
33
00

22
60

.0
0

Concept EFB
User manual

840 USE 505 00 eng Version 2.6

© 2002 Schneider Electric All Rights Reserved

2

3

Table of Contents

About the Book .7

Chapter 1 Implementation in Concept EFB . 9
Overview . 9
Introduction . 10
Restrictions . 11
Advantages of User Defined EFBs . 11
New functions of Concept EFB 2.5 and higher compared to
Concept EFB 2.2. 12

Chapter 2 Installation Instructions for Concept EFB 13
Overview . 13
Introduction . 14
Installation Order . 15
Installation of Concept EFB. 16
Installation of Borland C 5.01/5.02 . 17
Installation the 16 bit and 32 bit Turbo Assembler (TASM and TASM32). 17
System Settings . 18
Setting the Options in Concept EFB . 19
Checking the Installation . 21

Chapter 3 Concept EFB Main menu . 25
Overview . 25
Introduction . 26
File menu. 27
Library Menu . 29
Objects Menu . 31
Options Menu . 33
Help Menu. 34

4

Chapter 4 Creating and Editing EFBs . 35
Overview . 35
Creating EFBs . 36
Editing Definition files. 38
Editing a source file . 40
Backup the Source file . 42
Editing the prototype file . 42
Construction of an EFB . 44
Code Limitations . 45
Keywords of a definition file . 46
PIN Syntax. 47

Chapter 5 Background Information for EFB Design 49
Overview . 49
Selecting the Hardware Platform . 50
Differences between functions and function blocks. 51
Implementation of the Interface . 52
Data Types. 53
Data Type ANY and ANY_xxx . 53
Usage of Extendable PINs . 57
Keywords for Input and Output PINs . 58
System Functions (API) Usage . 61

Chapter 6 EFB Libraries . 63
Overview . 63
Creating EFB Libraries. 64
Installation of EFB Libraries. 65
Installation of Libraries on Different Computers. 66
Testing Created EFB . 67
Overview of the EFB Library Delivered . 68

Chapter 7 Advanced Information for EFB Developers. 71
Overview . 71
Directory Structure. 72
Derived Data Types . 74
File Extensions. 75
User Includes. 76
Floating Point Processor . 76
Deactivating and Reactivating Function Blocks. 76
Creating Context Sensitive Help (Online Help) . 77
Testing EFBs with the Debugger . 79

5

Chapter 8 Editor .81
Overview . 81
Introduction . 82
File Menu. 82
Edit Menu . 83
Search Menu. 84
Find Menu . 85
Replace Menu . 86
Syntax Highlighting . 88

Chapter 9 Errors .89
Overview . 89
Error messages, error correction. 90
Recognizing Instructions with DGROUP Segment . 91

Glossary . 93

Index . 117

6

840 USE 505 00 October 2002 7

About the Book

At a Glance

Document Scope This users manual should help you when generating and managing user defined
functions and function blocks with Concept EFB.

Validity Note This documentation is valid for Concept EFB Version 2.6 in Microsoft Windows 98,
Microsoft Windows 2000, Microsoft Windows XP and Microsoft Windows NT 4.x.
together with Borland C Compiler Version 5.01/5.02.

Related
Documents

User Comments We welcome your comments about this document. You can reach us by e-mail at
TECHCOMM@modicon.com

Note: Further current information can be found in the Info_EFB file in your Concept
EFB installation.

Title of Documentation Reference Number

Borland C 5.01/5.02 User Manual

Concept User Manual 840 USE 503 00

Concept IEC Block Library 840 USE 504 00

Concept LL984 Block Library 840 USE 506 00

About the Book

8 840 USE 505 00 October 2002

840 USE 505 00 October 2002 9

1
Implementation in Concept EFB

Overview

Introduction This chapter gives an overview of Concept_EFB.

What’s in this
Chapter?

This chapter contains the following topics:

Topic Page

Introduction 10

Restrictions 11

Advantages of User Defined EFBs 11

New functions of Concept EFB 2.5 and higher compared to Concept EFB 2.2 12

Implementation

10 840 USE 505 00 October 2002

Introduction

General Concept EFB enables the user to generate user defined functions and function
blocks.

User defined functions and function blocks can be managed using libraries (as can
functions and function blocks delivered with Concept).

Elementary
Function Blocks
(EFBs

The elementary functions and function blocks included with delivery are organized
into different libraries. The functions required can be selected by the user
accordingly. These blocks are called EFBs (Elementary Function Blocks).

User Defined -
EFBs (UDEFBs

The Concept EFB enables the experienced user to generate additional UDEFBs
(User Defined - EFBs), and use them in their application. These functions and
function blocks can be stored in a specific library by the user. This does not apply to
libraries delivered with Concept.

Languages Concept applications can be created in several languages (FBD, LD, ST, IL) using
the blocks provided according to IEC1131.

Programming
language C

The creation of EFBs places other demands on the user than programming with IEC
languages because blocks are developed in C. The programming language C is
used because of its scope and functionalities.

The function range covered by C, is reduced for the requirements here. This
reduction is explained in more detail in following chapters.

Integrated
development
environment

Concept EFB provides a complete development environment, for writing, creating
and installing libraries. Tasks are started according to the selection of menu points
in the development environment. This calls batch processes which carry out all
required steps automatically. This means that the Borland C-Compilers or Turbo
Assemblers do not need to be called manually.

Note: There is no difference between elementary and user defined functions/
function blocks within Concept. To simplify matters, EFBs will be described in
general terms.

Implementation

840 USE 505 00 October 2002 11

Restrictions

General It is not allowed within the EFB C-code to write on inputs or to read from outputs.

Write on inputs It is not allowed to write on inputs inside an EFB, although Concept 2.1 generates
no errors if you do this. This can cause problems when the user connects a write-
protected literal value to the pin.

However from Concept 2.2, Concept intercepts a write on boolean inputs as soon
as they are connected to 0x or 1x registers (mapping them to variables causes no
problems).

With Concept 2.5 and higher you are allowed to write to EFB inputs if the pin type
Var_InOut is used. The pin type Var_InOut does not allow the user to attach
literals or booleans to the pin. (For the description of the new pin type definition
Var_InOut refer to chapter Var_InOut, p. 60).

Read from
outputs

It is not allowed to read from outputs inside an EFB, although Concept 2.1
generates no errors if you do this. This can cause problems when the user connects
a located variable to the pin.

Advantages of User Defined EFBs

Independent
Libraries

By using the language C, it is possible for experienced application programmers to
create simple to complex functions which can be used many times in different
applications. The functions are saved in libraries independent of the respective
application and are generally available for all applications after installation.

Protected
Function Blocks

The technology and structure of the function blocks is not transparent for others
because they are black boxes.

Improvements to
Runtime and
Memory
Requirements

The function blocks created with Concept EFB can be used in all of Concept’s IEC
languages. Compared with equivalent algorithms based on multiple use of primitive
functions/function blocks, the use of UDEFBs represents a great improvement
regarding runtime and memory requirements.

Note: This problem only concerns boolean datatypes.

Implementation

12 840 USE 505 00 October 2002

New functions of Concept EFB 2.5 and higher compared to Concept EFB 2.2

General Concept EFB 2.5 and higher contains the following new functions and modifications
compared to Concept EFB 2.2.:

l New IEC PIN type Var_InOut.
l Creation of an installation diskette for distributing libraries.
l Reduction of the development path name to 22 characters.

Var_InOut The new PIN type Var_InOut enables the user to generate EFBs containing PINs,
that can be used simultaneously as the input and output of a block.

See chapter Keywords for Input and Output PINs, p. 58,Var_InOut.

Installation
diskette

Libraries are distributed to computers by creating an installation diskette on the
system with ConceptEFB installed.

See chapterInstallation of Libraries on Different Computers, p. 66.

Development
path name

The length of the development directory path name is checked and is limited to 22
characters.

See information in chapter Directory Structure, p. 72.

840 USE 505 00 October 2002 13

2
Installation Instructions for
Concept EFB

Overview

Introduction This chapter gives an overview of the installion of Concept EFB.

What’s in this
Chapter?

This chapter contains the following topics:

Topic Page

Introduction 14

Installation Order 15

Installation of Concept EFB 16

Installation of Borland C 5.01/5.02 17

Installation the 16 bit and 32 bit Turbo Assembler (TASM and TASM32) 17

System Settings 18

Setting the Options in Concept EFB 19

Checking the Installation 21

Installation

14 840 USE 505 00 October 2002

Introduction

General Concept EFB is an independent tool. Since both Concept and Concept EFB use
common components they can not run in parallel.

Required
components

The following components are required for installation:

l Concept
l Concept EFB
l Borland C 5.01/5.02
l 16 bit and 32 bit Turbo Assembler.

Sequence When installing Concept EFB you must observe the installation sequence for
installing the individual components. The list of components above shows a useful
sequence

Also see chapter Installation Order, p. 15.

Installation

840 USE 505 00 October 2002 15

Installation Order

General When installing Concept EFB, certain components must be installed in a designated
order.

Concept must be installed before Concept EFB.

The development package Borland C 5.01/5.02 must be installed before the Turbo
Assembler.

Borland C 5.01/5.02 and Turbo Assembler can be installed before or after Concept.

The following order for required components is also a sensible installation order.

Concept The installation of Concept must take place before the installation of Concept EFB,
because the tool is installed in the same directory as the Concept application.

Concept EFB The installation of Concept EFB can only take place after the installation of Concept.

Borland C 5.01/
5.02

To develop EFBs, it is necessary to also install the correct development package
Borland C 5.01/5.02 on the selected computer. This can take place before or after
the installation of Concept EFB, but must be completed before function blocks are
created with Concept EFB.

16-bit and 32-bit
Turbo Assembler

Additionally, both a 16-bit and a 32-bit variant of the Turbo Assemblers are required
(TASM.EXE and TASM32.EXE).

Installation

16 840 USE 505 00 October 2002

Installation of Concept EFB

Versions

Installation of the
CD with autorun

The following section describes the installation of the Concept EFB CD when the CD
drive autorun function is switched on:

Installation of the
CD without
autorun

If the Setup program is not started automatically it means the CD drive autorun
function is deactivated. In this instance do the following:

Installation
variations

Note: When installing Concept EFB is it important to note that only the same
versions of Concept and Concept EFB can be installed together.

Step Action

1 Place the CD ROM in the CD drive.

2 The Setup program is usually started automatically by the CD after a short time.

3 Follow the onscreen instructions.

Step Action

1 Open the My Computer icon on the desktop.

2 Select CD drive and open it with a double-click.

3 Start the Setup program displayed in the directory with a double-click.

4 Follow the onscreen instructions.

Result: Concept EFB is installed in the existing Concept program group

Note: These installation instructions only cover one method of installation.
Installation can be carried out using the My Computer route and also clicking the
cursor on Execute, and additionally, instead of double-clicking to open the file, you
can simply use the mouse or keyboard and open the file using the Enter key. Also
see the operating instructions for Windows.

Installation

840 USE 505 00 October 2002 17

Installation of Borland C 5.01/5.02

General Borland C 5.01/5.02 is a development package that contains the compiler, tools and
service programs for creating EFB libraries.

Installation The installation of Borland C 5.01/5.02 is carried out according to the instructions
provided in the development package.

Installation the 16 bit and 32 bit Turbo Assembler (TASM and TASM32)

General In addition to the Borland C 5.01/5.02 development package it is necessary to install
the assembler programs TASM.exe and TASM32.exe.

You are adivised that blocks created in C can only be compiled using an assembler
temporary file because of special requirements, and cannot be copied directly from
the available IDE (Integrated Developers Environment).

Installation
sequence

Installing the program files (TASM.exe and TASM32.exe) can only be carried out if
the development package Borland C 5.01/5.02 has already been installed.

Installation
directory

For code generation (16 bit / 32 bit) it is necessary to copy the files (TASM.EXE and
TASM32.EXE) to the Borland C compiler´s bin directory.

Included with
delivery

The Turbo assembler files are not included with the delivery of the Borland C 5.01/
5.02 develpoment package, and must be purchased additionally.

Note: The Borland C compiler version 5.5 currently freely available on the internet
is not compatible with Concept EFB and only generates 32 bit code.

Note: TASM32.EXE is included in the C Builder 5.0 professional package from
Inprise (also includes Borland Compiler 5.02)

Installation

18 840 USE 505 00 October 2002

System Settings

General After installing all required programs the following information must be entered in the
system (Win95/98 or WinNT):

l the BIN directory (Borland C) and
l the Include directory (Borland C).

Set system
variable PATH

Enter in Autoexec.bat Win95/98 i

l Path = C:\BC5\BIN; C:\BC5\INCLUDE; %PATH%

or for WinNT in the Settings→ Control Panel for the variable PATH

l C:\BC5\BIN; C:\BC5\INCLUDE;

Installation

840 USE 505 00 October 2002 19

Setting the Options in Concept EFB

General After the installation of all necessary programs, the following points must be defined
in Concept EFB:

l the development directory (EFB development directory),
l the include directory (Borland C) and
l the desired hardware platform (16-Bit / 32-Bit).

Starting Concept
EFB

Start Concept EFB using Start → Programs → Concept → Concept EFB.

The Concept EFB program window is shown on the screen.

Using the menu item Options, you can make all of the following definitions.

Create
development
directory

After starting Concept EFB the first time, a development directory (EFB
development directory) must be created. When developing function block libraries,
the source code and the generated files are placed in this directory and its subdirec-
tories before they are installed in Concept.

Using Options → Create Development Path..., you invoke a dialog box where you
can create the path used to store all libraries created with Concept EFB. Also see
Chapter Options Menu, p. 33.

The development path is shown in the title bar of the program window.

Select
development
directory

If a development path already exists, you can use Options → Set Development
Path... to invoke a dialog box where you can select the path for the development
directory. Also see Chapter Options Menu, p. 33.

Select Borland
include directory

The path to the include directory for the Borland C compiler also has to be entered
in Concept EFB.

Using Options → Set Borland Include Path..., you can invoke a dialog box where
you can enter the path to the include directory (e.g. C:\BC5\). Also see Chapter
Options Menu, p. 33.

Note: The path name of the Development directory is limited to a maximum of 22
characters. Therefore, placing this directory in the root directory of a drive is
recommended. If an attempt is made to enter a path with more than 22 characters
for the Development directory, an error message is given.

Installation

20 840 USE 505 00 October 2002

Select hardware
platform

The hardware platform, for which the function block will be developed, must be
entered in Options.

Using Options → Options..., you can invoke a dialog box where you can set the
options for the generation of function block libraries.

Here, you have the possibility to select whether code generation should be for 16-
bit and/or 32-bit.

You can also set up whether information for the debugger should be generated
when creating the function blocks. This option is necessary if you wish to use the
Borland debuggers TDW.EXE and TD32.EXE.

You may also determine if log files generated when creating libraries should be
automatically shown on the screen after generation. We recommend setting this
option.

Also see Chapter Selecting the Hardware Platform, p. 50.

Installation

840 USE 505 00 October 2002 21

Checking the Installation

General After all required programs have been installed, the system settings configured (see
chapter System Settings, p. 18) and the required options set in Concept EFB (see
chapter Setting the Options in Concept EFB, p. 19), the SAMPLE library delivered
with Concept EFB can be used to run a check for successful installation. This tests
the interaction of the installed applications.

Start Concept
EFB

Start Concept EFB via Start → Programs → Concept → Concept EFB if it hasn’t
already been started.

The Concept EFB program window appears onscreen.

Select the
SAMPLE library

Open a dialog window using File → Open Library in which you can select an
existing library.

A library contained in the development path can be selected from the list box given.

Mark the SAMPLE example library and close the dialog box by clicking OK.

The marked library is selected for editing and is displayed in the program window
title bar.

If all components are correctly installed, the blocks available in the SAMPLE library
can now be seen in the Objects → Select EFB dialog box.

See also chapter File menu, p. 27.

Note: If the File → Open Library menu is inactive or the development path is
missing, this is indicated in the Concept EFB window title bar. (see chapter System
Settings, p. 18).

If the message window shows No path to Borland Compiler bcc.exe found,
check the correct entry for the Borland C compiler path. (see chapter System
Settings, p. 18). Paths are only read when restarting the computer with a 16 bit
development environment. Restart your computer so the path can be read.

Installation

22 840 USE 505 00 October 2002

Generate Files Start generation of all necessary files using Library → Generate Files (Prototype
and source files) for an EFB library.

The files required for the conversion are generated for all EFBs in this library
(SAMPLE) and this procedure is logged in a DOS window.

After generation, an editor window log.txt is shown with the logged messages.

See also chapter Library Menu, p. 29.

Make After using Generate Files to generate the necessary files for the library, make the
library using Library → Make. Making the library is logged in a DOS window. After
creation, an editor window log.txt is shown with the logged messages.

See also chapter Menu Library.

Error log If errors occur when compiling the example library, a message window is shown with
tips for the user.

After the message is acknowledged, an editor is shown (log.txt) with the logged
messages (as when successful).

Note: The editor window (log.txt) is only shown automatically if in Options →
Options... the item Show Logfile is selected. See Chapter Options Menu, p. 33.

Otherwise the logfile can be opened using Library → Logfile.

Note: Problems such as the message Unable to open include file are mostly
caused by the installation of the Borland C compiler. In this case, check if the path
is correct.

Installation

840 USE 505 00 October 2002 23

Incorrect
Versions

If problems occur when compiling the files (e.g. message Error: pro failed
with -314, this is mostly caused by an faulty Borland C compiler installation or the
version is incompatible.

In this case, check the available program versions of the files belonging to the
compiler using the following table.

The check is best made by opening a DOS window and entering the respective
program names at the command line.

File name Program Version for BC5.01 Program Version for BC5.02

Tlink 7.1.30.1 7.1.32.2

Tlink32 1.6.71 2.0.68

Make 4.0 5.0

Bcc 5.0 5.2

Bcc32 5.0 5.2

Installation

24 840 USE 505 00 October 2002

840 USE 505 00 October 2002 25

3
Concept EFB Main menu

Overview

Introduction This chapter gives an overview of the main commands from the main menu of
Concept EFB.

Menu commands enable the selection, generation and management of function
blocks in libraries.

What’s in this
Chapter?

This chapter contains the following topics:

Topic Page

Introduction 26

File menu 27

Library Menu 29

Objects Menu 31

Options Menu 33

Help Menu 34

Main menu

26 840 USE 505 00 October 2002

Introduction

General The Concept EFB program window comprises:

l the title bar displaying the development path,
l the menu bar with the drop down menus File, Library, Objects, Options, Help,
l the toolbar giving direct access to individual submenus,
l and the main window.

Prerequisites In order to select, generate and manage functions or function blocks with Concept
EFB, all required system settings must first be carried out (see chapter System
Settings, p. 18) and all options set in Concept EFB (see chapter Setting the Options
in Concept EFB, p. 19).

Main menu

840 USE 505 00 October 2002 27

File menu

General The File menu offers the following possibilities:

l Creation of libraries,
l Selecting libraries,
l Conversion of libraries,
l Import function blocks into libraries,
l Move function blocks between libraries and
l end the program

As long as no library has been selected, two of the submenus in the File menu
(Import EFBs... and Move EFBs...) are shown in grey. As soon as a block library is
selected the submenus are activated.

New Library The submenu New Library opens a dialog box for creating a new block library in the
development path specified. When the dialog box is ended with OK, an empty library
is created and is immediately selected for editing.

The submenu New Library can also be reached via a button in the toolbar.

Open Library The submenu Open Library opens a dialog box for selecting an existing library. A
list box offers the user the block libraries available for selection in the development
path. When the dialog box is ended by clicking OK, the library marked in the list box
is selected for editing and the dialog box is closed.

The submenu Open Library can also be reached via a button in the toolbar.

Convert Library The submenu Convert Library opens a dialog box for entering the path to libraries
that were created using an older version of the Concept EFB. When a library is
selected and the dialog box ended with OK, the libraries found in this path and all
the EFBs they contain are converted for the new Concept EFB version and saved in
the current development path.

Import EFBs The submenu Import EFBs opens a dialog box for entering the path of the library to
be imported. All EFBs available in this library are imported into the active library
when the dialog box is ended with OK. The imported blocks are then contained in
both libraries.

Main menu

28 840 USE 505 00 October 2002

Move EFB The submenu Move EFB is similar to the submenu described above Import EFBs.
The difference is that after entering the library path a further dialog box appears
where the user can select the name of an EFB. Only this block is imported into the
library when the dialog box is ended with OK. The imported block is then deleted
from the source library.

Print The submenu Print opens a dialog box where you can select whether the
information for a library should be printed or whether EFBs available in the library
should be printed.

Exit (Alt+F4) The submenu Exit ends the program.

Note: The submenus Convert Library, Import EFBs and Move EFB setup the
standard file structure of a library or EFB. User header files are ignored and must
be copied manually. See also chapter User Includes, p. 76.

Main menu

840 USE 505 00 October 2002 29

Library Menu

General The Library menu offers the following possibilities:

l definition of derived data types,
l display derived data types as type definitions in the C programming language,
l generate all files required for compiling the EFBs,
l creating a library,
l recompile all files belonging to a library,
l install a library in Concept,
l display the last protocol file created,
l display a summary description for all EFBs in the active library,
l search for available backup files as required and
l delete the active library.

As long as no library is selected, only the submenu Logfile is active and the user
can only see the most recently created protocol file. The submenus become active
once a block library has been selected

Derived
datatypes

The Derived datatypes submenu opens an editor window where the user can
define derived datatypes. The syntax for describing data types is given by IEC 1131-
3. The submenu Derived datatypes can also be reached via a button in the toolbar.

C Header of
derived
datatypes

The submenu C Header of derived datatypes activates an editor window where
data types created inDerived datatypes are displayed as type definitions in the C
programming language. This list can only be seen after the function Generate Files
was invoked.

Generate Files The submenu Generate Files generates all files required for compiling. Files are
only created for the EFBs within a library that have a modified or new definition file.

The submenu Generate Files can also be reached via a button in the toolbar.

Make The submenu Make invokes the C compiler and generates the compiler object files
(.obj) for the EFBs in the active library.

The submenu Make can also be reached via a button in the toolbar.

Build The submenu Build creates a library in a similar way to the Make function. In
comparison to the commands described above, no dependencies of the individual
files to each other is taken into account. All files belonging to the library are
recompiled.

Main menu

30 840 USE 505 00 October 2002

Install The submenu Install is used to install the library created by Make or Build in
Concept. A library can be used by Concept as soon as it has been installed.

The submenu Install can also be reached via a button in the toolbar.

Logfile The submenu Logfile displays the protocol file created by the last compile/generate
files.

Summary The submenu Summary opens an editor window which display a summary of all
EFB descriptions belonging to this library.

Find backups The submenu Find backups searches for any backup files in the available library
EFB. These backups are created during edit sessions or by the function Generate
Files and can be used to restore files using cut and paste.

Delete library The submenu Delete library deletes the active library after the security message is
confirmed. Concept EFB is then in the same status as after a program start and
waits for the user to select another library.

Main menu

840 USE 505 00 October 2002 31

Objects Menu

General The Objects menu offers the following possibilities:

l a framework for creating a new function,
l a framework for creating a new function block,
l selecting an existing EFB for editing,
l edit the Definition file of the active EFB,
l edit the Source file of the active EFB,
l display the Prototype file of the active EFB,
l select a backup file for the active EFB,
l delete the backup files of the active EFB,
l delete all files and directories of the active EFB,
l deactive an EFB and
l reactive an EFB.

As long as no block library has been selected, the Objects menu only contains
inactive submenus. Once a block library has been selected, the submenus New
Function , New Function Block, Select EFB and Reactivate EFB can be used.

All submenus become available as soon as an EFB has been created using New
Function or New Function Block or an EFB has been selected using Select EFB.

New Function The framework for a new function is created using the submenu New Function,
once the user has entered the author´s name and name of the EFB in a dialog box.
After creating the framework the definition file is automatically displayed in an editor
window.

The submenu New Function can also be reached via a button in the toolbar.

New Function
Block

The framework for a new function block is created using the submenu New
Function Block, once the user has entered the author´s name and name of the EFB
in a dialog box. After creating the framework the definition file is automatically
displayed in an editor window.

The submenu New Function Block can also be reached via a button in the toolbar.

Select EFB The submenu Select EFB opens a dialog box for selecting an EFB. The user can
select the EFBs available in the library from a list box. When the dialog box is ended
by clicking OK, the EFB marked in the list box is activated (selected for editing) and
the dialog box is closed.

The submenu Select EFB can also be reached via a button in the toolbar.

Main menu

32 840 USE 505 00 October 2002

Definition The submenu Definition opens an editor window which displays the Definition file
(*.fb) for the active EFB and allows it to be edited.

The submenu Definition can also be reached via a button in the toolbar.

Source The submenu Source opens an editor window which displays the Source file (*.fb)
for the active EFB and allows it to be edited.

However, after creating a new EFB, the submenu Generate Files must first be
called, from the Library menu, since the source file is created using the definition
file.

The submenu Source can also be reached via a button in the toolbar.

Prototype The submenu Prototype opens an editor window which displays the Prototype file
(*.h) of the active EFB. The prototype file is generated using Generate files. The file
may be edited, however, all changes made after calling Generate files are lost as
the prototype file is recreated. This means this function is only used for displaying
the created prototype file.

Backup The submenu Backup opens a dialog which allows you to recover an old source file
of the active EFB.

Delete backups The submenu Delete backups deletes the backup files available for the active EFB.

Delete EFB The submenu Delete EFB deletes all files and directories belonging to the active
EFB after confirmation is given to the security message. Concept EFB is then in the
same status as after selecting a library and waits for the user to select another EFB.

Deactivate EFB The submenu Deactivate EFB deactivates the EFBs of a library. Concept EFB is
then in the same status as after selecting a library and waits for the user to select
another EFB.

Reactivate EFB The submenu Reactivate EFB opens a dialog box where you can reactivate a
currently deactivated EFB. The reactivated EFB then becomes the active (i.e.
currently selected) EFB

This submenu is the counter part to the Deactivate EFB function.

Main menu

840 USE 505 00 October 2002 33

Options Menu

General The Options menu offers the following possibilities:

l select a development directory,
l create a new development directory,
l assign the Include directory of the Borland C compiler,
l select the hardware platform (16 bit and/or 32 bit),
l specify whether information should be generated for the debugger and
l specify if the log file should appear automatically.

Set Development
Path

The submenu Set Development Path opens a dialog for selecting the development
directory where all libraries created with Concept EFB should be stored (or are).

Create
Development
Path

The submenu Create Development Path opens a dialog for creating a new
development directory where all libraries created with Concept EFB should be
stored.

Set Borland
Include Path

The submenu Set Borland Include Path opens a dialog box for declaring the
Include directory of the Borland C compiler.

Options The submenu Options opens a dialog box in which options for generating EFB
libraries can be set. The user has the opportunity here to select the hardware
platform and therefore determine whether the code generation for 16 bit and/or 32
bit should be allowed.

Furthermore, the user can set here whether or not information for the debugger
should be generated when creating the block.

A further point determines whether the resulting log file should automatically be
shown on screen after creating and generating a library.

Note: The Include directory must be specified before creating a library for the first
time, otherwise Concept EFB cannot find the Standard Borland Include files.

Main menu

34 840 USE 505 00 October 2002

Help Menu

General The Help menu offers the following possibilities:

l To open the online help for Concept EFB.
l To display version information about Concept EFB.

Contents The online help provided for Concept EFB can be opened using the submenu
Contents. This is available after Concept EFB is installed in the Concept install
directory.

About Version information about the installed Concept EFB can be displayed using the
submenu About.

840 USE 505 00 October 2002 35

4
Creating and Editing EFBs

Overview

Introduction This chapter gives an overview of creating and editing function blocks.

What’s in this
Chapter?

This chapter contains the following topics:

Topic Page

Creating EFBs 36

Editing Definition files 38

Editing a source file 40

Backup the Source file 42

Editing the prototype file 42

Construction of an EFB 44

Code Limitations 45

Keywords of a definition file 46

PIN Syntax 47

Creating EFBs

36 840 USE 505 00 October 2002

Creating EFBs

General An EFB (Elementary Function Block), which can be defined as a function or a
function block (see chapterDifferences between functions and function blocks,
p. 51), must always be a component of an EFB library.

All functions and function blocks available in a library are compiled together using
the Borland-C compiler and are available for use after the EFB library is installed in
Concept. The only exceptions are the EFBs of a library that have been deactivated.

Prerequisites In order to create functions or function blocks with Concept EFB, all required system
settings must be made (see chapter System Settings, p. 18), and all options set in
Concept EFB (see chapter Setting the Options in Concept EFB, p. 19).

Development
directory

As described in chapter Setting the Options in Concept EFB, p. 19, a development
directory must be created.

Several libraries can be created within a development directory. However, only one
version of a library may exist in a development directory.

It is possible to work with different development directories which contain libraries
which are at different stages of development.

You can switch between the different directories using Options → Set
Development Path. This opens a dialog window where you can select an existing
directory as a development directory. With this selection, clicking the OK buttons
checks whether the directory selected is a valid directory for creating EFB libraries
before switching directories. If the directory entered does not exist or does not
contain the files required, the directory switch is interrupted with an error message.
Otherwise the directory enterd is selected. The active development directory is
displayed in the applications title bar until a library stored in the directory is opened.

Note: During installation of the EFB library in Concept, EFB creation and library
creation, names entered are checked against the Concept database. If the names
alredy exist an error is generated. Names of libraries and EFBs must be unique.

Creating EFBs

840 USE 505 00 October 2002 37

Procedure The creation of EFBs is done in several steps. After opening an EFB library, follow
the procedure in the table below when creating an EFB:

Testing EFBs To test created EFBs see chapter Testing Created EFB, p. 67.

Step Action Result/ Remark

1 Use New Function to create a new function
or create a new function block using New
Function Block. See chapterObjects Menu,
p. 31.

The definition file is created and
displayed in an editor window.

2 Edit the Definition file (*.fb) as described in
the chapter Editing Definition files, p. 38.

3 After editing, create all required files using
Generate Files. See chapterLibrary Menu,
p. 29.

The source file (*.c) and pototype
file (*.h) are created.

4 Edit the source code file (*.c) as described in
the chapter Editing a source file, p. 40.

This file contains the actual
programming for the block.

Creating EFBs

38 840 USE 505 00 October 2002

Editing Definition files

General When creating a new EFB (see Creating EFBs, p. 36) the dummy Definition file
created only shows a framework for the actual block. The file should be edited
according to the requirements on the block.

The definition file contains general information about the EFB as well as information
about all the EFB pins. It defines the functional and graphical EFB interface to
Concept.

Open the
definition file

Open the definition file using Objects → Definition.

Note: After making changes in the definition file you must run Generate Files for
these changes to become active. Generate Files also creates a new dummy
source file. If you require that the old source file be retained then you must open it
with an editor and save it. This save updates the time stamp on the source file and
indicates that the changes in the definition file have already been moved across; a
new source file is not created. This means however that you may (depending on
your changes in the definition file) have to make the changes in your source file
manually. If you do not save the source file it will be copied to a backup file and a
new dummy source file is created.

Creating EFBs

840 USE 505 00 October 2002 39

Example of a
definition file

Definition file for the example block MY_FUBL1.

//:--
//:SUBSYSTEM: EFB - Elementary Function Block
//:
//:MODULE: ..\EFBTEST\MY_FUBL1.FB
//:
//:---
//:Revision: 2.1 Modtime: 22 Jan 1998 AUTHOR: Peter Alig
//:---

Declaration of Elementary Function Block: MY_FUBL1
Author: Peter Alig
Editor Group: Test Group
Major Version: 1
Minor Version: 0
Description: A full working test example.
//
// Not sure what to do ?
// Try generate-files, make and install on this working
example!
//
// Example:
// --------
Rising Edge Detector: BOOL CLK # count up clock
Input: INT INCVAL # increment value per clock
Input: INT MAXCOUNT # limiter on upcount
State Output: INT COUNTOUT # counter output value
Output: INT TICKS # ticks since last change of INCVAL

// use the next line to declare an internal state structure
Internal State: BOOL initDone # initialising done on first run
// See the dummy source file after doing ’Generate Files’ for
more information

Creating EFBs

40 840 USE 505 00 October 2002

Key word The definition file is comprised of different key words and commentary. The source
file and prototype file are created using these key words when generating the files
(see chapterCreating EFBs, p. 36).

Key words are terms reserved for special requirements that may not be used as
normal terms

A list of permitted key words, their meanings and syntax descriptions can be found
in chapter Keywords of a definition file, p. 46 and PIN Syntax, p. 47

Editing a source file

General After the source and prototype files have been created with the Definition file using
Generate Files (see Creating EFBs, p. 36), the source file must be edited, since
after the automatic generation this only comprises of a dummy function definition.

Open the source
file

Open the source file using Objects → Source.

Note: Upper and lower case text is differentiated between when evaluating the
definition file, so that Sum, sum and SUM are treated as different terms.

Note: After each change made to the definition file the source file must be updated
automatically using the menu command Generate Files. The old version of the
source file is saved by the system as a backup file.

Creating EFBs

840 USE 505 00 October 2002 41

Example of a
dummy source
file

Source file for the example block MY_FUBL1.

//:--
//:SUBSYSTEM: EFB - Elementary Function Block
//:
//:MODULE: MY_FUBL1
//:
//:---
//:Revision: 1.0 Modtime: 30 May 2000 AUTHOR: Peter Alig
//:---
//:DESCRIPTION: A full working test example.
//:
//:REMARKS:
//:---
#include "EFBTEST.I"

extern"C" BOOL FB_CALL_CONV MY_FUBL1(
 const PTR_BOOL CLK , //count up clock
 const PTR_INT INCVAL , //increment value per clock
 const PTR_INT MAXCOUNT , //limiter on upcount
 PTR_Istat_MY_FUBL1 Istate , // internal state
 PTR_INT COUNTOUT , //counter output value
 PTR_INT TICKS) //ticks since last
 change of INCVAL
{
if_FALSE(Istate->initDone)
 {
 // initialize first time
 Istate->initDone = TRUE;
 }

AliPutFbdError(E_DUMMY_SOURCE_CODE);
return FALSE;
}

Command in
C-Syntax

You can now add the required commands in C syntax. Also see chapter Code
Limitations, p. 45.

Creating EFBs

42 840 USE 505 00 October 2002

Floating point
literals

Floating point literals are not allowed in EFB code, because of the Assembler code
generated in Borland C. This assumes that a DGROUP segment is available which
is not available in the PLC.

In order to use a floating point literal it is necessary to define a variable and initialize
it with the constant value
required

Also see chapter Recognizing Instructions with DGROUP Segment, p. 91.

Backup the Source file

General After each change made to the Definition file, Generate Files must be used to
automatically update the source file.

This also saves the old source file as a backup file (backup00.c, backup01.c ...).

Time stamp Concept EFB uses the files time stamp as the criteria to determine which files must
be backed up.

Editing the prototype file

General The prototype file can be edited, however, all changes made after calling Generate
files are lost since the prototype file is recreated. This means this function is only
used for displaying the prototype file created.

Open the
prototype file

Open the prototype file using Objects → Prototype.

REAL k0_77 0.77;=

Creating EFBs

840 USE 505 00 October 2002 43

Example of a
prototype file

Prototype file for the example block MY_FUBL1.

// Lines below are generated by tool, all manual changes will
be overwritten.//
//:---
//:SUBSYSTEM: EFB - Elementary Function Block
//:
//:MODULE: ..\EFBTEST\MY_FUBL1\MY_FUBL1.H
//:
//:---
//:Revision: 1.0 Modtime: 30 May 2000 AUTHOR: Peter Alig
//:---
//:DESCRIPTION: A full working test example.
//:
//:REMARKS:
//:---

// Elementary Function Block: MY_FUBL1
//
// ____________________
// | |
// | MY_FUBL1 |
// | |
// BOOL ---> CLK |
// INT ---| INCVAL COUNTOUT |--- INT
// INT ---| MAXCOUNT TICKS |--- INT
// |____________________|
typedef struct Istat_MY_FUBL1 {
 BOOL CLK_old; // internal state
 BOOL initDone; //initialising done on first run
} Istat_MY_FUBL1, FB_PTR_CONV *PTR_Istat_MY_FUBL1;

//:FUNCTION:--
extern "C"
 //
 // R, Correctness of execution
BOOL FB_CALL_CONV MY_FUBL1
(const PTR_BOOL /*CLK */, // I, count up clock
 const PTR_INT /*INCVAL */, // I, increment value per clock

Creating EFBs

44 840 USE 505 00 October 2002

 const PTR_INT /*MAXCOUNT*/,// I, limiter on upcount
 PTR_Istat_MY_FUBL1 /*Istate */, // I/O, Internal State
 PTR_INT /*COUNTOUT*/,// I/O, counter output value
 PTR_INT /*TICKS */);// O, ticks since last change
//:---
//:DESCRIPTION: A full working test example.
//:
//:REMARKS:
//:---

Graphical
overview

The prototype file defines the graphical overview of the defined inputs and outputs.

The inputs are always shown on the left and the outputs always on the right of the
EFB frame.

The positions of the outputs corresponds to the positions defined when editing the
definition file.

EFB name The name of the function/function blocks i.e. the function block type is displayed in
the centre of the EFB frame.

Construction of an EFB

General The code used in an EFB has specific limitations. Also see chapter Code
Limitations, p. 45.

Configuration
section/ Runtime
range

It is advisable to seperate your EFB code into two sections, a standard running code
for normal scans and initialising code which will be used to initialise the EFB´s
internal data (should it have any). The initialising code should only be called during
initialisation of the PLC otherwise the normal code will be used (if ... then ...
else). See the example in chapter Editing a source file, p. 40.

Runtime
variations

The EFB should be written as far as possible so that the runtime remains the same
for each call. Otherwise it could lead to unpredictable variations in PLC cycle times.

Longer block tasks should be distributed among PLC several cycles where
necessary in order to minimize runtime variations.

Creating EFBs

840 USE 505 00 October 2002 45

Code Limitations

General The creation of EFBs with Concept EFB is different in some repects to creating a
"normal" C function. This chapter describes the differences.

Source file EFBs have the following limitations:

l API functions can only be called in the main function of EFB,
l the number of in/out parameters on an EFB (not including Internal State) is

limited to 32 respectively,
l the maximum size of a variable is limited to 64 kbytes,
l local variables can be included but the maximum stack size is 256 bytes,
l local variables are not initialized by Concept - this must be done within the EFB.

Code generation A PLC operating system is different to a normal PC.

For example, no DGROUP data segments exist in PLC programs.

The following limitations should therefore be observed regarding code generation
with the Borland C compiler:

l Static variables may not be used,
l Sub-functions that are called from within an EFB must be defined as static,
l Floating point operations must be handled with care as it has been shown that

data segments are also used for saving values for example, floating point literals
may not be declared (see chapter DGROUP Segments),

l the code generated by the Borland C compiler must be supported by the PLC
operating system. This is guaranteed for standard instructions in C, but not for all
functions of the standard C library. Generally, string operations or input/output
functions and storage creation functions are not allowed.

Unique names All names used for EFBs must be unique. This does not only apply within a block
library, but, also for later uses of blocks in Concept generally because many different
libraries can be used simultaneously in Concept.

Names of libraries, blocks and data structures must be unique.

Creating EFBs

46 840 USE 505 00 October 2002

Keywords of a definition file

Keyword The following table specifies permitted keywords allowed in definition files and gives
a brief description of the individual terms.

Examples of keywords can be seen in the SAMPLE example library.

Keywords with descriptions:

Permitted keywords Description

// Line coments, all characters after these characters
are treated as commentary

Declaration of Elementary

Function Block

This keyword describes the declaration of a function
block

Declaration of Elementary

Function

This keyword describes the declaration of a simple
function

Description A block is described as follows. See 1).

Remarks Remarks follow. See 1).

Special header information Defines header information which will be copied to the
EFB header file and must be C compatible. See 1).

 (empty space) Subsequent lines in a multiple line information block
in this file are identified by a leading empty character.
See 1).

Editor group The group to which this block belongs

Major version Version number of the EFB (major)

Minor version Version number of the EFB (minor)

Input Declaration of an input pin. See 2) + 3).

State output This creates an output pin which retains its value.
Normally used for booleans.

Rising Edge Detector Declaration of an input for a signal that should be
recognized as a rising edge. See 2).

Falling Edge Detector Declaration of an input for a signal that should be
recognized as a falling edge. See 2).

Output Declaration of an output pin. Siehe 2).

Internal state Declaration of a concealed data structure input. See
4) + 6).

Var_InOut Declaration of a PIN that can be used as both an input
and an output. See 5).

Creating EFBs

840 USE 505 00 October 2002 47

PIN Syntax

Input / Output
PINs

The inputs or output PINs of an EFB should be declared according to the following
scheme:

<key>[(<exp_info>)]:[=|.|+] <typ> <name> [#<comment>]

The following table lists the parameters for declaring PINS:

Extendible PINs The keyword Input for input parameter can be expanded as follows for
extendible PINs:

<min>..<max>,default=<def>

The following table lists the parameters for expansion:

1 Several lines of information can follow these keywords. This information is limited by
another keyword or by the end of the file. Subsequent lines must be preceded with a
space (i.e. white space).

2 The syntax for an input or output pin is explained in the chapter PIN syntax.

3 Declarations for input pins may be expandable (see chapter PIN syntax).

4 These keywords create a concealed parameter "Internal state", which can be used to
save internal block information outside the EFB.

5 When the keyword is entered a PIN is created which is displayed on both the input side
and output side (directly opposite) of the block.

6 Only possible in function blocks.

Permitted keywords Description

Parameter Meaning

<key> Keyword from the table Keyword, p. 46

<exp_info> Additional information for extendible PINs (see below)

<typ> PIN data type

<name> PIN name

<comment> Commentary, automatically cut off at the end of the line

[=|.|+] optional entry for outputs (see below)

Parameter Meaning

<min> Minimum number of inputs to declare

<max> Maximum number of possible inputs

<def> Standard number of inputs available

Creating EFBs

48 840 USE 505 00 October 2002

Position of PINs The graphical alignment of the PIN on the side of the EFB can be influenced using
this declaration.

Concealed PIN
name

The input and output labels are displayed in Concept as standard. These can be
concealed using the hide(<variable name>) syntax in the definition file (*.fb).

Example:

Input: BOOL in1 #Input of datatype BOOL with name in1 at
position 1

Input :++ REAL in2 #Input of datatype REAL with name in2 at
position 4, the two pin positions above are skipped.

Output := REAL out1 #Output of datatype REAL at the same position
(4) as a REAL datatype on the input side

Output := REAL hide(out2) #Output of datatype REAL. The PIN-name
out2 will not be displayed on the EFB.

EN / ENO In the Concept graphical languages (LD, optional in FBD), enable input PINs (EN)
or equivalent output PINs (ENO) are available.

The management of the EN PIN is carried out completely by the system. If the value
of EN is set to FALSE in the application, the C code of the EFB is not carried out.

The value of the ENO PIN coressponds to the return value of C function of the EFB.

Parameter Meaning

= the output is defined with the same data type as is available at the
input at the same hight on the other side (default)

. it is not searched for according to an input of the same data type

+ this symbol can be entered multiple times. Each symbol entered
jumps one position in front of the output symbol

Note: The position of Var_InOut pins can not be influenced. Var_InOut pins will
always appear at the top position.

Note: If error handling occurs in EFB (e.g. false EFB parameter in the application)
the return value should be FALSE.

840 USE 505 00 October 2002 49

5
Background Information for EFB
Design

Overview

Introduction This chapter provides background information for designing EFBs.

What’s in this
Chapter?

This chapter contains the following topics:

Topic Page

Selecting the Hardware Platform 50

Differences between functions and function blocks 51

Implementation of the Interface 52

Data Types 53

Data Type ANY and ANY_xxx 53

Usage of Extendable PINs 57

Keywords for Input and Output PINs 58

System Functions (API) Usage 61

Background Information for EFB Design

50 840 USE 505 00 October 2002

Selecting the Hardware Platform

General The hardware platform that the function block will be developed for is entered under
the menu item Options.

16-bit / 32-bit For PLCs working with an Intel 80186 or 80286 CPU, 16-bit code must be created.

For PLCs equipped with an 80386 or higher, 32-bit code is needed. (exception: 140
CPU 424x0 executes 16-bit code).

Concept itself selects the appropriate type of code at download according to which
hardware is configured.

The following table shows the assignments of the platforms to the PLCs supported
by Concept.

Setting Using Options → Options.. , you can get to a dialog box where you can set the
options for the generation of function block libraries.

Here, you have the possibility to select if code generation should take place for 16-
bit and/or 32-bit.

Testing If both 16-bit and also 32-bit code should be created, both versions must be tested
separately.

Normally there should be no difference between both versions, but under certain
circumstances it has been observed that particular blocks work perfectly on a certain
platform, however cause errors on others.

This is due to the fact that two different compilers are used for different platforms.

You may find that you need different code in the 16 bit and 32 bit versions of an EFB
for it to run correctly on all platforms.

PLC 16 Bit Platform (Dos16) 32 Bit Platform (Win32)

Quantum 140CPU x13x0, 140CPU 424x0 140CPU x341x

Momentum All -

Compact - All

Atrium - All

Background Information for EFB Design

840 USE 505 00 October 2002 51

Differences between functions and function blocks

General With Concept EFBs,

l functions and
l Function blocks

can be defined:

Functions can be used anywhere where only a single output is required, especially
booleans.

Function blocks can have several output parameters and can temporarily store data
at runtime. See chapter Keywords for Input and Output PINs, p. 58.

Function
Features

Functions are normally referred to in graphical languages (LD, FBD) as xx.yy,
where xx is the section number and yy is the number of the function in this section.

Typical examples of such functions are comparisons EQ_BOOL or conversions
ABS_INT, which return exactly one output parameter from one or more input
parameters without needing to store any data temporarily.

Function Block
Features

In the graphical languages (LD, FBD) it can be recognized as soon as as the
properties dialog box corresponding to the block instance is visible, done with a
double click on the block in Concept. The name of the instance of this block can be
changed in the dialog box. The name automatically generated when creating the
block is FBI_xx_yy, where xx is the number of the section and yy is a sequential
number of the EFBs in this section.

A typical example of a function block is the timer TON, which has several output
parameters and stores the current value at runtime over several PLC cycles.

In the non-graphical languages (ST, IL), the difference between functions and
function blocks can be seen in the fact that a function block must be explicitly
declared in the variable declaration (between VAR and END_VAR).

Background Information for EFB Design

52 840 USE 505 00 October 2002

Implementation of the Interface

General Before the actual programming of an EFB can be started, the interface between
Concept and the C function in the EFB must be created.

Inputs/Outputs The input and output PINs visible in Concept correspond to the C function
parameters.

A maximum of 32 input and 32 output PINs are possible in an EFB.

Use data structures if you need more than 32 parameters in the EFB.

Extendable
Inputs

Inputs may be defined as extendable if there can be more or less input PINs
depending on your application. For special usage of extendable input parameters,
please refer to the chapter Usage of Extendable PINs, p. 57.

Background Information for EFB Design

840 USE 505 00 October 2002 53

Data Types

General Only predefined data types can be used as parameters for an EFB.

These can be standard types such as BOOL or INT, as well as user defined types
(as pointer to a data structure of this type).

The data type ANY and its specialized forms, such as ANY_ELEM or ANY_BIT,
play a special role. They represent a data type which is defined when the EFB is
instanced. See chapter Data Type ANY and ANY_xxx, p. 53.

IEC Data Types The following table lists the data types according to IEC and their meaning in
Concept.

The IEC data types are available for use in C code.

Data Type ANY and ANY_xxx

Differences
between ANY
and ANY_xxx

The generic data type ANY is assigned its data type when instanced in Concept.
Only one data type can be fixed for one EFB. This means that extendible ANY PINs
all have the same data types.

When using the data type ANY_xxx, multiple EFBs with the corresponding data
types (e.g. ANY_INT includes DINT, INT, UINT and UDINT) are generated using
one single source file (*.c).

IEC Data Type Number of
Bits

Numerical Range

BOOL 8 0, 1 or FALSE, TRUE

BYTE 8 Sequence of 8 bits (no numerical range)

WORD 16 Sequence of 16 bits (no numerical range)

INT 16 -32768...32767

DINT 32 -2147483648...2147483647

UINT 16 0...65535

UDINT 32 0...4294967295

REAL 32 8.43*10-37...3.36*1038

TIME 32 0... 4294967295 in [ms]

Background Information for EFB Design

54 840 USE 505 00 October 2002

Heirachy of the
Data Types

The following graphic shows the heirachy of the data types from the general type
ANY, its special forms ANY_xxx and the discrete IEC data types.

ANY Data type ANY is a special form of a parameter for a block. If such a data type is
used, the IEC data type used is decided when the block is instanced.

All PINs of the type ANY on the same EFB are assigned the same data type after
instancing in Concept.

ANY

ANY_ELEM

ANY_NUM

ANY_INT

REAL

DINT

INT

UINT

UDINT

ANY_BIT

BOOL

BYTE

WORD

TIME

System data types
(IEC extensions)

ANL_IN

ANL_OUT

Derived (from
“ANY” data types)

ANY_REAL

Background Information for EFB Design

840 USE 505 00 October 2002 55

Additional
Parameter
sizein

When using the data type ANY the size of the data type is passed to the EFB as the
additional parameter sizein.

Usage of the data
type ANY_xxx

If one of the ANY_xxx data types are used as a parameter to a function block,
multiple EFBs are created with multiple compiler passes in the Makefile. (For
each IEC data type which can be derived from the given data type, a call to the
compiler is generated).

The names of these derived EFB is derived from the EFB name and the C data type
associated with it: <EFB Name>_Data Type e.g.ADD_BOOL

The various functions prototypes are listed in the prototype file (*.h).

A single source code (*.c) is used for the different derived EFBs.

The generic data type ANY_xxx can be used in the C function.

Note: Compare the EFB NYDT from the SAMPLE library as an example.

Note: Compare the EFB GENDT from the SAMPLE library as an example.

Background Information for EFB Design

56 840 USE 505 00 October 2002

Compiler switch The different compiler passes for the derived EFBs are differentiated with <If
defined> xxx_IMPLEMENTATION

If special processing is necessary for the various data types of the PIN, the user can
separate the code into different sections using conditional compilation.

e.g. #ifdef xxx_IMPLEMENTATION (#else, #endif).

The following is a list of compiler switches which can be used depending on the IEC
data types:

l BOOL_IMPLEMENTATION
l BYTE_IMPLEMENTATION
l WORD_IMPLEMENTATION
l INT_IMPLEMENTATION
l UINT_IMPLEMENTATION
l DINT_IMPLEMENTATION
l UDINT_IMPLEMENTATION
l REAL_IMPLEMENTATION
l TIME_IMPLEMENTATION

Which compiler switches are set for the generation of the block for different data
types and which are evalutaed with #ifdef, #else,#endif can be seen in the
Makefile for your library.

Note: Compare the EFB SWGENDT from the SAMPLE library as an example.

Background Information for EFB Design

840 USE 505 00 October 2002 57

Usage of Extendable PINs

General Passing data to an EFB using so called extendable PINs requires a special PIN
definition with deviates from normal input PINs.

Only one extendable PIN can be used per EFB. This PIN must be graphically
defined as the bottom input contact.

Procedure The number of available inputs is visible in the special hidden parameter nin.

The macros in the following table are automatically generated in the prototype file.
Use these macros to access the values passed to the block.

The term <pin> stands for the name of the parameter and is to be replaced by this
when programming the EFB.

Please note that only the number of inputs as provided in nin are allowed to be read
with next_<pin>, otherwise it causes a runtime error of the block.

Normally the reading is done in a FOR loop, using parameter nin as the exit
condition.

See also chapter PIN Syntax, p. 47.

Macro Meaning

open_<pin> Starts the reading in of the inputs with names <pin>.

next_<pin> Returns the value of the next input each time it is used.

close_<pin> Finished the reading in of the inputs with names <pin>.

Note: Compare the EFB EXTINP from the SAMPLE library as an example.

Background Information for EFB Design

58 840 USE 505 00 October 2002

Keywords for Input and Output PINs

Input The keyword Input declares an input PIN.

Input PINs can be defined as extendable.

The syntax for the input or output PINs is explained in the Chapter PIN Syntax, p. 47.

Output The keyword Output declares an output PIN.

The syntax for the input or output PINs is explained in the Chapter PIN Syntax, p. 47.

Internal state Only function blocks can use the keyword Internal State. This keyword defines
a data structure which is linked to the block. The structure is invisible to the user and
is passed to the EFB with a pointer in the parameter list. Use this structure to define
EFB internal data, storage for internal values, storage for old values etc.

The keywords Rising Edge Detector, Falling Edge Detector and
Internal State add an entry to the EFB specific structure which can be
accessed with a pointer.

Note: The variables for the Internal State structure behave like unlocated
variables of the application and are explicitly initialized with 0.

Background Information for EFB Design

840 USE 505 00 October 2002 59

Rising/Falling
Edge Detector

Both keywords Rising Edge Detector and Falling Edge Detector define
edge detection. The corresponding declared parameters are resolved in the
declaration of a boolean input variable and a variable of type Internal State,
whose name is the name of the edge recognition with "_old" appended.

The result of this is that for the actual programming of the EFB, there is no difference
if the edge recognition is defined in the definition file as

Rising Edge Detector clk;

or

Input BOOL clk;

Internal State BOOL clk_old;

.

The keywords only serve to declare the required variables. The actual edge
detection as well as the storing of the old status is the task of the the person who
programs the EFB. This means that the detection of a rising edge requires al least
the following code:

...

if (clk != clk_old && clk)

{

 ...

 clk_old = clk;

 return TRUE;

}

.

Background Information for EFB Design

60 840 USE 505 00 October 2002

Var_InOut This keyword allows user EFB to define PINs which can be simultaneously used as
inputs and outputs in the EFB.

When this keyword is used, two PINs on the EFB are generated, one on the input
side and a corresponding one on the output side, but in the prototype and in the
source file, only one parameter is visible.

When the block is instantiated in a Concept editor, both sides are automatically
linked to the same variable.

State output This keyword serves to extend the output behaviour.

If an output is defined as type BOOL a 1x or 0x register may be connected to this
PIN when the EFB is instanced in Concept.

The register values in the PLC may fluctuate during a single scan, meaning that the
old value, as far as the EFB is concerned, will get lost.

This can be avoided by defining these outputs as State Outputs. A State Output
frees Concept to store the attached value (even though it may be a 0x/1x register)
as a variable so it doesn´t lose its value.

This is only necessary if the boolean value is not written to in every scan.

Note: You are not allowed to use the data type BOOL or ANY with this keyword.

Note: The position of Var_InOut pins can not be influenced. Var_InOut pins will
always appear at the top position.

Note: Compare the EFB STATEOUT from the SAMPLE library as an example.

Background Information for EFB Design

840 USE 505 00 October 2002 61

System Functions (API) Usage

General The following system functions provided by Concept can be used in an EFB.

The prototypes for each function are in the prototype file <efb>.h.

AliGetProg
State()

AliGetProgState() returns a pointer to a data structure with system information (cold/
warm start, various clock signals, time of system start and a flag for a general system
error).

Also see Chapter Editing the prototype file, p. 42.

AliPutFbdError() AliPutFbdError() generates an online error message for the event log. Error
messages which are sent to the event log are displayed with the given error number.
The error numbers used by EFBs are predefined. They have special names which
start with "EFB_USER_ERROR_1" up to "EFB_USER_ERROR_100" No user
defined strings are allowed.

The definition for each error number is in the file <efb>.err. When this function is
called:

l the name of the section where the block is called and
l the instance fo the EFB (only for graphical languages)

are automatically added to the error number.

If the function is called with the additional parameter param, this value is also
displayed.

System Function Call

AliGetProgStateEx PTR_PROG_STATE CALL_CONV AliGetProgStateEx(void)

AliPutFbdError void CALL_CONV AliPutFbdError(INT errno)

AliPutFbdError void CALL_CONV AliPutFbdError(INT errno, INT param)

Note: These system function may only be called in the main function of the EFB.
It is not possible to call these functions in a subroutine as Concept cannot determin
the EFB name and therefore the event logging does not work.

Background Information for EFB Design

62 840 USE 505 00 October 2002

840 USE 505 00 October 2002 63

6
EFB Libraries

Overview

Introduction This chapter provides an overview of handling function block libraries.

What’s in this
Chapter?

This chapter contains the following topics:

Topic Page

Creating EFB Libraries 64

Installation of EFB Libraries 65

Installation of Libraries on Different Computers 66

Testing Created EFB 67

Overview of the EFB Library Delivered 68

EFB Libraries

64 840 USE 505 00 October 2002

Creating EFB Libraries

Creating EFBs First create the required function blocks as described in Chapter Creating EFBs,
p. 36.

Also note Chapter Code Limitations, p. 45.

Make or Build Function block libraries can be compiled using the submenu Make and also using
the submenu Build.

When using the submenu Make, the dependencies of the files are checked before
compiling the individual source files so that only those files are compiled that have
been modified.

When using the submenu Build , all source files in a library are compiled regardless
of the dependencies.

Compile Library
(Make)

Compile the library using the submenu Library → Make. The compilation of the
library is also logged in a DOS window. After compilation, an editor window is shown
log.txt with the logged messages. (When the option to automatically show the log
file is set - otherwise you have to select it manually.)

Compile Library
(Build)

Compile the library using the submenu Library → Build. The compilation of the
library is also logged in a DOS window. After compilation, an editor window is shown
log.txt with the logged messages. (When the option to automatically show the log
file is set - otherwise you have to select it manually.)

Unlike Make, no dependencies for the individual files are considered, instead all files
belonging to the library are compiled.

Note: Normally the compiler should find all dependencies and always compile what
is necessary. It has become evident that not all dependencies are recognized and
therefore files are ignored when compiling.

If you come across difficulties (unexpected error messages), it could be because
not all necessary files were compiled. In this case, we recommend the lengthy,
complete compilation.

EFB Libraries

840 USE 505 00 October 2002 65

Installation of EFB Libraries

General After a function block library has been compiled without syntax errors, it must be
installed in Concept so that it can be used. This is done by invoking the Install
function.

Install Install the function block library after compiling with Make or Build (see Chapter
Creating EFB Libraries, p. 64, using the submenu Library → Install.

A library can only be used in Concept after installation.

After the library is installed in Concept, a dialog box is shown where the user is
asked if the library just installed should also be copied to an installation diskette. This
function simplifies the installation of EFB libraries on several Concept stations and
is described in Chapter Installation of Libraries on Different Computers, p. 66.

Note: The creation of an install diskette only works if the library and the setup files
do not exeed the storage capacity of the diskette.

EFB Libraries

66 840 USE 505 00 October 2002

Installation of Libraries on Different Computers

General The installation of libraries on different computers is carried out by creating an
installation diskette on the system with Concept EFB installed.

Creating an
installation
diskette

After calling the sub-menu Library → Install (see Chapter Installation of EFB
Libraries, p. 65), a dialog box is automatically shown which asks if an installation
diskette should be created.

Answer this question with Yes.

Concept EFB then copies all files required for an installation to the diskette in the
disk drive ´A:´.

The program SETUPLIB.EXE is also copied to the diskette in addition to the files
belonging to the library.

Installation To install the library on another computer, start the program SETUPLIB.EXE on the
target computer.

Note: Make sure that enough free memory is available on the diskette.

The function is only suitable for creating installation diskettes. No other media are
supported.

The function requires a correctly installed version of Concept EFB.

Note: The library can be installed on all computers with the same Concept version
(e.g. 2.5). Which platform (s, m, xl) will be used is not important.

EFB Libraries

840 USE 505 00 October 2002 67

Testing Created EFB

General The "trial and error" method is recommended for simple EFBs.

To do this, the error-free EFB library created as described in Chapter Creating EFB
Libraries, p. 64 is installed in Concept, the newly developed EFB is integrated in a
test program and the program is tested using one of the two simulators delivered
with Concept.

Checklist As usual, a type of checklist should be prepared so the expected results can be
compared with the actual results and all parameters variations checked.

Debugger Complicated EFBs can also be tested in this way, but the error search can be
difficult. Therefore it is recommended that the Debugger of the Borland C Compiler
be used. A description of how this is done can be found in Chapter Testing EFBs
with the Debugger, p. 79

EFB Libraries

68 840 USE 505 00 October 2002

Overview of the EFB Library Delivered

General This chapter lists the main properties of the various function blocks in the SAMPLE
EFB library delivered.

Properties of the
function blocks
from SAMPLE

The following table lists the function blocks from the SAMPLE library and their
properties.

Name Description Type Interface Use of
Istate

Other

BLOCK Function Block
with Rising Edge
Detection

Function
Block

Output Edge
Detector

Macro

DTY Derived Data Type Function
Block

Input

Output

- Derived
Data Type

EXTINP Extensible input Function
Block

Input

Output

Extensible input

Hidden

- Macro

FUN Function Function Input

Output

Hidden

- -

FUNINEFB Call of sub C-
function within the
EFB

Function Input

Output

Hidden

- -

GENDT Generic Data Type Function Input

Output

Extensible input

Hidden

- Macro

GENSW Derived generic
data type (with use
of compiler switch)

Function Input

Output

Extensible input

Hidden

- Macro

INTSTATE Internal state Function
Block

Input

Output

Internal
state

Macro

EFB Libraries

840 USE 505 00 October 2002 69

NYDT Generic Data Type
ANY

Function Input

Output

Hidden

- Generic
Data Type

ONLEVT Online Event via
AliPutFbdError

Input

Output

Hidden

- PLC system
function

STATEOUT State Output Function
Block

- State
Output

Macro

Name Description Type Interface Use of
Istate

Other

EFB Libraries

70 840 USE 505 00 October 2002

840 USE 505 00 October 2002 71

7
Advanced Information for EFB
Developers

Overview

Introduction This chapter provides information for advanced EFB Developers.

What’s in this
Chapter?

This chapter contains the following topics:

Topic Page

Directory Structure 72

Derived Data Types 74

File Extensions 75

User Includes 76

Floating Point Processor 76

Deactivating and Reactivating Function Blocks 76

Creating Context Sensitive Help (Online Help) 77

Testing EFBs with the Debugger 79

Advanced Infiormation

72 840 USE 505 00 October 2002

Directory Structure

General This chapter provides a representation of the directory structure created when
developing a EFB library.

File and directory names, which have fixed names, are written in CAPITAL
LETTERS.

Names, which are variable depending on the library names and EFB names, are
written in the form $<var>.

The following variable names are used in the table "Directory structure":

Name Meaning

$<DevPath> Path of the Development directory

$<lib> Name of the EFB library

$<efb> EFB name

Note: The path name of the Development directory is limited to a maximum of 22
characters. Therefore, placing this directory in the root directory of a drive is
strongly recommended. If an attempt is made to enter a path with more than 22
characters for the Development directory, an error message is generated.

Advanced Infiormation

840 USE 505 00 October 2002 73

Directory
Structure

The following table shows the directory structure of a EFB library with a commentary
on the respective directories and files.

Directory/File Comment

$<DevPath>

EFBLINK

Inc
EFB.ERR

EFBH.H

$<lib>

BLD

DOS 16

ASM

WIN32

ASM

$<efb>

$<efb>.FB

$<efb>.H

$<efb>.C

BACKUPxx.C

$<lib>.DTY

$<lib>.DTH

PROTO.H

MAKEFILE

LOG.TXT

$<lib>.I

EFB.I

Link Information for 16-bit and 32-bit EFBs

Include Directory
error definitions
type and value definitions+ system
call functions

Library Directory

Build Information for 16-bit and 32-bit
EFBs

Assembler Code for 16-bit

Assembler Code for 32-bit

Directory for an EFB

definition file

prototype file for the EFB

C code source file of the EFB

Backup file C code file (xx is the
version number)

data definition file for this library
automatically generated C format file of
$<lib>.DTY
automatically generated prototype include
file
Makefile for the compilation of the library

error logging of Concept EFB

include for user information for all EFBs in
this library

FP Marco and Constant definition (and
further system specific includes)

Advanced Infiormation

74 840 USE 505 00 October 2002

Derived Data Types

General In Concept EFB, it is possible to declare derived data types as in Concept.

Derived data types are a powerful tool for storing information in a program in a
structured form.

A separate derived data type definition can be created for each EFB library (a group
of at least one EFB).

Creating derived
data types

If you declare your derived data types within Concept EFB, they are placed in a file
with the name <lib>.DTY (see Chapter Directory Structure, p. 72). The data types
defined in the global *.DTY file can also be used in Concept EFB. They are not
integrated in the library.

After the installation of a library, the derived data types created in Concept EFB for
this library are automatically made available in Concept i.e. they become global
definded.

Editing
<lib>.DTY

You can edit the file <lib>.DTY by selecting the menu item Library → Derived Data
Types in Concept EFB (see Chapter Library Menu, p. 29). The file <lib>.DTY has
the same structure as in Concept and corresponds to the structure of the
programming language PASCAL.

Analysis of
derived data
types

If you open a DDT file (*.DTY) instead of a Concept project (*.prj) in Concept, you
can edit and analyze the derived data types. The analyze function is useful for
finding and solving problems related to derived data types.

Note: When declaring derived data types, the names of the data structures must
be unique. If two different data structures exist with the same name but different
structure in different libraries, errors will occur in Concept. Also see Chapter Code
Limitations, p. 45.

This problem cannot be found by Concept EFB, because this global information is
only available for all libraries after installing the library in Concept.

Advanced Infiormation

840 USE 505 00 October 2002 75

Use in Concept If you wish to create an EFB that should access data structure elements which are
already predefined in Concept (*.DTY files from the Concep/Lib directory), follow the
following procedure.

File Extensions

Special File
Extensions

In Concept EFB, special file extensions are used in addition to the normal file
extensions used when programming in C.

Step Action

1 Close Concept and Concept EFB

2 Search for the desired data type in the *.DTY files in the Concept\Lib directory

3 Using cut+paste copy the required data type from the global DTY to the libraries
DTY. (Keep the name and structure).

4 Create the EFB.

File Extensions Meaning

FB Definition File. The definitions for an EFB are placed here according
to the description in Chapter Keywords for Input and Output PINs,
p. 58. This file defines the EFB´s interface with Concept.

TPL TemPLate. This file describes the layout of an EFB as it will be
displayed in Concept.

DTY Derived Data TYpes. The definitions for derived data structures are
placed in this file.

I Include. This file contains general definitions for all function blocks
belonging to a library.

DTN This file is created using the DTY file and contains the names of all
structures declared in the DTY file.

DTH This file is the C format of the DTY file.

Advanced Infiormation

76 840 USE 505 00 October 2002

User Includes

User Includes Using additional Includes, specific files (definitions, code, etc.) can be included in the
EFB or in the library.

On the library level, it is the file $<lib>.I

Floating Point Processor

Floating Point
Processor

The floating point processor on the PLC (not on all PLCs) can be written to and read
from using several macros in the file EFB.I.

The x87 processor (floating point processor) can be initialized with the macro
FP_INIT.

At the end of the real operations, the status may be requested and checked with the
following sequence:

INT status;

FP_GET_STAT (status)

if (status !=0) then

AliPutFbdError (FP_ERROR-status);

Deactivating and Reactivating Function Blocks

General Deactivating or reactivating function blocks makes it possible for the developer to
create and complete a library in steps.

Should the development on an EFB prove troublesome, the EFB can be excluded
temporarily from the library without actually deleting the EFB.

Testing
individual EFBs

In this way, all function blocks required for a library can be declared, but some are
removed from runtime processing so they can be tested individually.

Note that any test project used to test the function blocks in Concept must be
adjusted to the current activation or deactivation of the EFBs in the library.

Note: As they are not Concept EFB standard files, User Include files are not
processed by functions Convert, Import and Move in the File menu.

Advanced Infiormation

840 USE 505 00 October 2002 77

Creating Context Sensitive Help (Online Help)

General Concept provides context sensitive help for each EFB (Command Button Help on
Type in Properties Dialog Box for the EFB in Concept). Concept does not have help
textsfor user EFBs. However, you can create you own help texts for your EFBs.

File format You can create your help files in the following formats:

l .chm (Microsoft Windows compiled HTML help file)
l .doc (Microsoft Word format)
l .htm (Hypertext Markup Language)
l .hlp (Microsoft Windows help file (16 or 32 bit format))
l .pdf (Adobe Portable Document Format)
l .rtf (Microsoft rich text format)
l .txt (plain ASCII text format)

Name The name of the help file must correspond exactly to the name of the EFB (e.g.
SKOE.ext).

The only exceptions are typed EFB names (e.g. SKOE_BOOL, SKOE_REAL etc.)
In this case, the name of the help file is the EFB name without the type append (e.g.
EFB Name: SKOE_BOOL has help file SKOE.ext).

Directory The help file can be placed in the following directories:

l Concept help directory
l Concept library directory

Advanced Infiormation

78 840 USE 505 00 October 2002

Calling help Concept follows the following procedure when calling help:

Phase Description

1 Search for the classic help file <Libname>.hlp in the Concept help directory.

Result: If the search is successful, the help file is shown, otherwise on to phase
2.

2 Search for the help file EFBName.ext in the subdirectory <Libname> in the
Concept library directory.

The help file is searched for in the following order:

l .hlp
l .chm
l .htm
l .rtf
l .doc
l .txt
l .pdf

Result: If the search is successful, the help file is shown, otherwise on to phase
3.

3 Search for the help file Libname.ext in the subdirectory <Libname> in the
Concept library directory.

Order, see Phase 2.

Result: If the search is successful, the help file is shown, otherwise on to phase
4.

4 Search for the help file EFBName.ext in the subdirectory <Libname> in the
Concept help directory.

Order, see Phase 2.

Result: If the search is successful, the help file is shown, otherwise on to phase
5.

5 Search for the help file Libname.ext in the subdirectory <Libname> in the
Concept help directory.

Order, see Phase 2.

Result: If the search is successful, the help file is shown.

6 The search ends after phase 5 or when the respective help file is found.

Advanced Infiormation

840 USE 505 00 October 2002 79

Testing EFBs with the Debugger

General Testing EFBs in a library is also possible with the Turbo Debugger from Borland.

Refer to the respective documentation for information on how to operate the
Debugger.

Calling the
Debugger

To be able to test an EFB library with the Turbo Debugger, the EFB library must be
generated with the option for debug information turned on and then installed in
Concept. The Debugger can be invoked as follows:

C:\BC50\BIN\TD32.EXE C:\Concept\PLCsim32.EXE

when using the 32 bit simulator.

Select
EFB_FP32.DLL

In the debug window, use F3 or menu item View → Modules to open a dialog box
with a list of modules belonging to the simulator.

In the dialog box that is shown, always select the file EFB_FP32.DLL regardless of
the name of the library created. Concept EFB uses this file name when installing an
EFB library for the functions to be debugged.

This means, that only EFBs from one EFB library can be tested together in the
Debugger!

Enter library
directory

Select Options → Source File Path to enter the directory name for the EFB source
file. After this entry is made, it is possible to debug the EFB at source code level in
the Debugger, if you now enter a breakpoint and start the simulator (debugger
command ´RUN´.

You can now start Concept and download your test application. The moment
Concept invokes the test EFB during the first scan. The debugger will stop on your
breakpoint.

Note: After each change to one of the source files, the library must be compiled
and installed again before a new Debugger session can be started.

Note: Concept will produce an error that communication with the PLC has been
broken off.

Advanced Infiormation

80 840 USE 505 00 October 2002

840 USE 505 00 October 2002 81

8
Editor

Overview

Introduction This chapter provides an overview of the menu commands for the integrated text
editor in Concept EFB.

What’s in this
Chapter?

This chapter contains the following topics:

Topic Page

Introduction 82

File Menu 82

Edit Menu 83

Search Menu 84

Find Menu 85

Replace Menu 86

Syntax Highlighting 88

Editor

82 840 USE 505 00 October 2002

Introduction

General This chapter describes the menu commands for the integrated text editor in Concept
EFB, which is used to edit files.

The built-in editor contains all the required functions needed to edit Concept EFB
files.

Menu bar The editor has a menu bar for the various editing functions as described in the
following chapters.

Status line The lower border of the editor window contains a status bar, which shows the current
cursor position as well as insert/overwrite mode. The cursor position shown makes
it easy to find errors in soures when compiling libraries.

Syntax
highlighting

Another editor function is the coloured highlighting of syntax elements for the
programming language C. See the detailed information provided in Chapter Syntax
Highlighting, p. 88.

File Menu

General The menu File offers the following possibilities:

l saving the current document,
l saving the current document under another name and
l ending edit session.

Save Using the submenu Save, you can save all changes to the current document since
the last time the document was saved or since it was opened. The document
remains open so you can continue working on it.

Save as... Using the submenu Save as, you open the standard Windows dialog box to save
the current document under another name. The original is not changed.

Exit With the submenu Exit, you can exit the text editor. If you haven’t saved the
document since the last change was made, you will be asked if you want to save the
changes, if you want to discard them or if you want to cancel exiting.

Editor

840 USE 505 00 October 2002 83

Edit Menu

General The menu Edit offers the following possibilities:

l cutting from the current document,
l copying,
l inserting,
l deleting and
l moving to a certain line.

Cut Using the submenu Cut, you delete the marked text from the document. The text is
stored in the clipboard and can be inserted at another position.

Copy Using the submenu Copy, you copy the text marked in the document into the
clipboard. The original is not changed.

Paste Using the submenu Paste, you insert the contents of the clipboard at the current
cursor position in the document or replace the text currently marked in the
document.

Goto line... Using the submenu Goto line... you open a dialog box where you can enter a certain
line in the current document that you want to jump to.

Note: This menu command is only available if text is marked in the document

Note: This menu command is only available if text is marked in the document.

Note: This menu command is only available if the clipboard contains text.

Editor

84 840 USE 505 00 October 2002

Search Menu

General The menu Search offers the following possibilities:

l searching for text in the current document
l replacing it.

Find Using the submenu Find, you open a dialog box used to find certain text. Various
search criteria can be defined. A detailed description of the dialog box can be found
in Chapter Find Menu, p. 85.

Find next Using the submenu Find next, you can search using the criteria set in the dialog box
again. The menu command is only active if the criteria for the search was already
defined with the menu command Search.

Replace... Using the submenu Replace... you open a dialog box where you can define the
criteria to search and replace bits of text. A detailed description of this dialog box can
be found in Chapter Replace Menu, p. 86 .

Editor

840 USE 505 00 October 2002 85

Find Menu

General You can get to the Find dialog box using the submenu Search.

In this dialog box, you can enter the search text and the search parameters.

Find what In the Find what text field, enter the search text or word. If text is marked in the
document when calling the dialog box, the marked text is automatically entered in
this field.

Match Whole
Word Only

If this button is selected, the search text will only be found as whole words, but not
as parts of longer words.

Match Case If this check box is activated, only exact matches with the same capitalization as the
text in the Find What text field are searched.

Mark All Matches If this check box is activated, all texts found in the document are marked, regardless
of the defined search direction.

Direction There are two option buttons here which determine the search direction.

Up If this option button is marked, the document is searched backwards from the current
cursor position to the beginning for the search text.

Down If this option button is marked, the document is searched from the current cursor
position to the end.

Find next This button activates the search for the search text entered or repeats a search that
has already been carried out. If the search is successful, the text found in the
document are marked, otherwise a message is given that the search text could not
be found.

Cancel This button ends the search and closes the dialog box.

Editor

86 840 USE 505 00 October 2002

Replace Menu

General You can get to the Replace dialog box using the submenu Search.

In this dialog box, you can enter the search text, the replace text and other search
parameters.

Find what In the Find what text field, enter the search text or word. If test is marked in the
document when calling the dialog box, the marked text is automatically entered in
this field.

Replace With In this text field, enter the text that should replace the search text entered above.

Match Whole
Word Only

If this button is selected, the search text will only be found as whole words, but not
as parts of longer words.

Match Case If this check box is activated, only exact matches with the same capitalization as the
text in the Find What text field are searched.

Mark All Matches If this check box is activated, all texts found in the document are marked, regardless
of the defined search direction.

Direction There are two option buttons here which determine the search direction.

Up If this option button is marked, the document is searched backwards from the current
cursor position to the beginning for the search text.

Down If this option button is marked, the document is searched from the current cursor
position to the end.

Find next This button activates the search for the search text entered or repeats a search that
has already been carried out. If the search is successful, the text found in the
document are marked, otherwise a message is given that the search text could not
be found.

Editor

840 USE 505 00 October 2002 87

Replace With this command button, the search text marked in the document is replaced with
the text you entered in the text field Replace With.

Replace All This command button replaces all texts in the entire document that match the search
text with the text entered in the text field Replace With.

Cancel This button ends the search and closes the dialog box.

Editor

88 840 USE 505 00 October 2002

Syntax Highlighting

General The integrated editor makes it easier for the user to program EFBs using colored
highlighting of syntax elements for the programming language C.

File entries for
color differences

The color differences of the individual elements are set according to entries in the
file TEXTEDIT.COL, which is found in the Concept directory.

This file contains the assignments for colored highlighting of language elements for
all document types used in Concept. The assignments are structured using
keywords.

Structure of
keywords

Keywords begin with a colon and are at the start of the line.

The keywords are followed by a color code, which determines the color used to
display the language elements shown in the following line. The colored highlighting
is valid until a new keyword line is found or until the file end.

Keywords The following keywords are identified:

Color code Color codes can be the English names of the 16 standard colors for a text window.
They are:

l Black, Gray,
l Blue, Lightblue
l Green, Lightgreen
l Red, Lightred
l Cyan, Lightcyan
l Magenta, Lightmagenta
l Yellow, Lightyellow
l Lightgrey, White.

Keyword Meaning

:StartExtension The beginning of the definition for files with the following extension

:* Comment within the file TEXTEDIT.COL

:Keywords Terms to be shown in the following color

:Separators Special characters to be shown in the following color Unlike keywords,
individual characters are recognized here

:Group Common groups to be shown in the following color As special feature,
these groups can be extended if the first term is entered

:Comment Comment definition in the document

840 USE 505 00 October 2002 89

9
Errors

Overview

Introduction This chapter provides an overview of handling errors in Concept EFB.

What’s in this
Chapter?

This chapter contains the following topics:

Topic Page

Error messages, error correction 90

Recognizing Instructions with DGROUP Segment 91

Errors

90 840 USE 505 00 October 2002

Error messages, error correction

General This chapter provides an overview of error messages given in Concept EFB and
how to correct errors.

Finding compiler
error messages

Error messages generated when compiling a function block library are written in the
log file. This file can be viewed in an editor window using the menu item Library →
Log File (also see Chapter Library Menu, p. 29).

The error messages noted in this file correspond to the errors generated by the
Borland C compiler. For a detailed description of all possible messages, see the help
provided by the Borland C compiler.

Compiler
installation error

If you try to compile a library, but the installation path set using Options → Options
does not refer to a valid compiler directory, the following error message is given:

Error: pro failed with -314

This means that the compiler needed to compile the library cannot be found.

Make and Build
not possible

If both menu items Make and Build cannot be called, this normally means that only
the DTY and FB files were defined but the files needed by the compiler are not
present. Run Generate files.

Packer error If you receive error messages from the Packer program, this is mostly because of
either

l C functions not supported by Concept have been used in an EFB
l The DGROUP segment has been invoked in an EFB (see below).

Simulator crash If the simulator crashes when testing EFBs (GPF), this is mostly because of a
pointer error in the C code. The equivalent behavior to GPF on the PLC is the loss
of communication followed by a Stop code error.

Errors

840 USE 505 00 October 2002 91

Recognizing Instructions with DGROUP Segment

General The PLC operating system does not allow programs to use the DGROUP segment.
In some cases, the Borland compiler uses this segment to store data.

The following instructions are affected:

l Operations with floating point numbers,
l Function calls for non-static functions and
l Larger switch() or case instructions.

In such cases, the instructions are compiled but the link procedure cannot be
completed.

Finding
Instructions

You can find these kinds of instructions in your program if you look at the assembler
listing for the respective EFB.

Concept EFB creates a corresponding file for each EFB in the directory
BLD\DOS16\ASM or BLD\WIN32\ASM after successfully carrying out a Make or
Build.

Example An example of instructions with a reference to the DGROUP segment could look like
this:

1581 0A9C 9B D9 E1 fabs

1582 0A9F 9B D8 1E 000R FCOMP DWORD PTR DGROUP:S@

As you can see, the word DGROUP appears in line 1582.

Corrective
Action

This problem can be corrected with the following changes:

l Calls for statically declared function are needed instead of the function calls,
l Floating point operations used in this segment, can be eliminated by changing the

source file.

Example: The instruction

T = A + 10.0; // T and A are floating point values

in the DGROUP segment is used, because the intermediate result of A+10.0 is
stored in this segment.

This can be avoided if a variable is initialized with the value of the literal instead of
adding a literal (e.g.: float B = 10.0;)

asm fnop; The Borland C compiler can be forced to generate code which no longer uses the
DGROUP segment by using the inline code assembler command asm fnop; (no
operation for the x87) for the Floating Point Processor (x87).

Errors

92 840 USE 505 00 October 2002

840 USE 505 00 October 2002 93

Glossary

Active window The window that is currently selected. Only one window can be active at any given
time. If a window becomes active, the color of it’s title bar changes so it can be
distinguished from other windows. Windows that are not selected are inactive.

Addresses (Direct) addresses are memory areas on the PLC. They are found in the signal
memory and can be assigned to input/output modules.

Direct addresses can be displayed/entered in the following formats:

l Standard Format (400001)
l Separator Format (4:00001)
l Compact Format (4:1)
l IEC Format (QW1)

ANL_IN ANL_IN stands for data type "analog input" and is used to process analog values.
The data type is assigned to the 3x references defined in the I/O connection list for
the configured analog input module automatically and therefore can only be used
with unlocated variables.

ANL_OUT ANL_OUT stands for data type "analog output" and is used to process analog
values. The data type is assigned to the 4x references defined in the I/O connection
list for the configured analog output module automatically and therefore can only be
used with unlocated variables.

ANY In this version, "ANY" includes the elementary data types BOOL, BYTE, DINT, INT,
REAL, UDINT, UINT, TIME and WORD and data types derived from them.

ANY_BIT In this version, "ANY_BIT" includes data types BOOL, BYTE and WORD.

A

Glossary

94 840 USE 505 00 October 2002

ANY_ELEM In this version, "ANY_ELEM" includes data types BOOL, BYTE, DINT, INT, REAL,
UDINT, UINT, TIME and WORD.

ANY_INT In this version, "ANY_INT" includes data types DINT, INT, UDINT and UINT.

ANY_NUM In this version, "ANY_NUM" includes data types DINT, INT, REAL, UDINT and
UINT.

ANY_REAL In this version, "ANY_REAL" includes data type REAL.

Application
window

The window containing the workspace, the menu bar and the tool bar for the
application program. The name of the application program is shown in the title bar.
An application window can have several document windows.In Concept, the
application window corresponds to a Project.

Argument Same as current parameter.

Array variables Variables assigned a defined derived data type with the help of the keyword ARRAY.
An array is a collection of data elements of the same data type.

ASCII Mode American Standard Code for Information Interchange The ASCII mode is used for
communication with various host devices. ASCII works with 7 data bits.

Atrium The PC based controller is on a standard AT board and can be operated in an ISA
bus slot on a host computer. The module has a motherboard (requires an SA85
driver) with two slots for PC104 daughter boards. One PC104 daughter board is
used as CPU and the other for INTERBUS control.

Backup File
(Concept-EFB)

The backup file is a copie of the last source code file. The name of this backup file
is "backup??.c" (it is assumed that you never have more than 100 copies of your
source code file). The first backup file has the name"backup00.c". If you have made
and saved changes to the definitions file, which don’t change the EFB , you can edit
the source code file (Object → Source) and avoid the necessity of a backup file.

B

Glossary

840 USE 505 00 October 2002 95

Base 16 Literal In Concept Base 16 literals are used to enter whole number values in the
hexadecimal system. The base must be labelled with the prefix 16#. The values
cannot have a sign (+/-). Individual underlines (_) between numbers are not
significant.

Example

16#F_F or 16#FF (decimal 255)

16#E_0 or 16#E0 (decimal 224)

Base 2 Literal In Concept Base 2 literals are used to enter whole number values in the binary
system. The base must be labelled with the prefix 2#. The values cannot have a sign
(+/-). Individual underlines (_) between numbers are not significant.

Example

2#1111_1111 or 2#11111111 (decimal 255)

2#1110_0000 or 2#11100000 (decimal 224)

Base 8 Literal In Concept Base 8 literals are used to enter whole number values in the octal
system. The base must be labelled with the prefix 8#. The values cannot have a sign
(+/-). Individual underlines (_) between numbers are not significant.

Example

8#3_77 or 8#377 (decimal 255)

8#34_0 or 8#340 (decimal 224)

Binary
connections

Connections between outputs and inputs on FFBs with data type BOOL.

Bit sequence A data element consisting of one or more bits.

BOOL BOOL stands for data type "boolean". The length of the data element is 1 bit (stored
in 1 byte in memory). The value range for variables of this data type is 0 (FALSE)
and 1 (TRUE).

Bridge A bridge is an element used to connect networks. They allow communication
between stations on two networks. Each network has its own token rotation order -
the token is not passed through bridges.

Glossary

96 840 USE 505 00 October 2002

BYTE BYTE stands for data type "8 bit sequence". The entry takes place as Base 2 Literal,
Base 8 Literal or Base 16 Literal. The length of the data element is 8 bits. A
numerical value range cannot be assigned to this data type.

Call Procedure used to start execution of an operation.

Clipboard The clipboard is a temporary memory for cut or copied objects. These objects can
be inserted in sections. Each time a new cut or copy is done, the previous contents
of the clipboard are overwritten.

Coil A coil is a LD element which transfers the state of the horizontal connection on its
left side to the horizontal connection on its right side without any change. The state
is stored in the corresponding variable/direct address during this process.

Compact Format
(4:1)

The first number (the reference) is separated by a colon (:) from the following
address, the leading zeros for the address are not given.

Constants Constants are Unlocated Variables which are assigned a value which cannot be
changed by the program logic (write protected).

Contact A contact is an LD element that provides a state on the horizontal connection on the
right. This state results from the boolean UND link of the state of the horizontal
connection on the left and the state of the respective variable/direct address. A
contact does not change the value of the respective variable/direct address.

Current
parameters

Currently connected input/output parameters.

C

Glossary

840 USE 505 00 October 2002 97

Data transfer
settings

Settings to determine how information is transferred from your programming device
to the PLC.

Data Types The overview shows the hierarchy of the data types as used for inputs and outputs
of Functions and Function Blocks. Generic data types are labelled by the prefix
"ANY".

l ANY_ELEM
l ANY_NUM

ANY_REAL (REAL)
ANY_INT (DINT, INT, UDINT, UINT)

l ANY_BIT (BOOL, BYTE, WORD)
l TIME

l System data types (IEC extensions)
l Derived (from ’ANY’ data types)

DCP I/O Station With a Distributed Control Processor (D908), you can set up a remote network with
a master PLC above it. When using a D908 with a remote PLC, the master PLC
handles the remote PC like a remote I/O station. The D908 and the remote PLC
communicate via the system bus, which results in high performance with minimum
effects on cycle time. Data exchange between the D908 and the master PLC takes
place at 1.5 Megabit per second via the remote I/O bus. A master PLC can support
up to 32 D908 processors.

DDE (Dynamic
Data Exchange)

The DDE interface allows dynamic data exchange between two programs in
Windows. The user can use the DDE interface in the advanced monitor to call
custom visualization applications. With this interface, the user (i.e. DDE Client) can
read data from the advanced monitor (DDE Server) and also write data to the PLC
via the Server. The user can change data directly in the PLC while monitoring and
analyzing the results. When using this interface, the user can create his own
"Graphic-Tool", "Face Plate" or "Tuning Tool" and integrate it into the system. The
tools can be written in any language e.g. Visual Basic, Visual C++ which support
DDE. The tools are called if the user presses one of the buttons in the Advanced
Monitor dialog box.Concept Graphic Tool: Using the DDE connection between
Concept and Concept Graphic Tool, project signals can be shown in a clock
diagram.

Declaration Mechanism to determine a definition of a language element. A declaration normally
includes the connection of a Label with a language element and the assignment of
attributes such as data types and algorithms.

D

Glossary

98 840 USE 505 00 October 2002

Definitions File
(Concept EFB)

The definitions file contains general description information for the selected EFB and
its formal parameters.

Derived data
types

Derived data types are data types which are derived from the elementary data types
and/or other derived data types. The definition of the derived data types is made in
Concept’s Data Type Editor.

A differentiation is made between global data types and local data types.

Derived Function
Block (DFB)

A derived function block represents the call of a derived function block type. Details
about the graphic form of the call can be found in the definition "Function block
(instance)". Unlike calling EFB types, calls for DFB types are labelled with double
vertical lines on the left and right side of the rectangular block symbol.

The back of a derived function block type is designed in FBD language but only in
the current version of the programming system. Other IEC languages cannot
presently be used to define DFB types, also derived data types cannot be defined in
the current version.

A differentiation is made between local and global DFBs.

DINT DINT stands for data type "double integer". The entry takes place as Integer Literal,
Base 2 Literal Base 8 Literal or Base 16 Literal. The length of the data element is 32
bits. The value range for variables of this data type is -2 exp (31) to 2 exp (31) -1.

Direct
Representation

A method of representing variables in the PLC program which can be used to
directly derive the the assignment to the logical memory location - and indirectly to
the physical memory location.

Document
window

A window within an application window. More than one document window can be
open in an application window at the same time. But only one document window can
be active.Document windows in Concept are e.g. sections, the message window,
the reference data editor and the PLC configuration.

DP (PROFIBUS) DP = Decentral Peripheral

Dummy An empty file consisting of a text header with general file information e.g. author,
creation date EFB name, etc. The user has to complete this dummy file with
additional entries.

DX Zoom This property allows you to connect to a program object to monitor its data values
and to change them if necessary.

Glossary

840 USE 505 00 October 2002 99

Elementary
Functions/
Function Blocks
(EFB)

Name of Functions or Function Blocks, with type definitions which are not formulates
in one of the IEC languages, i.e. their ends e.g. cannot be modified with the DFB
editor (Concept DFB). EFB types are programmed in "C" and are prepared in
precompiled form in libraries.

EN / ENO (Enable
/ Error display)

If the value of EN is equal to "0" when the FFB is called, the algorithms defined by
the FFB are not executed and all outputs keep their previous value. In this case, the
value of ENO is automatically set to "0". If the value of EN is equal to "1" when the
FFB is called, the algorithms defined by the FFB are executed. After error free
execution of these algorithms, the value of ENO is automatically set to "1". If an error
occurs when executing these algorithms, ENO is automatically set to "0". The output
behavior of the FFBs is independent of if the FFBs are called without EN/ENO or
with EN=1. If the display if EN/ENO is turned on, the EN input must be used.
Otherwise the FFB will never be executed. The configuration of EN and ENO is
switched on or off in the function block properties dialog box. The dialog box is called
using the menu command Objects → Properties ... or by double-clicking on the
FFB.

Error If an error is recognized when processing an FFBs or a step (e.g. invalid input values
or timing error), an error message is given that you can view with the menu
command Online → event viewer... For FFBs, the ENO output is set to "0".

Evaluation The process with which a value for a function or for the outputs of a function block
is calculated during the program execution.

Expression Expressions consists of operator and operands.

FFB (Functions/
Function Blocks)

Collective term for EFB (Elementary functions/function blocks) and DFB (derived
function blocks)

FIR Filter (Finite Impulse Response Filter) Filter with finite impulse response

Formal
parameter

Input/output parameters, used within the logic of an FFBs and which leave the FFB
as inputs/outputs.

E

F

Glossary

100 840 USE 505 00 October 2002

Function (FUNK) A program organization unit that provides exactly one data element when executed.
A function has no internal additional information. Multiple calls of the same function
with the same input parameter values always return the same output values.

Details about the graphic form of the function call can be found in the definition
"Function block (instance)". Unlike calling function blocks, function calls have only
one unnamed output because its name is the name of the function itself. In the FBD,
each call is labelled by a unique Number using the graphic block; this number is
created automatically and cannot be changed.

Function Block
(instance) (FB)

A function block is a program organization unit, which calculates values for its
outputs and internal variable(s) according to the functionality defined in its function
block type description if it is called as a certain instance. All output values and
internal variables for a certain function block instance remain from one function
block call to the next. Multiple calls of the same function block instance with the
same arguments (input parameter values) do not necessarily return the same output
value(s).

Each function block instance is graphically displayed using a rectangle block
symbol. The name of the function block type is at the top middle within the rectangle.
The name of the function block instance is also at the top, but outside of the
rectangle. It is automatically generated when creating an instance, but can, if
necessary, be changed by the user. Inputs are displayed on the left side, outputs on
the right side. The names of the formal input/output parameter are displayed within
the rectangle at the respective location.

The description above for graphic display is principally valid for function calls and for
DFB calls. Differences are described in the respective definitions.

Function block
language (FBD)

One or more sections containing graphically displayed networks of functions,
function blocks and links.

Function block
type

A language element consists of: 1. the definition of a data structure divided into
inputs, outputs and internal variables; 2. a set of operations executed with the
elements of the data structure, if an instance of the function block type is called. This
set of operations can be formulated either in one of the IEC languages (DFB Type)
or in "C" (EFB Type). A function block type can can have multiple instances (calls).

Function counter The function counter is used to uniquely label a function in a program or DFB. The
function counter cannot be edited and is assigned automatically. The function
counter always has the structure: .n.m

n = Number of the section (consecutive number)

m = Number of the FFB object in the section (consecutive number)

Glossary

840 USE 505 00 October 2002 101

Generic data
type

A data type which represents several other data types.

Generic literals If the data type of a literal is not relevant, simply enter the value for the literal. In this
case, Concept automatically assigns the literal a fitting data type.

Global derived
data types

Global derived data types are available in each Concept project and are stored in
the DFB directory directly under the Concept directory.

Global DFBs Global DFBs are available in each Concept project and are stored in the DFB
directory directly under the Concept directory.

Global Macros Global Macros are available in each Concept project and are stored in the DFB
directory directly under the Concept directory.

Group (EFBs) Some EFB libraries (e.g. the IEC library) are divided in groups. This eases finding
EFBs especially in extensive libraries.

I/O Connection
List

In the I/O connection list, I/O modules and expert modules for the various CPUs are
configured.

IEC 1131-3 International Standard: Programmable Logic Controllers - Part 3: Programming
languages. March 1993.

IEC Format
(QW1)

The first part of the address contains an IEC code followed by the 5-digit address:

l %0x12345 = %Q12345
l %1x12345 = %I12345
l %3x12345 = %IW12345
l %4x12345 = %QW12345

G

I

Glossary

102 840 USE 505 00 October 2002

IEC naming
convention
(code)

A code is a string of letters, numbers and underlines, which have to begin with a
letter or underline (e.g. name of a function block type, an instance, a variable or a
section). Letters from the national character set (e.g: ö,ü, é, õ) can be used, except
in project and DFB names.

Underlines are significant in codes; e.g. "A_BCD" and "AB_CD" are interpreted as
different codes. Multiple underlines at the start or in a row are not allowed.

Codes cannot have empty spaces.Capitalization is not significant; e.g. "ABCD" and
"abcd" are interpreted as the same code.

Codes cannot be keywords.

IIR Filter (Infinite Impulse Response Filter) Filter with infinite impulse response

Initial step The start step in a sequence. Each sequence must have an initial step defined. The
sequence is started for the first call with the initial step.

Initial value The value assigned to a variable when the program is started. The assignment of
the value is made in the form of a literal.

Input bits (1x
references)

The 1/0 state of input bits are controlled by the process data reaching from an input
device to the CPU.

Input parameter
(input)

When calling an FFBs, provides the respective Argument.

Input word (3x
references)

An input word contains information from an external source and are represented by
a 16-bit value. A 3x register can also contain 16 consecutive input bits which are
read into the register in binary or BCD (binary coded decimal) format.Note: The x
after the first number of the reference type represents a five digit memory location
in application data memory, e.g. reference 300201 stands for a 16 bit input word at
address 201 in signal memory.

Note: The x after the first number of the reference type represents a five digit
memory location in application data memory, e.g. reference 100201 stands for an
input bit at address 201 in signal memory.

Glossary

840 USE 505 00 October 2002 103

Instance Name A label belonging to a certain function block instance. The instance name is used
to clearly label a function block in a program organization unit. The instance name
is created automatically, but can be edited. The instance name must be unique in
the entire program organization unit, capitalization is not considered. If the entered
name already exists, you will be warned and must select a new name. The instance
name must correspond to then IEC naming conventions, otherwise an error
message is given. Automatically created instance name always has the structure:
FBI_n_m

FBI = Function block instance

n = Number of the section (consecutive number)

m = Number of the FFB object in the section (consecutive number)

Instancing Creating an instance.

Instruction
(LL984)

When programming electric controllers, the user must implement operational coded
instructions in the form of picture objects which are organized in recognizable
contact form. The program objects designed, on the user level, are converted to OP
codes that can be used by the computer during the loading process. The OP codes
are decoded in the CPU and processed by the Firmware functions of the controller
so that the desired control is implemented.

Instruction list
(IL)

IL is a text language based on IEC 1131 in which operations such as conditional or
unconditional function block and function calls, conditional or unconditional jumps,
etc. are represented by instructions.

Instructions (IL) Instructions are the "commands" used in programming language IL. Each instruction
begins on a new line and is followed by an operator, if necessary with modifier and,
if needed for the respective operation, by one or more operands. If several operands
are used, they are separated by commas. A label can be placed before the
instruction which is followed by a colon. The comment, if used, must be the last
element in the line.

Instructions (ST) Instructions are the "commands" used in programming language ST. Instructions
must be concluded with a semicolon. Several instructions can be in a line (separated
by semicolons).

INT INT stands for data type "integer". The entry is made as Integer Literal, Base 2
Literal, Base 8 Literal or Base 16 Literal. The length of the data elements is 16 bit.
The value range for variables of this data type ranges from -2 exp (15) to 2 exp (15)
-1.

Glossary

104 840 USE 505 00 October 2002

Integer Literals Integer literals are used to enter integer values in the binary system. The values can
have a preceding sign (+/-). Single underlines (_) between the numbers are not
significant.

Example

-12, 0, 123_456, +986

INTERBUS (PCP) To use the INTERBUS PCP channel and the INTERBUS process data preparation,
the Concept configurator has a new I/O station type INTERBUS (PCP). This I/O
station type is permanently assigned the INTERBUS connection module 180-CRP-
660-01.

The 180-CRP-660-01 is different than the 180-CRP-660-00 only because of the
clearly larger I/O area in the signal memory of the controller.

Jump Element of the SFC language. Jumps are used to jump over sections of the
sequence.

Keywords Keywords are unique character combination, which are used as special syntactical
elements such as those defined in Appendix B of the IEC 1131-3. All keywords in
IEC 1131-3 and therefore those that can be used in Concept, are listed in Appendix
C of IEC 1131-3. The listed keywords are not allowed to be used for anything else,
e.g. not as variable names, section names, instance names, etc.

J

K

Glossary

840 USE 505 00 October 2002 105

Ladder Diagram
(LD)

Ladder diagram is a graphic programming language corresponding to IEC1131,
which is oriented optically to the "current path" of a relay ladder diagram.

Ladder Logic 984
(LL)

In the terms Ladder Logic and Ladder Diagram, the word ladder (contact) refers to
executions. Unlike a switching diagram, a ladder diagram is used by electronic
technicians to draw a current circuit (using electrical symbols), which should show
the process of events and not existing wires connecting the parts. A normal user
environment to control actions of automation devices allows a ladder diagram
interface, so that electronic technicians do not have to learn a programming
language to implement a control program.

The structure of the actual ladder diagram allows the connection of electric elements
in a way which creates a control output depending on a logical current flow through
the electronic objects used and represents the previously required condition of a
physical electronic device.

In simple form, the user environment is a video display processed by the PLC
program application that sets up a vertical and horizontal grid where the program
objects are assigned. The diagram receives current on the left side of the grid, and
the current flows from left to right when connected with activated objects.

Landscape Landscape means that the page, when looking at the printed text, is wider than high.

Language
Element

Each basic element in one of the IEC programming languages, e.g. a Step in SFC,
a Function block instance in FBD or the initial value of a variable.

Library Collection of software objects which can be reused when programming new projects
or even to create new libraries. Examples are the library of Elementaren Function
Block Types.

EFB libraries can be divided into Groups.

Link A control or data flow connection between graphical objects (e.g. Steps in the SFC
Editor, Function blocks in the FBD Editor) within a section, graphically represented
as lines.

L

Glossary

106 840 USE 505 00 October 2002

Literals Literals are used to directly supply FFBs inputs, transition conditions, etc. with
values. These values cannot be overwritten by the program logic (write protected).
A differentiation is made between generic and typed literals.

Additionally, literal are used to assign a constant a value or a variable an initial value.

The entry is made as Base 2 Literal, Base 8 Literal, Base 16 Literal, Integer Literal,
Real Literal or Real Literal with Exponent.

Local derived
Data Types

Local derived data types are only available in a single Concept project and its local
DFBs and are placed in the DFB directory under the project directory.

Local DFBs Local DFBs are only available in a single Concept project and are placed in the DFB
directory under the project directory.

Local Link The local network link is the network that connects the local stations with other
stations either directly or using a bus repeater.

Local Macros Local Macros are only available in a single Concept project and are placed in the
DFB directory under the project directory.

Local Network
Station

The local station is the one that is currently being configured.

Located Variable Located variables are assigned a signal memory address (reference addresses 0x,
1x, 3x,4x). The value of this variable is stored in signal memory and can be changed
online with the reference data editor. These variables can be accessed with their
symbolic names or with their reference address.

All inputs and outputs on the PLC are linked with the signal memory. Access by the
program of peripheral signals connected to the PLC only takes place using Located
Variables. Access of the external side via Modbus or Modbus Plus interfaces on the
PLC, e.g. by visualization systems are also possible using located variables.

Glossary

840 USE 505 00 October 2002 107

Macro Macros are created using the Software Concept DFB.

Macros serve to duplicate frequently used sections and networks (including the
logic, variables and variable declarations).

A differentiation is made between local and global macros.

Macros have the following properties:

l Macros can only be programmed with the IEC programming languages FBD and
LD.

l Macros contain only one section.
l Macros can have any complex section.
l From the point of view of the program, an instance of a macro, i.e. a macro

inserted into a section, is no different to a section created conventionally.
l Calling DFBs in a macro
l Declaration of variables
l Usage of macro’s own data structures
l Automatic acceptance of variables declared in the macro
l Initialization values for variables
l Multiple instantiation of a macro in the whole program with different variables.
l The section name, the variable names and the data structure name can contain

up to 10 different exchange markings (@0 to @9).

MMI Man Machine Interface

Multielement-
Variables

Variable, which are defined as STRUCT or ARRAY derived data types.

A differentiation is made between array variables and structure variables.

M

Glossary

108 840 USE 505 00 October 2002

Network A network is a connection of devices to a common data pathway, which
communicate with each other with a common protocol.

Network node A node is a device with an address (1...64) on a Modbus Plus network.

Node address The node address serves as the unique reference for a network node in the routing
path. The address is set directly on the node, e.g. with a rotary switch on the back
of the module.

Operand An Operand is a Literal, a Variable, a Function call or an Expression.

Operator An operator is a symbol for an arithmetic or boolean operation to be executed.

Output
parameter
(output)

A parameter, with the result(s) of the evaluation of an FFB is returned.

Output/register
bits (0x
references)

An output/register bit can be used to control real output data through a control
system output unit, or to define one or more discrete outputs in signal memory. Note:
The x after the first number of the reference type represents a five digit memory
location in application data memory, e.g. reference 000201 stands for an output or
register bit at address 201 in signal memory.

Output/register
bits (4
references)

An output register cna be used for storing numerical data (binary or decimal) Status
RAM, or also for sending the data from the CPU to the output unit in the control
system. Note: The x after the first number of the reference type represents a five digit
memory location in application data memory, e.g. reference 400201 stands for a 16
bit output/register word at address 201 in signal memory.

N

O

Glossary

840 USE 505 00 October 2002 109

Peer Processor The peer processor logic processes token passes and the data flow between the
Modbus Plus network and the PLC application logic.

PLC Programmable Logic Controller

Portrait Portrait format means that the page is higher than wide when viewing the printed
text.

Program The highest Program organization unit. A program is completely loaded onto
individual PLCs.

Program cycle A program cycle consists of reading the inputs, execution of the program logic and
writing the outputs.

Program
organizational
unit

A Function, a Function block, or a Program. This term can either refer to a Type or
an Instance.

Programming
Device

Hardware and software that supports programming, configuration, testing,
commissioning and the error analysis for PLC applications and decentralized
system applications and also for source documentation and archiving. The
programming device can also be also used for process visualization.

Project General term for the highest level of a software tree structure which defines the top
level project name of a PLC application. After definition of the project name, you can
save your system configuration and control program with this name. All data that are
generated during the creation of the configuration and the program belong to this
project for this special automation task.

General term for the complete set of programming and configuration information in
the Project database, represented as source code which describes the automation
of a system.

Project Database The database in the Programming Device, which contains the configuration
information for a Project.

Prototype File
(Concept-EFB)

The prototype file contains all prototypes for the corresponding functions. As well, if
available, a type definition of the internals.

P

Glossary

110 840 USE 505 00 October 2002

REAL REAL represents the data type "floating point number" It is input as aReal Literal or
as Real Literal with Exponent. The length of the data elements is 32 bit. The value
range for variables of this data type goes from 8.43E-37 up to 3.36E+38.

Real Literal Real literals are for entering floating point numbers in a decimal system. Real literals
are defined with the use of a decimal point. The values cam have a preceding sign
(+/-). Single underlines (_) between the numbers are not significant.

Example

-12.0, 0.0, +0.456, 3.14159_26

Real Literal with
Exponent

Real literals with exponent are for entering floating point numbers in a decimal
system. Real literals with exponent are defined with the use of a decimal point. The
exponent defines the power of 10 with which the preceding number is to be
multiplied by to have its represented value. The values can have a preceding sign
(+/-). Single underlines (_) between the numbers are not significant.

Example

-1.34E-12 or -1.34e-12

1.0E+6 or 1.0e+6

1.234E6 or 1.234e6

Redundancy
system
programming
(Hot Standby)

A redundancy system consists of two identically configured PLC units which
communicate with each other via redundancy processors. If a failure in the primary
PLC occurs, the secondary PLC takes over control. Under normal conditions, the
secondary PLC performs no control functions, it just checks the status information
in order to recognize failures.

R

Glossary

840 USE 505 00 October 2002 111

Reference Every direct address is a reference, starts with a code which defines if it is an input
or output and if it is a bit or a word. References which start with the code number 6,
represent registers in extended memory of the status RAM,

0x Range = Coils

1x Range = Discrete Inputs

3x Range = Input Registers

4x Range = output registers

6x Range = Register in extended memory

Register in
extended
memory (6x-
Reference)

6x references are registers in the extended memory of the PLC. You can only use
them in LL984 Application programs and only when using a CPU 213 04 or CPU 424
02.

Remote Network Remmote programming in the Modbus Plus network allows maximum performance
for data transfer and special requirements for links. Programming a remote network
is simple. Additional ladder diagram logic does not have to be created to set up the
network. Using respective entries in the Peer Cop Processor, all requirements for
data transfer are handled.

RIO (Remote I/O) Remote I/O defines the physical location of an I/O point control device with reference
to the controlling processor. Remote inputs/outputs are connected to the control
device with a communication cable.

RTU Mode Remote Terminal Unit

The RTU mode is used for the communication between the PLC and an IBM
compatible Personal Computer. RTU works with 8 data bits.

Runtime error Errors that occur during the processing the program on the PLC, for SFC objects
(e.g. steps) or FFBs. They are e.g. value range overflows for counters or timing
errors for steps.

Note: The x after the first number of each reference type represents a five digit
memory location in application data memory, e.g. reference 400201 stands for a
16 bit output/register word at address 201 in signal memory.

Glossary

112 840 USE 505 00 October 2002

SA85 Module The SA85 module is a Modbus Plus adapter for and IBM-AT or compatible
computer.

Section A section can, for example, be used to describe the functions of a technological unit
such as a motor.

A Program or DFB has one or more sections. Sections can be programmed with the
IEC programming languages FBD and SFC. Only one of the previously named
programming languages can be used within one section.

Each section has its own document window in Concept. For reasons of clarity, it
makes sensible to divide a very large section into several smaller sections. The
scroll bar is used to scroll within a section.

Separator
Format (4:00001)

The first digit (the reference) is separated from the following five digit address with
a colon (:).

Sequential
Function Chart
(SFC)

The SFC language elements allow the PLC program organization unit to be
subdivided into a number of steps and transitions, which are connected with each
other using directional connections. A number of actions belong to each step, and
each transition is connected to a transition condition.

Serial
Connections

The information is transferred bit-wise for serial interfaces (COM).

Source Code File
(Concept-EFB)

The source code file is a normal C source file. After execution of the menu command
Library → files create, this file contains an EFB-Code frame work in which you can
enter code specific for the selected EFB. You must call the menu command Object
→ Source.

Standard Format
(400001)

Directly after the first digit (the reference) is a five digit address.

Status bits For each node with global input or specific input/output of peer cop data, there is a
status bit. If a defined group of data has been successfully transferred within a
configured time out, the corresponding status bit is set to 1. In other cases, the bit is
set to 0 and all data in this group are cleared (set to 0).

Status RAM The status RAM is the memory for all sizes, which is addressed via References
(Direct Representation) in the user program. For example, discrete inputs, coils,
input registers and output registers are in the Status RAM.

S

Glossary

840 USE 505 00 October 2002 113

Step SFC language element: A situation in which the behavior of a Program, with
reference to its inputs and outputs, performs operations which are defined by the
corresponding actions of a step.

Step Name The step name is a unique reference of a step in a Program Organization unit. The
step name is created automatically, but can be edited. The step name must be
unique in the entire Program Organization Unit, otherwise an error message is
given.

The automatically created step name is as follows: S_n_m

S = Step

n = Number of the section (consecutive number)

m = Number of the step in the section (consecutive number)

Structured Text
(ST)

ST is a text language based on IEC 1131 in which operations such as function block
and function calls, conditional execution of instructions, repeating instructions etc.
are represented by instructions.

Structured
Variables

Variables which are defined as being of a derived data type which has be defined
with STRUCT (structure).

A structure is a collection of data elements with generally different data types
(elementary data types and/or derived data types).

SY/MAX In Quantum control devices, Concept includes the provision for using SY/MAX I/O
modules for RIO control with Quantum PLCs. The SY/MAX remote rack has a
remote I/O adapter in slot 1 which communicates using a Modicon S908R I/O
system. The SY/MAX I/O modules are for you to mark and include in the I/O list for
the Concept configuration.

Symbol (Icon) Graphical representation of different objects in Windows, e.g. drives, application
programs and document windows.

Glossary

114 840 USE 505 00 October 2002

Template File
(Concept-EFB)

The template file is an ASCII file with layout information for the Concept FDB editor
and the parameters for code creation.

TIME TIME represents the data type "time". The entry is done as a Time Literal. The length
of the data elements is 32 bit. The value range for variables of this data type goes
from 0 to 2exp(32)-1. The unit for the data type TIME is 1 ms.

Time Literal Allowable units for TIME are Days (D), Hours (H), Minutes (M), Seconds (S) and
Milliseconds (MS) or combinations of these. The time must be marked with the prefix
t#, T#, time# or TIME#. The "Overflow" of the highest value unit is allowed; e.g. the
entry T#25H15M is allowed.

Example

t#14MS, T#14.7S, time#18M, TIME#19.9H, t#20.4D, T#25H15M,
time#5D14H12M18S3.5MS

Token The network "token" controls the temporary possession of the transmit rights for the
individual nodes. The token cycles through the nodes in a sequential (increasing)
address order. All nodes follow the token passing and can receive all data that is
sent.

Traffic Cop The traffic cop is a IO Map, which is generated from the user IO Map. The traffic cop
is managed in the PLC and contains, in addition to the user IO Map, for example,
status information for the I/O stations and modules.

Transition The condition, by which the control changes from one or more preceding steps to
one or more following steps according to a directed connection.

T

Glossary

840 USE 505 00 October 2002 115

Typed Literal If you want to defined the data type for a literal yourself, you can do this with the
following construction: ’Data type name’#’Value of the Literals’.

Example

INT#15 (data type: Integer, Value: 15),

BYTE#00001111 (Data Type: Byte, Value: 00001111)

REAL#23.0 (Data Type: Real, Value: 23.0)

For assignments to data type REAL, there are the following possibilities to define a
value: 23.0.

With a decimal point, the data type REAL is automatically assigned.

UDEFB User defined basic functions/function blocks.

Functions or Function blocks, which have been created in the programming
language C and are available in Concept Libraries.

UDINT UDINT represents the data type "unsigned double integer". The entry is made as
Integer Literal, Base 2 Literal, Base 8 Literal or Base 16 Literal. The length of the
data elements is 32 bit. The value range for variables of this data type goes from 0
to 2exp(32)-1.

UINT UINT represents the data type "unsigned integer". The entry is made as Integer
Literal, Base 2 Literal, Base 8 Literal or Base 16 Literal. The length of the data
elements is 16 bit. The value range for variables of this data type goes from 0 to
(2exp16)-1.

Unlocated
Variable

Unlocated Variables are not assigned a status RAM address. They therefore do not
use a Status RAM address. The values for these variables are stored internally by
the system and can be changed with the reference data editor. These variables can
only be accessed with their symbolic names.

Signals which do not require access to peripherals, e.g. temporary results, system
registers, etc. should preferably be declared as unlocated variables.

U

Glossary

116 840 USE 505 00 October 2002

Variables Variables are for data exchange within sections, between sections and between the
Program and the PLC.

Variables have alt least a variable name and a Data type.

If a variable is assigned a direct address (reference), one refers to it as a Located
Variable. If a variable is not assigned a direct address, one refers to it as an
Unlocated Variable. If the variable is assigned a derived data type, one refers to it
as a Multielement variable.

Apart from this, there are alsoConstants and Literal.

Warning If a critical condition is recognized during the execution of a FFBs or Step, (e.g.
critical input value or time limit exceeded), a warning is generated. This can be
viewed with the menu command Online → Event Viewer... For FFBs, the ENO
output remains "1".

WORD WORD represents the data type "Bit Sequence 16" The entry is done as Base 2
Literal, Base 8 Literal or Base 16 Literal. The length of the data elements is 16 bit.
A numerical value range can not be assigned to this data type.

V

W

CBA

840 USE 505 00 October 2002 117

A
Advanced Information

for EFB Developers, 71
Advantages of User Defined EFBs, 11
ANY

Data Type, 53
API

System Functions, 61
Assembler

Installation, 17

B
Background Information

EFB Design, 49
Backup

Source file, 42
Borland C 5.01/5.02

Installation, 17

C
Check

Installation, 21
Code, 45
Compiler

Installation, 17
Concept EFB

Installation, 16
Construction

EFB, 44

Context Sensitive Help
Creation, 77

Creating
EFB, 36
EFB Libraries, 64

Creating EFBs, 35

D
Data Type ANY, 53
Data Types, 53
Deactivating and Reactivating

Function Blocks, 76
Debugger

Testing EFBs, 79
Definition file

Editing, 38
Keywords, 46

Derived Data Types, 74
DGROUP Segment

Recognizing Instructions with, 91
Differences

function / function block, 51
Directory Structure, 72

E
Edit

Menu, 83
Edit Menu, 83

Index

Index

118 840 USE 505 00 October 2002

Editing
Definition file, 38
Prototype file, 42
Source file, 40

Editing EFBs, 35
Editor, 81

Introduction, 82
EFB

Construction, 44
Created, Testing, 67
Creating, 36

EFB Design
Background Information, 49

EFB Libraries, 63
Creating, 64
Installation, 65

EFBs
Testing, 67

Errors, 89
Extendable PINs

Usage, 57

F
File

Menu, 27, 82
File Extensions, 75
File Menu, 82
File menu, 27
Find

Menu, 85
Find Menu, 85
Floating Point Processor, 76
function / function block

Differences, 51

H
Hardware Platform

Selection, 50
Help

Context Sensitive, 77
Creation, 77
Menu, 34

Help Menu, 34

I
Implementation, 9
Information

Advanced, for EFB Developers, 71
Input and Output PINs

Keywords, 58
Installation, 13

Assembler, 17
Borland C 5.01/5.02, 17
Check, 21
Concept EFB, 16
EFB Libraries, 65
Introduction, 14
Setting Options, 19

Installation Diskette, 66
Installation of Libraries

on Different Computers, 66
Installation Order, 15
Instructions

with DGROUP Segment, 91
Interface

Implementation, 52
Introduction, General, 10

K
Keywords

Definition file, 46
Input and Output PINs, 58

L
Library

Menu, 29
Library Menu, 29
Limitations, 45

M
Main Menu

Introduction, 26
Main menu, 25

Index

840 USE 505 00 October 2002 119

N
New functions

Concept EFB 2.5 and higher compared
to 2.2, 12

O
Objects

Menu, 31
Objects Menu, 31
Online Help, 77
Options

Menu, 33
Setting, 19

Options Menu, 33
Overview

Library SAMPLE, 68

P
PIN Syntax, 47
Prototype file

Editing, 42

R
Reactivating and Deactivating

Function Blocks, 76
Replace

Menu, 86
Replace Menu, 86
Restrictions, 11

S
SAMPLE

Overview Library, 68
Sample Library

SAMPLE, Overview, 68
Search

Menu, 84
Search Menu, 84
Source file

Backup, 42
Code, 45
Editing, 40
Limitations, 45

Syntax Elements
Colored Highlighting, 88

Syntax Highlighting, 88
System Functions

API, 61
System Settings, 18

T
TASM and TASM32

Installation, 17
Testing

Created EFB, 67
Testing EFBs

with the Debugger, 79
Text Editor

Introduction, 82
Turbo Assembler

16 bit and 32 bit, 17

U
User defined EFBs

Advantages, 11
User Includes, 76

Index

120 840 USE 505 00 October 2002

