFFS_ADJ	INT	Adjusting offset
RNGE_ADJ	INT	Adjusting gain
OUT	ANL_IN	Output value


Detailed description

Linearizing with	Use the parameter SQRT to linearize an analog input value.		
square root	The square root filter acts according to the following functions:		
(standardized	f(0) = 0, f(0.5) = 0.707, f(1) = 1.		
range)	Characteristic curve of the square root filter		
	Output value 10 - 0 Characteristic curve (SQRT = 1) 0 - 0 Characteristic curve (SQRT = 0) Substantial curve (SQRT = 0) Standardized Raw value		
Correction of the "Offset" (zero offset compensation)	The OFFS_ADJ parameters can be used to modify (adjust) the calculated offset value of the output Note: Correction of the automatically set value (OFFS_ADJ = 0) is not normally necessary. Nevertheless, if corrections are made, they should be monitored using the I_DEBUG Function block, because there will be a modification of the ANL_IN data type (of the output).		
Correction of	The RNGE_ADJ parameter can be used to modify (adjust) the calculated gain of the output.		
"Range" (gain)	Note: Correction of the automatically set value (RNGE_ADJ = 0) is not normally necessary. If corrections are made, they should be monitored using the I_DEBUG Function block, because there will be a modification of the ANL_IN data type (of the output).		

I_FILTER: Linearization for analog-inputs

Structure with I_FILTER

The outputs OFFS_ADJ and RNGE_ADJ of the I_FILTER (FBI_3_3) Function block are not used. They are therefore set per default to "0". The following values apply for function block I_PHYS (FBI_3_4):

Input values (AVI030 10 V)	Output values (I_PHYS)
0 V	0.0
2.5 V	5.0
5 V	7.07
10 V	10.0

The following values apply for function block I_PHYS (FBI_3_5):

Input values (AVI030 10 V)	Output values (I_PHYS)
0 V	0.0
2.5 V	2.5
5 V	5.0
10 V	10.0

Runtime error

Runtime error

An error message appears if the input channel has not been configured. In this case, please check the connected I/O module EFB.

I_FILTER: Linearization for analog-inputs

I_NORM: Standardized analog input

Overview At a Glance This chapter describes the block I_NORM. What's in this chapter contains the following topics: This chapter contains the following topics: Topic Page Brief description 208 Representation 208 Runtime error 208

I_NORM: Standardized analog-input

Brief descriptio	on			
Function description	The function converts data from 16 bit integer format into REAL floating-point format. The configured integer input value is displayed with a floating-point value in the range of 0.0 to 1.0. If there are warning ranges for the current data format (e.g. 16 bit, +/- 10 V), the floating point value can be expanded (e.g. 1.016) EN and ENO can be projected as additional parameters.			
Representation	l			
Symbol	Block repress	entation: I_NORM CHANNEL	REAL	
Parameter	Block parame	eter description:		
description	Parameter	Data type	Meaning	
	CHANNEL	ANL_IN	Input value	
	OUT	REAL	Normalized value	
Runtime error				
Runtime error	 if the input I/O module with an input with an input 	e EFB. but value underflo but value overflov aluate the status i	onfigured. In this case, please check the connected ow (for example, -1 Volt instead of 0 5 Volt). v (for example, 6 Volt instead of 0 5 Volt). nformation for the I/O module, use the function block	

I_NORM_WARN: Standardized analog-input with warning status

43

Overview

At a Glance

This chapter describes the block I_NORM_WARN.

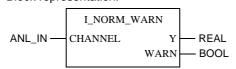
Торіс	Page
Brief description	210
Representation	210
Runtime error	211

I_NORM_WARN: Standardized analog-input with warning status

Brief description

Function The function block converts data from 16 bit integer format into REAL floating-point description format. The configured integer input value is displayed with a floating-point value in the range of 0.0 to 1.0. If there are warning ranges for the current data format (e.g. 16 bit, +/- 10 V), the floating point value can be expanded (e.g. 1.016) In addition the function block indicates at the WARN output whether a status warning has occurred in the connected analog input EFB.

> Note: This function block is not compatible with the ADU2xx function for Compact (the I_NORM Function block should be used instead). The I_NORM_WARN function block does not recognize the module range information, even though it is assigned to the 3x register area. Therefore, the area warn bits have to be taken directly.


> The layout of the status information assigned to State RAM can be found in Online Help for Compact modules (Help \rightarrow Help on Compact \rightarrow Compact I/O User's Guide).

EN and ENO can be configured as additional parameters.

Representation

Symbol

Block representation:

Parameter description Block parameter description:

Parameter	Data type	Meaning
CHANNEL	ANL_IN	Input value
Y	REAL	Normalized value
WARN	BOOL	0: no status warning on the connected analog input EFB

1: status warning on the connected analog input EFB

I_NORM_WARN: Standardized analog-input with warning status

Runtime error	
Runtime error	 An Error message appears, if the input channel is not configured. In this case, please check the connected I/O module EFB. with an input value overflow (outside the warning range, e.g. 6Volts instead of 0 5Volts) if the connected analog input EFB is unable to generate status information, and the WARN output can, therefore, never become active. In this case, please use the I_NORM Function block.

I_PHYS: Physical analog-input

Overview

At a Glance

This chapter describes the block I_PHYS.

Page
214
214
214

I_PHYS: Physical analog-input

Brief description	n			
Function description	The Function outputs analog input values (voltage, current or temperature) as physical values in REAL floating-point format. EN and ENO can be projected as additional parameters.			
Representation				
Symbol	Block represe	ntation: I_PHYS IANNEL	– REAL	
Parameter description	Block parameter description:			
description	Parameter	Data type	Meaning	
	CHANNEL	ANL_IN	Input value	
	OUT	REAL	Physical value	
Runtime error				
Runtime error	I/O modulewith an inpin the case	channel is not config EFB. ut value underflow (for of an input value over luate the status inform	ured. In this case, please check the connected or example, -1 Volt instead of 0 5 Volt). erflow (for example, 6 Volt instead of 0 5 Volt). nation for the I/O module, use the Function block	

I_PHYS_WARN: Physical analoginput with warning-status

Overview

At a Glance

This chapter describes the block I_PHYS_WARN.

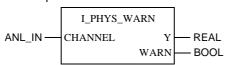
This chapter contains the following topics:		
Торіс	Page	
Brief description	216	
Representation	216	
Runtime error	217	

I_PHYS_WARN: Physical analog input with warning status

Brief description

Function The Function block provides analog input values (voltage, current or temperature) description as physical values in REAL floating-point format. In addition the function block indicates at the WARN output whether a status warning has occurred in the connected analog input EFB.

> Note: This function block is not compatible with the ADU2xx function for Compact (the I_PHYS function block should be used instead). The I_PHYS_WARN Function block does not recognize the module range information, even though it is assigned to the 3x register area. Therefore, the area warn bits have to be taken directly.


> The layout of the status information assigned to State RAM can be found in Online Help for Compact modules (Help \rightarrow Help on Compact \rightarrow Compact I/O User's Guide).

EN and ENO can be configured as additional parameters.

Representation

Symbol

Block representation:

Parameter description Block parameter description:

Parameter	Data type	Meaning

		5
CHANNEL	ANL_IN	Input value
Υ	REAL	Physical value
WARN	BOOL	0: no status warning on the connected analog input EFB 1: status warning on the connected analog input EFB

I_PHYS_WARN: Physical analog input with warning status

Runtime error	
Runtime error	An Error message appears,
	 if the input channel is not configured. In this case, please check the connected I/O module EFB.
	 with an input value underflow (outside the warning range, e.g1Volt instead of 0 5Volts).
	 with an input value overflow (outside the warning range, e.g. 6Volts instead of 0 5Volts).
	 if the connected analog input EFB is unable to generate status information, and the WARN output can, therefore, never become active. In this case, please use the I_PHYS Function block.

I_RAW: Raw value analog input

Overview

At a Glance

This chapter describes the block I_RAW.

This chapter contains the following topics:			
Page			
220			
220			
220			

I_RAW: Raw value analog input

Brief descriptio	n				
Function description	The function provides analog input values as raw values of the WORD data type. EN and ENO can be projected as additional parameters.				
Representation					
Symbol	Block representation: I_RAW ANL_IN — CHANNEL — WORD				
Parameter description	Block parameter description: Parameter Data type Meaning				
	CHANNEL	ANL_IN	Input value		
	OUT	WORD	Raw value		
Runtime error					
Runtime error	 if the input I/O module 		figured. In this case, please check the connected tion.		

I_RAWSIM: Simulated raw value analog input

Overview At a Glance This chapter describes the block I_RAWSIM. What's in this chapter contains the following topics: This chapter contains the following topics: Topic Page Brief description 222 Representation 222 Runtime error 222

I_RAWSIM: Simulated raw value analog input

Brief description

Function The Function block simulates raw value analog inputs on 3x registers. The function description block acts to supplement for the reference data editor where 3x registers cannot be written.

> Note: Specify the processing sequence for the function blocks in a way that ensures the I_RAWSIM Function block will be executed before all the other function blocks which read the simulated raw value. To do this, connect the ENO output of the I_RAWSIM with the EN inputs of all the function blocks which read the simulated raw value.

EN and ENO can be projected as additional parameters.

Representation

Symbol

Block representation:

I_RAWSIM ANL_IN -CHANNEL WORD -SIM

Parameter

Block parameter description:

description

Parameter	Data type	Meaning
CHANNEL	ANL_IN	Simulated raw value
SIM	WORD	Input value

Runtime error

Runtime error

An Error message appears,

• if the input channel is not configured. In this case, please check the connected I/O module EFB.

I_SCALE: Scaled analog input

48

Overview

At a Glance

This chapter describes the block I_SCALE.

What's in this chapter?

Daga
Page
224
224
225

I_SCALE: Scaled analog input

Brief description

Function
descriptionThe function converts data from 16 bit integer format into REAL floating-point format.
The scaling inputs MN and MX predefine the value range for the output. MN
corresponds to 0 percent and MX to 100 percent. The integer input value is
displayed in the floating-point range. If there are warning ranges for the current data
format (e.g. 16 bit, +/- 10 V), the floating point value can be expanded to over
100 percent (e.g. 101.8 percent)
EN and ENO can be projected as additional parameters.

Note: The I_SCALE function can not be used to scale temperature measurements. Please use the I_PHYSfunction to scale temperature measurements:.

Representation

Symbol

Block representation:

Block parameter description:

	I_SCALE	
ANL_IN	CHANNEL	
REAL —	MN	— REAL
REAL —	MX	

Parameter description

Parameter	Data type	Meaning
CHANNEL	ANL_IN	Input value
MN	REAL	Scaling input, 0 percent
MX	REAL	Scaling input, 100 percent
OUT	REAL	Scaled value

Runtime error

Runtime error

An error message appears,

- if the input channel is not configured. In this case, please check the connected I/O module EFB.
- in the case of input value underflow (for example, -1 Volt instead of 0 ... 5 Volt).
- in the case of input value overflow (for example, 6 Volt instead of 0 ... 5 Volt).

Note: To evaluate the status information for the I/O module, use the I_SCALE_WARN function block.

I_SCALE: Scaled analog input

I_SCALE_WARN: Scaled analog input with warnings status

Overview

At a Glance

This chapter describes the block I_SCALE_WARN.

What's in this chapter?

This chapter contains the following topics:		
Торіс	Page	
Brief description	228	
Representation	229	
Runtime error	229	

I_SCALE_WARN: Scaled analog input with warning status

Brief description

Function description	The function block converts data from 16 bit integer format into REAL floating-point format. The scaling inputs MN and MX predefine the value range for the output. MN corresponds to 0 percent and MX to 100 percent. The integer input value is displayed in the floating-point range. If there are warning ranges for the current data format (e.g. 16 bit, +/- 10 V), the floating point value can be expanded to over 100 percent (e.g. 101.6 percent) In addition the function block indicates at the WARN output whether a status warning has occurred in the connected analog input EFB.
	Note: This function block is not compatible with the ADU2xx function for Compact (the I_SCALE function block should be used instead). The I_SCALE_WARN function block does not recognize the module range information, even though it is assigned to the 3x register area. Therefore, the area warn bits have to be taken directly.
	The layout of the status information assigned to State RAM can be found in Online Help for Compact modules (Help \rightarrow Help on Compact \rightarrow Compact I/O User's Guide). EN and ENO can be configured as additional parameters.
	Note: The I_SCALE_WARN function can not be used to scale temperature measurements. Please use the I_PHYS_WARNfunction to scale temperature measurements.

I_SCALE_WARN: Scaled analog input with warning status

Representation

Sym	bol
-----	-----

Block representation:

			_
	I_SCALE_V	VARN	
ANL_IN	CHANNEL		
REAL —	MN	Y	— REAL
REAL —	MX	WARN	— BOOL

Parameter

description

Parameter	Data type	Meaning
CHANNEL	ANL_IN	Input value
MN	REAL	Scaling input, 0 percent
MX	REAL	Scaling input, 100 percent
Y	REAL	Scaled value
WARN	BOOL	0: no status warning on the connected analog input EFB 1: status warning on the connected analog input EFB

Runtime error

Runtime error

An error message appears,

- if the input channel is not configured. In this case, please check the connected I/O module EFB.
- with an input value underflow (outside the warning range, e.g. -1Volt instead of 0 ... 5Volts).
- with an input value overflow (outside the warning range, e.g. 6Volts instead of • 0 ... 5Volts).
- if the connected analog input EFB is unable to generate status information, and the WARN output can, therefore, never become active. In this case, please use the I_SCALE function block.

I_SET: Set information from analog input channels

50

Overview

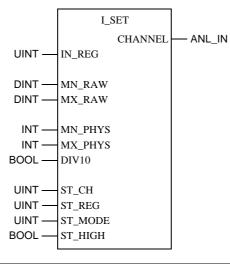
At a Glance

This chapter describes the block I_SET.

What's in this chapter?

This chapter contains the following topics:PageTopicPageBrief description232Representation233Detailed description234Supported Value Ranges236Runtime error237

I_SET: Set analog input channels


Brief description

Function description	The function block sets the informations for the analog input channels (ANL_IN). This block enables all scaling blocks of this library to be used.		
	Note: The function block is only required if there is no specific block for a specific analog module available.		
	EN and ENO can be configured as additional parameters.		

Representation

Block representation:

Parameter description

Block parameter description:

Parameter	Data type	Meaning
IN_REG	UINT	Number of the raw value register (3X)
MN_RAW	DINT	0 % raw value (e.g. 768)
MX_RAW	DINT	100% raw value (e.g. 64768)
MN_PHYS	INT	lowest input value (e.g10 V as -10)
MX_PHYS	INT	greatest input value (e.g. +10 V as 10)
DIV10	BOOL	MN_PHYS and MX_PHYS divided by 10
ST_CH	UINT	channel number (1n) (e.g. 4)
ST_REG	UINT	Number of the status register (3X)
ST_MODE	UINT	Status mode (e.g. 1=AVI_STATUS_MODE)
ST_HIGH	BOOL	Status byte found in highbyte of the register
CHANNEL	ANL_IN	channel information to be described

I_SET: Set analog input channels

Detailed description

Area of application	 The function block can be used in three areas: 1. Raw value scaling, with the block: I_NORM and I_SCALE 2. Scaling in physical units, with the I_PHYS block 3. Evaluation of error information, with the blocks I_NORM, I_SCALE and I_PHYS and additional evaluation of status information (warnings) using the IWARN block
Basic circuit connections	The input IN_REG must always be connected with the number of an input word (3x).
Raw value scaling	For raw value scaling, the inputs MN_RAW (minimum raw value, corresponds to 0%) and MX_RAW (maximum raw value, corresponds to 100%) must also be connected.
Scaling in physical units	For scaling in physical units the inputs MN_PHYS and MX_PHYS must also be connected. DIV10 is an auxiliary input in the range 0.2 V 1 V floating point format to avoid. Set MN_PHYS=2, MX_PHYS=10 and DIV10=1 for this range. For most ranges this input can remain open (or be assigned 0). e.g. +/-20 mA: here is MN_PHYS=-20, MX_PHYS=20 The input value ranges supported by I_SET can be found in the section <i>Supported Value Ranges, p. 236</i> .

Evaluation of For the evaluation of error information the inputs ST_CH, ST_REG and ST_MODE error information and ST_HIGH must also be configured. ST_HIGH is an auxiliary input in case the status byte (status information) is located in the registers high byte. For most ranges this input can remain open (or be assigned FALSE). The input channel number (1 ... n) is given to ST_CH. If ST_CH is entered, ST_REG and ST_MODE must also be entered. ST_REG must be connected with the number of an input word (3X), where the status information is located (error and/or warnings). ST_MODE determines how the status word is evaluated. The following 8 modes are defined: Value Mode see also module description for AVI030 1 AVI_STATUS_MODE 2 ACI_STATUS_MODE ACI030 3 ACO_STATUS_MODE ACO030 4 ADU_STATUS_MODE ADU204 5 DAU204_STATUS_MODE DAU204

ADU205

AMM090

ADU214

ADU205_STATUS_MODE

AMM090_STATUS_MODE

ADU214_STATUS_MODE

6

7

8

Supported Value Ranges

Voltage

Unipolar

Value range	MN_PHYS	MX_PHYS	DIV10
0 0.5 V	0	5	1
0 1.0 V	0	10	1
0 5.0 V	0	5	0
0 10 V	0	10	0
0 20 V	0	20	0
0,1 0.5 V	1	5	1
0,2 1.0 V	2	10	1
1,0 5.0 V	1	5	0
2,0 10, 0 V	2	10	0

Bipolar

Value range	MN_PHYS	MX_PHYS	DIV10
+/- 25 mV	-25	25	0
+/-100 mV	-100	100	0
+/-0.5 V	-5	5	1
+/- 1 V	-1	1	0
+/-5 V	-5	5	0
+/-10 V	-10	10	0
+/-20 V	-20	20	0

Current

Unipolar

Value range	MN_PHYS	MX_PHYS	DIV10
0 20 mA	0	20	0
4 20 mA	4	20	0

Bipolar

Value range	MN_PHYS	MX_PHYS	DIV10
+/-20 mA	-20	20	0
+/-40 mA	-40	40	0

I_SET: Set analog input channels

Resistance

Unipolar			
Value range	MN_PHYS	MX_PHYS	DIV10
0400 Ω	0	400	0
0 500 Ω	0	500	0
0 766,6 Ω	0	7666	1
0 1 kΩ	0	1000	0
0 2 kΩ	0	2000	0
0 4 kΩ	0	4000	0

Runtime error

Runtime error

The following error messages can be triggered:

Error message	Meaning
E_EFB_USER_ERROR_1	The input IN_REG is not connected with the number of an input word (3x).
E_EFB_USER_ERROR_2 with the parameters of the faulty number	The input IN_REG is connected with an invalid number of an input word (3x).
E_EFB_USER_ERROR_3 with parameter MN_RAW	MN_RAW ≥ MX_RAW)
E_EFB_USER_ERROR_4 with parameter MN_PHYS	Unknown value for MN_PHYS
E_EFB_USER_ERROR_5 with parameter MX_PHYS	Unknown value for MX_PHYS
E_EFB_USER_ERROR_11	ST_REG not entered
E_EFB_USER_ERROR_12	ST_REG too large
E_EFB_USER_ERROR_13	ST_CH not entered

I_SET: Set analog input channels

IMIO_IN: Immediate I/O module input

Overview

At a Glance	This chapter describes the block IMIO_IN. This chapter contains the following topics:		
What's in this			
chapter?	Торіс	Page	
	Brief description	240	
	Representation	240	
	Detailed description	241	
	Runtime error	241	

IMIO_IN: Immediate I/O module input

Brief description	n		
Function description	This Function block reads in I/O module signals immediately during processing. The input module must be in the local rack of the PLC. EN and ENO can be projected as additional parameters.		
Representation			
Symbol	Block representation: IMIO_IN INT RACK STATUS WORD INT SLOT		
Parameter Block parameter description:			
description	Parameters	Data type	Meaning
	RACK	INT	Subrack number (Quantum: 1; Compact: 1 4)
	SLOT	INT	Slot number (Quantum: 116; Compact: 1 5)
	STATUS	WORD	Status report

Detailed description	The input of signals takes place directly during block processing as well as during normal I/O processing at the end of a cycle. The input module must be in the local rack of the PLC. It must also be entered into the I/O map of its configuration. The I/O module is addressed using subrack number and slot number.			
Parameter description		ATUS parameter may contain the following messages:		
	Status	Meaning		
	0000	Operation OK		
	2001	invalid operation type		
		(e.g. the I/O module addressed is not an input module)		
	2002	Invalid rack or slot number (I/O map in the configurator contains no module entry for this slot)		
	2003	invalid slot number		
	F001	Module not OK		

Detailed description

Runtime error

Runtime error

The ENO parameter can be used for error display:

ENO	Meaning
1	Operation OK (STATUS equals "0")
0	Operation OK (STATUS not equal to "0")

IMIO_IN: Immediate I/O module input

IMIO_OUT: Immediate I/O module output

52

Overview

 At a Glance
 This chapter describes the block IMIO_OUT.

 What's in this chapter contains the following topics:
 This chapter contains the following topics:

 Topic
 Page

 Brief description
 244

 Representation
 244

 Detailed description
 245

 Runtime error
 245

840 USE 504 00 October 2002

IMIO_OUT: Immediate I/O module output

Brief description	n		
Function description	This Function block supplies the I/O module signals immediately during processing. The output module must be in the local rack of the PLC. EN and ENO can be projected as additional parameters.		
Representation			
Symbol	Block representation: IMIO_OUT INT RACK STATUS WORD INT SLOT		
Parameter	Block parame	ter description:	
description	Parameters	Data type	Meaning
	RACK	INT	Subrack number (Quantum: 1; Compact: 1 4)
	SLOT	INT	Slot number (Quantum: 116; Compact: 1 5)
	STATUS	WORD	Status report

Detailed description

Detailed The output of signals takes place immediately during block processing as well as during normal I/O processing at the end of a cycle. The output module must be in the local rack of the PLC. It must also be entered into the I/O map of its configuration. The I/O module is addressed using subrack number and slot number.

Parameter Status report STATUS

description

The STATUS parameter may contain the following messages:

Status	Meaning	
0000	Operation OK	
2001	invalid operation type (e.g. the I/O module addressed is not an input module)	
2002	Invalid rack or slot number (I/O map in the configurator contains no module entry for this slot)	
2003	invalid slot number	
F001	Module not OK	

Runtime error

Runtime error The

The ENO parameter can be used for error display:

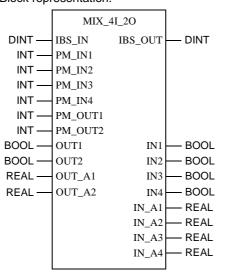
ENO	Meaning	
1	Operation OK (STATUS equals "0")	
0	Operation OK (STATUS not equal to "0")	

IMIO_OUT: Immediate I/O module output

MIX_4I_2O: Configuring the module AMM 090 00

3

Overview At a Glance This chapter describes the block MIX_4I_2O. What's in this chapter contains the following topics: This chapter contains the following topics: Topic Page Brief description 248 Representation 248 Detailed description 250


Brief description

Function description	The MIX_4I_2O Function block is a software connection to an INTERBUS Momentum/IS 170 AMM 090 00 hardware module.
description	The function block has 4 analog inputs and 2 analog outputs, as well as 4 binary inputs and 2 binary outputs. The function block must be parametered in the same
	way as the hardware module. The parameters EN and ENO can additionally be projected.

Representation

Symbol

Block representation:

MIX_4I_2O: Configuring the module ADM 090 00

Parameter	eter Data type Meaning		
IBS_IN	DINT	Incoming INTERBUS	
PM_IN1	INT	Parameter input 1	
:	:	:	
PM_IN4	INT	Parameter input 4	
PM_OUT1	INT	Parameter output 1	
PM_OUT2	INT	Parameter output 2	
OUT1	BOOL	Digital output 1	
OUT2	BOOL	Digital output 2	
OUT_A1	REAL	Analog output 1 of the module	
OUT_A2	REAL	Analog output 2 of the module	
IBS_OUT	DINT	Outgoing INTERBUS	
IN1	BOOL	Digital input 1	
:	:	:	
IN4	BOOL	Digital input 4	
IN_A1	REAL	Analog input 1 of the module	
:	:	:	
IN_A4	REAL	Analog input 4 of the module	

Parameter description

Block parameter description:

Detailed description

Detailed The function block occupies 5 input words and 5 output words in the Status-RAM. **description**

Parameter

description inputs

IBS_IN

IBS_IN = Connection for the incoming remote bus part of INTERBUS On the hardware, the male connector is on the top left of the module. The module is connected here to the outgoing remote bus (IBS_OUT) of the master (1st module on the bus) or the preceding module (see diagram). The link can be made via a line or via a variable. For the hardware, the type of connection corresponds to the INTERBUS cable between two bus devices. Connection of two INTERBUS modules

DIG_	16I_16O		DIG_	16I_16O	
 IBS_IN	IBS_OUT		IBS_IN	IBS_OUT	
 OUT1	IN1	 	OUT1	IN1	
 OUT2	IN2	 	OUT2	IN2	
 OUT3	IN3	 	OUT3	IN3	
 OUT4	IN4	 	OUT4	IN4	
 OUT5	IN5	 	OUT5	IN5	
 OUT6	IN6	 	OUT6	IN6	
 OUT7	IN7	 	OUT7	IN7	
 OUT8	IN8	 	OUT8	IN8	
 OUT9	IN9	 	OUT9	IN9	
 OUT10	IN10	 	OUT10	IN10	
 OUT11	IN11	 	OUT11	IN11	
 OUT12	IN12	 	OUT12	IN12	
 OUT13	IN13	 	OUT13	IN13	
 OUT14	IN14	 	OUT14	IN14	
 OUT15	IN15	 	OUT15	IN15	
 OUT16	IN16		OUT16	IN16	

MIX_4I_2O: Configuring the module ADM 090 00

PM_INxPM_INx = Parameters for the input channels
x stands for the digit 1 to 4 which indicates the particular input channel.
These parameters are used to parameter the input channels.
The meaning of the parameter values can be found in the table below.

Parameter value	Meaning	
2	+/- 20mA (+/- 5 V, when divided by 4)	
3	+/- 10V	
4	hannel inactive	
10	420mA (15 V, when divided by 4)	

A = Output after bus interrupt

Note: All other parameter values are reserved.

Example: Input 3 should 4 ...20mA. PM_IN3 = "10"

Note: The reserved parameter codes are not accepted by the module, i.e. the last parameter used will still apply. The default parameters apply until a valid new parameter is entered.

PM_OUTx PM_OUTx = Parameters for the output channels x stands for the digit 1 or 2 which indicates the particular output channel.

k stands for the digit 1 or 2 which indicates the particular output chann

Example: PM_OUT2 = Parameters for output channel 2 These parameters are used to parameterize the output channels. The meaning of the parameter values can be found in the table below.

Parameter value	Meaning	
1	020mA; Timeout A: 0mA	
3	+/- 10V; Timeout A: 0V	
4	annel inactive (default)	
5	20mA; Timeout A: 20mA	
7	′- 10V; Timeout A: +10V	
9	020mA; Timeout A: freezes	
11	+/- 10V; Timeout A: freezes	

A = Output after bus interrupt

Note: All other parameter values are reserved.

Example:

Output 1 should be 0 ...20mA and set to 0mA for bus failure. $\mathsf{PM}_\mathsf{OUT1}$ = "1"

Note: The reserved parameter codes are not accepted by the module, i.e. the last parameter used will still apply. The default parameters apply until a valid new parameter is entered.

 OUTx
 Digital output channel x

 x stands for the digit 1 or 2 which indicates the particular output channel.

 The binary values to be produced via the INTERBUS module are supplied to the process via the relevant output (OUTx).

OUT_Ax	OUT_Ax = Analog output channel x x stands for the digit 1 or 2 which indicates the particular output channel. The analog values to be produced via the INTERBUS module are supplied to the process via the relevant output (OUTx).
	Note: The values to be applied here are standardized, i.e. given as voltage in volts or as current in milliamperes. The input as current or voltage depends on the parametering of the particular channel.
Parameter description - Outputs	
IBS_OUT	IBS_OUT = Connection for the outgoing remote bus part of INTERBUS In the hardware, the male connector is located in the top right of the module. This is where the module is connected to the incoming remote bus (IBS_IN) of the next module via either a line or a variable. For the hardware, the type of connection corresponds to the INTERBUS cable between two INTERBUS modules.
INx	INx = Digital input x x stands for the digit 1 to 4 which indicates the corresponding input. Binary process values are read into the INTERBUS module via the relevant input (INx).
IN_Ax	IN_Ax = Analog input channel x x stands for the number between 1 and 4 designating the corresponding input channel. The analog process values of the INTERBUS module are read via the corresponding input (INx).
	Note: The values to be applied here are standardized, i.e. given as voltage in volts or as current in milliamperes. The input as current or voltage depends on the parametering of the particular channel. If a channel is parametered in the +/-5V- or 15V range, the incoming values are given in milliamperes. To obtain these values as voltage, divide by 4.0 Scaling an analog value
	Analog value in mA Analog value in V

840 USE 504 00 October 2002

NOA_611: Configuring the Quantum module NOA 611 00/ NOA 611 10

54

Overview At a Glance This chapter describes the block NOA_611. What's in this This chapter contains the following topics: chapter? Topic Page Brief description 256 Representation 256 Detailed description 258 Runtime error 259

NOA_611: Configuring the Quantum module NOA 611 00/NOA 611 10

Brief description

FunctionThe Function block NOA_611 is the software connection for an INTERBUS
descriptiondescriptionNOA 611 10 master module. It ensures that the data on the INTERBUS is
transferred to and read by the corresponding module. The NOA 611 10 controls the
bus and monitors operational performance.
The NOA 611 10 occupies 267 input words and 264 output words in the PLC
memory. The first input word and the first output word are occupied by the
NOA 611 10 itself; it contains the NOA 61110 control bits and status bits. The
remaining 256 input words and 256 output words contain the I/O data for the
INTERBUS modules.
EN and ENO can be projected as additional parameters.

Representation

Block representation:

2.000.000	000110110		
		NOA_611	
INT —	OFF_3X	IBS_OUT	— DINT
INT —	OFF_4X		
BOOL —	ACTIV_0	R	— BOOL
BOOL —	ACTIV_1	F	— BOOL
BOOL —	ACTIV_2	IBS_RUN	— BOOL
BOOL —	ACTIV_3	BS_OFF	— BOOL
BOOL —	ACTIV_4	RBUS	— BOOL
BOOL —	ACTIV_5	LBUS	— BOOL
BOOL —	ACTIV_6	SLAVES	— BOOL
BOOL —	ACTIV_7	DEA202	— BOOL
BOOL —	ACTIV_8	IBS_NORM	— BOOL
BOOL —	ACTIV_9	ERROR_NO	— INT
BOOL —	ACTIV_10)	
BOOL —	ACTIV_1	1	
BOOL —	ACTIV_12	2	
BOOL —	ACTIV_13	3	
BOOL —	ACTIV_14	4	
BOOL —	ACTIV_1	5	
	ι		l

NOA_611: Configuring the Quantum module NOA 611 00/

Parameter	Data type	Meaning	
OFF_3X	INT	Offset for 3x address	
OFF_4X	INT	Offset for 4x address	
ACTIV_0	BOOL	Starts routines which are stored under active bit 0	
:	:	:	
ACTIV_15	BOOL	Starts routines which are stored under active bit 15	
IBS_OUT	DINT	Outgoing INTERBUS	
R	BOOL	Master ready	
F	BOOL	Error on NOA	
IBS_RUN	BOOL	Process data is being exchanged	
BS_OFF	BOOL	One or more bus segments are switched off	
RBUS	BOOL	Error on remote bus	
LBUS	BOOL	Error on local bus	
SLAVES	BOOL	INTERBUS device indicates error	
DEA202	BOOL	Initialization error on DEA202	
IBS_NORM	BOOL	INTERBUS is standardized. All outputs = 0.	
ERROR_NO	INT	Number of the faulty INTERBUS module	

Parameter description

Block parameter description:

Detailed description

Parameter description - inputs							
OFF_3X and OFF_4X	 The parameters of the inputs for the function block are assigned the following module functions. OFF_3X = Offset 3x address OFF_4X = Offset 4x address On the function block, the relevant address offsets for 3x and 4x addresses are given at the two inputs. Example: The NOA 611 10 is entered in the PLC configurator, as shown in the table. 						
	Slot	Module	Detected	In.Ref.	In.End	Out.Ref.	Out.End.
	1	NOA-611-10		300020	300286	400020	400283
ACTIV_x	 for the output words, then OFF_3X = 20 and OFF_4X = 20. ACTIV_x = Routine call of active bit x x stands for the digit 0 to 15 which indicates the particular active bit. A positive transition on ACTIV_x calls the routine stored under ACTIV_x. 						
Parameter description - Outputs							
IBS_OUT	IBS_OUT = Connection for the outgoing remote bus part of INTERBUS INTERBUS connection on the front panel of the NOA 611. From here, the first module on INTERBUS is connected to the master, via either a line or a variable. For the hardware, the type of connection corresponds to the INTERBUS cable from the master to the first module on INTERBUS.						
R	R = NOA 611 10 ready The NOA 611 10 master module is ready and error-free.						

NOA_611: Configuring the Quantum module NOA 611 00/

F	F = NOA 611 10 faulty The NOA 611 10 master module is faulty.
IBS_RUN	IBS_RUN = INTERBUS data is being transmitted INTERBUS is operating without error, process data is being exchanged.
BS_OFF	BS_OFF = INTERBUS segment switched off One or more bus segments on INTERBUS are switched off.
RBUS	RBUS = Remote bus error An error has occurred on the remote bus.
LBUS	LBUS = Local bus error An error has occurred on a local bus.
SLAVES	SLAVES = Error on an INTERBUS device Indicates that a device on INTERBUS is faulty.
DEA202	DEA202 = Error on DEA202 Indicates an initialization error on the DEA202.
IBS_NORM	IBS_NORM = INTERBUS standardized The bus is standardized. All outputs on INTERBUS take the value "0".
ERROR_NO	 ERROR_NO = Device error number Indicates the device number of a faulty device on the bus. Example: Bus connection between device 1 and device 2 interrupted. Display: 2 Voltage failure on device 1. Display: 1
Runtime error	
Runtime error	An error message (E_INPUT_VALUE_OUT_OF_RANGE) appears if the offset for the 3x or 4x addresses is less than 0 or greater than the maximum permissible value.

259

O_DBSET: Write internal data structure ANL_OUT

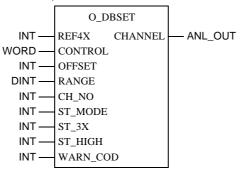
55

Overview At a Glance This chapter describes the block O_DBSET. What's in this chapter contains the following topics: This chapter contains the following topics: Topic Page Brief description 262 Representation 262

O_DBSET: Write internal data structure ANL_OUT

Brief description

Function description


Note: The Function block is not usually needed.

The function block can be used to enter information for the output channels (ANL_OUT). EN and ENO can be projected as additional parameters.

Representation

Symbol

Module representation:

Parameter description

Module parameter description:

-	-	
Parameter	Data type	Meaning
REF4X	INT	4x raw value register
CONTROL	WORD	Control word (internal use only)
OFFSET	INT	Input null shift
RANGE	DINT	Input range (resolution)
CH_NO	INT	Channel number
ST_MODE	INT	Status mode (internal use only)
ST_3X	INT	3x status register
ST_HIGH	INT	Identifies high byte or low byte of status register
WARN_COD	INT	Warning mode (internal use only)
CHANNEL	ANL_OUT	Channel to be written

O_DEBUG: Monitoring internal data structure ANL_OUT

56

Overview

At a Glance

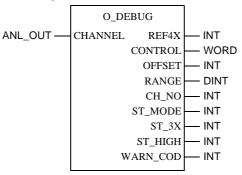
This chapter describes the block O_DEBUG.

This chapter contains the following topics:	
Торіс	Page
Brief description	264
Representation	264

O_DEBUG: Monitoring internal data structure ANL_OUT

Brief description

Function description


Note: The Function block is not usually needed.

The function block can be used to display information for the output channels (ANL_OUT). EN and ENO can be projected as additional parameters.

Representation

Symbol

Module representation:

Parameter description

Module parameter description:

Parameter	Data type	Meaning
CHANNEL	ANL_OUT	channel to be monitored
REF3X	INT	4x raw value register
CONTROL	WORD	Control word (internal use only)
OFFSET	INT	Input null shift
RANGE	DINT	Input range (resolution)
CH_NO	INT	Channel number
ST_MODE	INT	Status mode (internal use only)
ST_3X	INT	3x status register
ST_HIGH	INT	Identifies high byte or low byte of status register
WARN_COD	INT	Warning mode (internal use only)

840 USE 504 00 October 2002

57

Overview

At a Glance

This chapter describes the block O_FILTER.

What's in this chapter?

This chapter contains the following topics:PageTopicPageBrief description266Representation266Detailed description267Runtime error269

Brief description

Function description

The function enables the adjustment of characteristic curves for analog raw values. Different adjustments are available:

- Linearizing with square root (standardized range)
- Correction of the "Offset" (zero offset compensation)
- Correction of "Range" (gain)

Note: Correction of the automatically set values for "Offset" and "Range" is not normally necessary.

EN and ENO can be projected as additional parameters.

Representation

Symbol

Block	representation:
DIUCK	representation.

Block parameter description:

	O_FIL		
ANL_OUT	CH_IN	CH_OUT	— ANL_OUT
ANL_OUT	SQRT		
INT —	OFFS_ADJ		
INT —	RNGE_ADJ		

Parameter description

Parameter	Data type	Meaning
CH_IN	ANL_OUT	Raw value
SQRT	BOOL	Square root filter 1: Filter active 0: Filter inactive
OFFS_ADJ	INT	Adjusting offsets
RNGE_ADJ	INT	Adjusting gain
CH_OUT	ANL_OUT	Output value

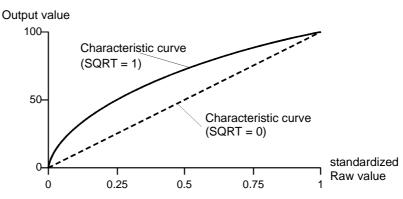
Detailed description

Adjustment with
square root
(standardized
range)

Correction of the

"Offset" (zero

compensation)


Correction of

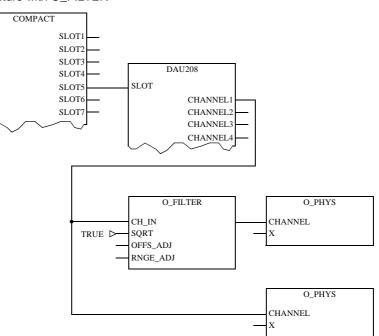
"Range" (gain)

offset

The SQRT parameter can be used to adjust an analog output value. The square root filter acts according to the following functions: f(0) = 0, f(0.5) = 0.707, f(1) = 1.

Characteristic curve of the square root filter

Use the parameter OFFS_ADJ to modify (adjust) the calculated offset value of the output CH_OUT.


Note: Correction of the automatically set value (OFFS_ADJ = 0) is not normally necessary. If corrections are made, they should be monitored using the O_DEBUG Function block, because there will be a modification of the ANL_OUT data type (of the output).

The RNGE_ADJ parameter can be used to modify (adjust) the calculated gain of the output.

Note: Correction of the automatically set value (RNGE_ADJ = 0) is not normally necessary. If corrections are made, they should be monitored using the O_DEBUG Function block, because there will be a modification of the ANL_OUT data type (of the output)).

Example

Structure with O_FILTER

The outputs OFFS_ADJ and RNGE_ADJ of the O_FILTER (FBI_3_3) Function block are not used. They are set to "0"by default.

The following values apply for function block O_PHYS (FBI_3_4):

Input values (DAU208 10 V)	Output values (O_PHYS)
0 V	0.0
2.5 V	5.0
5 V	7.07
10 V	10.0

The following values apply for function block O_PHYS (FBI_3_5):

Input values (DAU208 10 V)	Output values (O_PHYS)
0 V	0.0
2.5 V	2.5
5 V	5.0
10 V	10.0

Runtime error

Runtime error An error message appears if the input channel has not been configured. In this case, please check the connected I/O module EFB.

O_NORM: Standardized analog output

Overview At a Glance This chapter describes the block O_NORM. What's in this chapter contains the following topics: This chapter contains the following topics: Topic Page Brief description 272 Representation 272 Runtime error 272

O_NORM: Standardized analog output

Brief descriptio	on			
Function description	The Function block outputs values from floating point format REAL as analog values in 16 bit integer format. The floating point value in the range of 0.0 to 1.0 is displayed onto the configured integer output value. EN and ENO can be projected as additional parameters.			
Representatior	1 			
Symbol	Block represe ANL_OUT — REAL —	entation: O_NORM CHANNEL X		
Parameter description	Block parameter description: Parameter Data type Meaning			
	CHANNEL	ANL_OUT	Output value	
	Х	REAL	Normalized value	
Runtime error				
Runtime error	 An error message appears, if the output channel is not configured. In this case, please check the connected I/O module EFB. with an output value underflow (arithmetic) (for example, -0.1 V instead of 0 1.0 Volt) with an output value overflow (arithmetic) (for example, 1.1 instead of 0 1.0 Volt) Note: To evaluate the status information for the I/O module, use the O_NORM_WARN function block. 			

O_NORM_WARN: Standardized analog output with warning status

59

Overview

At a Glance

This chapter describes the block O_NORM_WARN.

This chapter contains the following topics:		
Торіс	Page	
Brief description	274	
Representation	274	
Runtime error		
L		

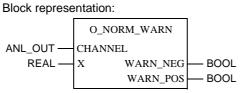
O_NORM_WARN: Standardized analog output with warning status

Brief description

FunctionThe Function block outputs values from floating point format REAL as analog values
in 16 bit integer format. The floating point value in the range of 0.0 to 1.0 is displayed
onto the configured integer output value.
In addition the function block at the WARN_NEG and WARN_POS outputs indicate

whether a status warning has occurred in the connected analog output EFB.

Note: This function block is not compatible with the ADU2xx and DAU2xx functions for Compact (the O_NORM Function block should be used instead). The O_NORM_WARN Function block does not recognize the module range information, even though it is assigned to the 3x register area. Therefore, the area warn bits have to be taken directly.


The layout of the status information assigned to State RAM can be found in Online Help for Compact modules (Help \rightarrow Help on Compact \rightarrow Compact I/O User's Guide).

EN and ENO can be projected as additional parameters.

Representation

Symbol

_. .

Parameter description

Block parameter description:

Parameter	Data type	Meaning	
CHANNEL	ANL_OUT	Output value	
Х	REAL	Normalized value	
WARN_NEG	BOOL	0: no output value underflow at the closed analog output EFB 1: output value underflow at the closed analog output EFB	
WARN_POS	BOOL	0: no output value overflow at the closed analog output EFB 1: output value overflow at the closed analog output EFB	

O_NORM_WARN: Standardized analog output with warning status

Runtime error	
Runtime error	 An error message appears, if the output channel is not configured. In this case, please check the connected I/O module EFB. with an output value underflow (arithmetic) (outside the warning range, eg0.1V instead of 0 1.0V) 1.0Volt) with an output value overflow (arithmetic) (outside the warning range, eg. 1,1 instead of 0 1.0V) 1.0Volt) if the connected analog output EFB is unable to generate status information and the warning outputs can, therefore, never become active. In this case, please use the O_NORM Function block.

O_PHYS: Physical analog output

Overview

At a Glance

This chapter describes the block O_PHYS.

This chapter contains the following topics:		
Торіс	Page	
Brief description	278	
Representation	278	
Runtime error	278	

O_PHYS: Physical analog output

Brief descriptio	'n		
Function description	The Function block provides analog input values (voltage, current or temperature) as physical values in REAL floating-point format. The function block is in output modules with configuration information (e.g. DAUs). EN and ENO can be projected as additional parameters.		
Representation			
Symbol	Block represe	entation:	1
	ANL_OUT — REAL —		
Parameter	Block parame	eter description:	
description	Parameter	Data type	Meaning
	CHANNEL	ANL_OUT	Output value
	Х	REAL	Physical value
Runtime error			
Runtime error	 if the output I/O module with an output 	e EFB. tput value underflow	gured. In this case, please check the connected (for example, -1 Volt instead of 0 5 Volt). or example, 6 Volt instead of 0 5 Volt).
		aluate the status infor /ARNfunction block.	mation for the I/O module, use the

O_PHYS_WARN: Physical analog output with warning-status

Overview

At a Glance

This chapter describes the block O_PHYS_WARN.

This chapter contains the following topics:		
Page		
280		
280		
281		

I_PHYS_WARN: Physical analog output with warning status

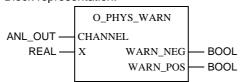
Brief description

Function description The Function block provides analog input values (voltage, current or temperature) as physical values in REAL floating-point format. The function block is used for output modules with configuration information (e.g.

DAUs).

In addition the function block at the WARN_NEG and WARN_POS outputs indicate whether a status warning has occurred in the connected analog output EFB.

Note: This function block is not compatible with the DAU2xx function for Compact (the O_PHYS function block should be used instead). The O_PHYS_WARN Function block does not recognize the module range information, even though it is assigned to the 3x register area. Therefore, the area warn bits have to be taken directly.


The layout of the status information assigned to State RAM can be found in Online Help for Compact modules (Help \rightarrow Help on Compact \rightarrow Compact I/O User's Guide).

EN and ENO can be configured as additional parameters.

Representation

Symbol

Block representation:

Parameter

Block parameter description:

description

Parameter	Data type	Meaning	
CHANNEL	ANL_OUT	Output value	
Х	REAL	Physical value	
WARN_NEG	BOOL	0: no output value underflow at the closed analog output EFB 1: output value underflow at the closed analog output EFB	
WARN_POS	BOOL	0: no output value overflow at the closed analog output EFB 1: output value overflow at the closed analog output EFB	

I_PHYS_WARN: Physical analog output with warning status

Runtime error

Runtime error

An Error message appears,

- if the output channel is not configured. In this case, please check the connected I/O module EFB.
- with an output value underflow (outside the warning range, e.g. -1 Volt instead of 0 ... 5 Volt).
- with an output value overflow (outside the warning range, e.g. 6 Volt instead of 0 ... 5 Volt).
- if the connected analog output EFB is unable to generate status information and the warning outputs can, therefore, never become active. In this case, please use the O_PHYS Function block.

O_RAW: Raw value analog output

Overview

At a Glance

This chapter describes the block O_RAW.

This chapter contains the following topics:		
Page		
284		
284		
284		

O_RAW: Raw value analog output

Brief description

Function description	The Function block provides raw values of the WORD data type as analog output values.
	EN and ENO can be projected as additional parameters.

Representation

Symbol	Block represe			
		O_RAW		
	ANL_OUT	CHANNEL		
	WORD —	Х		
Parameter	Block parame			
Parameter description		eter description:		
	Block parame	eter description:	Meaning	
Parameter description		-	Meaning Output value	

Runtime error

Runtime error An error message is created if the input channel has not been configured. In this case, please check the connected I/O module EFB.

O_SCALE: Scaled analog output

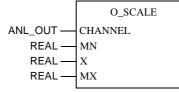
Overview

At a Glance

This chapter describes the block O_SCALE.

This chapter contains the following topics:		
Dic		Page
ef description		286
presentation		286
ntime error		287

O_SCALE: Scaled analog output


Brief description

Function
descriptionThe Function block converts values from floating point formatREAL into 16 bit
integer format. The scaling inputs MN and MX predefine the value range for the
analog output. MN corresponds to 0 percent and MX to 100 percent of the output
range (e.g. -10 ...)
EN and ENO can be configured as additional parameters.

Representation

Symbol

Block representation:

Parameter description

Block parameter description:

Parameter	Data type	Meaning
CHANNEL	ANL_OUT	Output value
MN	REAL	Scaling input, 0 percent
Х	REAL	Floating-point value
MX	REAL	Scaling input, 100 percent

Runtime error

Runtime error

An error message appears,

- if the output channel is not configured. In this case, please check the connected I/O module EFB.
- if the values of MN and MX are identical causing an internal module division by zero.
- with an output value underflow (for example, -1 Volt instead of 0 ... 5 Volt).
- with an output value overflow (for example, 6 Volt instead of 0 ... 5 Volt).

Note: To evaluate the status information for the I/O module, use the O_SCALE_WARN Function block.

O_SCALE: Scaled analog output

O_SCALE_WARN: Scaled analog output with warnings status

Overview

At a Glance

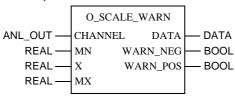
This chapter describes the block O_SCALE_WARN.

Page
U
290
291
291

O_SCALE_WARN: Scaled analog output with warning status

Brief description

Function description	The Function block converts values from floating point format REAL into 16 bit integer format. The scaling inputs MN and MX predefine the value range for the analog output. MN corresponds to 0 percent and MX to 100 percent of the output range (e.g10 10 V). In addition the function block at the WARN_NEG and WARN_POS outputs indicate whether a status warning has occurred in the connected analog output EFB.
	Note: This function block is not compatible with the DAU2xx function for Compact (the O_SCALE function block should be used instead). The O_SCALE_WARN Function block does not recognize the module range information, even though it is assigned to the 3x register area. Therefore, the area warn bits have to be taken directly.
	The layout of the status information assigned to State RAM can be found in Online Help for Compact modules (Help \rightarrow Help on Compact \rightarrow Compact I/O User's Guide).


EN and ENO can be configured as additional parameters.

O_SCALE_WARN: Scaled analog output with warning status

Representation

Symbol

Block representation:

Parameter description

Block parameter description:

Parameters	Data type	Meaning
CHANNEL	ANL_OUT	Output value
MN	REAL	Scaling input, 0 percent
х	REAL	Floating-point value
MX	REAL	Scaling input, 100 percent
WARN_NEG	BOOL	0: no output value underflow at the closed analog output EFB 1: output value underflow at closed analog output EFB (X < MN)
WARN_POS	BOOL	0: no output value overflow at the closed analog output EFB 1: output value exceeded at closed analog output EFB (X > MX)

Runtime error

Runtime error

An error message appears,

- if the output channel is not configured. In this case, please check the connected I/O module EFB.
- if the values of MN and MX are identical causing an internal module division by zero.
- with an output value underflow (outside the warning range, e.g. -1 Volt instead of 0 ... 5 Volt).
- with an output value overflow (outside the warning range, e.g. 6 Volt instead of 0 ... 5 Volt).
- if the connected analog output EFB is unable to generate status information and the warning outputs can, therefore, never become active. In this case, please use the O_SCALE Function block.

840 USE 504 00 October 2002

O_SET: Set information from analog output channels

65

Overview

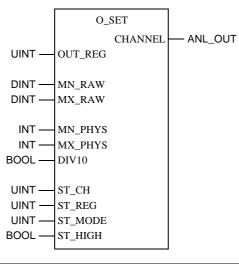
At a Glance

This chapter describes the block O_SET.

What's in this chapter?

This chapter contains the following topics:PageTopicPageBrief description294Representation295Detailed description296Supported Value Ranges298Runtime error299

O_SET: Set analog output channels


Brief description

Function description	The function block sets the information for the analog output channels (ANL_OUT). This block enables all scaling blocks of this library to be used.		
	Note: The function block is only required if there is no specific block for a specific analog module available.		
	EN and ENO can be configured as additional parameters.		

Representation

Symbol

Block representation:

Parameter description

Block parameter description:

Parameter	Data type	Meaning
OUT_REG	UINT	Number of the raw value register (4X)
MN_RAW	DINT	0 % raw value (e.g. 0)
MX_RAW	DINT	100% raw value (e.g. 4095)
MN_PHYS	INT	lowest output value (e.g. 0 V as 0)
MX_PHYS	INT	greatest output value (e.g. +10 V as 10)
DIV10	BOOL	MN_PHYS and MX_PHYS divided by 10
ST_CH	UINT	channel number (1n) (e.g. 4)
ST_REG	UINT	Number of the status register (3X)
ST_MODE	UINT	Status mode (e.g. 3=ACO_STATUS_MODE)
ST_HIGH	BOOL	Status byte found in highbyte of the register
CHANNEL	ANL_OUT	channel information to be described

O_SET: Set analog output channels

Detailed description

Area of application	 The function block can be used in three areas: 1. Raw value scaling, with the block: O_NORM and O_SCALE 2. Scaling in physical units, with the O_PHYS block 3. Evaluation of error information, with the blocks O_NORM, O_SCALE and O_PHYS and additional evaluation of status information (warnings) using the OWARN block
Basic circuit connections	The input OUT_REG must always be connected with the number of an output word (4x).
Raw value scaling	For raw value scaling, the inputs MN_RAW (minimum raw value, corresponds to 0%) and MX_RAW (maximum raw value, corresponds to 100%) must also be connected.
Scaling in physical units	For scaling in physical units the inputs MN_PHYS and MX_PHYS must also be connected. DIV10 is an auxiliary input in the range 0.2 V 1 V floating point format to avoid. Set MN_PHYS=2, MX_PHYS=10 and DIV10=TRUE for this range. For most ranges this input can remain open (or be assigned FALSE). e.g. +/-20 mA: here is MN_PHYS=-20, MX_PHYS=20 The input value ranges supported by O_SET can be found in the section <i>Supported Value Ranges, p. 298</i> .

Evaluation of For the evaluation of error information the inputs ST_CH, ST_REG and ST_MODE error information and ST_HIGH must also be configured. ST_HIGH is an auxiliary input in case the status byte (error information) is located in the registers high byte. For most ranges this input can remain open (or be assigned FALSE). The input channel number (1 ... n) is given to ST_CH. If ST_CH is entered, ST_REG and ST_MODE must also be entered. ST_REG must be connected with the number of an input word (3X), where the status information is located (error and/or warnings). ST_MODE determines how the status word is evaluated. The following 8 modes are defined: Value Mode see also module description for AVI030 1 AVI_STATUS_MODE 2 ACI_STATUS_MODE ACI030 3 ACO_STATUS_MODE ACO030 4 ADU_STATUS_MODE ADU204 5 DAU204_STATUS_MODE DAU204 6 ADU205_STATUS_MODE ADU205

AMM090

ADU214

AMM090_STATUS_MODE

ADU214_STATUS_MODE

7

8

Supported Value Ranges

Voltage

Unipolar

Value range	MN_PHYS	MX_PHYS	DIV10
0 0.5 V	0	5	1
0 1.0 V	0	10	1
0 5.0 V	0	5	0
0 10 V	0	10	0
0 20 V	0	20	0
0,1 0.5 V	1	5	1
0,2 1.0 V	2	10	1
1,0 5.0 V	1	5	0
2,0 10, 0 V	2	10	0

Bipolar

Value range	MN_PHYS	MX_PHYS	DIV10
+/- 25 mV	-25	25	0
+/-100 mV	-100	100	0
+/-0.5 V	-5	5	1
+/- 1 V	-1	1	0
+/-5 V	-5	5	0
+/-10 V	-10	10	0
+/-20 V	-20	20	0

Current

Unipolar

Value range	MN_PHYS	MX_PHYS	DIV10
0 20 mA	0	20	0
4 20 mA	4	20	0

Bipolar

Value range	MN_PHYS	MX_PHYS	DIV10
+/-20 mA	-20	20	0
+/-40 mA	-40	40	0

O_SET: Set analog output channels

Runtime error

Runtime error

The following error messages can be triggered:

Error message	Meaning
E_EFB_USER_ERROR_1	The input OUT_REG is not connected with the number of an output word (4x).
E_EFB_USER_ERROR_2 with the parameters of the faulty number	The input OUT_REG is connected with an invalid number of an output word (4x).
E_EFB_USER_ERROR_3 with parameter MN_RAW	$MN_RAW \ge MX_RAW$)
E_EFB_USER_ERROR_4 with parameter MN_PHYS	Unknown value for MN_PHYS
E_EFB_USER_ERROR_5 with parameter MX_PHYS	Unknown value for MX_PHYS
E_EFB_USER_ERROR_11	ST_REG not entered
E_EFB_USER_ERROR_12	ST_REG too large
E_EFB_USER_ERROR_13	ST_CH not entered

O_SET: Set analog output channels

QPR_16I_12O: Configuring the TIO-module QPR 346 00 / 10 / 20 / 21

66

Overview		
t a Glance	This chapter describes the block QPR_16I_12C).
What's in this chapter?	This chapter contains the following topics:	
	Торіс	Page
	Brief description	302
	Representation	303
	Detailed description	304

Brief description

Function description

The Function block QPR_16I_12O is a software connection for the following INTERBUS modules:

- TIO/IS 170 BAM 346 00
- TIO/IS 170 BAM 346 10
- TIO/IS 170 BAM 346 20
- TIO/IS 170 BAM 346 21

The function block has 16 binary inputs and 12 binary outputs, which can be operated simultaneously or just as inputs or outputs. In addition, the module can be programmed in ASCII code via the built-in RS 232 interface.

In an unprogrammed state, the module behaves in the same way as a TIO with 16 binary inputs and 12 binary outputs. In a programmed state, the internal QPR links have priority over signals created at the function block, i.e. the QPR outputs accept the value generated by the internal link. In this case, the output value indicated in Concept need not agree with the actual value in the QPR.

Example:

- With Concept, output OUT5 is set to "1".
- With the internal QPR link, output OUT5 is set to "0".
- The value at output 5 of the QPR is "0" in Concept, but a "1" is indicated
- Module programming is described in the user manual for TIO modules with preceding logic operation.

EN and ENO can be projected as additional parameters.

Representation

Block representation:

	1		
	QRP_1		
DINT —	IBS_IN	IBS_OUT	— DINT
INT —	NV	AV	— INT
BOOL —	OUT1	IN1	— BOOL
BOOL —	OUT2	IN2	— BOOL
BOOL —	OUT3	IN3	— BOOL
BOOL —	OUT4	IN4	— BOOL
BOOL —	OUT5	IN5	— BOOL
BOOL —	OUT6	IN6	— BOOL
BOOL —	OUT7	IN7	— BOOL
BOOL —	OUT8	IN8	— BOOL
BOOL —	OUT9	IN9	— BOOL
BOOL —	OUT10	IN10	— BOOL
BOOL —	OUT11	IN11	— BOOL
BOOL —	OUT12	IN12	— BOOL
		IN13	— BOOL
		IN14	— BOOL
		IN15	— BOOL
		IN16	— BOOL
			I

Parameter description

Block parameter description:

Parameter	Data type	Meaning
IBS_IN	DINT	Incoming INTERBUS
NV	INT	Nominal value
OUT1	BOOL	Output 1 of the TIO
OUT2	BOOL	Output 2 of the TIO
:	:	:
OUT12	BOOL	Output 12 of the TIO
IBS_OUT	DINT	Outgoing INTERBUS
AV	INT	Actual value
IN1	BOOL	Input 1 of the TIO
IN2	BOOL	Input 2 of the TIO
:	:	:
IN16	BOOL	Input 16 of the TIO

Detailed description

 Detailed description
 The QPR_16I_12O Function block in Concept functions in the same way as its hardware counterpart. However, its operation has been simplified by programming it as a function block in Concept. The module occupies two input words and two output words in the master.

 Note: The outputs programmed in the QPR cannot be represented by the QPR_16I_12O Function block, as the value is generated by the module itself. The PLC cannot influence the value which was generated by the module.

 Parameter description - inputs
 IBS_IN

 IBS_IN
 IBS_IN = Connection for the incoming remote bus part of INTERBUS

IBS_IN = Connection for the incoming remote bus part of INTERBUS On the hardware, the male connector is on the top left of the module. The module is connected here to the outgoing remote bus (IBS_OUT) of the master (1st module on the bus) or the preceding module (see diagram). The link can be made via a line or via a variable. For the hardware, the type of connection corresponds to the INTERBUS cable between two bus devices. Connection of two INTERBUS modules

DIG_16I_16O				DIG_16I_16O		
 IBS_IN	IBS_OUT			IBS_IN	IBS_OUT	
 OUT1	IN1		_	OUT1	IN1	
 OUT2	IN2			OUT2	IN2	
 OUT3	IN3			OUT3	IN3	
 OUT4	IN4			OUT4	IN4	
 OUT5	IN5			OUT5	IN5	
 OUT6	IN6			OUT6	IN6	
 OUT7	IN7			OUT7	IN7	
 OUT8	IN8			OUT8	IN8	
 OUT9	IN9			OUT9	IN9	
 OUT10	IN10			OUT10	IN10	
 OUT11	IN11			OUT11	IN11	
 OUT12	IN12			OUT12	IN12	
 OUT13	IN13			OUT13	IN13	
 OUT14	IN14			OUT14	IN14	
 OUT15	IN15			OUT15	IN15	
 OUT16	IN16			OUT16	IN16	
		I				

840 USE 504 00 October 2002

NV	NV = Nominal value A number for the programmable counter or a time for a delay switch can be entered here. For the times, 1 = 1ms i.e., 30000 = 30s.			
OUTx	OUTx = Output x x stands for a number between 1 and 12 which refers to the corresponding our The binary values displayed by the INTERBUS module are supplied to the pro- via the relevant output (OUTx).			
Parameter description - Outputs				
IBS_OUT	IBS_OUT = Connection for the outgoing remote bus part of INTERBUS On the hardware, the male connector is on the top right of the module. The module is connected to the incoming remote bus (IBS_IN) of the following module, either via a line or via a variable. For the hardware, the type of connection corresponds to the INTERBUS cable between two INTERBUS modules.			
AV	AV = Actual value The actual number on a counter or the actual time of a delay switch is indicated at this output. For the times, $1 = 1$ ms i.e., $30000 = 30$ s.			
INx	INx = Input x x stands for the digit 1 to 16 which indicates the particular input. Binary process values are read into the INTERBUS module via the relevant input (INx).			

840 USE 504 00 October 2002

67

Overview

 At a Glance
 This chapter describes the block QUANTUM.

 What's in this chapter contains the following topics:
 This chapter contains the following topics:

 Topic
 Page

 Brief description
 308

 Representation
 308

 Runtime error
 309

Brief description

Function
descriptionThe Function block is used to edit the configuration data of a Quantum primary
backplane for subsequent use by the scaling EFBs.
To configure a QUANTUM primary subrack, the QUANTUM Function block is
inserted into the configuration section. The function blocks for the configuration of
analog modules or the DROP Function block for the I/O station are connected at its
SLOT outputs.
EN and ENO can be configured as additional parameters.

Representation

Symbol

E	Block representation:				
	QUANTUM				
	SLOT1	— INT			
	SLOT2	— INT			
	SLOT3	— INT			
	SLOT4	— INT			
	SLOT5	— INT			
	SLOT6	— INT			
	SLOT7	— INT			
	SLOT8	— INT			
	SLOT9	— INT			
	SLOT10	— INT			
	SLOT11	— INT			
	SLOT12	— INT			
	SLOT13	— INT			
	SLOT14	— INT			
	SLOT15	— INT			
	SLOT16	— INT			

Parameter

Block parameter description:

description

Parameter	Data type	Meaning
SLOT1	INT	Slot 1
:	:	:
SLOT16	INT	Slot 16

Runtime error

Runtime error Internal I/O map errors will cause an Error message.

R_INT_WORD: Type conversion (REAL -> INT -> WORD)

Overview

At a Glance

This chapter describes the block R_INT_REAL.

What's in this chapter?

Page
312
312
312

R_INT_WORD: Type conversion (REAL -> INT -> WORD)

Brief description

FunctionThis Function block converts a input value from data type REAL to data type INT and
subsequently to data type WORD.

In contrast to the conversion block REAL_TO_WORD (IEC library), the R_INT_WORD block implements a conversion in INT value before the task of the REAL value. This results in the input value of –1.0, for example, being issued as an output value of FFFF (and not like the REAL_TO_WORD block which has an output value of 0).

EN and ENO can be projected as additional parameters.

Representation

Symbol Block representation: R_INT_WORD IN WORD REAL OUT Parameter Block parameter description: description Meaning Parameter Data type IN REAL Input value OUT WORD Output value **Runtime error**

Error message

An error message appears,

- an unauthorized floating point number is placed at the input,
- The value range of the data type INTis violated.

R_UINT_WORD: Type conversion (REAL -> UINT -> WORD)

Overview

At a Glance

This chapter describes the block R_UINT_WORD.

What's in this chapter?

This chapter contains the following topics:		
Торіс	Page	
Brief description	314	
Representation	314	
Runtime error	314	

R_UINT_WORD: Type conversion (REAL -> UINT -> WORD)

Brief description

Function This Function block converts a input value from data type REAL to data type UINT description and subsequently to data type WORD. In contrast to the conversion block REAL_TO_WORD (IEC library), the R_UINT_WORD block implements a conversion in UINT value (value range 0.0 - 65535.5) before the output of the WORD value. This results in the input value of -1.0, for example, causes an error message, the output ENO is set and the output value is unchanged (and not like the REAL_TO_WORD block which has no error

EN and ENO can be used as additional parameters.

message and an output value of 0).

Representation

Symbol	Block representation:				
		R_UINT_WORD			
	REAL IN OUT WORD				
Parameter	Block parame	eter description:			
description	Parameter	Data type	Meaning		
	IN	REAL	Input value		
	OUT	WORD	Output value		
Runtime error					
Error message	An error message appears, if				

- an unauthorized floating point number is placed at the input,
- The value range of the data type UINT is violated. •

SCALRTOW: Scaling (REAL -> WORD)

70

Overview

At a Glance

This chapter describes the block SCALRTOW.

What's in this chapter?

This chapter contains the following topics:		
Торіс	Page	
Brief description	316	
Representation	317	
Runtime error	318	

SCALRTOW: Scaling (REAL -> WORD)

Brief description

FunctionThe function scales a REAL-input value to a WORD-output value according to a
given scale.

Note: The values for SCALEMAX and SCALEMIN are converted internally before the evaluation according to UINT.

EN and ENO can be configured as additional parameters.

Representation Symbol Block representation: SCALRTOW REAL VALUE - WORD VALOUT REAL-IN_MAX REAL-IN_MIN WORD SCALEMAX WORD SCALEMIN Formulas A linear scaling takes place according to the following formula: $VALOUT = (VALUE - IN_MIN) \times \frac{SCALEMAX - SCALEMIN}{IN_MAX - IN_MIN} + SCALEMIN$ Restrictions: • If VALUE ≥ IN_MAX, then VALOUT = SCALEMAX. • If VALUE \leq IN_MIN, then VALOUT = SCALEMIN. Note: The maximum value of VALOUT is 7FFF Hex (32767 dec.). If this maximum value is exceeded and error is returned and the ENO parameter (if configured) receives the value OFF. Parameter Block parameter description: description Parameter Data type Meaning VALUE REAL Input value IN_MAX REAL Upper limit for input value IN_MIN REAL Lower limit for input value SCALEMAX WORD Upper limit for output value SCALEMIN WORD Lower limit for output value VALOUT WORD Output value

SCALRTOW: Scaling (REAL -> WORD)

Runtime error

Error message

An error message appears, if

- invalid REAL-values are placed on the inputs. In this case the output value is not changed.
- scaling is invalid, e.g. SCALEMAX < SCALEMIN. In this case the output value is not changed.
- The value of the VALUE-input is not between the given values for IN_MAX and IN_MIN. In this case ENO is set to "0" and the output value is set either to the value of SCALEMAX or SCALEMIN, depending on which value has been violated.

SCALWTOR: Scaling (WORD -> REAL)

71

Overview

At a Glance

This chapter describes the block SCALWTOR.

What's in this chapter?

This chapter contains the following topics:		
Торіс	Page	
Brief description	320	
Representation	321	
Runtime error	322	

SCALWTOR: Scaling (WORD -> REAL)

Brief description

FunctionThe function scales a WORD-input value to a REAL-output value according to a
given scale.

Note: The values for IN_MAX and IN_MIN are converted internally before the evaluation according to UINT

EN and ENO can be projected as additional parameters.

Representation Symbol Block representation: SCALWTOR WORD VALUE VALOUT – REAL WORD -IN_MAX IN_MIN WORD-REAL SCALEMAX REAL SCALEMIN A linear scaling takes place according to the following formula: Formulas $VALOUT = (VALUE - IN_MIN) \times \frac{SCALEMAX - SCALEMIN}{IN_MAX - IN_MIN} + SCALEMIN$ **Restrictions:** • If VALUE \geq IN_MAX, then VALOUT = SCALEMAX. • If VALUE \leq IN_MIN, then VALOUT = SCALEMIN. Parameter Block parameter description: description Parameter Data type Meaning VALUE WORD Input value IN_MAX WORD Upper limit for input value IN_MIN WORD Lower limit for input value SCALEMAX REAL Upper limit for output value SCALEMIN REAL Lower limit for output value VALOUT REAL Output value

SCALWTOR: Scaling (WORD -> REAL)

Runtime error

Error message

An error message appears, if

- invalid REAL-values are placed on the inputs. In this case the output value is not changed.
- scaling is invalid, e.g. SCALEMAX < SCALEMIN. In this case the output value is not changed.
- The value of the VALUE-input is not between the given values for IN_MAX and IN_MIN. In this case ENO is set to "0" and the output value is set either to the value of SCALEMAX or SCALEMIN, depending on which value has been violated.

UNI_I: Configuring universal TIO input modules

Verview			
t a Glance	This chapter describes the block UNI_I.		
What's in this	This chapter contains the following topics:		
	This chapter contains the following topics:		
	This chapter contains the following topics: Topic	Page	
		Page 324	
/hat's in this hapter?	Торіс	U	

UNI_I: Configuring universal TIO input modules

IN

WORD

Brief descript	ion
Function description	The UNI_I_O function block is a software connection to a universal INTERBUS hardware module (input only). The function block has one output for this. EN and ENO can be configured as additional parameters.

Representation

Symbol	Block represe	ntation:	
			INT /ORD
Parameter	Block parame	ter description:	
description	Parameter	Data type	Meaning
	IBS_IN	DINT	Incoming INTERBUS
	IBS_OUT	DINT	Outgoing INTERBUS

Input of an INTERBUS module

Detailed description

Detailed	The function block occupies one input word in the Status-RAM.
description	

IBS_IN

IBS_IN = Connection for the incoming remote bus part of INTERBUS The module is connected here to the outgoing remote bus (IBS_OUT) of the master (1st module on the bus) or the preceding module (see diagram). The link can be made via a line or via a variable. For the hardware, the type of connection corresponds to the INTERBUS cable between two bus devices. Connection of two INTERBUS modules

DIG_16I_16O			DIG_16I_16O		
 IBS_IN	IBS_OUT		IBS_IN	IBS_OUT	
 OUT1	IN1	 	OUT1	IN1	
 OUT2	IN2	 	OUT2	IN2	
 OUT3	IN3	 	OUT3	IN3	
 OUT4	IN4	 	OUT4	IN4	
 OUT5	IN5	 	OUT5	IN5	
 OUT6	IN6	 	OUT6	IN6	
 OUT7	IN7	 	OUT7	IN7	
 OUT8	IN8	 	OUT8	IN8	
 OUT9	IN9	 	OUT9	IN9	
 OUT10	IN10	 	OUT10	IN10	
 OUT11	IN11	 	OUT11	IN11	
 OUT12	IN12	 	OUT12	IN12	
 OUT13	IN13	 	OUT13	IN13	
 OUT14	IN14	 	OUT14	IN14	
 OUT15	IN15	 	OUT15	IN15	
 OUT16	IN16	 	OUT16	IN16	
					I

IBS_OUT	IBS_OUT = Connection for the outgoing remote bus part of INTERBUS The module is connected to the incoming remote bus (IBS_IN) of the following module, either via a line or via a variable. For the hardware, the type of connection corresponds to the INTERBUS cable between two INTERBUS modules.				
IN	IN = Input The input reads input information from the INTERBUS module in the form of a word.				

UNI_I_O: Configuring universal TIO input/output modules

Overview At a Glance This chapter describes the block UNI_I_O. What's in this chapter contains the following topics: This chapter contains the following topics: Topic Page Brief description 328 Representation 328 Detailed description 329

UNI_I_O: Configuring universal TIO input/output modules

Brief descriptio	n				
Function description	The UNI_I_O function block is a software connection to a universal INTERBUS hardware module (input/output). The function block has one input and one output for this. EN and ENO can be configured as additional parameters.				
Representation					
Symbol	Block representation:				
	UNI_I_O DINT IBS_IN IBS_OUT DINT WORD UT IN WORD				
Parameter	Block parameter description:				

description

Parameter	Data type	Meaning
IBS_IN	DINT	Incoming INTERBUS
OUT	WORD	Output of an INTERBUS module
IBS_OUT	DINT	Outgoing INTERBUS
IN	WORD	Input of an INTERBUS module

Detailed description

Detailed	The function block occupies 1 input word and 1 output word in the Status-RAM.
description	

IBS_IN

IBS_IN = Connection for the incoming remote bus part of INTERBUS The module is connected here to the outgoing remote bus (IBS_OUT) of the master (1st module on the bus) or the preceding module (see diagram). The link can be made via a line or via a variable. For the hardware, the type of connection corresponds to the INTERBUS cable between two bus devices. Connection of two INTERBUS modules

DIG_16I_16O			DIG_16I_16O		
 IBS_IN	IBS_OUT		IBS_IN	IBS_OUT	
 OUT1	IN1		 OUT1	IN1	
 OUT2	IN2		 OUT2	IN2	
 OUT3	IN3		 OUT3	IN3	
 OUT4	IN4		 OUT4	IN4	
 OUT5	IN5		 OUT5	IN5	
 OUT6	IN6		 OUT6	IN6	
 OUT7	IN7		 OUT7	IN7	
 OUT8	IN8		 OUT8	IN8	
 OUT9	IN9		 OUT9	IN9	
 OUT10	IN10		 OUT10	IN10	
 OUT11	IN11		 OUT11	IN11	
 OUT12	IN12		 OUT12	IN12	
 OUT13	IN13		 OUT13	IN13	
 OUT14	IN14		 OUT14	IN14	
 OUT15	IN15		 OUT15	IN15	
 OUT16	IN16	 	 OUT16	IN16	

OUT

The output provides output information from the INTERBUS module in the form of a word.

 IBS_OUT
 IBS_OUT = Connection for the outgoing remote bus part of INTERBUS

 The module is connected to the incoming remote bus (IBS_IN) of the following module, either via a line or via a variable. For the hardware, the type of connection corresponds to the INTERBUS cable between two INTERBUS modules.

OUT = Output

UNI_I_O: Configuring universal TIO input/output modules

IN = Input The input reads input information from the INTERBUS module in the form of a word.

UNI_O: Configuring universal TIO output modules

Overview		
At a Glance	This chapter describes the block UNI_O.	
What's in this	This chapter contains the following topics:	
	This chapter contains the following topics: Topic	Page
		Page 332
What's in this chapter?	Торіс	

UNI_O: Configuring universal TIO output modules

Brief description	า			
Function description	The UNI_I_O function block is a software connection to a universal INTERBUS hardware module (output only). The function block has one input for this. EN and ENO can be configured as additional parameters.			
Representation				
Symbol	Block represer	UNI_O _IN IBS_OUT —	DINT	
Parameter	Block paramet	ter description:		
description	Parameter	Data type	Meaning	
	IBS_IN	DINT	Incoming INTERBUS	
	OUT	WORD	Output of an INTERBUS module	
	IBS_OUT	DINT	Outgoing INTERBUS	

Detailed description

Detailed	The function block occupies one output word in the Status-RAM.
description	

IBS_IN

IBS_IN = Connection for the incoming remote bus part of INTERBUS The module is connected here to the outgoing remote bus (IBS_OUT) of the master (1st module on the bus) or the preceding module (see diagram). The link can be made via a line or via a variable. For the hardware, the type of connection corresponds to the INTERBUS cable between two bus devices. Connection of two INTERBUS modules

DIG_16I_16O			DIG_	16I_16O	
 IBS_IN	IBS_OUT		IBS_IN	IBS_OUT	
 OUT1	IN1	 	OUT1	IN1	
 OUT2	IN2	 	OUT2	IN2	
 OUT3	IN3	 	OUT3	IN3	
 OUT4	IN4	 	OUT4	IN4	
 OUT5	IN5	 	OUT5	IN5	
 OUT6	IN6	 	OUT6	IN6	
 OUT7	IN7	 	OUT7	IN7	
 OUT8	IN8	 	OUT8	IN8	
 OUT9	IN9	 	OUT9	IN9	
 OUT10	IN10	 	OUT10	IN10	
 OUT11	IN11	 	OUT11	IN11	
 OUT12	IN12	 	OUT12	IN12	
 OUT13	IN13	 	OUT13	IN13	
 OUT14	IN14	 	OUT14	IN14	
 OUT15	IN15	 	OUT15	IN15	<u> </u>
 OUT16	IN16		OUT16	IN16	

OUT = Output

The output provides output information from the INTERBUS module in the form of a word.

IBS_OUT

IBS_OUT = Connection for the outgoing remote bus part of INTERBUS The module is connected to the incoming remote bus (IBS_IN) of the following module, either via a line or via a variable. For the hardware, the type of connection corresponds to the INTERBUS cable between two INTERBUS modules.

W_INT_REAL: Type conversion (WORD -> INT -> REAL)

75

Overview

At a Glance

This chapter describes the block W_INT_REAL.

What's in this chapter?

This chapter contains the following topics:	
Торіс	Page
Brief description	336
Representation	336

W_INT_REAL: Type conversion (WORD -> INT -> REAL)

Brief description

FunctionThis Function block converts a input value from data type WORD to data type INT
and subsequently to data type REAL.

In contrast to the conversion block WORD_TO_REAL (IEC library), the W_INT_REAL block implements a conversion in INT value before the task of the REAL value. This results in the input value FFFF, for example, being issued as an output value of -1.0 (and not like the WORD_TO_REAL block which has an output value of 9.183409e-41).

EN and ENO can be projected as additional parameters.

Representation

Symbol

Block representation: W_INT_REAL WORD IN OUT REAL

Parameter description

Block parameter description:

Parameter	Data type	Meaning
IN	WORD	Input value
OUT	REAL	Output value

W_UINT_REAL: Type conversion (WORD -> UINT -> REAL)

76

Overview

At a Glance

This chapter describes the block W_UINT_REAL.

What's in this chapter?

This chapter contains the following topics:	
Торіс	Page
Brief description	338
Representation	338

W_UINT_REAL: Type conversion (WORD -> UINT -> REAL)

Brief description

 Function
 This Function block converts a input value from data type WORD to data type UINT and subsequently to data type REAL.

 In contrast to the conversion block WORD_TO_REAL (IEC library), the W_INT_REAL block implements a conversion in UINT value before the task of the REAL value. This results in the input value FFFF, for example, being issued as an output value of -1.0 (and not like the WORD_TO_REAL block which has an output value of 9.183409e-41). This results in the input value FFFF, for example, being

issued as an output value of 65535.0 (and not like the WORD_TO_REAL block

EN and ENO can be projected as additional parameters.

Representation

Symbol

Block representation:

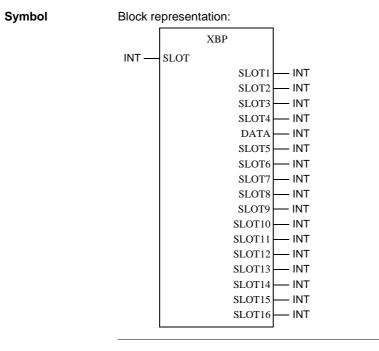
	1	W_UINT_REAL	
WORD —	IN	OUT	— REAL

which has an output value of 9.183409e-41).

Parameter description

Block parameter description:

Parameter	Data type	Meaning
IN	WORD	Input value
OUT	REAL	Output value


Overview At a Glance This chapter describes the block XBP. What's in this chapter contains the following topics: This chapter contains the following topics: Topic Page Brief description 340 Representation 341

Brief description

Function
descriptionThe Function block is used to edit the configuration data of a Quantum primary
backplane expander for subsequent use by the scaling EFBs.To configure a Quantum primary backplane expander, the XBP Function block is
inserted into the configuration section (See Procedure for expansion of the local
backplane using XBE modules (Quantum), p. 13). It is connected to its SLOT input
at the corresponding SLOT x-output of the QUANTUM Function block. The function
block for configuring the analog module is connected to the SLOT x-outputs.Note: The XBP function block is only used to configure central backplane
expanders. To configure distributed expansions, use the function block XDROP
(See XDROP: Configuring a I/O Station Backplane , p. 343).

EN and ENO can be configured as additional parameters.

Representation

Parameter description

Block parameter description:

Parameter	Data type	Meaning
SLOT	INT	140 XBE 100 00 slot in the central rack
SLOT1	INT	Slot 1
:	:	:
SLOT16	INT	Slot 16

840 USE 504 00 October 2002

XDROP: Configuring a I/O Station Backplane

Overview At a Glance This section describes function block XDROP. What's in this chapter contains the following topics: This chapter contains the following topics: Topic Page Brief description 344 Representation 345 Runtime error 345

DROP: Configuring a I/O Station Backplane

Brief description

Function description	The function block is used to prepare the configuration data of distributed I/O station for subsequent processing by module configuration EFBs. To configure a expansion for an I/O station backplane, the SLOT input of XDROP function block is connected with the SLOT input of the DROP function block in the Configuration Section. The same number must be entered for the NUMBER input of the XDROP function block as for the NUMBER input of the DROP function block. The Function blocks for configuration of the analog modules of the I/O stations are connected to the X_SLOT outputs.
	Note: The XDROP function block is only used to configure expansions for distributed backplanes. To configure central backplane expanders, use the

distributed backplanes. To configure **central** backplane expanders, use the function block XBP (See *XBP: Configuring a primary backplane expander, p. 339*).

EN and ENO can be projected as additional parameters.

DROP: Configuring a I/O Station Backplane

Representation

Symbol

Block representation:

DIOOKTOP			
	XD	ROP	
INT —	SLOT		
DINT —	NUMBER		
		X_SLOT1	— INT
		X_SLOT2	— INT
		X_SLOT3	— INT
		X_SLOT4	— INT
		X_SLOT5	— INT
		X_SLOT6	— INT
		X_SLOT7	— INT
		X_SLOT8	— INT
		X_SLOT9	— INT
		X_SLOT10	— INT
		X_SLOT11	— INT
		X_SLOT12	— INT
		X_SLOT13	— INT
		X_SLOT14	— INT
		X_SLOT15	— INT
		X_SLOT16	— INT

Parameter

Block parameter description:

description

Parameters	Data type	Meaning
SLOT	INT	XBP slot in the distributed backplane
NUMBER	DINT	Number of the distributed station
X_SLOT1	INT	Expansion slot 1
:	:	:
X_SLOT16	INT	Expansion slot 16

Runtime error

If no "Head" has been configured for the I/O station backplane, an error message appears (E_EFB_NOT_CONFIGURED). **Runtime error**

DROP: Configuring a I/O Station Backplane

active Window	The window, which is currently selected. Only one window can be active at any given time. When a window is active, the color of the title bar changes, so that it is distinguishable from the other windows. Unselected windows are inactive.
Actual Parameters	Current connected Input / Output Parameters.
Addresses	 (Direct) addresses are memory ranges in the PLC. They are located in the State RAM and can be assigned Input/Output modules. The display/entry of direct addresses is possible in the following formats: Standard Format (400001) Separator Format (4:00001) Compact format (4:1) IEC Format (QW1)
ANL_IN	ANL_IN stands for the "Analog Input" data type and is used when processing analog values. The 3x-References for the configured analog input module, which were specified in the I/O component list, are automatically assigned data types and should therefore only be occupied with Unlocated Variables.
ANL_OUT	ANL_OUT stands for the "Analog Output" data type and is used when processing analog values. The 4x-References for the configured analog input module, which were specified in the I/O component list, are automatically assigned data types and should therefore only be occupied with Unlocated Variables.
ANY	In the above version "ANY" covers the BOOL, BYTE, DINT, INT, REAL, UDINT, UINT, TIME and WORD elementary data types and related Derived Data Types.

840 USE 504 00 October 2002

Α

347

ANY_BIT	In the above version "ANY_BIT" covers the BOOL, BYTE and WORD data types.
ANY_ELEM	In the above version "ANY_ELEM" covers the BOOL, BYTE, DINT, INT, REAL, UDINT, UINT, TIME and WORD data types.
ANY_INT	In the above version "ANY_INT" covers the DINT, INT, UDINT and UINT data types.
ANY_NUM	In the above version "ANY_NUM" covers the DINT, INT, REAL, UDINT and UINT data types.
ANY_REAL	In the above version "ANY_REAL" covers the REAL data type.
Application Window	The window containing the workspace, menu bar and the tool bar for the application program. The name of the application program appears in the title bar. An application window can contain several Document windows. In Concept the application window corresponds to a Project.
Argument	Synonymous with Actual parameters.
ASCII-Mode	The ASCII (American Standard Code for Information Interchange) mode is used to communicate with various host devices. ASCII works with 7 data bits.
Atrium	The PC based Controller is located on a standard AT board, and can be operated within a host computer in an ISA bus slot. The module has a motherboard (requiring SA85 driver) with two slots for PC104 daughter-boards. In this way, one PC104 daughter-board is used as a CPU and the other as the INTERBUS controller.

В

Backup file (Concept-EFB) The backup file is a copy of the last Source coding file. The name of this backup file is "backup??.c" (this is assuming that you never have more than 100 copies of the source coding file). The first backup file has the name "backup00.c". If you have made alterations to the Definitions file, which do not cause any changes to the EFB interface, the generation of a backup file can be stopped by editing the source coding file (**Objects** \rightarrow **Source**). If a backup file is created, the source file can be entered as the name.

Base 16 literals	Base 16 literals are used to input whole number values into the hexadecimal system. The base must be denoted using the prefix 16#. The values can not have any signs (+/-). Single underscores ($_$) between numbers are not significant.
	Example 16#F_F or 16#FF (decimal 255) 16#E_0 or 16#E0 (decimal 224)
Base 2 literals	Base 2 literals are used to input whole number values into the dualsystem. The base must be denoted using the prefix 2#. The values can not have any signs (+/-). Single underscores (_) between numbers are not significant.
	Example 2#1111_1111 or 2#11111111 (decimal 255) 2#1110_0000 or 2#11100000 (decimal 224)
Base 8 literals	Base 8 literals are used to input whole number values into the octosystem. The base must be denoted using the prefix 8#. The values can not have any signs (+/-). Single underscores ($_$) between numbers are not significant.
	Example 8#3_77 or 8#377 (decimal 255) 8#34_0 or 8#340 (decimal 224)
Binary Connections	Connections between FFB outputs and inputs with the data type BOOL.
Bitsequence	A data element, which consists of one or more bits.
BOOL	BOOL stands for the data type "boolean". The length of the data element is 1 bit (occupies 1 byte in the memory). The value range for the variables of this data type is 0 (FALSE) and 1 (TRUE).
Bridge	A bridge is a device, which connects networks. It enables communication between nodes on two networks. Each network has its own token rotation sequence - the token is not transmitted via the bridge.
ВҮТЕ	BYTE stands for the data type "bit sequence 8". Entries are made as base 2 literal, base 8 literal or base 16 literal. The length of the data element is 8 bits. A numerical value range can not be assigned to this data type.

C	
Clipboard	The clipboard is a temporary memory for cut or copied objects. These objects can be entered in sections. The contents of the clipboard are overwritten with each new cut or copy.
Coil	A coil is a LD element which transfers the status of the horizontal short on its left side, unchanged, to the horizontal short on its right side. In doing this, the status is saved in the relevant variable/direct address.
Compact format (4:1)	The first digit (the Reference) is separated from the address that follows by a colon (:) where the leading zeros are not specified.
Constants	Constants are Unlocated variables, which are allocated a value that cannot be modified by the logic program (write protected).
Contact	A contact is a LD element, which transfers a status on the horizontal link to its right side. This status comes from the boolean AND link of the status of the horizontal link on the left side, with the status of the relevant variable/direct address. A contact does not change the value of the relevant variable/direct address.

D

Data transfer settings	Settings which determine how information is transferred from your programming device to the PLC.
Data Types	 The overview shows the data type hierarchy, as used for inputs and outputs of functions and function blocks. Generic data types are denoted using the prefix "ANY". ANY_ELEM ANY_ELEM ANY_NUM ANY_REAL (REAL) ANY_INT (DINT, INT, UDINT, UINT) ANY_BIT (BOOL, BYTE, WORD) TIME System Data types (IEC Extensions)

• Derived (from "ANY" data types)

DCP I/O drop	A remote network with a super-ordinate PLC can be controlled using a Distributed Control Processor (D908). When using a D908 with remote PLC, the super-ordinate PLC considers the remote PLC as a remote I/O drop. The D908 and the remote PLC communicate via the system bus, whereby a high performance is achieved with minimum effect on the cycle time. The data exchange between the D908 and the super-ordinate PLC takes place via the remote I/O bus at 1.5Mb per second. A super-ordinate PLC can support up to 31 D908 processors (addresses 2-32).
DDE (Dynamic Data Exchange)	The DDE interface enables a dynamic data exchange between two programs in Windows. The user can also use the DDE interface in the extended monitor to invoke their own display applications. With this interface, the user (i.e. the DDE client) can not only read data from the extended monitor (DDE server), but also write data to the PLC via the server. The user can therefore alter data directly in the PLC, while monitoring and analyzing results. When using this interface, the user can create their own "Graphic Tool", "Face Plate" or "Tuning Tool" and integrate into the system. The tools can be written in any language, i.e. Visual Basic, Visual C++, which supports DDE. The tools are invoked, when the user presses one of the buttons in the Extended Monitor dialog field. Concept Graphic Tool: Configuration signals can be displayed as a timing diagram using the DDE connection between Concept and Concept Graphic Tool.
Declaration	Mechanism for specifying the definition of a language element. A declaration usually covers the connection of an identifier to a language element and the assignment of attributes such as data types and algorithms.
Definitions file (Concept-EFB)	The definitions file contains general descriptive information on the selected EFB and its formal parameters.
Derived Data Type	Derived data types are data types, which are derived from Elementary Data Types and/or other derived data types. The definition of derived data types is found in the Concept data type editor. A distinction is made between global data types and local data types.
Derived Function Block (DFB)	A derived function block represents the invocation of a derived function block type. Details of the graphic form of the invocation can be found in the "Functional block (instance)". In contrast to the invocation of EFB types, invocations of DFB types are denoted by double vertical lines on the left and right hand side of the rectangular block symbol. The body of a derived function block type is designed using FBD language, LD language, ST language, IL language, however, this is only the case in the current version of the programming system. Furthermore, derived functions can not yet be defined in the current version. A distinction is made between local and global DFBs.

Device Address	The device address is used to uniquely denote a network device in the routing path. The address is set on the device directly, e.g. using the rotary switch on the back of the modules.
DFB Code	The DFB code is the section's DFB code, which can be executed. The size of the DFB code is mainly dependant upon the number of blocks in the section.
DFB instance data	The DFB instance data is internal data from the derived function block used in the program.
DINT	DINT stands for the data type "double length whole number (double integer)". Entries are made as integer literal, base 2 literal, basis 8 literal or base 16 literal. The length of the data element is 32 bits. The value range for variables of this datatype reaches from -2 exp (31) to 2 exp (31) -1.
Direct Representation	A method of displaying variables in the PLC program, from which the assignment to the logical memory can be directly - and indirectly to the physical memory - derived.
Document Window	A window within an application window. Several document windows can be open at the same time in an application window. However, only one document window can ever be active. Document windows in Concept are, for example, sections, the message window, the reference data editor and the PLC configuration.
DP (PROFIBUS)	DP = Remote Peripheral
Dummy	An empty file, which consists of a text heading with general file information, such as author, date of creation, EFB designation etc. The user must complete this dummy file with further entries.
DX Zoom	This property enables the user to connect to a programming object, to monitor and, if necessary change, its data value.
E	
EFB code	The EFB code is the section's EFB code, which can be executed. In addition the used EFBs count in DFBs.
Elementary functions/ function blocks (EFB)	Identifier for Functions or Function blocks, whose type definitions are not formulated in one of the IEC languages, i.e. whose body for example can not be modified with the DFB editor (Concept-DFB). EFB types are programmed in "C" and are prepared in a pre-compiled form using libraries.

840 USE 504 00 October 2002

EN / ENO (Enable / Error signal)	If the value of EN is equal to "0" when the FFB is invoked, the algorithms that are defined by the FFB will not be executed and all outputs keep their previous values. The value of ENO is in this case automatically set to "0". If the value of EN is equal to "1", when the FFB is invoked, the algorithms which are defined by the FFD will be executed. After the error-free execution of these algorithms, the value of ENO is automatically set to "1". If an error occurs during the execution of these algorithms, ENO is automatically set to "0". The output behavior of the FFB is independent of whether the FFBs are invoked without EN/ENO or with EN=1. If the EN/ENO display is switched on, it is imperative that the EN input is switched on or off in the Block Properties dialog box. The dialog box can be invoked with the Objects \rightarrow Properties menu command or by double-clicking on the FFB.
Error	If an error is recognized during the processing of a FFB or a step (e.g. unauthorized input values or a time error), an error message appears, which can be seen using the Online \rightarrow Event Viewer menu command. For FFBs, the ENO output is now set to "0".
Evaluation	The process, through which a value is transmitted for a Function or for the output of a Function block during Program execution.

F

FFB (Functions/ Function blocks)	Collective term for EFB (elementary functions/function blocks) and DFB (Derived function blocks)
Field variables	A variable, which is allocated a defined derived data type with the key word ARRAY (field). A field is a collection of data elements with the same data type.
FIR Filter	(Finite Impulse Response Filter) a filter with finite impulse answer
Formal parameters	Input / Output parameters, which are used within the logic of a FFB and led out of the FFB as inputs/outputs.

Function (FUNC)	A program organization unit, which supplies an exact data element when processing. a function has no internal status information. Multiple invocations of the same function using the same input parameters always supply the same output values. Details of the graphic form of the function invocation can be found in the "Functional block (instance)". In contrast to the invocation of the function blocks, function invocations only have a single unnamed output, whose name is the same as the function. In FBD each invocation is denoted by a unique number via the graphic block, this number is automatically generated and can not be altered.
Function block (Instance) (FB)	A function block is a program organization unit, which correspondingly calculates the functionality values that were defined in the function block type description, for the outputs and internal variable(s), if it is invoked as a certain instance. All internal variable and output values for a certain function block instance remain from one function block invocation to the next. Multiple invocations of the same function block instance with the same arguments (input parameter values) do not therefore necessarily supply the same output value(s). Each function block instance is displayed graphically using a rectangular block symbol. The name of the function block type is stated in the top center of the rectangle. The name of the function block instance is also stated at the top, but outside of the rectangle. It is automatically generated when creating an instance, but, depending on the user's requirements, it can be altered by the user. Inputs are displayed on the left side of the block and outputs are displayed on the right side. The names of the formal input/output parameters are shown inside the rectangle in the corresponding places.
Function Block Dialog (FBD)	One or more sections, which contain graphically displayed networks from Functions, Function blocks and Connections.
Function block type	A language element, consisting of: 1. the definition of a data structure, divided into input, output and internal variables; 2. a set of operations, which are performed with elements of the data structure, when a function block type instance is invoked. This set of operations can either be formulated in one of the IEC languages (DFB type) or in "C" (EFB type). A function block type can be instanced (invoked) several times.
Function Number	The function number is used to uniquely denote a function in a program or DFB. The function number can not be edited and is automatically assigned. The function number is always formed as follows: .n.m
	n = section number (current number) m = Number of the FFB object in the section (current number)

840 USE 504 00 October 2002

Generic Data Type	A data type, which stands in place of several other data types.
Generic literals	If the literal's data type is not relevant, simply specify the value for the literal. If this is the case, Concept automatically assigns the literal a suitable data type.
Global Data	Global data are Unlocated variables.
Global derived data types	Global derived data types are available in each Concept project and are occupied in the DFB directory directly under the Concept directory.
Global DFBs	Global DFBs are available in each Concept project. The storage of the global DFBs is dependant upon the settings in the CONCEPT.INI file.
Global macros	Global macros are available in each Concept project and are occupied in the DFB directory directly under the Concept directory.
Groups (EFBs)	Some EFB libraries (e.g. the IEC library) are divided into groups. This facilitates EFB location especially in expansive libraries.
Н	
Host Computer	Hardware and software, which support programming, configuring, testing, operating and error searching in the PLC application as well as in a remote system application, in order to enable source documentation and archiving. The programming device can also be possibly used for the display of the process.

I

G

I/O Map	The I/O and expert modules from the various CPUs are configured in the I/O map.
lcon	Graphical representation of different objects in Windows, e.g. drives, application programs and document windows.

840 USE 504 00 October 2002

IEC 61131-3	International standard: Programmable Logic Controls - Part 3: Programming languages.
IEC Format (QW1)	 There is an IEC type designation in initial position of the address, followed by the five-figure address. %0x12345 = %Q12345 %1x12345 = %I12345 %3x12345 = %IW12345 %4x12345 = %QW12345
IEC name conventions (identifier)	An identifier is a sequence of letters, numbers and underscores, which must begin with either a letter or underscore (i.e. the name of a function block type, an instance, a variable or a section). Letters of a national typeface (i.e.: ö,ü, é, õ) can be used, except in project and DFB names. Underscores are significant in identifiers; e.g. "A_BCD" and "AB_CD" are interpreted as two separate identifiers. Several leading and multiple successive underscores are not allowed. Identifiers should not contain any spaces. No differentiation is made between upper and lower case, e.g. "ABCD" and "abcd" are interpreted as the same identifier. Identifiers should not be Keywords.
IEC Program Memory	The IEC memory consists of the program code, EFB code, the section data and the DFB instance data.
IIR Filter	(Infinite Impulse Response Filter) a filter with infinite impulse answer
Initial step	The first step in a sequence. A step must be defined as an initial step for each sequence. The sequence is started with the initial step when first invoked.
Initial value	The value, which is allocated to a variable when the program is started. The values are assigned in the form of literals.
Input bits (1x references)	The 1/0 status of the input bits is controlled via the process data, which reaches from an input device to the CPU.
	Note: The x, which follows the initial reference type number, represents a five-figure storage location in the user data memory, i.e. the reference 100201 signifies an output or marker bit at the address 201 in the State RAM.
Input parameter (Input)	Upon invocation of a FFB, this transfers the corresponding argument.

Input words (3x references)	An input word contains information, which originates from an external source and is represented by a 16 bit number. A 3x register can also contain 16 sequential input bits, which were read into the register in binary or BCD (binary coded decimal) format. Note: The x, which follows the initial reference type number, represents a five-figure storage location in the user data memory, i.e. the reference 300201 signifies an input word at the address 201 in the State RAM.
Input/output marker bits (0x references)	An input/output marker bit can be used to control real output data using an output unit of the control system, or to define one or more discrete outputs in the state RAM. Note: The x, which follows the initial reference type number, represents a five-figure storage location in the user data memory, i.e. the reference 000201 signifies an output or marker bit at the address 201 in the State RAM.
Instance Name	An identifier, which belongs to a certain function block instance. The instance name is used to clearly denote a function block within a program organization unit. The instance name is automatically generated, but it can be edited. The instance name must be unique throughout the whole program organization unit, and is not case sensitive. If the name entered already exists, you will be warned and you will have to choose another name. The instance name must comply with the IEC name conventions otherwise an error message appears. The automatically generated instance name is always formed as follows: FBI_n_m
	FBI = Function Block Instance n = section number (current number) m = Number of the FFB object in the section (current number)
Instancing	Generating an Instance.
Instruction (IL)	Instructions are the "commands" of the IL programming language. Each instruction begins on a new line and is performed by an operator with a modifier if necessary, and if required for the current operation, by one or more operands. If several operands are used, they are separated by commas. A character can come before the instruction, which is then followed by a colon. The commentary must, where available, be the last element of the line.
Instruction (LL984)	When programming electrical controls, the user should implement operation-coded instructions in the form of picture objects, which are divided into a recognizable contact form. The designed program objects are, on a user level, converted to computer usable OP codes during the download process. The OP codes are decoded in the CPU and processed by the firmware functions of the controller in a way that the required control is implemented.
Instruction (ST)	Instructions are the "commands" of the ST programming language. Instructions must be concluded by semicolons. Several instructions can be entered in one line (separated by semicolons).

840 USE 504 00 October 2002

Instruction list (IL)	IL is a text language according to IEC 1131, which is shown in operations, i.e. conditional or unconditional invocations of Functions blocks and Functions, conditional or unconditional jumps etc. through instructions.
INT	INT stands for the data type "whole number (integer)". Entries are made as intege literal, base 2 literal, basis 8 literal or base 16 literal. The length of the data elemen is 16 bits. The value range for variables of this datatype reaches from -2 exp (15) to 2 exp (15) -1.
Integer literals	Integer literals are used to input whole number values into the decimalsystem. The values can have a preceding sign (+/-). Single underscores (_) between numbers are not significant.
	Example -12, 0, 123_456, +986
INTERBUS (PCP)	The new INTERBUS (PCP) I/O drop type is entered into the Concept configurator to allow use of the INTERBUS PCP channel and the INTERBUS process data pre- processing (PDV). This I/O drop type is assigned the INTERBUS switching module 180-CRP-660-01. The 180-CRP-660-01 differs from the 180-CRP-660-00 only in the fact that it has a clearly larger I/O range in the control state RAM.
Invocation	The process, through which an operation is carried out.
J	
Jump	Element of the SFC language. Jumps are used to skip zones in the sequence.
К	
Keywords	Keywords are unique combinations of characters, which are used as special syntactical components, as defined in Appendix B of the IEC 1131-3. All keywords which are used in the IEC 1131-3 and therefore in Concept, are listed in Appendix C of the IEC 1131-3. These keywords may not be used for any other purpose, i.e. not as variable names, section names, instance names etc.

Ladder Diagram (LD)	Ladder Diagram is a graphic programming dialog according to IEC1131, which is optically oriented to the "rung" of a relay contact plan.
Ladder Logic 984 (LL)	The terms Ladder Logic and Ladder Diagram refer to the word Ladder being executed. In contrast to a circuit diagram, a ladder diagram is used by electrotech- nicians to display an electrical circuit (using electrical symbols), which should show the course of events and not the existing wires, which connect the parts with each other. A usual user interface for controlling the actions of automation devices permits a Ladder Diagram interface, so that electrotechnicians do not have to learn new programming languages to be able to implement a control program. The structure of the actual Ladder Diagram enables the connection of electric elements in such a way that generates a control output, which is dependant upon a logical power flow through used electrical objects, which displays the previously requested condition of a physical electrical device. In simple form, the user interface is a video display processed by the PLC programming application, which sets up vertical and horizontal grid, in which programming objects are classified. The diagram contains the power grid on the left side, and when connected to activated objects, the power shifts from left to right.
Landscape	Landscape means that when looking at the printed text, the page is wider than it is high.
Language Element	Every basic element in one of the IEC programming languages, e.g. a step in SFC, a function block instance in FBD or the initial value of a variable.
Library	Collection of software objects, which are intended for re-use when programming new projects, or even building new libraries. Examples are the libraries of the Elementary function block types. EFB libraries can be divided up into Groups.
Link	A control or data flow connection between graphical objects (e.g. steps in the SFC Editor, function blocks in the FBD Editor) within a section, represented graphically as a line.
Literals	Literals are used to provide FFB inputs, and transition conditions etc using direct values. These values can not be overwritten by the program logic (read only). A distinction is made between generic and standardized literals. Literals are also used to allocate a constant, a value or a variable an initial value. Entries are made as base 2 literal, base 8 literal, basis 16 literal, integer literal, real literal or real literal with exponent.

840 USE 504 00 October 2002

L

Local derived data types are only available in a single Concept project and the local DFBs and are placed in the DFB directory under the project directory.
Local DFBs are only available in a single Concept project and are placed in the DFB directory under the project directory.
The local network is the network, which connects the local nodes with other nodes either directly or through bus repeaters.
Local macros are only available in a single Concept project and are placed in the DFB directory under the project directory.
The local node is the one, which is currently being configured.
A state RAM address (reference addresses 0x, 1x, 3x,4x) is allocated to located variables. The value of these variables is saved in the state RAM and can be modified online using the reference data editor. These variables can be addresses using their symbolic names or their reference addresses. All inputs and outputs of the PLC are connected to the state RAM. The program can only access peripheral signals attached to the PLC via located variables. External access via Modbus or Modbus Plus interfaces of the PLC, e.g. from visualization systems, is also possible via located variables.

Μ	
Macro	Macros are created with the help of the Concept DFB software. Macros are used to duplicate frequently used sections and networks (including their logic, variables and variable declaration). A distinction is made between local and global macros.
	 Macros have the following properties: Macros can only be created in the FBD and LD programming languages. Macros only contain one section. Macros can contain a section of any complexity. In programming terms, there is no difference between an instanced macro, i.e. a macro inserted into a section and a conventionally created section. DFB invocation in a macro Declaring variables Using macro-specific data structures Automatic transfer of the variables declared in the macro. Initial value for variables Multiple instancing of a macro in the entire program with differing variables The name of the section, variable names and data structure names can contain up to 10 different exchange marks (@0 to @9).
ММІ	Man-Machine-Interface
Multi element variables	Variables to which a Derived data type defined with STRUCT or ARRAY is allocated. A distinction is made here between field variables and structured variables.
Ν	
Network	A network is the collective switching of devices to a common data path, which then communicate with each other using a common protocol.
Network node	A node is a device with an address (164) on the Modbus Plus network.
Node	Node is a programming cell in a LL984 network. A cell/node consists of a 7x11 matrix, i.e. 7 rows of 11 elements.

840 USE 504 00 October 2002

0	
Operand	An operand is a literal, a variable, a function invocation or an expression.
Operator	An operator is a symbol for an arithmetic or boolean operation, which is to be carried out.
Output parameter (outputs):	A parameter, through which the result(s) of the evaluation of a FFB is/are returned.
Output/marker words (4x references)	An output / marker word can be used to save numerical data (binary or decimal) in the state RAM, or to send data from the CPU to an output unit in the control system. Note: The x, which follows the initial reference type number, represents a five-figure storage location in the user data memory, i.e. the reference 400201 signifies a 16 bit output or marker word at the address 201 in the State RAM.

Ρ

The Peer CPU processes the token execution and the data flow between the Modbus Plus network and the PLC user logic.
Memory programmable controller
Portrait means that the sides are larger than the width when printed.
Expressions consist of operators and operands.
The uppermost program organization unit. A program is closed on a single PLC download.
A function, a function block, or a Program. This term can refer to either a type or an instance.
A redundancy system consists of two identically configured PLC machines, which communicate with one another via redundancy processors. In the case of a breakdown of the primary PLC, the secondary PLC takes over the control check. Under normal conditions, the secondary PLC does not take over the control function, but checks the status information, in order to detect errors.

Project	General description for the highest level of a software tree structure, which specifies the super-ordinate project name of a PLC application. After specifying the project name you can save your system configuration and your control program under this name. All data that is created whilst setting up the configuration and program, belongs to this super-ordinate project for this specific automation task. General description for the complete set of programming and configuration information in the project database, which represents the source code that describes the automation of a system.
Project database	The database in the host computer, which contains the configuration information for a project.
Prototype file (Concept-EFB)	The prototype file contains all the prototypes of the assigned functions. In addition, if one exists, a type definition of the internal status structure is specified.
R	
REAL	REAL stands for the data type "floating point number". The entry can be real-literal or real-literal with an exponent. The length of the data element is 32 bits. The value range for variables of this data type extends from +/- 3.402823E+38.
	Note: Dependent on the mathematical processor type of the CPU, different ranges within this permissable value range cannot be represented. This applies to values that are approaching ZERO and for values that approach INFINITY. In these cases NAN (Not A Number) or INF (INFinite will be displayed in the animation mode instead of a number value.
Real literals	Real literals are used to input floating point values into the decimal system. Real literals are denoted by a decimal point. The values can have a preceding sign (+/-). Single underscores (_) between numbers are not significant.
	Example -12.0, 0.0, +0.456, 3.14159_26
Real literals with exponents	Real literals with exponents are used to input floating point values into the decimal system. Real literals with exponents are identifiable by a decimal point. The exponent indicates the power of ten, with which the existing number needs to be multiplied in order to obtain the value to be represented. The base can have a preceding negative sign (-). The exponent can have a preceding positive or negative sign (+/-). Single underscores () between numbers are not significant. (Only between numbers, not before or after the decimal point and not before or after "E", "E+" or "E-")

840 USE 504 00 October 2002

	Example -1.34E-12 or -1.34e-12 1.0E+6 or 1.0e+6 1.234E6 or 1.234e6
Reference	Every direct address is a reference that begins with an indicator, which specifies whether it is an input or an output and whether it is a bit or a word. References that begin with the code 6, represent registers in the extended memory of the state RAM. 0x range = Coils 1x range = Discrete inputs 3x range = Input registers 4x range = Output registers 6x range = Register in the extended memory
	Note: The x, which follows each initial reference type number, represents a five-figure storage location in the user data memory, i.e. the reference 400201 signifies a 16 bit output or marker word at the address 201 in the State RAM.
Register in the extended memory (6x- reference)	6x references are holding registers in the extended memory of the PLC. They can only be used with LL984 user programs and only with a CPU 213 04 or CPU 424 02.
Remote Network (DIO)	Remote programming in the Modbus Plus network enables maximum performance when transferring data and dispenses of the need for connections. Programming a remote network is simple. Setting up a network does not require any additional ladder logic to be created. All requirements for data transfer are fulfilled via corresponding entries in the Peer Cop Processor.
RIO (Remote I/O)	Remote I/O indicates a physical location of the I/O point controlling devices with regard to the CPU controlling them. Remote inp./outputs are connected to the controlling device via a twisted communication cable.
RTU-Mode	Remote Terminal Unit The RTU mode is used for communication between the PLC and an IBM compatible personal computer. RTU works with 8 data bits.
Runtime error	Errors, which appear during program processing on the PLC, in SFC objects (e.g. Steps) or FFBs. These are, for example, value range overflows with figures or timing errors with steps.

SA85 module	The SA85 module is a Modbus Plus adapter for IBM-AT or compatible computers.
Scan	A scan consists of reading the inputs, processing the program logic and outputting the outputs.
Section	A section can for example be used to describe the mode of functioning of a technological unit such as a motor. A program or DFB consists of one or more sections. Sections can be programmed with the IEC programming languages FBD and SFC. Only one of the named programming languages may be used within a section at any one time. Each section has its own document window in Concept. For reasons of clarity, it is however useful to divide a very large section into several small ones. The scroll bar is used for scrolling within a section.
Section Code	Section Code is the executable code of a section. The size of the Section Code is mainly dependent upon the number of blocks in the section.
Section Data	Section data is the local data in a section such as e.g. literals, connections between blocks, non-connected block inputs and outputs, internal status memory of EFBs.
	Note: Data which appears in the DFBs of this section is not section data.
Separator Format (4:00001)	The first digit (the reference) is separated from the five figure address that follows by a colon (:).
Sequence language (SFC)	The SFC Language Elements enable a PLC program organization unit to be divided up into a number of Steps and Transitions, which are connected using directional Links. A number of actions belong to each step, and transition conditions are attached to each transition.
Serial Connections	With serial connections (COM) the information is transferred bit by bit.
Source code file (Concept-EFB)	The source code file is a normal C++ source file. After executing the Library \rightarrow Create files menu command, this file contains an EFB-code frame, in which you have to enter a specific code for the EFB selected. To do this invoke the Objects \rightarrow Source menu command.
Standard Format (400001)	The five figure address comes directly after the first digit (the reference).

840 USE 504 00 October 2002

S

365

Standardized literals	If you would like to manually determine a literal's data type, this may be done using the following construction: 'Data type name'#'value of the literal'. Example INT#15 (Data type: integer, value: 15), BYTE#00001111 (Data type: byte, value: 00001111) REAL#23.0 (Data type: real, value: 23.0)
	To assign the data type REAL, the value may also be specified in the following manner: 23.0. Entering a comma will automatically assign the data type REAL.
State RAM	The state RAM is the memory space for all variables, which are accessed via References (Direct representation) in the user program. For example, discrete inputs, coils, input registers, and output registers are situated in the state RAM.
Status Bits	For every device with global inputs or specific inp./outputs of Peer Cop data, there is a status bit. If a defined group of data has been successfully transferred within the timeout that has been set, the corresponding status bit is set to 1. If this is not the case, this bit is set to 0 and all the data belonging to this group is deleted (to 0).
Step	SFC-language element: Situation, in which the behavior of a program occurs, regarding its inputs and outputs of those operations which are defined by the actions belonging to the step.
Step name	The step name is used to uniquely denote a step in a program organization unit. The step name is generated automatically, but it can be edited. The step name must be unique within the entire program organization unit, otherwise an error message will appear. The automatically generated step name is always formed as follows: S_n_m S = step
	n = section number (current number) m = Number of the step in the section (current number)
Structured text (ST)	ST is a text language according to IEC 1131, in which operations, e.g. invocations of Function blocks and Functions, conditional execution of instructions, repetitions of instructions etc. are represented by instructions.
Structured variables	Variables to which a Derived data type defined with STRUCT (structure) is allocated. A structure is a collection of data elements with generally different data types (elementary data types and/or derived data types).

SY/MAX	In Quantum control devices, Concept includes the providing of I/O-map SY/MAX-I/ O modules for remote contolling by the Quantum PLC. The SY/MAX remote backplane has a remote I/O adapter in slot 1, which communicates via a Modicon S908 R I/O System. The SY/MAX-I/O modules are executed for you for labelling and inclusion in the I/O map of the Concept configuration.
т	
Template file (Concept-EFB)	The template file is an ASCII file with layout information for the Concept FBD Editor, and the parameters for code creation.
TIME	TIME stands for the data type "time". The entry is time literal. The length of the data element is 32 bits. The value range for variables of this data type extends from 0 to 2exp(32)-1. The unit for the TIME data type is 1 ms.
Time literals	Permissable units for times (TIME) are days (D), hours (H), minutes (M), seconds (S) and milliseconds (MS) or combinations of these. The time must be marked with the prefix t#, T#, time# or TIME#. The "overflow" of the unit with the highest value is permissible, e.g. the entry T#25H15M is allowed.
	Example t#14MS, T#14.7S, time#18M, TIME#19.9H, t#20.4D, T#25H15M, time#5D14H12M18S3.5MS
Token	The network "token" controls the temporary possession of the transfer right via a single device. The token passes round the devices in a rotating (increasing) address sequence. All devices follow the token rotation and can receive all the possible data that is sent with it.
Total IEC memory	The total IEC memory consists of the IEC program memory and the global data.
Traffic Cop	The traffic cop is an IO map, which is generated from the user-IO map. The traffic cop is managed in the PLC and in addition to the user IO map, contains e.g. status information on the I/O stations and modules.
Transition	The condition, in which the control of one or more predecessor steps passes to one or more successor steps along a directed link.

U	
UDEFB	User-defined elementary functions/function blocks Functions or function blocks, which were created in the C programming language, and which Concept provides in libraries.
UDINT	UDINT stands for the data type "unsigned double integer". Entries are made as integer literal, base 2 literal, basis 8 literal or base 16 literal. The length of the data element is 32 bits. The value range for variables of this data type extends from 0 to 2exp(32)-1.
UINT	UINT stands for the data type "unsigned integer". Entries are made as integer literal, base 2 literal, basis 8 literal or base 16 literal. The length of the data element is 16 bits. The value range for variables of this data type extends from 0 to (2exp 16)-1.
Unlocated variable	Unlocated variables are not allocated a state RAM address. They therefore do not occupy any state RAM addresses. The value of these variables is saved in the internal system and can be changed using the reference data editor. These variables are only addressed using their symbolic names.
	Signals requiring no peripheral access, e.g. intermediate results, system tags etc., should be primarily declared as unlocated variables.
V	
Variables	Variables are used to exchange data within a section, between several sections and between the program and the PLC. Variables consist of at least one variable name and one data type. If a variable is assigned a direct address (reference), it is called a located variable. If the variable has no direct address assigned to it, it is called an unlocated variable. If the variable is assigned with a derived data type, it is called a multi element variable. There are also constants and literals.

Warning	If a critical status is detected during the processing of a FFB or a step (e.g. critical input values or an exceeded time limit), a warning appears, which can be seen using the Online \rightarrow Event Viewer menu command. For FFBs, the ENO remains set to "1".
WORD	WORD stands for the data type "bit sequence 16". Entries are made as base 2 literal, base 8 literal or base 16 literal. The length of the data element is 16 bits. A numerical value range can not be assigned to this data type.

W

Index

Α

ACI030, 33 ACI040, 37 ACO020, 41 ACO130, 45 ADU204, 49 ADU205, 53 ADU206, 57 ADU214, 61 All330, 65 All33010, 69 AIO330, 73 AMM090, 77 ANA_16I, 81 ANA_4I_2O, 95 ANA_4I_2O_C, 105 ANA_4I_2O_V, 109 ANA_4I_M, 87 ANA_40, 113 ANA_8I, 119 ANA_IO ACI030, 33, 37 ACO020, 41 ACO130, 45 ADU204, 49 ADU205, 53 ADU206, 57 ADU214, 61 All330, 65 All33010, 69 AIO330, 73 AMM090, 77

ANA_16I, 81 ANA_4I_2O, 95 ANA_4I_2O_C, 105 ANA_4I_2O_V, 109 ANA_4I_M, 87 ANA_40, 113 ANA_8I, 119 ARI030, 125 ATI030, 129 AVI030, 133 AVO020, 137 BKF_201, 139 BNO_671, 147 COMPACT, 153 DAU202, 157 DAU204, 161 DAU208, 165 DIG_16I, 169 DIG_16I_120_MON, 175 DIG_16I_16O, 181 DIG_16O, 187 DROP, 193 **I_DBSET**, 197 I_DEBUG, 199 I_FILTER, 201 I_NORM, 207 I_NORM_WARN, 209 I_PHYS, 213 I_PHYS_WARN, 215 I_RAW, 219 I_RAWSIM, 221 I_SCALE, 223

840 USE 504 00 October 2002

Index

I_SCALE_WARN, 227 I SET. 231 IMIO IN, 239 IMIO_OUT, 243 MIX_4I_2O, 247 NOA_611, 255 **O_DBSET**, 261 **O_DEBUG**, 263 O_FILTER, 265 O_NORM, 271 O_NORM_WARN, 273 O_PHYS, 277 O_PHYS_WARN, 279 O_RAW, 283 O_SCALE, 285 O_SCALE_WARN, 289 O_SET, 293 QPR_16I_12O, 301 QUANTUM, 307 R_INT_WORD, 311 R_UINT_WORD, 313 SCALRTOW, 315 SCALWTOR, 319 UNI_I, 323 UNI_I_O, 327 UNI_O, 331 W_INT_REAL, 335 W_UINT_REAL, 337 XBP, 339 **XDROP**, 343 Analog IO Config I_FILTER, 201 I_SET, 231 O_FILTER, 265 O_SET, 293 Analog IO Debug I_DBSET, 197 I_DEBUG, 199 O_DBSET, 261 **O_DEBUG**, 263

Analog IO Scaling I NORM. 207 I NORM WARN, 209 I_PHYS, 213 I_PHYS_WARN, 215 I_RAW, 219 I_RAWSIM, 221 I_SCALE, 223 I_SCALE_WARN, 227 O_NORM, 271 O_NORM_WARN, 273 O_PHYS, 277 O_PHYS_WARN, 279 O_RAW, 283 O_SCALE, 285 O_SCALE_WARN, 289 R_INT_WORD, 311 R_UINT_WORD, 313 SCALRTOW, 315 SCALWTOR, 319 W_INT_REAL, 335 W_UINT_REAL, 337 Analog value processing Momentum, 23 Example, 26 Procedure, 24 ARI030, 125 ATI030, 129 AVI030, 133 AVO020, 137

В

BKF_201, 139 BNO_671, 147

С

COMPACT, 153 Compact IO Config ADU214, 61 COMPACT, 153 DAU202, 157 DAU204, 161 DAU208, 165

Compact IO config ADU204.49 ADU205, 53 ADU206, 57 Configuring a I/O Station subrack, 193 Configuring a primary backplane expander, 339 Configuring an I/O Station Backplane, 343 Configuring module AAI 140 00, 81 Configuring the AMM 090 00 module, 247 Configuring the Compact module ADU 204, 49 Configuring the Compact module ADU 205, 53 Configuring the Compact module ADU 206, 57 Configuring the Compact Module ADU 214, 61 Configuring the Compact module BKF 201, 139 Configuring the Compact module DAU 202 / DAU 252 / DAU 282, 157 Configuring the Compact module DAU 204, 161 Configuring the Compact module DAU 208, 165 Configuring the main rack, 153, 307 Configuring the module AAI 030 00, BAI 036 00.119 Configuring the module AAI 520 40, 87 Configuring the module ADM 390 10, 175 Configuring the module BAO 126 00, 113 Configuring the Quantum module ACI 030 00, 33 Configuring the Quantum module ACI 040 00, 37 Configuring the Quantum module ACO 020 00.41 Configuring the Quantum module ACO 130 00,45 Configuring the Quantum module All 330 00, 65 Configuring the Quantum module All 330 10, 69 Configuring the Quantum module AIO 330 00,73

Configuring the Quantum module AMM 090 00.77 Configuring the Quantum module ARI 030 10.125 Configuring the Quantum module ATI 030 00, 129 Configuring the Quantum module AVI 030 00.133 Configuring the Quantum module AVO 020 00.137 Configuring the Quantum modules NOA 611 00/NOA 611 10, 255 Configuring the TIO-mode BAM 096 00, 105, 109 Configuring the TIO-module BAM 096 00, 95 Configuring the TIO-module BDI 346 00 / 546 50 / 746 50, 169 Configuring the TIO-module BDM 346 00, 181 Configuring the TIO-module BNO 671 00, 147 Configuring the TIO-module QPR 346 00 / 10/20/21.301 Configuring the TIO-mopdule BDO 346 00 / BDO 946 50. 187 Configuring universal TIO input modules, 323 Configuring universal TIO input/output modules, 327 Configuring universal TIO output modules, 331

D

DAU202, 157 DAU204, 161 DAU208, 165 DIG_16I, 169 DIG_16I_120_MON, 175 DIG_16I_16O, 181 DIG_16O, 187 DROP, 193 Index

F

Function Parameterization, 3 Function block Parameterization, 3

I_DBSET, 197 I_DEBUG, 199 I_FILTER, 201 I_NORM, 207 I_NORM_WARN, 209 I_PHYS, 213 I_PHYS_WARN, 215 I_RAW, 219 I_RAWSIM, 221 I_SCALE, 223 I_SCALE_WARN, 227 I_SET, 231 IBS ANA_16I, 81 ANA_4I_2O, 95 ANA_4I_2O_C, 105 ANA_4I_2O_V, 109 ANA_4I_M, 87 ANA_40, 113 ANA_8I, 119 BKF_201, 139 BNO_671, 147 DIG_16I, 169 DIG_16I_12O_MON, 175 DIG_16I_16O, 181 DIG_16O, 187 MIX_4I_2O, 247 NOA_611, 255 QPR_16I_12O, 301 UNI_I, 323 UNI_I_O, 327 UNI_O, 331 IMIO IMIO_IN, 239 IMIO_OUT, 243 IMIO_IN, 239 IMIO_OUT, 243

Immediate I/O module input, 239 Immediate I/O module output, 243

L

Linearization for analog outputs, 265 Linearization for analog-inputs, 201

Μ

MIX_4I_2O, 247 Monitor internal data structure ANL_OUT, 263 Monitoring internal data structure ANL_IN, 199

Ν

NOA_611, 255

0

O_DBSET, 261 O_DEBUG, 263 O_FILTER, 265 O_NORM, 271 O_NORM_WARN, 273 O_PHYS, 277 O_PHYS_WARN, 279 O_RAW, 283 O_SCALE, 285 O_SCALE, 285 O_SCALE_WARN, 289 O_SET, 293

Ρ

Parameterization, 3 Physical analog output, 277 Physical analog output with warning status, 279 Physical analog-input, 213 Physical analog-input with warnings status, 215 Q

QPR_16I_12O, 301 QUANTUM, 307 Quantum IO Config, 339 ACI030, 33 ACI040, 37 ACO130, 45 All330, 65 All33010, 69 AIO330, 73 ARI030, 125 ATI030, 129 AVI030, 133 AVO020, 137 **DROP**, 193 QUANTUM, 307 **XDROP**, 343 Quantum IO config ACO020, 41 AMM090, 77

R

R_INT_WORD, 311 R_UINT_WORD, 313 Raw value analog input, 219 Raw value analog output, 283

S

Scaled analog input, 223 Scaled analog input with warning status, 227 Scaled analog output, 285 Scaled analog output with warning status, 289 Scaling (REAL -> WORD), 315 Scaling (WORD -> REAL), 319 SCALRTOW, 315 SCALWTOR, 319 Set information from analog input channels, 231 Set information from analog output channels, 293 Simulated raw value analog input, 221 Standardized analog input with warning status, 209 Standardized analog output, 271 Standardized analog output with warning status, 273 Standardized analog-input, 207

Т

Type Conversion (REAL -> INT -> WORD), 311 Type Conversion (REAL -> UINT -> WORD), 313 Type Conversion (WORD -> INT -> REAL), 335 Type Conversion (WORD -> UINT -> REAL), 337

U

UNI_I, 323 UNI_I_O, 327 UNI_O, 331

W

W_INT_REAL, 335 W_UINT_REAL, 337 Write internal data structure ANL_OUT, 261 Writing internal data structure ANL_IN, 197

Х

XBP, 339 XDROP, 343

840 USE 504 00 October 2002

Index

Index