
33
00

22
61

.0
0

Concept
Block Library LL984
Volume 2
840 USE 506 00 eng Version 2.6

© 2002 Schneider Electric All Rights Reserved

II

III

Table of Contents

About the book . XI

The chapters marked gray are not included in this
volume.

Part I General Information . 1
Introduction . 1

Chapter 1 Instructions . 3
Parameter Assignment of Instuctions . 3

Chapter 2 Instruction Groups .5
At a Glance . 5
Instruction Groups. 6
ASCII Functions . 7
Counters and Timers Instructions . 7
Fast I/O Instructions . 8
Loadable DX . 9
Math Instructions. 9
Matrix Instructions . 11
Miscellaneous . 12
Move Instructions . 13
Skips/Specials . 13
Special Instructions . 14
Coils, Contacts and Interconnects. 14

Chapter 3 Closed Loop Control / Analog Values 15
At a Glance . 15
Closed Loop Control / Analog Values . 16
PCFL Subfunctions . 17
A PID Example . 21
PID2 Level Control Example . 25

Chapter 4 Formatting Messages for ASCII READ/WRIT Operations29

IV

At a Glance . 29
Formatting Messages for ASCII READ/WRIT Operations. 30
Format Specifiers. 31
Special Set-up Considerations for Control/Monitor Signals Format. 34

Chapter 5 Interrupt Handling . 37
Interrupt Handling . 37

Chapter 6 Subroutine Handling . 39
Subroutine Handling . 39

Chapter 7 Installation of DX Loadables. 41
Installation of DX Loadables . 41

Chapter 8 Coils, Contacts and Interconnects. 43
At a Glance . 43
Coils . 44
Contacts. 46
Interconnects (Shorts) . 48

Part II Instruction Descriptions .49
At a Glance . 49

Chapter 9 AD16: Ad 16 Bit . 55
At a Glance . 55
Short Description . 56
Representation. 56

Chapter 10 ADD: Addition . 57

Chapter 11 AND: Logical And . 59

Chapter 12 BCD: Binary to Binary Code . 63

Chapter 13 BLKM: Block Move . 65

Chapter 14 BLKT: Block to Table. 69

Chapter 15 BMDI: Block Move with Interrupts Disabled 73

Chapter 16 BROT: Bit Rotate . 75

Chapter 17 CHS: Configure Hot Standby . 79

Chapter 18 CKSM: Check Sum. 85

Chapter 19 CMPR: Compare Register . 89

Chapter 20 COMP: Complement a Matrix . 93

V

Chapter 21 DCTR: Down Counter . 97

Chapter 22 DIOH: Distributed I/O Health . 99

Chapter 23 DIV: Divide. 103

Chapter 24 DLOG: Data Logging for PCMCIA Read/Write Support.107

Chapter 25 DRUM: DRUM Sequencer. 113

Chapter 26 DV16: Divide 16 Bit .117

Chapter 27 EMTH: Extended Math .121

Chapter 28 EMTH-ADDDP: Double Precision Addition 127

Chapter 29 EMTH-ADDFP: Floating Point Addition 131

Chapter 30 EMTH-ADDIF: Integer + Floating Point Addition135

Chapter 31 EMTH-ANLOG: Base 10 Antilogarithm 139

Chapter 32 EMTH-ARCOS: Floating Point Arc Cosine of an Angle
(in Radians) . 143

Chapter 33 EMTH-ARSIN: Floating Point Arcsine of an Angle
(in Radians) . 147

Chapter 34 EMTH-ARTAN: Floating Point Arc Tangent of an Angle
(in Radians) . 151

Chapter 35 EMTH-CHSIN: Changing the Sign of a
Floating Point Number . 155

Chapter 36 EMTH-CMPFP: Floating Point Comparison 159

Chapter 37 EMTH-CMPIF: Integer-Floating Point Comparison163

Chapter 38 EMTH-CNVDR: Floating Point Conversion of Degrees to
Radians . 167

Chapter 39 EMTH-CNVFI: Floating Point to Integer Conversion 171

Chapter 40 EMTH-CNVIF: Integer-to-Floating Point Conversion. 175

Chapter 41 EMTH-CNVRD: Floating Point Conversion of Radians to
Degrees . 179

Chapter 42 EMTH-COS: Floating Point Cosine of an Angle
(in Radians) . 183

VI

Chapter 43 EMTH-DIVDP: Double Precision Division 187

Chapter 44 EMTH-DIVFI: Floating Point Divided by Integer 191

Chapter 45 EMTH-DIVFP: Floating Point Division 195

Chapter 46 EMTH-DIVIF: Integer Divided by Floating Point 199

Chapter 47 EMTH-ERLOG: Floating Point Error Report Log. 203

Chapter 48 EMTH-EXP: Floating Point Exponential Function. 207

Chapter 49 EMTH-LNFP: Floating Point Natural Logarithm 211

Chapter 50 EMTH-LOG: Base 10 Logarithm . 215

Chapter 51 EMTH-LOGFP: Floating Point Common Logarithm 219

Chapter 52 EMTH-MULDP: Double Precision Multiplication 223

Chapter 53 EMTH-MULFP: Floating Point Multiplication. 227

Chapter 54 EMTH-MULIF: Integer x Floating Point Multiplication 231

Chapter 55 EMTH-PI: Load the Floating Point Value of "Pi" 235

Chapter 56 EMTH-POW: Raising a Floating Point Number to an
Integer Power . 239

Chapter 57 EMTH-SINE: Floating Point Sine of an Angle (in Radians) . 243

Chapter 58 EMTH-SQRFP: Floating Point Square Root. 247

Chapter 59 EMTH-SQRT: Floating Point Square Root 251

Chapter 60 EMTH-SQRTP: Process Square Root. 255

Chapter 61 EMTH-SUBDP: Double Precision Subtraction 259

Chapter 62 EMTH-SUBFI: Floating Point - Integer Subtraction 263

Chapter 63 EMTH-SUBFP: Floating Point Subtraction 267

Chapter 64 EMTH-SUBIF: Integer - Floating Point Subtraction 271

Chapter 65 EMTH-TAN: Floating Point Tangent of an Angle
(in Radians) . 275

Chapter 66 ESI: Support of the ESI Module . 279

Chapter 67 EUCA: Engineering Unit Conversion and Alarms 297

VII

Chapter 68 FIN: First In .309

Chapter 69 FOUT: First Out. .313

Chapter 70 FTOI: Floating Point to Integer . 317

Chapter 71 HLTH: History and Status Matrices. 319

Chapter 72 IBKR: Indirect Block Read . 333

Chapter 73 IBKW: Indirect Block Write . 335

Chapter 74 ICMP: Input Compare . 337

Chapter 75 ID: Interrupt Disable . 343

Chapter 76 IE: Interrupt Enable. .347

Chapter 77 IMIO: Immediate I/O . 351

Chapter 78 IMOD: Interrupt Module Instruction .357

Chapter 79 ITMR: Interrupt Timer . 365

Chapter 80 ITOF: Integer to Floating Point . 371

Chapter 81 JSR: Jump to Subroutine. 373

Chapter 82 LAB: Label for a Subroutine . 375

Chapter 83 LOAD: Load Flash . 379

Chapter 84 MAP 3: MAP Transaction . 383

Chapter 85 MBIT: Modify Bit .391

Chapter 86 MBUS: MBUS Transaction . 395

Chapter 87 MRTM: Multi-Register Transfer Module 405

Chapter 88 MSTR: Master . 411

Chapter 89 MU16: Multiply 16 Bit . 453

Chapter 90 MUL: Multiply . 455

Chapter 91 NBIT: Bit Control. .457

Chapter 92 NCBT: Normally Closed Bit .459

Chapter 93 NOBT: Normally Open Bit .461

VIII

Chapter 94 NOL: Network Option Module for Lonworks 463

Chapter 95 OR: Logical OR . 467

Index . i
The chapters marked gray are not included in this
volume.

Chapter 96 PCFL: Process Control Function Library 471

Chapter 97 PCFL-AIN: Analog Input . 479

Chapter 98 PCFL-ALARM: Central Alarm Handler 485

Chapter 99 PCFL-AOUT: Analog Output . 489

Chapter 100 PCFL-AVER: Average Weighted Inputs Calculate 493

Chapter 101 PCFL-CALC: Calculated preset formula 499

Chapter 102 PCFL-DELAY: Time Delay Queue. 503

Chapter 103 PCFL-EQN: Formatted Equation Calculator 509

Chapter 104 PCFL-INTEG: Integrate Input at Specified Interval 515

Chapter 105 PCFL-KPID: Comprehensive ISA Non Interacting PID 519

Chapter 106 PCFL-LIMIT: Limiter for the Pv . 525

Chapter 107 PCFL-LIMV: Velocity Limiter for Changes in the Pv. 529

Chapter 108 PCFL-LKUP: Look-up Table . 533

Chapter 109 PCFL-LLAG: First-order Lead/Lag Filter 537

Chapter 110 PCFL-MODE: Put Input in Auto or Manual Mode 541

Chapter 111 PCFL-ONOFF: ON/OFF Values for Deadband 545

Chapter 112 PCFL-PI: ISA Non Interacting PI . 551

Chapter 113 PCFL-PID: PID Algorithms . 555

Chapter 114 PCFL-RAMP: Ramp to Set Point at a Constant Rate 561

Chapter 115 PCFL-RATE: Derivative Rate Calculation over a
Specified Timeme . 567

Chapter 116 PCFL-RATIO: Four Station Ratio Controller 571

IX

Chapter 117 PCFL-RMPLN: Logarithmic Ramp to Set Point 577

Chapter 118 PCFL-SEL: Input Selection . 581

Chapter 119 PCFL-TOTAL: Totalizer for Metering Flow585

Chapter 120 PEER: PEER Transaction. 591

Chapter 121 PID2: Proportional Integral Derivative 595

Chapter 122 R −−> T: Register to Table .609

Chapter 123 RBIT: Reset Bit . 613

Chapter 124 READ: Read. 615

Chapter 125 RET: Return from a Subroutine. .621

Chapter 126 SAVE: Save Flash .623

Chapter 127 SBIT: Set Bit .627

Chapter 128 SCIF: Sequential Control Interfaces . 629

Chapter 129 SENS: Sense . 635

Chapter 130 SKPC: Skip (Constants) . 639

Chapter 131 SKPR: Skip (Registers) .643

Chapter 132 SRCH: Search . 647

Chapter 133 STAT: Status . 651

Chapter 134 SU16: Subtract 16 Bit . 675

Chapter 135 SUB: Subtraction . 677

Chapter 136 T−−>R: Table to Register .679

Chapter 137 T−−>T: Table to Table . 683

Chapter 138 T.01 Timer: One Hundredth Second Timer.687

Chapter 139 T0.1 Timer: One Tenth Second Timer 689

Chapter 140 T1.0 Timer: One Second Timer . 691

Chapter 141 T1MS Timer: One Millisecond Timer. 693

Chapter 142 TBLK: Table to Block . 699

X

Chapter 143 TEST: Test of 2 Values . 703

Chapter 144 UCTR: Up Counter . 705

Chapter 145 WRIT: Write. 707

Chapter 146 XMIT: XMIT Communication Block. 713

Chapter 147 XMRD: Extended Memory Read . 723

Chapter 148 XMWT: Extended Memory Write. 727

Chapter 149 XOR: Exclusive OR . 731

Glossary . 735

840 USE 506 00 October 2002 XI

About the book

At a Glance

Document Scope This documentation will help you configure the LL984-instructions from Concept.

Validity Note This documentation is valid for Concept 2.6 under Microsoft Windows 98, Microsoft
Windows 2000, Microsoft Windows XP and Microsoft Windows NT 4.x.

Related
Documents

User Comments We welcome your comments about this document. You can reach us by e-mail at
TECHCOMM@modicon.com

Note: For additional up-to-date notes, please refer to the file README of Concept.

Title of Documentation Reference Number

Concept Installation Instruction 840 USE 502 00

Concept User Manual 840 USE 503 00

Concept IEC Library 840 USE 504 00

Concept-EFB User Manual 840 USE 505 00

XMIT Function Block User Guide 840 USE 113 00

Network Option Module for LonWorks 840 USE 109 00

Quantum Hot Standby Planning and Installation Guide 840 USE 106 00

Modbus Plus Network Planning and Installation Guide 890 USE 100 00

Quantum 140 ESI 062 10 ASCII Interface Module User Guide 840 USE 1116 00

Modicon S980 MAP 3.0 Network Interface Controller User Guide GM-MAP3-001

About the book

XII 840 USE 506 00 October 2002

840 USE 506 00 October 2002 279

66
ESI: Support of the ESI Module

At a Glance

Introduction This chapter describes the instruction ESI.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 280

Representation 281

Parameter Description 282

READ ASCII Message (Subfunction 1) 285

WRITE ASCII Message (Subfunction 2) 289

GET DATA (Subfunction 3) 290

PUT DATA (Subfunction 4) 291

ABORT (Middle Input ON) 295

Run Time Errors 296

ESI: Support of the ESI Module

280 840 USE 506 00 October 2002

Short Description

Function
Description

The instruction for the ESI module 140 ESI 062 10 are optional loadable instructions
that can be used in a Quantum controller system to support operations using a ESI
module. The controller can use the ESI instruction to invoke the module. The power
of the loadable is its ability to cause a sequence of commands over one or more logic
scans.

With the ESI instruction, the controller can invoke the ESI module to:
l Read an ASCII message from a serial port on the ESI module, then perform a

sequence of GET DATA transfers from the module to the controller.
l Write an ASCII message to a serial port on the ESI module after having

performed a sequence of PUT DATA transfers to the variable data registers in the
module.

l Perform a sequence of GET DATA transfers (up to 16 384 registers of data from
the ESI module to the controller); one Get Data transfer will move up to 10 data
registers each time the instruction is solved.

l Perform a sequence of PUT DATA (up to 16 384 registers of data to the ESI
module from the controller). One PUT DATA transfer moves up to 10 registers of
data each time the instruction is solved.

l Abort the ESI loadable command sequence running.

Further Information you will find in the Quantum 140 ESI 062 10 ASCII Interface
Module User Guide

Note: This instruction is only available, if you have unpacked and installed the DX
Loadables; further information in the chapter "Installation of DX Loadables, p. 41".

Note: After placing the ESI instruction in your ladder diagram you must enter the
top, middle and bottom parameters. Proceed by double clicking on the instruction.
This action produces a form for the entry of the 3 paramteers. This parametric must
be completed to enable the DX zoom function in the Edit menu pulldown.

ESI: Support of the ESI Module

840 USE 506 00 October 2002 281

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

subfunction #

(1 ... 4)

subfunction

parameters

ESI

length

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = enables the subfunction

Middle input 0x, 1x None Abort current message

subfunction
(top node

4x INT, UINT,
WORD

Number of possible subfunction, range 1
... 4

subfunction
parameters
(middle node)

4x INT, UINT,
WORD

First of eighteen contiguous 4x holding
registers which contain the subfunction
parameters

length
bottom node

INT, UINT Number of subfunction parameter
registers, i.e. the length of the table in the
middle node

Top output 0x None Echoes state of the top input

Middle output 0x None ON = operation done

Bottom output 0x None ON = error detected

ESI: Support of the ESI Module

282 840 USE 506 00 October 2002

Parameter Description

Top Input When the input to the top node is powered ON, it enables the ESI instruction and
starts executing the command indicated by the subfunction code in the top node.

Middle Input When the input to the middle node is powered ON, an Abort command is issued. If
a message is running when the ABORT command is received, the instruction will
complete; if a data transfer is in process when the ABORT command is received, the
transfer will stop and the instruction will complete.

Subfunction #
(Top Node)

The top node may contain either a 4x register or an integer. The integer or the value
in the register must be in the range 1 ... 4.
It represents one of four possible subfunction command sequences to be executed
by the instruction:

Subfunction Command Sequence

1 One command READ ASCII Message, p. 285 followed by multiple GET
DATA commands

2 Multiple PUT DATA commands followed by one command WRITE ASCII
Message, p. 289

3 Zero or more commands GET DATA, p. 290

4 Zero or more commands PUT DATA, p. 291

Note: A fifth command, ABORT ASCII Message (See ABORT, p. 295), can be
initiated by enabling the middle input to the ESI instruction.

ESI: Support of the ESI Module

840 USE 506 00 October 2002 283

Subfunction
Parameters
(Middle Node)

The first of eighteen contiguous 4x registers is entered in the middle node. The
ramaining seventeen registers are implied.
The following subfunction parameters are available:

Register Parameter Contents

Displayed ESI status register Returned error codes

First implied Address of the first 4x register
in the command structure

Register address minus the leading 4 and
any leading zeros, as specified in the I/O
Map (e.g., 1 represents register 400001)

Second
implied

Address of the first 3x register
in the command structure

Register address minus the leading 3 and
any leading zeros, as specified in the I/O
Map (e.g., 7 represents register 300007)

Third implied Address of the first 4x register
in the controller’s data register
area

Register address minus the leading 4 and
any leading zeros (e.g., 100 representing
register 400100)

Fourth implied Address of the first 3x register
in the controller’s data register
area

Register address minus the leading 3 and
any leading zeros (e.g., 1000 representing
register 301000)

Fifth implied Starting register for data
register area in module

Number in the range 0 ... 3FFF hex

Sixth implied Data transfer count Number in the range 0 ... 4000 hex

Seventh
implied

ESI timeout value, in 100 ms
increments

Number in the range 0 ... FFFF hex, where
0 means no timeout

Eighth implied ASCII message number Number in the range 1 ... 255 dec

Ninth implied ASCII port number 1 or 2

Note: The registers below are internally used by the ESI loadable. Do not write registers
while the ESI loadable is running. For best use, initialize these registers to 0 (zero) when the
loadable is inserted into logic.

10th implied ESI loadable previous scan power in state

11th implied Data left to transfer

12th implied Current ASCII module command running

13th implied ESI loadable sequence number

14th implied ESI loadable flags

15th implied ESI loadable timeout value (MSW)

16th implied ESI loadable timeout value (LSW)

17th implied Parameter Table Checksum generated by ESI loadable

ESI: Support of the ESI Module

284 840 USE 506 00 October 2002

Length (Bottom
Node)

The bottom node contains the length of the table in the middle node, i.e., the number
of subfunction parameter registers. For READ/ WRITE operations, the length must
be 10 registers. For PUT/GET operations, the required length is eight registers; 10
may be specified and the last two registers will be unused.

Ouptuts

Middle Output The middle output goes ON for one scan when the subfunction operation specified
in the top node is completed, timed out, or aborted

Bottom Output The bottom output goes ON for one scan if an error has been detected. Error
checking is the first thing that is performed on the instruction when it is enabled, it it
is completed before the subfunction is executed. For more details see error checking
(See Run Time Errors, p. 296).

Note: Once power has been applied to the top input, the ESI loadable starts
running. Until the ESI loadable compiles (successfully or in error), the subfunction
parameters should not be modified. If the ESI loadable detects a change, the
loadable will compile in error (Parameter Table Checksum Error (See Run Time
Errors, p. 296)).

Note: NSUP must be loaded before ESI in order for the loadable to work properly.
If ESI is loaded before NSUP or ESI is loaded alone, all three outputs will be turned
ON.

ESI: Support of the ESI Module

840 USE 506 00 October 2002 285

READ ASCII Message (Subfunction 1)

READ ASCII
Message

A READ ASCII command causes the ESI module to read incoming data from one of
its serial ports and store the data in internal variable data registers. The serial port
number is specified in the tenth (ninth implied) register of the subfunction
parameters table. The ASCII message number to be read is specified in the ninth
(eighth implied) register of the subfunction parameters table (See Subfunction
Parameters (Middle Node), p. 283). The received data is stored in the 16K variable
data space in user-programmed formats.
When the top node of the ESI instruction is 1, the controller invokes the module and
causes it to execute one READ ASCII command followed by a sequence of GET
DATA commands (transferring up to 16,384 registers of data) from the module to the
controller.

Command
Structure

Command Structure

Response
Structure

Command Structure

Word Content (hex) Meaning

0 01PD P = port number (1 or 2); D = data count

1 xxxx Starting register number, in the range 0 ... 3FFF

2 00xx Message number, where xx is in the range 1 ... FF (1 ... 255
dec)

3 ... 11 Not used

Word Content (hex) Meaning

0 01PD Echoes command word 0

1 xxxx Echoes starting register number from Command Word 1

2 00xx Echoes message number from Command Word 2

3 xxxx Data word 1

4 xxxx Data word 2

...

11 xxxx Module status or data word 9

ESI: Support of the ESI Module

286 840 USE 506 00 October 2002

A Comparative
READ ASCII
Message/Put
Data Example

Below is an example of how an ESI loadable instruction can simplify your logic
programming task in an ASCII read application. Assume that the 12-point
bidirectional ESI module has been I/O mapped to 400001 ... 400012 output registers
and 300001 ... 300012 input registers. We want to read ASCII message #10 from
port 1, then transfer four words of data to registers 400501 ... 400504 in the
controller.
Parameterizing of the ESI instruction:

The subfunction parameter table begins at register 401000 . Enter the following
parameters in the table:

With these parameters entered to the table, the ESI instruction will handle the read
and data transfers automatically in one scan.

Register Parameter Value Description

401000 nnnn ESI status register

401001 1 I/O mapped output starting register (400001)

401002 1 I/O mapped input starting register (300001)

401003 501 Starting register for the data transfer (400501)

401004 0 No 3x starting register for the data transfer

401005 100 Module start register

401006 4 Number of registers to transfer

401007 600 timeout = 60 s

401008 10 ASCII message number

401009 1 ASCII port number

401010-17 N/A Internal loadable variables

#0001

401000

ESI

#0018

ESI: Support of the ESI Module

840 USE 506 00 October 2002 287

Read and Data
Transfers
without ESI
Instruction

The same task could be accomplished in ladder logic without the ESI loadable, but
it would require the following three networks to set up the command and transfer
parameters, then copy the data. Registers 400101 ... 400112 are used as
workspace for the output values. Registers 400201 ... 400212 are initial READ
ASCII Message command values. Registers 400501 ... 400504 are the data space
for the received data from the module.

First Network

Contents of registers

The first network starts up the READ ASCII Message command by turning ON coil
000011 forever. It moves the READ ASCII Message command into the workspace,
then moves the workspace to the output registers for the module.

Second Network

Register Value (hex) Description

400201 0114 READ ASCII Message command, Port 1, Four registers

400202 0064 Module’s starting register

400203 nnnn Not valid: data word 1

...

400212 nnnn Not valid: data word 10

000011 000011

000011

BLKM

400101

#0012

400201

BLKM

400001

#0012

400101

000011

BLKM

400098

#0001

300001

AND

400098

#0001

400088

TEST

400101

#0001

400098

TEST

400102

#0001

300002

BLKM

400099

#0001

300001

AND

400099

#0001

400089 TEST

#32768

#0001

400099

000020

000012

ESI: Support of the ESI Module

288 840 USE 506 00 October 2002

Contents of registers

As long as coil 000011 is ON, READ ASCII Message response Word 0 in the input
register is tested to make sure it is the same as command Word 0 in the workspace.
This is done by ANDing response Word 0 in the input register with 7FFF hex to get
rid of the Status Word Valid bit (bit 15) in Response Word 0.

The module start register in the input register is also tested against the module start
register in the workspace to make sure that are the same.

If both these tests show matches, test the Status Word Valid bit in response Word
0. To do this, AND response Word 0 in the input register with 8000 hex to get rid of
the echoed command word 0 information. If the ANDed result equals the Status
Word Valid bit, coil 000020 is turned ON indicating an error and/or status in the
Module Status Word. If the ANDed result is not the status word valid bit, coil 000012
is turned ON indicating that the message is done and that you can start another
command in the module.

Third Network

If coil 000020 is ON, this third network will test the Module Status Word for busy
status. If the module is busy, do nothing. If the Module Status Word is greater than
1 (busy), a detected error has been logged in the high byte and coil 000099 will be
turned ON. At this point, you need to determine what the error is using some error-
handling logic that you have developed.

Register Value (hex) Description

400098 nnnn Workspace for response word

400099 nnnn Workspace for response word

400088 7FFF Response word mask

400089 8000 Status word valid bit mask

000020

TEST

#0001

#0001

300012

000099

ESI: Support of the ESI Module

840 USE 506 00 October 2002 289

WRITE ASCII Message (Subfunction 2)

WRITE ASCII
Message

In a WRITE ASCII Message command, the ESI module writes an ASCII message to
one of its serial ports. The serial port number is specified in the tenth (ninth implied)
register of the subfunction parameters table (See Subfunction Parameters (Middle
Node), p. 283). The ASCII message number to be written is specified in the ninth
(eighth implied) register of the subfunction parameters table.

When the top node of the ESI instruction is 2, the controller invokes the module and
causes it to execute one Write ASCII command. Before starting the WRITE
command, subfunction 2 executes a sequence of PUT DATA transfers (transferring
up to 16 384 registers of data) from the controller to the module.

Command
Structure

Command Structure

Response
Structure

Response Structure

Word Content
(hex)

Meaning

0 02PD P = port number (1 or 2); D = data count

1 xxxx Starting register number, in the range 0 ... 3FFF

2 00xx Message number, where xx is in the range 1 ... FF (1 ... 255 dec)

3 xxxx Data word 1

4 xxxx Data word 2

...

11 xxxx Data word 9

Word Content
(hex)

Meaning

0 02PD Echoes command word 0

1 xxxx Echoes starting register number from command word 1

2 00xx Echoes message number from command word 2

3 0000 Returns a zero

...

10 0000 Returns a zero

11 xxxx Module status

ESI: Support of the ESI Module

290 840 USE 506 00 October 2002

GET DATA (Subfunction 3)

GET DATA A GET DATA command transfers up to 10 registers of data from the ESI module to
the controller each time the ESI instruction is solved in ladder logic. The total number
of words to be read is specified in Word 0 of the GET DATA command structure (the
data count). The data is returned in increments of 10 in Words 2 ... 11 in the GET
DATA response structure.

If a sequence of GET DATA commands is being executed in conjunction with a
READ ASCII Message command (via subfunction 1), up to nine registers are
transferred when the instruction is solved the first time. Additional data are returned
in groups of ten registers on subsequent solves of the instruction until all the data
has been transferred

If there is an error condition to be reported (other than a command syntax error), it
is reported in Word 11 in the GET DATA response structure. If the command has
requested 10 registers and the error needs to be reported, only nine registers of data
will be returned in Words 2 ... 10, and Word 11 will be used for error status.

Command
Structure

Command Structure

Note: If the data count and starting register number that you specify are valid but
some of the registers to be read are beyond the valid register range, only data from
the registers in the valid range will be read. The data count returned in Word 0 of
the response structure will reflect the number of valid data registers returned, and
an error code (1280 hex) will be returned in the Module Status Word (Word 11 in
the response table).

Word Content (hex) Meaning

0 030D D = data count

1 xxxx Starting register number, in the range 0 ... 3FFF

2 ... 11 Not used

ESI: Support of the ESI Module

840 USE 506 00 October 2002 291

Response
Structure

Response Structure

PUT DATA (Subfunction 4)

PUT DATA A PUT DATA command writes up to 10 registers of data to the ESI module from the
controller each time the ESI instruction is solved in ladder logic. The total number of
words to be written is specified in Word 0 of the PUT DATA command structure (the
data count).
The data is returned in increments of 10 in words 2 ... 11 in the PUT DATA command
structure. The command is executed sequentially until command word 0 changes to
another command other than PUT DATA (040D hex).

Command
Structure

Command Structure

Word Content (hex) Meaning

0 030D Echoes command word 0

1 xxxx Echoes starting register number from command word 1

2 xxxx Data word 1

3 xxxx Data word 2

...

11 xxxx Module status or data word 10

Note: If the data count and starting register number that you specify are valid but
some of the registers to be written are beyond the valid register range, only data
from the registers in the valid range will be written. The data count returned in Word
0 of the response structure will reflect the number of valid data registers returned,
and an error code (1280 hex) will be returned in the Module Status Word (Word 11
in the response table).

Word Content (hex) Meaning

0 040D D = data count

1 xxxx Starting register number, in the range 0 ... 3FFF

2 xxxx Data word 1

3 xxxx Data word 2

...

11 xxxx Data word 10

ESI: Support of the ESI Module

292 840 USE 506 00 October 2002

Response
Structure

Response Structure

A Comparative
PUT DATA
Example

Below is an example of how an ESI loadable instruction can simplify your logic
programming task in a PUT DATA application. Assume that the 12-point
bidirectional ESI 062 module has been I/O mapped to 400001 ... 400012 output
registers and 300001 ... 300012 input registers. We want to put 30 controller data
registers, starting at register 400501, to the ESI module starting at location 100.

Parameterizing of the ESI instruction:

The subfunction parameter table begins at register 401000 . Enter the following
parameters in the table:

Word Content (hex) Meaning

0 040D Echoes command word 0

1 xxxx Echoes starting register number from command word 1

2 0000 Returns a zero

...

10 0000 Returns a zero

11 xxxx Module status

Register Parameter Value Description

401000 nnnn ESI status register

401001 1 I/O mapped output starting register (400001)

401002 1 I/O mapped input starting register (300001)

401003 501 Starting register for the data transfer (400501)

401004 0 No 3x starting register for the data transfer

401005 100 Module start register

401006 30 Number of registers to transfer

401007 0 timeout = never

401008 N/A ASCII message number

401009 N/A ASCII port number

401009 N/A Internal loadable variables

#0004

401000

ESI

#0018

ESI: Support of the ESI Module

840 USE 506 00 October 2002 293

With these parameters entered to the table, the ESI instruction will handle the data
transfers automatically over three ESI logic solves.

Handling of Data
Transfer without
ESI Instruction

The same task could be accomplished in ladder logic without the ESI loadable, but
it would require the following four networks to set up the command and transfer
parameters, then copy data multiple times until the operation is complete. Registers
400101 ... 400112 are used as workspace for the output values. Registers 400201
... 400212 are initial PUT DATA command values. Registers 400501 ... 400530 are
the data registers to be sent to the module.

First Network - Command Register Network

Contents of registers

The first network starts up the transfer of the first 10 registers by turning ON coil
000011 forever. It moves the initial PUT DATA command into the workspace, moves
the first 10 registers (400501 ... 400510) into the workspace, and then moves the
workspace to the output registers for the module.

Register Value (hex) Description

400201 040A PUT DATA command, 10 registers

400202 0064 Module’s starting register

400203 nnnn Not valid: data word 1

...

400212 nnnn Not valid: data word 10

000011 000011

000011

BLKM

400101

#0012

400201

BLKM

400103

#0010

400501

BLKM

400001

#0012

400101

ESI: Support of the ESI Module

294 840 USE 506 00 October 2002

Second Network - Command Register Network

As long as coil 000011 is ON and coil 000020 is OFF, PUT DATA response word 0
in the input register is tested to make sure it is the same as the command word in
the workspace. The module start register in the input register is also tested to make
sure it is the same as the module start register in the workspace.

If both these tests show matches, the current module start register is tested against
what would be the module start register of the last PUT DATA command for this
transfer. If the test shows that the current module start register is greater than or
equal to the last PUT DATA command, coil 000020 goes ON indicating that the
transfer is done. If the test shows that the current module start register is less than
the last PUT DATA command, coil 000012 indicating that the next 10 registers
should be transferred.

Third Network - Command Register Network

As long as coil 000012 is ON, there is more data to be transferred. The module start
register needs to be tested from the last command solve to determine which set of
10 registers to transfer next. For example, if the last command started with module
register 400110, then the module start register for this command is 400120.

000020 000020

000011

TEST

400101

#0001

300001

TEST

400102

#0001

300002

TEST

#0120

#0001

400102

000020

000012

000012

TEST

#0100

#0001

400102

BLKM

400103

#0010

400511

TEST

#0110

#0001

400102

BLKM

400103

#0010

400521

ESI: Support of the ESI Module

840 USE 506 00 October 2002 295

Fourth Network - Command Register Network

As long as coil 000012 is ON, add 10 to the module start register value in the
workspace and move the workspace to the output registers for the module to start
the next transfer of 10 registers.

ABORT (Middle Input ON)

ABORT When the middle input to the ESI instruction is powered ON, the instruction aborts
a running ASCII READ or WRITE message. The serial port buffers of the module
are not affected by the ABORT, only the message that is currently running.

Command
Structure

Command Structure

Response
Structure

Response Structure

000012

AD16

400102

400102

#0010

BLKM

400001

#0012

400101

Word Content (hex)

0 0900

1 ... 11 not used

Word Content (hex) Meaning

0 0900 Echoes command word 0

1 0000 Returns a zero

...

10 0000 Returns a zero

11 xxxx Module status

ESI: Support of the ESI Module

296 840 USE 506 00 October 2002

Run Time Errors

Run Time Errors The command sequence executed by the ESI module (specified by the subfunction
value (See Subfunction # (Top Node), p. 282) in the top node of the ESI instruction)
needs to go through a series of error checking routines before the actual command
execution begins. If an error is detected, a message is posted in the register
displayed in the middle node.
The following table lists possible error message codes and their meanings:

Once the parameter error checking has completed without finding an error, the ESI
module begins to execute the command sequence.

Error Code (dec) Meaning

0001 Unknown subfunction specified in the top node

0010 ESI instruction has timed out (exceeded the time specified in the eighth
register of the subfunction parameter table (See Subfunction
Parameters (Middle Node), p. 283)

0101 Error in the READ ASCII Message sequence

0102 Error in the WRITE ASCII Message sequence

0103 Error in the GET DATA sequence

0104 Error in the PUT DATA sequence

1000 Length (Bottom Node), p. 284 is too small

1001 Nonzero value in both the 4x and 3x data offset parameters

1002 Zero value in both the 4x and 3x data offset parameters

1003 4x or 3x data offset parameter out of range

1004 4x or 3x data offset plus transfer count out of range

1005 3x data offset parameter set for GET DATA

1006 Parameter Table Checksum error

1101 Output registers from the offset parameter out of range

1102 Input registers from the offset parameter out of range

2001 Error reported from the ESI module

840 USE 506 00 October 2002 297

67
EUCA: Engineering Unit
Conversion and Alarms

At a Glance

Introduction This chapter describes the instrcution EUCA.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 298

Representation 299

Parameter Description 300

Examples 301

EUCA: Engineering Unit Conversion and Alarms

298 840 USE 506 00 October 2002

Short Description

Function
Description

The use of ladder logic to convert binary-expressed analog data into decimal units
can be memory-intensive and scan-time intensive operation. The Engineering Unit
Conversion and Alarms (EUCA) loadable is designed to eliminate the need for extra
user logic normally required for these conversions. EUCA scales 12 bits of binary
data (representing analog signals or other variables) into engineering units that are
readily usable for display, data logging, or alarm generation.

Using Y = mX + b linear conversion, binary values between 0 ... 4095 are converted
to a scaled process variable (SPV). The SPV is expressed in engineering units in
the range 0 ... 9 999.
One EUCA instruction can perform up to four separate engineering unit conversions.

It also provides four levels of alarm checking on each of the four conversions:

Note: This instruction is only available, if you have unpacked and installed the DX
Loadables; further information you will find in "IInstallation of DX Loadables, p. 41".

Level Meaning

HA High absolute

HW High warning

LW Low warning

LA Low absolute

EUCA: Engineering Unit Conversion and Alarms

840 USE 506 00 October 2002 299

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

alarm

status

parameter

table

EUCA

nibble #
(1 ... 4)

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON initiates the conversion

Middle input 0x, 1x None Alarm input

Bottom input 0x, 1x None Error input

alarm status
(See Alarm
Status (Top
Node), p. 300)
(top node)

4x INT, UINT Alarm status for as many as four EUCA
conversions

parameter table
(middle node)

4x INT, UINT, First of nine contiguous holding registers
in the EUCA parameter table

nibble # (1...4)
(bottom node)

INT, UINT Integer value, indicates which one of the
four nibbles in the alarm status register to
use

Top output 0x None Echoes the state of the top input

Middle output 0x None ON if the middle input is ON or if the result
of the EUCA conversion crosses a
warning level

Bottom output 0x None ON if the bottom input is ON or if a
parameter is out of range

EUCA: Engineering Unit Conversion and Alarms

300 840 USE 506 00 October 2002

Parameter Description

Alarm Status
(Top Node)

The 4x register entered in the top node displays the alarm status for as many as four
EUCA conversions, which can be performed by the instruction. The register is
segmented into four four-bit nibbles. Each four-bit nibble represents the four
possible alarm conditions for an individual EUCA conversion.
The most significant nibble represents the first conversion, and the least significant
nibble represents the fourth conversion:

Alarm Setting Condition of alarm setting

Only one alarm condition can exist in any EUCA conversion at any given time. If the
SPV exceeds the high warning level the HW bit will be set. If the HA is exceeded,
the HW bit is cleared and the HA bit is set. The alarm bit will not change after
returning to a less severe condition until the deadband (DB) area has also been
exited.

HA1 HA2HW1 LW1 LA1 HW2 LW2 LA2 HA3 HA4HW3 LW3 LA3 HW4 LW4 LA4

Nibble 1
(first conversion)

Nibble 2
(second conversion)

Nibble 3
(third conversion)

Nibble 4
(fourth conversion)

Alarm type Condition

HA An HA alarm is set when the SPV exceeds the user-defined high alarm
value expressed in engineering units

HW An HW alarm is set when SPV exceeds a user-defined high warning value
expressed in engineering units

LW An LW alarm is set when SPV is less than a user-defined low warning value
expressed in engineering units

LA An LA alarm is set when SPV is less than a user-defined low alarm value
expressed in engineering units

EUCA: Engineering Unit Conversion and Alarms

840 USE 506 00 October 2002 301

Parameter Table
(Middle Node)

The 4x register entered in the middle node is the first of nine contiguous holding
registers in the EUCA parameter table:

Examples

Overview The following examples are shown:
l Example 1, p. 302

Principles of EUCA Operation
l Example 2, p. 304

Use in a Drive System
l Example 3, p. 306

Four EUCA conversions together

Register Content Range

Displayed Binary value input by the user 0 ... 4 095

First implied SPV calculated by the EUCA block

Second implied High engineering unit (HEU), maximum
SPV required and set by the user (top of the
scale)

LEU < HEU ≤ 99 999

Third implied Low engineering unit (LEU), minimum SPV
required and set by the user (bottom end of
the scale)

0 ≤ LEU < HEU

Fourth implied DB area in SPV units, below HA levels and
above LA levels that must be crossed
before the alarm status bit will reset

0 ≤ DB < (HEU - LEU)

Fifth implied HA alarm value in SPV units HW < HA ≤ HEU

Sixth implied HW alarm value in SPV units LW < HW < HA

Seventh implied LW alarm value in SPV units LA < LW < HW

Eighth implied LA alarm value in SPV units LEU ≤ LA < LW

Note: An error is generated if any value is out of the range defined above

EUCA: Engineering Unit Conversion and Alarms

302 840 USE 506 00 October 2002

Example 1 This example demonstrates the principles of EUCA operation. The binary value is
manually input in the displayed register in the middle node, and the result is visually
available in the SPV register (the first implied register in the middle node).
The illustration below shows an input range equivalent of a 0 ... 100 V measure,
corresponding to the whole binary 12-bit range:

A range of 0 ... 100 V establishes 50 V for nominal operation. EUCA provides a
margin on the nominal side of both warning and alarm levels (deadband). If an alarm
threshold is exceeded, the alarm bit becomes active and stays active until the signal
becomes greater (or less) than the DB setting -5 V in this example.
Programming the EUCA block is accomplished by selecting the EUCA loadable and
writing in the data as illustrated in the figure below:

Reference Data

Register Meaning Content

400440 STATUS 0000000000000000

400450 INPUT 1871 DEC

400451 SPV 46 DEC

MSB

unused

11111111 1111

LSB

= 4095 or FFF hex

00000000 0000 = 0 or 000 hex

(Displayed register in
the middle node)

100V

90

80

70

60

50

40

30

20

10

0 V

400440

400450

EUCA

0001

EUCA: Engineering Unit Conversion and Alarms

840 USE 506 00 October 2002 303

The nine middle-node registers are set using the reference data editor. DB is 5 V
followed by 10 V increments of high and low warning. The actual high and low alarm
is set at 20 V above and below nominal.
On a graph, the example looks like this:

You can now verify the instruction in a running PLC by entering values in register
400450 that fall into the defined ranges. The verification is done by observing the bit
change in register 400440 where:

400452 HIGH_unit 100 DEC

400453 LOW_unit 0 DEC

400454 Dead_band 5 DEC

400455 HIGH_ALARM 70 DEC

400456 HIGH_WARN 60 DEC

400457 LOW_ALARM 40 DEC

400458 LOW_WARN 30 DEC

Note: The example value shows a decimal 46, which is in the normal range. No
alarm is set, i.e., register 400440 = 0.

Register Meaning Content

= Dead Band

100V

90

80

70

60

50

40

30

20

10

0 V

46 *

High Alarm

High Warning

Normal

Low Warning

Low Alarm

1 = Low alarm
1 = Low warning
1 = High warning
1 = High alarm

EUCA: Engineering Unit Conversion and Alarms

304 840 USE 506 00 October 2002

Example 2 If the input of 0 ... 4095 indicates the speed of a drive system of 0 ... 5000 rpm, you
could set up a EUCA instruction as follows.
The binary value in 400210 results in an SPV of 4835 decimal, which exceeds the
high absolute alarm level, sets the HA bit in 400209, and powers the EUCA alarm
node.

Instruction

Reference Data

Parameter Speed

Maximum Speed 5 000 rpm

Minimum Speed 0 rpm

DB 100 rpm

HA Alarm 4 800 rpm

HW Alarm 4 450 rpm

LW Alarm 2 000 rpm

LA Alarm 1 200 rpm

Register Meaning Content

400209 STATUS 1000000000000000

400210 INPUT 3960 DEC

400211 SPV 4835 DEC

400212 MAX_SPEED 5000 DEC

400213 MIN_SPEED 0 DEC

400214 Dead_band 100 DEC

400215 HIGH_ALARM 4800 DEC

400216 HIGH_WARN 4450 DEC

400217 LOW_ALARM 2000 DEC

400218 LOW_WARN 1200 DEC

400209

400210

EUCA

0001

EUCA: Engineering Unit Conversion and Alarms

840 USE 506 00 October 2002 305

The N.O. contact is used to suppress alarm checks when the drive system is
shutdown, or during initial start up allowing the system to get above the Low alarm
RPM level.

Varying the binary value in register 400210 would cause the bits in nibble 1 of
register 400209 to correspond with the changes illustrated above. The DB becomes
effective when the alarm or warning has been set, then the signal falls into the DB
zone.
The alarm is maintained, thus taking what would be a switch chatter condition out of
a marginal signal level. This point is exemplified in the chart above, where after
setting the HA alarm and returning to the warning level at 4700 the signal crosses in
and out of DB at the warning level (4450) but the warning bit in 400209 stays ON.
The same action would be seen if the signal were generated through the low
settings.

5000 rqm
4950
4900
4850
4800
4750
4700
4650
4600
4550
4500
4450
4400
4350
4300
4250
4200

0

High Absolute
400209 = 8000 hex

Warning - DB
400209 = 4000 hexHigh Warning

400209 = 4000 hex*

Return to normal
400209 = 0000 hex*

*

*

*

*

*
*

*
*

*

*

*

*

*
*

*

*

EUCA: Engineering Unit Conversion and Alarms

306 840 USE 506 00 October 2002

Example 3 You can chain up to four EUCA conversions together to make one alarm status
register. Each conversion writes to the nibble defined in the block bottom node. In
the program example below, each EUCA block writes it‘s status (based on the table
values for that block) into a four bit (nibble) of the status register 400209.

Reference Data

The status register can then be transferred using a BLKM instruction to a group of
discretes wired to illuminate lamps in an alarm enunciator panel.
As you observe the status content of register 400209 you see: no alarm in block 1,
an LW alarm in block 2, an HW alarm in Block 3, and an HA alarm in block 4.

The alarm conditions for the four blocks can be represented with the following table
settings:

Register Meaning Content

400209 STATUS 0000001001001000

Conversion 1 Conversion 2 Conversion 3 Conversion 4

Input 400210 = 2048 400220 = 1220 400230 = 3022 400240 = 3920

Scaled # 400211 = 2501 400221 = 1124 400231 = 7379 400241 = 0770

HEU 400212 = 5000 400222 = 3300 400232 = 9999 400242 = 0800

LEU 400213 = 0000 400223 = 0200 400233 = 0000 400243 = 0100

DB 400214 = 0015 400224 = 0022 400234 = 0100 400244 = 0006

Hi Alarm 400215 = 40000 400225 = 2900 400235 = 8090 400245 = 0768

400209

EUCA

400220

0002

400209

EUCA

400230

0003

400209

EUCA

400240

0004

000002

000023

000023
400209

BLKM

000033

1

000004

400209

EUCA

400210

0001
000003

EUCA: Engineering Unit Conversion and Alarms

840 USE 506 00 October 2002 307

Hi Warn 400216 = 3500 400226 = 2300 400236 = 7100 400246 = 0680

Lo Warn 400217 = 2000 400227 = 1200 400237 = 3200 400247 = 0280

Lo Alarm 400218 = 1200 400228 = 0430 400238 = 0992 400248 = 0230

Conversion 1 Conversion 2 Conversion 3 Conversion 4

EUCA: Engineering Unit Conversion and Alarms

308 840 USE 506 00 October 2002

840 USE 506 00 October 2002 309

68
FIN: First In

At a Glance

Introduction This chapter describes the instruction FIN.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 310

Representation 310

Parameter Description 311

FIN: First In

310 840 USE 506 00 October 2002

Short Description

Function
Description

The FIN instruction is used to produce a first-in queue. An FOUT instruction needs
to be used to clear the register at the bottom of the queue. An FIN instruction has
one control input and can produce three possible outputs.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

source

data

queue

pointer

FIN

queue
length

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = copies source bit pattern into queue

source data
(top node)

0x, 1x, 3x, 4x ANY_BIT Source data, will be copied to the top of the
destination queue in the current logic scan

queue pointer
(See Queue
Pointer (Middle
Node), p. 311)
(middle node)

4x WORD First of a queue of 4x registers, contains
queue pointer; the next contiguous
register is the first register in the queue

queue length
(bottom node)

INT, UINT Number of 4x registers in the destination
queue. Range: 1 ... 100

Top output 0x None Echoes state of the top input

Middle output 0x None ON = queue full, no more source data can
be copied to the queue

Bottom output 0x None ON = queue empty (value in queue pointer
register = 0)

FIN: First In

840 USE 506 00 October 2002 311

Parameter Description

Mode of
Functioning

The FIN instruction is used to produce a first-in queue. It copies the source data from
the top node to the first register in a queue of holding registers. The source data is
always copied to the register at the top of the queue. When a queue has been filled,
no further source data can be copied to it.

Source Data (Top
Node)

When using register types 0x or 1x:
l First 0x reference in a string of 16 contiguous coils or discrete outputs
l First 1x reference in a string of 16 discrete inputs

Queue Pointer
(Middle Node)

The 4x register entered in the middle node is a queue pointer. The first register in
the queue is the next contiguous 4x register following the pointer. For example, if the
middle node displays a a pointer reference of 400100, then the first register in the
queue is 400101.
The value posted in the queue pointer equals the number of registers in the queue
that are currently filled with source data. The value of the pointer cannot exceed the
integer maximum queue length value specified in the bottom node.
If the value in the queue pointer equals the integer specified in the bottom node, the
middle output passes power and no further source data can be written to the queue
until an FOUT instruction clears the register at the bottom of the queue.

1111 1111

Source

Queue

FIN
2222 2222

1111Source

Queue

FIN
3333 3333

2222

1111

Source

Queue

FIN

FIN: First In

312 840 USE 506 00 October 2002

840 USE 506 00 October 2002 313

69
FOUT: First Out

At a Glance

Introduction This chapter describes the instruction FOUT.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 314

Representation 315

Parameter Description 316

FOUT: First Out

314 840 USE 506 00 October 2002

Short Description

Function
Description

The FOUT instruction works together with the FIN instruction to produce a first in-
first out (FIFO) queue. It moves the bit pattern of the holding register at the bottom
of a full queue to a destination register or to word that stores 16 discrete outputs.
An FOUT instruction has one control input and can produce three possible outputs.

DANGER

Overriding any disabled coils

FOUT will override any disabled coils within a destination register
without enabling them. This can cause injury if a coil has been disabled
for repair or maintenance because the coil’s state can change as a
result of the FOUT operation.

Failure to observe this precaution will result in death or serious
injury.

FOUT: First Out

840 USE 506 00 October 2002 315

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

source

pointer

destination

register

FOUT

queue
length

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = clears source bit pattern from the
queue

source pointer
(top node)

4x WORD First of a queue of 4x registers, contains
source pointer; the next contiguous
register is the first register in the queue

destination
register
(middle node)

0x, 4x ANY_BIT Destination register

queue length
(bottom node)

INT, UINT Number of 4x registers in the queue.
Range: 1 ... 100

Top output 0x None Echoes state of the top input

Middle output 0x None ON = queue full, no more source data can
be copied to the queue

Bottom output 0x None ON = queue empty (value in queue pointer
re

FOUT: First Out

316 840 USE 506 00 October 2002

Parameter Description

Mode of
Functioning

The FOUT instruction works together with the FIN (See FIN: First In, p. 309)
instruction to produce a first in-first out (FIFO) queue. It moves the bit pattern of the
holding register at the bottom of a full queue to a destination register or to word that
stores 16 discrete outputs.

Source Pointer
(Top Node)

In the FOUT instruction, the source data comes from the 4x register at the bottom of
a full queue. The next contiguous 4x register following the source pointer register in
the top node is the first register in the queue. For example, if the top node displays
pointer register 400100, then the first register in the queue is 400101.
The value posted in the source pointer equals the number of registers in the queue
that are currently filled. The value of the pointer cannot exceed the integer maximum
queue length value specified in the bottom node. If the value in the source pointer
equals the integer specified in the bottom node, the middle output passes power and
no further FIN data can be written to the queue until the FOUT instruction clears the
register at the bottom of the queue to the destination register.

Destination
Register (Middle
Node)

The destination specified in the middle node can be a 0x reference or 4x register.
When the queue has data and the top input to the FOUT passes power, the source
data is cleared from the bottom register in the queue and is written to the destination
register.

Note: The FOUT instruction should be placed before the FIN instruction in the
ladder logic FIFO to ensure removal of the oldest data from a full queue before the
newest data is entered. If the FIN block were to appear first, any attempts to enter
the new data into a full queue would be ignored.

3333 3333

2222

1111

Source

Queue

FIN

1111

Destination

FOUT

4444 4444

3333

2222

Source

Queue

FIN
3333

2222

1111

Queue

840 USE 506 00 October 2002 317

70
FTOI: Floating Point to Integer

At a Glance

Introduction This chapter describes the instruction FTOI.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 318

Representation 318

FTOI: Floating Point to Integer

318 840 USE 506 00 October 2002

Short Description

Function
Description

The FTOI instruction performs the conversion of a floating value to a signed or
unsigned integer (stored in two contiguous registers in the top node), then stores the
converted integer value in a 4x register in the middle node.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

FP

converted

integer

FTOI

1

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = enables conversion

Bottom input 0x, 1x None ON = signed operation
OFF = unsigned operation

FP (top node) 4x REAL First of two contiguous holding registers
where the floating point value is stored

converted
integer
(middle node)

4x INT, UINT Converted integer value is posted here

1
(bottom node)

INT, UINT A constant value of 1 (can not be changed)

Top output 0x None ON = integer conversion completed
successfully

Bottom output 0x None ON = converted integer value is out of
range:
unsigned integer > 65 535
-32 768 > signed integer > 32 767

840 USE 506 00 October 2002 319

71
HLTH: History and Status Matrices

At a Glance

Introduction This chapter describes the instruction HLTH.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 320

Representation 321

Parameter Description 322

Parameter Description Top Node (History Matrix) 323

Parameter Description Middle Node (Status Matrix) 328

Parameter Description Bottom Node (Length) 332

HLTH: History and Status Matrices

320 840 USE 506 00 October 2002

Short Description

Function
Description

The HLTH instruction creates history and status matrices from internal memory
registers that may be used in ladder logic to detect changes in PLC status and
communication capabilities with the I/O. It can also be used to alert the user to
changes in a PLC System. HLTH has two modes of operation, learn and monitor.

Note: This instruction is only available, if you have unpacked and installed the DX
Loadables; further information you will find in "IInstallation of DX Loadables, p. 41".

HLTH: History and Status Matrices

840 USE 506 00 October 2002 321

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

history

status

HLTH

length

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON initiates the designated operation

Middle input 0x, 1x None Learn / monitor mode

Bottom input 0x, 1x None Learn / monitor mode

history
(top node)

4x INT, UINT,
WORD

History matrix (first in a block of
contiguous registers, range: 6 ... 135)

status
(middle node)

4x INT, UINT,
WORD

Status matrix (first in a block of contiguous
registers, range: 3 ... 132)

length
(bottom node)

INT, UINT Number of I/O drops to manage

Top output 0x None Echoes state of the top input

MIddle output 0x None Echoes state of the middle input

Bottom output 0x None ON = Error

HLTH: History and Status Matrices

322 840 USE 506 00 October 2002

Parameter Description

Modes of
operation

The HLTH instruction has two modes of operation:

Learn / Monitor
Mode (MIddle
and Bottom
Input)

The HLTH instruction block has three control inputs and can produce three possible
outputs.
The combined states of the middle and bottom inputs control the operating mode:

Type of Mode Meaning

Learn Mode HLTH can be initialized to learn the configuration in which it is
implemented and save the information as a point-in-time reference
called History Matrix (Top Node), p. 323
This matrix contains:
l A user-designated drop number for communications status

monitoring
l User logic checksum
l Disabled I/O indicator
l S911 Health
l Choice of single or dual cable system
l I/O Map display

Monitor Mode Monitor mode enables an operation that checks PLC system
conditions. Detected changes are recorded in a Status Matrix
(Middle Node), p. 328. The status matrix monitors the most recent
system conditions and sets bit patterns to indicate detected
changes.
The status matrix contains:
l Communication status of the drop designated in the history

matrix
l A flag to indicate when there is any disabled I/O
l Flags to indicate the "on/off" status of constant sweep and the

Memory protect key switch
l Flags to indicate a battery-low condition and if Hot Standby is

functional
l Failed module position data
l Changed user logic checksum flag
l RIO lost-communication flag

Middle Input Bottom Input Operation

ON OFF Learn Mode as Dual Cable System

ON ON Learn Mode as Single Cable System

OFF ON Monitor Mode

OFF OFF Monitor Mode Update Logic Checksum

HLTH: History and Status Matrices

840 USE 506 00 October 2002 323

Parameter Description Top Node (History Matrix)

History Matrix
(Top Node)

The 4x register entered in the top node is the first in a block of contiguous registers
that comprise the history matrix. The data for the history matrix is gathered by the
instruction during a learn mode operation and is set in the matrix when the mode
changes to monitor.
The history matrix can range from 6 ... 135 registers in length. Below is a description
of the words in the history matrix. The information from word 1 is contained in the
displayed register in the top node and the information from words 2 ... 135 is stored
in the implied registers.

Word 1 Enter drop number (range 0 ... 32) to be monitored for retries

Word 2 High word of learned checksum

Word 3 Low word of learned checksum

Word 4 The status and a counter for multiplexing the inputs. HLTH processes 16 words of
input (256 inputs) per scan. This word holds the last word location of the last scan.
The register is overwritten on every scan. The value in the counter portion of the
word increases to the maximum number of inputs, then restarts at 0.
Usage of word 4:

Bit Function

1 1 = at least one disabled input has been found

2 - 16 Count of the number of word checked for disabled inputs prior to this scan.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

HLTH: History and Status Matrices

324 840 USE 506 00 October 2002

Word 5 Status and a counter for multiplexing outputs to detect if one is disabled. HLTH looks
at 16 words (256 outputs) per scan to find one that is disabled. It holds the last word
location of the last scan. The block is overwritten on every scan. The value in the
counter portion increases to maximum outputs then restarts at 0.
Usage of word 5:

Word 6 Hot Standby cable learned data
Usage of word 6:

Bit Function

1 1 = at least one disabled output has been found.

2 - 16 Count of the number of word checked for disabled outputs prior to this scan.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bit Function

1 1 = S911 present during learn.

2 - 8 Not used

9 1 = cable A is monitored.

10 1 = cable B is monitored.

11 - 16 Not used

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

HLTH: History and Status Matrices

840 USE 506 00 October 2002 325

Word 7 ... 134 These words define the learned condition of drop 1 to drop 32 as follows:

The structure of the four words allocated to each drop are as follows:

First Word

Word Drop No.

7 ... 10 1

11 ... 14 2

15 ... 18 3

 :
 :

 :
 :

131 ... 134 32

Bit Function

1 Drop delay bit 1
Note: Drop delay bits are used by the software to delay the monitoring of the
drop for four scans after reestablishing communications with a drop. The delay
value is for internal use only and needs no user intervention.

2 Drop delay bit 2

3 Drop delay bit 3

4 Drop delay bit 4

5 Drop delay bit 5

6 Rack 1, slot 1, module found

7 Rack 1, slot 2, module found

8 Rack 1, slot 3, module found

9 Rack 1, slot 4, module found

10 Rack 1, slot 5, module found

11 Rack 1, slot 6, module found

12 Rack 1, slot 7, module found

13 Rack 1, slot 8, module found

14 Rack 1, slot 9, module found

15 Rack 1, slot 10, module found

16 Rack 1, slot 11, module found

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

HLTH: History and Status Matrices

326 840 USE 506 00 October 2002

Second Word

Third Word

Bit Function

1 Rack 2, slot 1, module found

2 Rack 2, slot 2, module found

3 Rack 2, slot 3, module found

4 Rack 2, slot 4, module found

5 Rack 2, slot 5, module found

6 Rack 2, slot 6, module found

7 Rack 2, slot 7, module found

8 Rack 2, slot 8, module found

9 Rack 2, slot 9, module found

10 Rack 2, slot 10, module found

11 Rack 2, slot 11, module found

12 Rack 3, slot 1, module found

13 Rack 3, slot 2, module found

14 Rack 3, slot 3, module found

15 Rack 3, slot 4, module found

16 Rack 3, slot 5, module found

Bit Function

1 Rack 3, slot 6, module found

2 Rack 3, slot 7, module found

3 Rack 3, slot 8, module found

4 Rack 3, slot 9, module found

5 Rack 3, slot 10, module found

6 Rack 3, slot 11, module found

7 Rack 4, slot 1, module found

8 Rack 4, slot 2, module found

9 Rack 4, slot 3, module found

10 Rack 4, slot 4, module found

11 Rack 4, slot 5, module found

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

HLTH: History and Status Matrices

840 USE 506 00 October 2002 327

Fourth Word

12 Rack 4, slot 6, module found

13 Rack 4, slot 7, module found

14 Rack 4, slot 8, module found

15 Rack 4, slot 9, module found

16 Rack 4, slot 10, module found

Bit Function

1 Rack 4, slot 11, module found

2 Rack 5, slot 1, module found

3 Rack 5, slot 2, module found

4 Rack 5, slot 3, module found

5 Rack 5, slot 4, module found

6 Rack 5, slot 5, module found

7 Rack 5, slot 6, module found

8 Rack 5, slot 7, module found

9 Rack 5, slot 8, module found

10 Rack 5, slot 9, module found

11 Rack 5, slot 10, module found

12 Rack 5, slot 11, module found

13 ... 16 not used

Bit Function

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

HLTH: History and Status Matrices

328 840 USE 506 00 October 2002

Parameter Description Middle Node (Status Matrix)

Status Matrix
(Middle Node)

The 4x register entered in the middle node is the first in a block of contiguous holding
registers that will comprise the status matrix. The status matrix is updated by the
HLTH instruction during monitor mode (top input is ON and middle input is OFF).
The status matrix can range from 3 ... 132 registers in length. Below is a description
of the words in the status matrix. The information from word 1 is contained in the
displayed register in the middle node and the information from words 2 ... 131 is
stored in the implied registers.

Word 1 This word is a counter for lost-communications at the drop being monitored.
Usage of word 1:

Word 2 This word is the cumulative retry counter for the drop being monitored (the drop
number is indicated in the high byte of word 1).
Usage of word 2:

Bit Function

1 - 8 Indicates the number of the drop being monitored (0 ... 32).

9 - 16 Count of the lost communication incidents (0 ... 15).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bit Function

1 - 4 Not used

5 - 16 Cumulative retry count (0 ... 255).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

HLTH: History and Status Matrices

840 USE 506 00 October 2002 329

Word 3 This word updates PLC status (including Hot Standby health) on every scan.
Usage of word 3:

Bit Function

1 ON = all drops are not communicating.

2 Not used

3 ON = logic checksum has changed since last learn.

4 ON = at least one disabled 1x input detected.

5 ON = at least one disabled 0x output detected.

6 ON = constant sweep enabled.

7 - 10 Not used

11 ON = memory protect is OFF.

12 ON = battery is bad.

13 ON = an S911 is bad.

14 ON = Hot Standby not active.

15 - 16 Not used

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

HLTH: History and Status Matrices

330 840 USE 506 00 October 2002

Word 4 ... 131 These words indicate the status of drop 1 to drop 32 as follows:

The structure of the four words allocated to each drop is as follows:

First Word

Word Drop No.

4 ... 7 1

8 ... 11 2

12 ... 15 3

 :
 :

 :
 :

128 ... 131 32

Bit Function

1 Drop communication fault detected

2 Rack 1, slot 1, module fault

3 Rack 1, slot 2, module fault

4 Rack 1, slot 3, module fault

5 Rack 1, slot 4, module fault

6 Rack 1, slot 5, module fault

7 Rack 1, slot 6, module fault

8 Rack 1, slot 7, module fault

9 Rack 1, slot 8, module fault

10 Rack 1, slot 9, module fault

11 Rack 1, slot 10, module fault

12 Rack 1, slot 11, module fault

13 Rack 2, slot 1, module fault

14 Rack 2, slot 2, module fault

15 Rack 2, slot 3, module fault

16 Rack 2, slot 4, module fault

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

HLTH: History and Status Matrices

840 USE 506 00 October 2002 331

Second Word

Third Word

Bit Function

1 Rack 2, slot 5, module fault

2 Rack 2, slot 6, module fault

3 Rack 2, slot 7, module fault

4 Rack 2, slot 8, module fault

5 Rack 2, slot 9, module fault

6 Rack 2, slot 10, module fault

7 Rack 2, slot 11, module fault

8 Rack 3, slot 1, module fault

9 Rack 3, slot 2, module fault

10 Rack 3, slot 3, module fault

11 Rack 3, slot 4, module fault

12 Rack 3, slot 5, module fault

13 Rack 3, slot 6, module fault

14 Rack 3, slot 7, module fault

15 Rack 3, slot 8, module fault

16 Rack 3, slot 9, module fault

Bit Function

1 Rack 3, slot 10, module fault

2 Rack 3, slot 11, module fault

3 Rack 4, slot 1, module fault

4 Rack 4, slot 2, module fault

5 Rack 4, slot 3, module fault

6 Rack 4, slot 4, module fault

7 Rack 4, slot 5, module fault

8 Rack 4, slot 6, module fault

9 Rack 4, slot 7, module fault

10 Rack 4, slot 8, module fault

11 Rack 4, slot 9, module fault

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

HLTH: History and Status Matrices

332 840 USE 506 00 October 2002

Fourth Word

Parameter Description Bottom Node (Length)

Length (Bottom
Node)

The decimal value entered in the bottom node is a function of how many I/O drops
you want to monitor. Each drop requires four registers/matrix. The length value is
calculated using the following formula:

length = (# of I/O drops x 4) + 3

This value gives you the number of registers in the status matrix. You only need to
enter this one value as the length because the length of the history matrix is
automatically increased by 3 registers -i.e., the size of the history matrix is
length + 3.

12 Rack 4, slot 10, module fault

13 Rack 4, slot 11, module fault

14 Rack 5, slot 1, module fault

15 Rack 5, slot 2, module fault

16 Rack 5, slot 3, module fault

Bit Function

1 Rack 5, slot 4, module fault

2 Rack 5, slot 5, module fault

3 Rack 5, slot 6, module fault

4 Rack 5, slot 7, module fault

5 Rack 5, slot 8, module fault

6 Rack 5, slot 9, module fault

7 Rack 5, slot 10, module fault

8 Rack 5, slot 11, module fault

9 Cable A fault

10 Cable B fault

11 ... 16 not used

Bit Function

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

840 USE 506 00 October 2002 333

72
IBKR: Indirect Block Read

At a Glance

Introduction This chapter describes the instruction IBKR.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 334

Representation 334

IBKR: Indirect Block Read

334 840 USE 506 00 October 2002

Short Description

Function
Description

The IBKR (indirect block read) instruction lets you access non-contiguous registers
dispersed throughout your application and copy the contents into a destination block
of contiguous registers. This instruction can be used with subroutines or for
streamlining data access by host computers or other PLCs.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

source

table

destination

block

IBKR

length

(1 ... 255)

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates indirect read operation

source table
(top node)

4x INT, UINT First holding register in a source table:
contain values that are pointers to the
non-contiguous registers you want to
collect in the operation.

destination block
(middle node)

4x INT, UINT First in a block of contiguous destination
registers, i.e. the block to which the
source data will be copied.

length (1 ... 255)
(bottom node)

INT, UINT number of registers in the source table
and the destination block, range: 1 ... 255

Top output 0x None Echoes the state of the top input

Bottom output 0x None ON = error in source table

840 USE 506 00 October 2002 335

73
IBKW: Indirect Block Write

At a Glance

Introduction This chapter describes the instruction IBKW.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 336

Representation 336

IBKW: Indirect Block Write

336 840 USE 506 00 October 2002

Short Description

Function
Description

The IBKW (indirect block write) instruction lets you copy the data from a table of
contiguous registers into several non-contiguous registers dispersed throughout
your application.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

source
block

destination
pointers

IBKW
length

(1 ... 255)

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates indirect write operation

source block
(top node)

4x INT, UINT First in a block of source registers: contain
values that will be copied to non-
contiguous registers dispersed throughout
the logic program

destination
pointers
(middle node)

4x INT, UINT First in a block of contiguous destination
pointer registers. Each of these registers
contains a value that points to the address
of a register where the source data will be
copied.

length
(1 ... 255)
(bottom node)

INT, UINT Number of registers in the source block
and the destination pointer block,
range: 1 ... 255

Top output 0x None Echoes the state of the top input

Bottom output 0x None ON = error in destination table

840 USE 506 00 October 2002 337

74
ICMP: Input Compare

At a Glance

Introduction This chapter describes the instruction ICMP.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 338

Representation 339

Parameter Description 340

Cascaded DRUM/ICMP Blocks 341

ICMP: Input Compare

338 840 USE 506 00 October 2002

Short Description

Function
Description

The ICMP (input compare) instruction provides logic for verifying the correct
operation of each step processed by a DRUM instruction. Errors detected by ICMP
may be used to trigger additional error-correction logic or to shut down the system.

ICMP and DRUM are synchronized through the use of a common step pointer
register. As the pointer increments, ICMP moves through its data table in lock step
with DRUM. As ICMP moves through each new step, it compares-bit for bit-the live
input data to the expected status of each point in its data table.

Note: This instruction is only available, if you have unpacked and installed the DX
Loadables; further information you will find in "Installation of DX Loadables, p. 41".

ICMP: Input Compare

840 USE 506 00 October 2002 339

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

step

pointer

step data

table

ICMP

length

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates the input comparison

Middle input 0x, 1x None A cascading input, telling the block that previous
ICMP comparison were all good,
ON = compare status is passing to the middle
output

step pointer
(top node)

4x INT, UINT Current step number

step data table
(middle node)

4x INT, UINT First register in a table of step data information

length
(bottom node)

INT, UINT Number of application-specific registers-used in
the step data table, range: 1 .. 999

Top output 0x None Echoes state of the top input

Middle output 0x None ON =this comparison and all previous cascaded
ICMPs are good

Bottom output 0x None ON = Error

ICMP: Input Compare

340 840 USE 506 00 October 2002

Parameter Description

Step Pointer (Top
Node)

The 4x register entered in the top node stores the step pointer, i.e., the number of
the current step in the step data table. This value is referenced by ICMP each time
the instruction is solved. The value must be controlled externally by a DRUM
instruction or by other user logic. The same register must be used in the top node of
all ICMP and DRUM instructions that are solved as a single sequencer.

Step Data Table
(Middle Node)

The 4x register entered in the middle node is the first register in a table of step data
information. The first eight registers in the table hold constant and variable data
required to solve the instruction:

Register Name Content

Displayed raw input data Loaded by user from a group of sequential inputs to
be used by ICMP for current step

First implied current step data Loaded by ICMP each time the block is solved;
contains a copy of data in the step pointer; causes
the block logic to automatically calculate register
offsets when accessing step data in the step data
table

Second
implied

input mask Loaded by user before using the block; contains a
mask to be ANDed with raw input data for each
step-masked bits will not be compared; masked
data are put in the masked input data register

Third implied masked input data Loaded by ICMP each time the block is solved;
contains the result of the ANDed input mask and
raw input data

Fourth implied compare status Loaded by ICMP each time the block is solved;
contains the result of an XOR of the masked input
data and the current step data; unmasked inputs
that are not in the correct logical state cause the
associated register bit to go to 1-non-zero bits
cause a miscompare, and middle output will not go
ON

Fifth implied machine ID number Identifies DRUM/ICMP blocks belonging to a
specific machine configuration; value range: 0 ...
9999 (0 = block not configured); all blocks
belonging to same machine configuration have the
same machine ID

ICMP: Input Compare

840 USE 506 00 October 2002 341

The remaining registers contain data for each step in the sequence.

Length (Bottom
Node)

The integer value entered in the bottom node is the length-i.e., the number of
application-specific registers-used in the step data table. The length can range from
1 .. 999 in a 24-bit CPU.
The total number of registers required in the step data table is the length + 8. The
length must be > the value placed in the steps used register in the middle node.

Cascaded DRUM/ICMP Blocks

Cascaded
DRUM/ICMP
Blocks

A series of DRUM and/or ICMP blocks may be cascaded to simulate a mechanical
drum up to 512 bits wide. Programming the same 4x register reference into the top
node of each related block causes them to cascade and step as a grouped unit
without the need of any additional application logic.

All DRUM/ICMP blocks with the same register reference in the top node are
automatically synchronized. The must also have the same constant value in the
bottom node, and must be set to use the same value in the steps used register in
the middle node.

Sixth implied Profile ID Number Identifies profile data currently loaded to the
sequencer; value range: O... 9999 (0 = block not
configured); all blocks with the same machine ID
number must have the same profile ID number

Seventh
implied

Steps used Loaded by user before using the block, DRUM will
not alter steps used contents during logic solve:
contains between 1 ... 999 for 24 bit CPUs,
specifying the actual number of steps to be solved;
the number must be £ the table length in the bottom
node of the ICMP block

Register Name Content

ICMP: Input Compare

342 840 USE 506 00 October 2002

840 USE 506 00 October 2002 343

75
ID: Interrupt Disable

At a Glance

Introduction This chapter describes the instruction ID.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 344

Representation 344

Parameter Description 345

ID: Interrupt Disable

344 840 USE 506 00 October 2002

Short Description

Function
Description

Three interrupt mask/unmask control instructions are available to help protect data
in both the normal (scheduled) ladder logic and the (unscheduled) interrupt handling
subroutine logic. These are the Interrupt Disable (ID) instruction, the Interrupt
Enable (IE) instruction, and the Block Move with Interrupts Disabled (BMDI)
instruction.
The ID instruction masks timer-generated and/or local I/O-generated interrupts.
An interrupt that is executed in the timeframe after an ID instruction has been solved
and before the next IE instruction has been solved is buffered. The execution of a
buffered interrupt takes place at the time the IE instruction is solved. If two or more
interrupts of the same type occur between the ID ... IE solve, the mask interrupt
overrun error bit is set, and the subroutine initiated by the interrupts is executed only
one time
Further Information you will find in the chapter Interrupt Handling, p. 37.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

Note: This instruction is only available after configuring a CPU without extension.

ID

Type

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = instruction masks timer-generated
and/or local I/O generated interrupts

Type
bottom node

INT, UINT Type of interrupt to be masked (Constant
integer)

Top output 0x None Echoes state of the top input

ID: Interrupt Disable

840 USE 506 00 October 2002 345

Parameter Description

Type (Bottom
Node)

Enter a constant integer in the range 1 ... 3 in the node. The value represents the
type of interrupt to be masked by the ID instruction, where:

Integer Value Interrupt Type

3 Timer interrupt masked

2 Local I/O module interrupt masked

1 Both interrupt types masked

ID: Interrupt Disable

346 840 USE 506 00 October 2002

840 USE 506 00 October 2002 347

76
IE: Interrupt Enable

At a Glance

Introduction This chapter describes the instruction IE.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 348

Representation 348

Parameter Description 349

IE: Interrupt Enable

348 840 USE 506 00 October 2002

Short Description

Function
Description

Three interrupt mask/unmask control instructions are available to help protect data
in both the normal (scheduled) ladder logic and the (unscheduled) interrupt handling
subroutine logic. These are the Interrupt Disable (ID) instruction, the Interrupt
Enable (IE) instruction, and the Block Move with Interrupts Disabled (BMDI)
instruction.
The IE instruction unmasks interrupts from the timer or local I/O module and
responds to the pending interrupts by executing the designated subroutines.
An interrupt that is executed in the timeframe after an ID instruction has been solved
and before the next IE instruction has been solved is buffered. The execution of a
buffered interrupt takes place at the time the IE instruction is solved. If two or more
interrupts of the same type occur between the ID ... IE solve, the mask interrupt
overrun error bit is set, and the subroutine initiated by the interrupts is executed only
one time.
Further Information you will find in the chapter Interrupt Handling, p. 37.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

Note: This instruction is only available after configuring a CPU without extension.

IE

Type

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = instruction unmasks interrupts and
responds pending interrupts

Type
bottom node

INT, UINT Type of interrupt to be unmasked
(Constant integer)

Top output 0x None Echoes state of the top input

IE: Interrupt Enable

840 USE 506 00 October 2002 349

Parameter Description

Top Input When the input is energized, the IE instruction unmasks interrupts from the timer or
local I/O module and responds to the pending interrupts by executing the designated
subroutines.

Type (Bottom
Node)

Enter a constant integer in the range 1 ... 3 in the node. The value represents the
type of interrupt to be unmasked by the IE instruction, where:

Integer Value Interrupt Type

3 Timer interrupt unmasked

2 Local I/O module interrupt unmasked

1 Both interrupt types unmasked

IE: Interrupt Enable

350 840 USE 506 00 October 2002

840 USE 506 00 October 2002 351

77
IMIO: Immediate I/O

At a Glance

Introduction This chapter describes the instruction IMIO.

What’s in this
chapter?

This chapter contains the following topics:

Note: This instruction is only available after configuring a CPU without extension.

Topic Page

Short Description 352

Representation 352

Parameter Description 353

Run Time Error Handling 355

IMIO: Immediate I/O

352 840 USE 506 00 October 2002

Short Description

Function
Description

The IMIO instruction permits access of specified I/O modules from within ladder
logic. This differs from normal I/O processing, where inputs are accessed at the
beginning of the logic solve for the segment in which they are used and outputs are
updated at the end of the segment’s solution. The I/O modules being accessed must
reside in the local backplane with the Quantum PLC.

In order to use IMIO instructions, the local I/O modules to be accessed must be
designated in the I/O Map in your panel software.

Further Information you will find in the chapter Interrupt Handling, p. 37.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

Note: This instruction is only available after configuring a CPU without extension.

IMIO

type

control
block

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = enables the immediate I/O access

control block
top node

4x INT, UINT,
WORD

Control block (first of two contiguous
registers)

type
bottom node

INT, UINT Type of operation (constant integer in the
range of 1 ... 3)

Top output 0x None Echoes state of the top input

Bottom output 0x None Error (indicated by a code in the error
status register (See Runtime Errors,
p. 355) in the IMIO control block)

IMIO: Immediate I/O

840 USE 506 00 October 2002 353

Parameter Description

Control Block
(Top Node)

The first of two contiguous 4x registers is entered in the top node. The second
register is implied.

Physical
Address of the I/
O Module

The high byte of the displayed register in the control block allows you to specify
which rack the I/O module to be accessed resides in, and the low byte allow you to
specify slot number within the specified rack where the I/O module resides.
Usage of word:

Rack Number

Register Content

Displayed This register specifies the Physical Address of the I/O Module, p. 353 to be
accessed.

First
implied

This register logs the error status (See Runtime Errors, p. 355), which is
maintained by the instruction.

Bit Function

1 - 5 Not used

6 - 8 Rack number 1 to 4 (only rack 1 is currently supported)

9 - 11 Not used

12 - 16 Slot number

Bit Number Rack Number

6 7 8

0 0 1 rack 1

0 1 0 rack 2

0 1 1 rack 3

1 0 0 rack 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IMIO: Immediate I/O

354 840 USE 506 00 October 2002

Slot Number

Type (Bottom
Node)

Enter a constant integer in the range 1 ... 3 in the bottom node. The value represents
the type of operation to be performed by the IMIO instruction, where:

Bit Number Slot Number

12 13 14 15 16

0 0 0 0 1 slot 1

0 0 0 1 0 slot 2

0 0 0 1 1 slot 3

0 0 1 0 0 slot 4

0 0 1 0 1 slot 5

0 0 1 1 0 slot 6

0 0 1 1 1 slot 7

0 1 0 0 0 slot 8

0 1 0 0 1 slot 9

0 1 0 1 0 slot 10

0 1 0 1 1 slot 11

0 1 1 0 0 slot 12

0 1 1 0 1 slot 13

0 1 1 1 0 slot 14

0 1 1 1 1 slot 15

1 0 0 0 0 slot 16

Integer Value Type of Immediate Access

1 Input operation: transfers data from the specified module to state RAM

2 Output operation: transfers data from state RAM to the specified module

3 I/O operation: does both input and output if the specified module is
bidirectional

IMIO: Immediate I/O

840 USE 506 00 October 2002 355

Run Time Error Handling

Runtime Errors The implied register in the control block will contain the following error code when
the instruction detects an error:

Error
Code

Meaning

2001 Invalid type specified in the bottom node

2002 Problem with the specified I/O slot, either an invalid slot number entered in the
displayed register of the control block or the I/O Map does not contain the correct
module definition for this slot

2003 A type 3 operation is specified in the bottom node, and the module is not bidirectional

F001 Specified I/O module is not healthy

IMIO: Immediate I/O

356 840 USE 506 00 October 2002

840 USE 506 00 October 2002 357

78
IMOD: Interrupt Module
Instruction

At a Glance

Introduction This chapter describes the instruction IMOD.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 358

Representation 359

Parameter Description 360

IMOD: Interrupt Module Instruction

358 840 USE 506 00 October 2002

Short Description

Function
Description

The IMOD instruction initiates a ladder logic interrupt handler subroutine when the
appropriate interrupt is generated by a local interrupt module and received by the
PLC. Each IMOD instruction in an application is set up to correspond to a specific
slot in the local backplane where the interrupt module resides. The IMOD instruction
can designate the same or a separate interrupt handler subroutine for each interrupt
point on the associated interrupt module.

Further Information you will find in the chapter Interrupt Handling, p. 37.

Note: This instruction is only available after configuring a CPU without extension.

IMOD: Interrupt Module Instruction

840 USE 506 00 October 2002 359

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

slot number

control

block

IMOD

number of

interrupts

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates an interrupt

Bottom input 0x, 1x None ON = clears a previously detected error

slot number
(top node)

INT, UINT Indicates the slot number where the local
interrupt module resides (constant integer
in the range of 1 ... 16)

control block
(middle node)

4x INT, UINT,
WORD

Control block (first of max. 19 contiguous
registers, depending on number of
interrupts)

number of
interrupts
(bottom node)

INT, UINT Indicates the number of interrupts that can
be generated from the associated interrupt
module (constant integer in the range of 1
... 16)

Top output 0x None Echoes state of the top input

Bottom output 0x None ON = error is detected. The source of the
error can be from any one of the enabled
interrupt points on the interrupt module.

IMOD: Interrupt Module Instruction

360 840 USE 506 00 October 2002

Parameter Description

General
Information to
IMOD

Up to 14 IMOD instructions can be programmed in a ladder logic application, one for
each possible option slot in a local backplane.
Each interrupting point on each interrupt module can initiate a different interrupt
handler subroutine.
A maximum of 64 interrupt points can be defined in a user logic application. It is not
necessary that all possible input points on a local interrupt module be defined in the
IMOD instruction as interrupts.

Enabling of the
Instruction (Top
Input)

When the input to the top node is energized, the IMOD instruction is enabled. The
PLC will respond to interrupts generated by the local interrupt module in the
designated slot number. When the top input is not energized, interrupts from the
module in the designated slot are disabled and all previously detected errors are
cleared including any pending masked interrupts.

Clear Error
(Bottom Input)

This input clears previous errors.

Slot Number
(Top Node)

The top node contains a decimal in the range 1 ... 16, indicating the slot number
where the local interrupt module resides. This number is used to index into an array
of control structures used to implement the instruction.

Note: The slot number in one IMOD instruction must be unique with respect to the
slot numbers used in all other IMOD instruction in an application. If not the next
IMOD with that particular slot number will have an error.

Note: The slot numbers where the PLC and the power supply reside are illegal
entries -i.e., a maximum of 14 of the 16 possible slot numbers can be used as
interrupt module slots. If the IMOD slot number is the same as the PLC, the IMOD
will have an error.

IMOD: Interrupt Module Instruction

840 USE 506 00 October 2002 361

Control Block
(Middle Node)

The middle node contains the first 4x register in the IMOD control block. The control
block contains parameters required to program an IMOD instruction. The size
(number of registers) of the control block will equal the total number of programmed
interrupt points + 3.
The first three registers in the control block contain status information, of the
remaining registers provide means for you to specify the label (LAB) number of the
Subroutine Handling, p. 39 that is in the last (unscheduled) segment of the ladder
logic program.
Control Block for IMOD

Function Status
Bits

Function Status Bits

Register Content

Displayed Function status bits

First implied State of inputs 1 ... 16 from the interrupt module at the time of the
interrupt

Second implied State of inputs 17 ... 32 from the interrupt module at the time of the
interrupt (invalid data for a 16-bit interrupt module)

Third implied LAB number and status for the first interrupt programmed point on
the interrupt module

... ...

Last implied LAB number and status for the last interrupt programmed point on
the interrupt

Bit Function

1 - 2 Not used

3 Error: controller slot

4 Error: interrupt lost due to comm error in backplane

5 Module not healthy or not in I/O map

6 Error: interrupt lost because of on-line editing

7 Error: Maximum number of interrupts exceeded

8 Error: slot number used in previous network (see CAUTION Lost of Interrupts,
p. 362)

9 - 15 Not used

16 0 = IMOD disabled
1 = IMOD enabled

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IMOD: Interrupt Module Instruction

362 840 USE 506 00 October 2002

Lost of Interrupts

Status Bits and
LAB Number for
each Interrupt
Point

Bits 1 ... 5 of the third implied through last implied registers are status bits for each
interrupt point. Bits 7 ... 16 are used to specify the LAB number for the interrupt
handler subroutine. The LAB number is a decimal value in the range 1 ... 1023
Function Status Bits

Whenever the input to the bottom node of the IMOD instruction is enabled, the status
bits (bits 1 ... 5) are cleared. If a LAB number is specified (in bits 7 ... 16) as 0 or an
invalid number, any interrupts generated from that point are ignored by the PLC.

CAUTION

Lost of interrupts from the working IMOD instruction

An error is indicated in bit 8 when two IMOD instructions are assigned
the same slot number. When this happens, it is possible to lose
interrupts from the working IMOD instruction without an indication if the
number specified in the bottom node of the two instructions is different.

Failure to observe this precaution can result in injury or
equipment damage.

Bit Function

Interrupt Point Status

1 Execution delayed because of interrupt mask

2 Error: invalid block in the interrupt handler subroutine

3 Error: Mask interrupt overrun

4 Error: execution overrun

5 Error: invalid LAB number

6 not used

LAB number

7 - 16 LAB number for the associated interrupt handler
Value in the range 1 ... 1023

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IMOD: Interrupt Module Instruction

840 USE 506 00 October 2002 363

Number of
Interrupts
(Bottom Node)

The bottom node contains an integer indicating the number of interrupts that can be
generated from the associated interrupt module. The size (number of registers) of
the control block is this number + 3.
The PLC is able to be configured for a maximum of 64 module interrupts (from all
the interrupt modules residing in the local backplane). If the number you enter in the
bottom node of an IMOD instruction causes the total number of module interrupts
systemwide to exceed 64, an error is logged in bit 7 of the first register in the control
block.
For example, if you use four interrupt modules in the local backplane and assign 16
interrupts to each of these modules (by entering 16 in the bottom node of each
associated IMOD instruction, the PLC will not be able to handle any more module
interrupts. If you attempt to create a fifth IMOD instruction, an error will be logged in
that IMOD’s control block when you specify a value in the bottom node.

IMOD: Interrupt Module Instruction

364 840 USE 506 00 October 2002

840 USE 506 00 October 2002 365

79
ITMR: Interrupt Timer

At a Glance

Introduction This chapter describes the instruction ITMR.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 366

Representation 367

Parameter Description 368

ITMR: Interrupt Timer

366 840 USE 506 00 October 2002

Short Description

Function
Description

The ITMR instruction allows you to define an interval timer that generates interrupts
into the normal ladder logic scan and initiates the execution of an interrupt handling
subroutine. The user-defined interrupt handler is a ladder logic subroutine created
in the last, unscheduled segment of ladder logic with its first network marked by a
LAB instruction. Subroutine execution is asynchronous to the normal scan cycle

Up to 16 ITMR instructions can be programmed in an application. Each interval timer
can be programmed to initiate the same or different interrupt handler subroutines,
controlled by the JSR / LAB Method, p. 40 described in the chapter General.

Each instance of the interval timer is delayed for a programmed interval while the
PLC is running, then generates a processor interrupt when the interval has elapsed.

An interval timer can execute at any time during normal logic scan, including system
I/O updating or other system housekeeping operations. The resolution of each
interval timer is 1 ms. An interval can be programmed in units of 1 ms, 10 ms, 100
ms, or 1 s. An internal counter increments at the specified resolution.
Further Information you will find in the chapter Interrupt Handling, p. 37.

Note: This instruction is only available after configuring a CPU without extension.

ITMR: Interrupt Timer

840 USE 506 00 October 2002 367

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

control

block

ITMR

timer

number

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = enables instruction

control block
(top node)

4x INT, UINT,
WORD

Control block (first of three contiguous
registers)

timer number
(bottom node)

INT, UINT Timer number assigned to this ITMR
instruction (must be unique with respect to
all other ITMR instructions in the
application); range: 1 ... 16

Top output 0x None Echoes state of the top input

Bottom output 0x None Error (source of the error may be in the
programmed parameters or a runtime
execution error)

ITMR: Interrupt Timer

368 840 USE 506 00 October 2002

Parameter Description

Top Input When the top input is energized, the ITRM instruction is enabled. It begins counting
the programmed time interval. When that interval has expired the counter is reset
and the designated error handler logic executes.
When the top input is not energized, the following events occur:
l All indicated errors are cleared
l The timer is stopped
l The time count is either reset or held, depending on the state of bit 15 of the first

register in the control block (the displayed register in the top node)
l Any pending masked interrupt is cleared for this timer

Control Block
(Top Node)

The top node contains the first of three contiguous 4x registers in the ITMR control
block. These registers are used to specify the parameters required to program each
ITMR instruction.
Control Block for ITMR

Register Content

Displayed Function status and function control bits

First implied In this register specify a value representing the interval at which the
ITRM instruction will generate interrupts and initiate the execution of
the interrupt handler.
The interval will be incremented in the units specified by bits 12 and
13 of the first control block register, i.e. 1 ms, 10 ms, 100 ms, or 1 s
units.

Second implied In this register specify a value indicating the label (LAB) number that
will start the interrupt handler subroutine.
 The number must be in the range 1 ... 1023.

Note: We recommend that the size of the logic subroutine associated with the LAB
be minimized so that the application does not become interrupt-driven.

ITMR: Interrupt Timer

840 USE 506 00 October 2002 369

Function Status
and Function
Control Bits

The lower eight bits of the displayed register in the control block allow you to specify
function control parameters, and the upper eight bits are used to display function
status:

Timer Number
(Bottom Node)

Up to 16 ITRM instructions can be programmed in an application. The interrupts are
distinguished from one another by a unique number between 1 ... 16, which you
assign to each instruction in the bottom node. The lowest interrupt number has the
highest execution priority.
For example, if ITMR 4 and ITMR 5 occur at the same time, ITMR 4 is executed first.
After ITMR 4 has finished, ITMR 5 generally will begin executing.
An exception would be when another ITMR interrupt with a higher priority occurs
during ITMR 4’s execution. For example, suppose that ITMR 3 occurs while ITMR 5
is waiting for ITMR 4 to finish executing. In this case, ITMR 3 begins executing when
ITMR4 finishes, and ITMR 5 continues to wait.

Bit Function

Function Status

1 Execution delayed because of interrupt mask.

2 Invalid block in the interrupt handler subroutine.

3 Not used

4 Time = 0

5 Mask interrupt overrun.

6 Execution overrun.

7 No LAB or invalid LAB.

8 Timer number used in previous network.

Function Control

9 - 11 Not used

12 - 13 0 0 = 1 ms time base
0 1 = 10 ms time base
1 0 = 100 ms time base
1 1 = 1 s time base

14 1 = PLC stop holds counter.
0 = PLC stop resets counter.

15 1 = enable OFF holds counter.
0 = enable OFF resets counter.

16 1 = instruction enabled
0 = instruction disabled

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ITMR: Interrupt Timer

370 840 USE 506 00 October 2002

840 USE 506 00 October 2002 371

80
ITOF: Integer to Floating Point

At a Glance

Introduction This chapter describes the instruction ITOF.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 372

Representation 372

ITOF: Integer to Floating Point

372 840 USE 506 00 October 2002

Short Description

Function
Description

The ITOF instruction performs the conversion of a signed or unsigned integer value
(its top node) to a floating point (FP) value, and stores the FP value in two
contiguous 4x registers in the middle node.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

integer

converted

FP

ITOF

1

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = enables conversion

Bottom input 0x, 1x None ON = signed operation
OFF = unsigned operation

integer
(top node)

3x, 4x INT, UINT Integer value, can be displayed explicitly
as an integer (range 1 ... 65 535) or stored
in a register

converted FP
(middle node)

4x REAL Converted FP value (first of two
contiguous holding registers)

1
(bottom node)

INT, UINT Constant value of 1, can not be changed

Top output 0x None ON = FP conversion completed
successfully

840 USE 506 00 October 2002 373

81
JSR: Jump to Subroutine

At a Glance

Introduction This chapter describes the instruction JSR.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 374

Representation 374

JSR: Jump to Subroutine

374 840 USE 506 00 October 2002

Short Description

Function
Description

When the logic scan encounters an enabled JSR instruction, it stops the normal
logic scan and jumps to the specified source subroutine in the last (unscheduled)
segment of ladder logic.
You can use a JSR instruction anywhere in user logic, even within the subroutine
segment. The process of calling one subroutine from another subroutine is called
nesting. The system allows you to nest up to 100 subroutines; however, we
recommend that you use no more than three nesting levels. You may also perform
a recursive form of nesting called looping, whereby a JSR call within the subroutine
recalls the same subroutine.

Example to
Subroutine
Handling

An example to subroutine handling you will find in the chapter General, section
Subroutine Handling, p. 39.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

source

JSR
#1

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None Enables the source subroutine

source
(top node)

4x INT, UINT Source pointer (indicator of the subroutine
to which the logic scan will jump), entered
explicitly as an integer or stored in a
register; range: 1 ... 1 023

#1
(bottom node)

INT, UINT Always enter the constant value 1

Top output 0x None Echoes state of the top input

Bottom output 0x None Error in subroutine jump

840 USE 506 00 October 2002 375

82
LAB: Label for a Subroutine

At a Glance

Introduction This chapter describes the instruction LAB.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 376

Representation 376

Parameter Description 377

LAB: Label for a Subroutine

376 840 USE 506 00 October 2002

Short Description

Function
Description

The LAB instruction is used to label the starting point of a subroutine in the last
(unscheduled) segment of user logic. This instruction must be programmed in row
1, column 1 of a network in the last (unscheduled) segment of user logic. LAB is a
one-node function block
LAB also serves as a default return from the subroutine in the preceding networks.
If you are executing a series of subroutine networks and you find a network that
begins with LAB, the system knows that the previous subroutine is finished, and it
returns the logic scan to the node immediately following the most recently executed
JSR block.

Example to
Subroutine
Handling

An example to subroutine handling you will find in the chapter General, section
Subroutine Handling, p. 39.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

LAB

subroutine
(1 ... 255)

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None Initiates the subroutine specified by the
number in the bottom node

subroutine
(bottom node)

INT, UINT Integer value, identifies the subroutine you
are about to execute, range: 1 ... 255

Top output 0x None ON = error in the specified subroutine’s
initiation

LAB: Label for a Subroutine

840 USE 506 00 October 2002 377

Parameter Description

Subroutine
(Bottom Node)

The integer value entered in the node identifies the subroutine you are about to
execute. The value can range from 1 ... 255. If more than one subroutine network
has the same LAB value, the network with the lowest number is used as the starting
point for the subroutine.

LAB: Label for a Subroutine

378 840 USE 506 00 October 2002

840 USE 506 00 October 2002 379

83
LOAD: Load Flash

At a Glance

Introduction This chapter describes the instruction LOAD.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 380

Representation 380

Parameter Description 381

LOAD: Load Flash

380 840 USE 506 00 October 2002

Short Description

Function
Description

The LOAD instruction loads a block of 4x registers (previously SAVEd) from state
RAM where they are protected from unauthorized modification.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

Note: This instruction is available with the PLC family TSX Compact, with Quantum
CPUs 434 12/ 534 14 and Momentum CPUs CCC 960 x0/ 980 x0.

register

1, 2, 3, 4

LOAD

length

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None Start LOAD operation: it should remain ON until
the operation has completed successfully or an
error has occurred.

register
(top node)

4x INT, UINT,
WORD

First of max. 512 contiguous 4x registers to be
loaded from state RAM

1, 2, 3, 4
(middle node)

INT Integer value, which defines the specific buffer
where the block of data is to be loaded

length
(bottom node)

INT Number of words to be loaded, range: 1 ... 512

Top output 0x None ON = LOAD is active

Middle output 0x None ON = a LOAD is requested from a buffer where
no data has been SAVEd.

Bottom output 0x None ON = Length not equal to SAVEd length

LOAD: Load Flash

840 USE 506 00 October 2002 381

Parameter Description

1, 2, 3, 4 (Middle
Node)

The middle node defines the specific buffer where the block of data is to be loaded.
Four 512 word buffers are allowed. Each buffer is defined by placing its
corresponding value in the middle node, that is, the value 1 represents the first
buffer, value 2 represents the second buffer and so on. The legal values are 1, 2, 3,
and 4. When the PLC is started all four buffers are zeroed. Therefore, you may not
load data from the same buffer without first saving it with the instruction SAVE.
When this is attempted the middle output goes ON. In other words, once a buffer is
used, it may not be used again until the data has been removed.

Bottom Output The output from the bottom node goes ON when a LOAD request is not equal to the
registers that were SAVEd. This kind of transaction is allowed, however, it is your
responsibility to ensure this does not create a problem in your application.

LOAD: Load Flash

382 840 USE 506 00 October 2002

840 USE 506 00 October 2002 383

84
MAP 3: MAP Transaction

At a Glance

Introduction This chapter describes the instruction MAP 3.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 384

Representation 384

Parameter Description 385

MAP 3: MAP Transaction

384 840 USE 506 00 October 2002

Short Description

Function
Description

Ladder logic applications running in the controller initiate communication with MAP
network nodes through the MAP3 instruction.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

Note: This instruction is only available, if you have unpacked and installed the DX
Loadables; further information in the chapter "Installation of DX Loadables, p. 41".

control

block

data

source

MAP3

length

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates a transaction

Middle input 0x, 1x None ON = new transaction to be initiated in the
same scan

control block
(top node)

4x INT, UINT,
WORD

Control Block (first register of a block)

data source
(middle node)

4x INT, UINT,
WORD

Data source (starting register)

length
(bottom node)

INT, UINT Length of local data area, range: 1 ... 255)

Top output 0x None Transaction completes successfully

MIddle output 0x None Transaction is in progress

Bottom output 0x None Error

MAP 3: MAP Transaction

840 USE 506 00 October 2002 385

Parameter Description

Top Input This input initiates a transaction. To start a transaction the input must be held ON
(HIGH) for at least one scan. If the S980 has resources to process the transaction,
the middle output passes power. If resources are not available, no outputs pass
power.
Once a transaction is started, it will run until a reply is received, a communications
error is detected, or a timeout occurs. The values in the Control Block, Data Source
and Length must not be altered, or the transaction will not be completed and the
bottom output will pass power. A second transaction cannot be started by the same
block until the first one is complete.

Middle Input If the top input is also HIGH, the middle input going ON allows a new transaction to
be initiated in the same scan, following the completion of a previous one. A new
transaction begins when the top output passes power from the first transaction.

MAP 3: MAP Transaction

386 840 USE 506 00 October 2002

Control Block
(Top Node)

The top node is the starting 4x register of a block of registers that control the block’s
operation.
The contents of each register is determined by the kind of operation to be performed
by the MAP3 block:
l Read or Write
l Information Report
l Unsolicited Status
l Conclude
l Abort

Registers of the Control Block:

Destination
Device

Word 1 contains the destination device in bit position 9 through 16. The computer
works with this byte as the LSB and will accept a range of 1 to 255.
Usage of word 1:

Word Meaning

1 Destination Device, p. 386

2 Qualifier / Function Code, p. 387

3 Network Mode / Network Type, p. 387

4 Function Status, p. 388

5 Register A Reference Type
This word is labeled Register A* and contains the reference type for 4 types of Read
(0x, 1x, 3x, and 4x registers) and 2 types of Write (0X or 4x).

6 Register B Reference Number
This word is labeled Register B* and contains the starting reference number in the
range 1 to 99999.

7 Register C Reference Length
This word is labeled Register C* and contains the Quantity of references requested.

8 Register D Timeout
This word is labeled Register D* and contains the Timeout parameter. This value sets
the maximum length of time used to complete a transaction, including retries.

Bit Function

1 - 8 Not used

9 - 16 Destination device

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MAP 3: MAP Transaction

840 USE 506 00 October 2002 387

Qualifier /
Function Code

Word 2 contains two bytes of information The qualifier bits 1 to 8 and the function
code in bits 9 to 16.
Usage of word 2:

Network Mode /
Network Type

Word 3 contains two bites of information. The mode is in bits 5 through 8 and the
type is in bits 9 through 16.
Usage of word 3:

Bit Function

Qualifier

1 - 8 0 = addressed
>0 = named

Function Code

9 - 16 4 = read
5 = write

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bit Function

1 - 4 Not used

Mode

5 - 8 1 = association

Type

9 - 12 7 = 7 layer MAP network

13 - 16 1 = type 1 service

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MAP 3: MAP Transaction

388 840 USE 506 00 October 2002

Function Status Word 4 is the function status. An error code is returned if an error occurs in a block
initiated function.
The decimal codes are:

Function
summary

The network controlling device may issue a function code that alters the control
block register assignment as given above for Read/Write. Those differences for
Information, Status, Conclude and Abort are identified in this summary on the
bottom of your screen
Refer to Modicon S980 MAP 3.0 Network Interface User Guide that describes the
register contents for each operation.

Data Source
(Middle Node)

The middle node is the starting 4x register of the local data source (for a write
request) or local data destination (for a read).

Length (Bottom
Node)

The bottom node defines the maximum size of the local data area (the quantity of
registers) starting at 4x register of data source, in the range of 1 to 255 decimal. The
quantity of data to be actually transferred in the operation is determined by a
Reference Length parameter in one of the control registers.

Code Meaning

1 Association request rejected

4 Message timeout application response

5 Invalid destination device

6 Message size exceeded

8 Invalid function code

17 Device not available

19 Unsupported network type

22 No channel available

23 MMS message not sent

24 Control block changed

25 Initiate failed

26 System download in progress

28 Channel not ready

99 Undetermined error

103 Access denied

105 Invalid address

110 Object nonexistent

MAP 3: MAP Transaction

840 USE 506 00 October 2002 389

Top Output The top output passes power for one scan when a transaction completes
successfully.

Middle Output The middle output passes power when a transaction is in progress. If the top input
is ON and the middle input is OFF, then the middle output will go OFF on the same
scan that the top output goes ON. If both top input and middle input are ON, then the
middle output will remain ON

Bottom Output The bottom output passes power for one scan when a transaction cannot be
completed. An error code is returned to the Function Status Word (register 4x+3) in
the function’s control block.

MAP 3: MAP Transaction

390 840 USE 506 00 October 2002

840 USE 506 00 October 2002 391

85
MBIT: Modify Bit

At a Glance

Introduction This chapter describes the instruction MBIT.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 392

Representation 393

Parameter Description 394

MBIT: Modify Bit

392 840 USE 506 00 October 2002

Short Description

Function
Description

The MBIT instruction modifies bit locations within a data matrix, i.e. it sets the bit(s)
to 1 or clears the bit(s) to 0. One bit location may be modified per scan.

WARNING

Overriding of disabled coils without enabling them

MBIT will override any disabled coils within a destination group without
enabling them. This can cause injury if a coil has been disabled for
repair or maintenance because the coil’s state can change as a result
of the MBIT instruction.

Failure to observe this precaution can result in severe injury or
equipment damage.

MBIT: Modify Bit

840 USE 506 00 October 2002 393

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

bit

location

data

matrix

MBIT

length

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = implements bit modification

Middle input 0x, 1x None OFF = clear bit locations to 0
ON = set bit locations to 1

Bottom input 0x, 1x None Increment bit location by one after
modification

bit location
(top node)

3x, 4x INT, UINT,
WORD

Specific bit location to be set or clear in the
data matrix; entered explicitly as an
integer value or stored in a register (range
1 ... 9 600)

data matrix
(middle node)

0x, 4x INT, UINT,
WORD

First word or register in the data matrix

length
(bottom node)

INT, UINT Matrix length; range: 1 ... 600

Top output 0x None Echoes state of the top input

Middle output 0x None Echoes state of the middle input

Bottom output 0x None ON = error: bit location > matrix length

MBIT: Modify Bit

394 840 USE 506 00 October 2002

Parameter Description

Bit Location (Top
Node)

Matrix Length
(Bottom Node)

The integer value entered in the bottom node specifies a matrix length, i.e, the
number of 16-bit words or registers in the data matrix. The length can range from
1 ... 600 in a 24-bit CPU, e.g, a matrix length of 200 indicates 3200 bit locations.

Note: If the bit location is entered as an integer or in a 3x register, the instruction
will ignore the state of the bottom input.

840 USE 506 00 October 2002 395

86
MBUS: MBUS Transaction

At a Glance

Introduction This chapter describes the instruction MBUS.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 396

Representation 397

Parameter Description 398

The MBUS Get Statistics Function 400

MBUS: MBUS Transaction

396 840 USE 506 00 October 2002

Short Description

Function
Description

The S975 Modbus II Interface option modules use two loadable function blocks:
MBUS and PEER. MBUS is used to initiate a single transaction with another device
on the Modbus II network. In an MBUS transaction, you are able to read or write
discrete or register data.

PLCs on a Modbus II network can handle up to 16 transactions simultaneously.
Transactions include incoming (unsolicited) messages as well as outgoing
messages. Thus, the number of message initiations a PLC can manage at any time
is 16 - # of incoming messages.

A transaction cannot be initiated unless the S975 has enough resources for the
entire transaction to be performed. Once a transaction has been initiated, it runs until
a reply is received, an error is detected, or a timeout occurs. A second transaction
cannot be started in the same scan that the previous transaction completes unless
the middle input is ON. A second transaction cannot be initiated by the same MBUS
instruction until the first transaction has completed.

Note: This instruction is only available, if you have unpacked and installed the DX
Loadables; further information in the chapter "Installation of DX Loadables, p. 41".

MBUS: MBUS Transaction

840 USE 506 00 October 2002 397

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

control

block

data

block

MBUS

length

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None Enable MBUS transaction

Middle input 0x, 1x None Repeat transaction in same scan

Bottom input 0x, 1x None Clears system statistics

control block
(top node)

4x INT, UINT,
WORD

First of seven contiguous registers in the
MBUS control block

data block
(middle node)

4x INT, UINT,
WORD

First 4x register in a data block to be
transmitted or received in the MBUS
transaction.

length
(bottom node)

INT, UINT Number of words reserved for the data
block is entered as a constant value

Top output 0x None Transaction complete

Middle output 0x None Transaction in progress or new transaction
starting

Bottom output 0x None Error detected in transaction

MBUS: MBUS Transaction

398 840 USE 506 00 October 2002

Parameter Description

Control Block
(Top Node)

The 4x register entered in the top node is the first of seven contiguous registers in
the MBUS control block:

Function Code This register contains the function code for requested action:

Reference Type This register contains one of 4 possible discrete or register reference types:

Register Content

Displayed Address of destination device (range: 0 ... 246)

First implied not used

Second implied Function code

Third implied Reference type

Fourth implied Reference number, e.g., if you placed a 4 in the third implied register
and you place a 23 in this register, the reference will be holding
register 400023

Fifth implied Number of words of discrete or register references to be read or
written

Sixth implied Time allowed for a transaction to be completed before an error is
declared; expressed as a multiple of 10 ms, e.g., 100 indicates 1 000
ms; the default timeout is 250 ms.

Value Meaning

01 Read discretes

02 Read registers

03 Write discrete outputs

04 Write register outputs

255 Get system statistics

Value Reference type

0 Discrete output (0x)

1 Discrete input (1x)

2 Input register (3x)

3 Holding register (4x)

MBUS: MBUS Transaction

840 USE 506 00 October 2002 399

Number of
Words to Read or
Write

Number of words of discrete or register references to be read or written; the length
limits are:

Length (Bottom
Node)

The number of words reserved for the data block is entered as a constant value in
the bottom node. This number does not imply a data transaction length, but it can
restrict the maximum allowable number of register or discrete references to be read
or written in the transaction.
The maximum number of words that may be used in the specified transaction is:

Read register 251 registers

Write register 249 registers

Read coils 7.848 discretes

Write coils 7.800 discretes

Max. Number of
Words

Transaction

251 Reading registers (one register/word)

249 Writing registers (one register/word)

490 Reading discretes using 24-bit CPUs (up to 16 discretes/word)

487 Writing discretes using 24-bit CPUs (up to 16 discretes/word

MBUS: MBUS Transaction

400 840 USE 506 00 October 2002

The MBUS Get Statistics Function

General Issuing function code 255 in the second implied register of the MBUS control block
obtains a copy of the Modbus II local statistics, a series of 46 contiguous register
locations where data describing error and system conditions is stored. To use MBUS
for a get statistics operation, set the length in the bottom node to 46, a length < 46
returns an error (the bottom output will go ON), and a length > 46 reserves extra
registers that cannot be used.

Example Parameterizing of the instruction

Register 400101 is the first register in the MBUS control block, making register
400103 the control register that defines the MBUS function code. By entering a
value of 255 in register 400103, you implement a get statistics function. Registers
401000 ... 401045 are then filled with the system statistics.

System
Statistics
Overview

The following system statistics are available:
l Token Bus Controller (TBC), p. 401
l Software-maintained Receive Statistics, p. 401
l TBC-maintained Error Counters, p. 401
l Software-maintained Transmit Errors, p. 402
l Software-maintained Receive Errors, p. 402
l User Logic Transaction Errors, p. 402
l Manufacturing Message Format Standard, p. 402
l (MMFS) Errors, p. 402
l Background Statistics, p. 403
l Software Revision, p. 403

complete

Error: length < 46

400101Enable

401000

MBUSClear system statistics

46

MBUS: MBUS Transaction

840 USE 506 00 October 2002 401

Token Bus
Controller (TBC)

Registers 401000 ... 401003 are then filled with the following:

Software-
maintained
Receive
Statistics

Registers 401004 ... 401010 are then filled with the following:

TBC-maintained
Error Counters

Registers 401011 ... 401018 are then filled with the following:

Register Content

401000 Number of tokens passed by this station

401001 Number of tokens sent by this station

401002 Number of time the TBC has failed to pass token and has not found a
successor

401003 Number of times the station has had to look for a new successor

Register Content

401004 TBC-detected error frames

401005 Invalid request with response frames

401006 Applications message too long

401007 Media access control (MAC) address out of range

401008 Duplicate application frames

401009 Unsupported logical link control (LLC) message types

401010 Unsupported LLC address

Register Content

401011 Receive noise bursts (no start delimiter)

401012 Frame check sequence errors

401013 E-bit error in end delimiter

401014 Fragmented frames received (start delimiter not followed by end delimiter)

401015 Receive frames too long

401016 Discarded frames because there is no receive buffer

401017 Receive overruns

401018 Token pass failures

MBUS: MBUS Transaction

402 840 USE 506 00 October 2002

Software-
maintained
Transmit Errors

Registers 401019 ... 401020 are then filled with the following:

Software-
maintained
Receive Errors

Registers 401021... 401022 are then filled with the following:

User Logic
Transaction
Errors

Registers 401023... 401024 are then filled with the following:

Manufacturing
Message Format
Standard

Registers 401025... 401026 are then filled with the following:

(MMFS) Errors Registers 401027... 401035 are then filled with the following:

Register Content

401019 Retries on request with response frames

401020 All retries performed and no response received from unit

Register Content

401021 Bad transmit request

401022 Negative transmit confirmation

Register Content

401023 Message sent but no application response

401024 Invalid MBUS/PEER logic

Register Content

401025 Command not executable

401026 Data not available

Register Content

401027 Device not available

401028 Function not implemented

401029 Request not recognized

401030 Syntax error

401031 Unspecified error

401032 Data request out of bounds

401033 Request contains invalid controller address

401034 Request contains invalid data type

401035 None of the above

MBUS: MBUS Transaction

840 USE 506 00 October 2002 403

Background
Statistics

Registers 401036... 401043 are then filled with the following:

Software
Revision

Registers 401044... 401045 are then filled with the following:

Register Content

401036 Invalid MBUS/PEER request

401037 Number of unsupported MMFS message types received

401038 Unexpected response or response received after timeout

401039 Duplicate application responses received

401040 Response from unspecified device

401041 Number of responses buffered to be processed (in the least significant byte);
number of MBUS/PEER requests to be processed (in the most significant
byte)

401042 Number of received requests to be processed (in the least significant byte);
number of transactions in process (in the most significant byte)

401043 S975 scan time in 10 ms increments

Register Content

401044 Version level of fixed software (PROMs): major version number in most
significant byte; minor version number in least significant byte

401045 Version of loadable software (EEPROMs): major version number in most
significant byte; minor version number in least significant byte

MBUS: MBUS Transaction

404 840 USE 506 00 October 2002

840 USE 506 00 October 2002 405

87
MRTM: Multi-Register Transfer
Module

At a Glance

Introduction This chapter describes the instruction MRTM.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 406

Representation 407

Parameter Description 408

MRTM: Multi-Register Transfer Module

406 840 USE 506 00 October 2002

Short Description

Function
Description

The MRTM instruction is used to transfer blocks of holding registers from the
program table to the command block, a group of output registers. To verify each
block transfer, an echo of the data contained in the first holding register is returned
to an input register.

Note: This instruction is only available, if you have unpacked and installed the DX
Loadables; further information in the chapter "Installation of DX Loadables, p. 41".

MRTM: Multi-Register Transfer Module

840 USE 506 00 October 2002 407

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

program

table

control

table

MRTM

length

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = enables the operation

Middle input 0x, 1x None ON = one instruction block is transferred,
table pointer of control table is
incremented by the value of "length"

Bottom input 0x, 1x None ON =reset

program table
(top node)

0x, 1x, 3x, 4x INT, UINT,
WORD

First register of the program table. The
digit 4 is assumed as the most significant
digit

control table
(middle node)

3x, 4x INT, UINT,
WORD

First register of the control table. The digit
4 is assumed as the most significant digit.

length
(bottom node)

INT, UINT Number of registers moved from the
program table during each transfer, range:
1 to 127.

Top output 0x None Echoes state of the top input

Middle output 0x None Instruction block is transferred to the
command block (stays on only for the
remainder of the current scan)

Bottom output 0x None ON = pointer value ≥ table end

MRTM: Multi-Register Transfer Module

408 840 USE 506 00 October 2002

Parameter Description

Mode of
Functioning

The MRTM transfers contiguous blocks of up to 127 registers from a table of register
blocks to a block size holding register area. The MRTM function block controls the
operation of the module in the following manner:

Parameter
Description
Increment Step
(MIddle Input)

When power is applied, this input attempts to transfer one instruction block. Before
a transfer can occur, the echo register is evaluated. The most significant bit (MSB)
of the echo register is not evaluated, just bits 0 through 14. Echo mismatch is a
condition that prohibits a transfer. If a transfer is permitted, one instruction block is
transferred from the program table starting at the table pointer. The table pointer in
the control table is then incremented by the value "Length" (displayed in the bottom
node).

If power is
applied to the...

Then ...

Top input The function block is enabled for data transfers.
Note: On initial startup, power must be applied to the bottom input.

Middle input The function block attempts to transfer one instruction block. Before a
transfer can occur, the echo register is evaluated. The most significant
bit (MSB) of the echo register is not evaluated just bits 0 through 14.
Echo mismatch is a condition that prohibits a transfer. If a transfer is
permitted, one instruction block is transferred form the table starting at
the table pointer.
The table pointer in the control table is then advanced. If the pointer’s
new value is equal to or greater than the table end, the bottom output is
turned on. A table pointer value less than the table end turns off the
output.

Bottom input The function block resets. The table pointer in the control table is
reloaded with the start of commands value from the header of the
program table

Note: The MRTM function block is designed to accept fault indications from I/O
modules, which echo valid commands to the controller, but set a bit to indicate the
occurrence of a fault. This method of fault indication is common for motion products
and for most other I/O modules. If using a module that reports a fault condition in
any other way, especially if the echo involved is not an echo of a valid command,
special care must be taken when writing the error handler for the ladder logic to
ensure the fault is detected. Failure to do so may result in a lockup or some other
undesirable performance of the MRTM.

MRTM: Multi-Register Transfer Module

840 USE 506 00 October 2002 409

Parameter
Description
Reset Pointer
(Bottom Input)

When power is applied to this input, the function block is reset. The table pointer in
the control table is reloaded with the start of commands value from the header of the
program table.

MRTM: Multi-Register Transfer Module

410 840 USE 506 00 October 2002

840 USE 506 00 October 2002 411

88
MSTR: Master

At a Glance

Introduction This chapter describes the instruction MSTR.

MSTR: Master

412 840 USE 506 00 October 2002

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 413

Representation 414

Parameter Description 415

Write MSTR Operation 419

READ MSTR Operation 421

Get Local Statistics MSTR Operation 423

Clear Local Statistics MSTR Operation 425

Write Global Data MSTR Operation 427

Read Global Data MSTR Operation 428

Get Remote Statistics MSTR Operation 429

Clear Remote Statistics MSTR Operation 430

Peer Cop Health MSTR Operation 432

Reset Option Module MSTR Operation 434

Read CTE (Config Extension Table) MSTR Operation 435

Write CTE (Config Extension Table) MSTR Operation 437

Modbus Plus Network Statistics 440

TCP/IP Ethernet Statistics 445

Run Time Errors 446

Modbus Plus and SY/MAX Ethernet Error Codes 446

SY/MAX-specific Error Codes 448

TCP/IP Ethernet Error Codes 450

CTE Error Codes for SY/MAX and TCP/IP Ethernet 452

MSTR: Master

840 USE 506 00 October 2002 413

Short Description

Function
Description

PLCs that support networking communications capabilities over Modbus Plus and
Ethernet have a special MSTR (master) instruction with which nodes on the network
can initiate message transactions.

The MSTR instruction allows you to initiate one of 12 possible network
communications operations over the network:
l Read MSTR Operation
l Write MSTR Operation
l Get Local Statistics MSTR Operation
l Clear Local Statistics MSTR Operation
l Write Global Data MSTR Operation
l Read Global Data MSTR Operation
l Get Remote Statistics MSTR Operation
l Clear Remote Statistics MSTR Operation
l Peer Cop Health MSTR Operation
l Reset Option Module MSTR Operation
l Read CTE (Config Extension) MSTR Operation
l Write CTE (Config Extension) MSTR Operation

MSTR: Master

414 840 USE 506 00 October 2002

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

control

block

data

area

MSTR

length

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = enables selected MSTR operation

Middle input 0x, 1x None ON = terminates active MSTR operation

control block
(top node)

4x INT, UINT Control block (first of several (network-
dependant) contiguous holding registers)

data area
(middle node)

4x INT, UINT Data area (source or destination
depending on selected operation)

length
(bottom node)

INT Length of data area (maximum number of
registers), range: 1 ... 100

Top output 0x None ON while the instruction is active (echoes
state of the top input)

MIddle output 0x None ON if the MSTR operation is terminated
prior to completion (echoes state of the
middle input)

Bottom output 0x None ON = operation successful

MSTR: Master

840 USE 506 00 October 2002 415

Parameter Description

Mode of
Functioning

The MSTR instruction allows you to initiate one of 12 possible network
communications operations over the network. Each operation is designated by a
code.
Up to four MSTR instructions can be simultaneously active in a ladder logic program.
More than four MSTRs may be programmed to be enabled by the logic flow; as one
active MSTR block releases the resources it has been using and becomes
deactivated, the next MSTR operation encountered in logic can be activated.

Master
Operations

Certain MSTR operations are supported on some networks and not on others:

Legend

Code Type of Operation Modbus
Plus

TCP/IP
Ethernet

SY/MAX
Ethernet

 1 Write MSTR Operation, p. 419 x x x

 2 READ MSTR Operation, p. 421 x x x

 3 Get Local Statistics MSTR Operation, p. 423 x x -

 4 Clear Local Statistics MSTR Operation, p. 425 x x -

 5 Write Global Data MSTR Operation, p. 427 x - -

 6 Read Global Data MSTR Operation, p. 428 x - -

 7 Get Remote Statistics MSTR Operation,
p. 429

 x x -

 8 Clear Remote Statistics MSTR Operation,
p. 430

 x x -

 9 Peer Cop Health MSTR Operation, p. 432 x - -

10 Reset Option Module MSTR Operation, p. 434 - x x

11 Read CTE (Config Extension Table) MSTR
Operation, p. 435

- x x

12 Write CTE (Config Extension Table) MSTR
Operation, p. 437

- x x

x supported

- not supported

MSTR: Master

416 840 USE 506 00 October 2002

Control Block
(Top Node)

The 4x register entered in the top node is the first of several (network-dependant)
holding registers that comprise the network control block.

The control block structure differs according to the network in use:
l Modbus Plus (See Control Block for Modbus Plus, p. 416)
l TCP/IP Ethernet (See Control Block for TCP/IP Ethernet, p. 417)
l SY/MAX Ethernet (See Control Block for SY/MAX EthernetEthernet, p. 418)

Control Block for
Modbus Plus

The first of twelve contiguous 4x registers is entered in the top node. The remaining
eleven registers are implied:

Note: You need to understand the routing procedures used by the network you are
using when you program an MSTR instruction. A full discussion of Modbus Plus
routing path structures is given in Modbus Plus Network Planning and Installation
Guide. If TCP/IP or SY/MAX Ethernet routing is being implemented, it must be
accomplished via standard third-party Ethernet IP router products.

Register Content

Displayed Identifies one of the nine MSTR operations legal for Modbus Plus
(1 ... 9)

First implied Displays error status (See Run Time Errors , p. 446)

Second implied Displays length (number of registers transferred)

Third implied Displays MSTR operation-dependent information

Fourth implied The Routing 1 register, used to designate the address of the
destination node for a network transaction. The register display is
implemented physically for the Quantum PLCs

Fifth implied The Routing 2 register

Sixth implied The Routing 3 register

Seventh implied The Routing 4 register

Eighth implied The Routing 5 register

Ninth implied not applicable

Tenth implied not applicable

Eleventh implied not applicable

MSTR: Master

840 USE 506 00 October 2002 417

Routing 1
Register for
Quantum
Automation
Series PLCs
(Fourth Implied
Register)

To target a Modbus Plus Network Option module (NOM) in a Quantum PLC
backplane as the destination of an MSTR instruction, the value in the high byte
represents the physical slot location of the NOM, e.g. if the NOM resides in slot 7 in
the backplane, the high byte of routing register 1 would look like this:

Control Block for
TCP/IP Ethernet

The first of nine contiguous 4x registers is entered in the top node. The remaining
eight registers are implied:

Bit Function

1... 8

High byte: indicating physical location (range 1 ... 16)

9 ... 16

Destination address: binary value between 1 ... 64

Note: If you have created a logic program using an MSTR instruction for a 984 PLC
and want to port it to a Quantum Automation Series PLC without having to edit the
routing 1 register value, make sure that NOM #1 is installed in slot 1 of the
Quantum backplane (and if a NOM #2 is used, that it is installed in slot 2 of the
backplane). If you try to run the ported application with the NOMs in other slots
without modifying the register, an F001 status error will appear, indicating the
wrong destination node.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 0 0 0 1 1 1

0 x x x x x x x

Register Content

Displayed Identifies one of the nine MSTR operations legal for TCP/IP
(1 ... 4, 7, 8, 10 ... 12)

First implied Displays error status (See Run Time Errors , p. 446)

Second implied Displays length (number of registers transferred)

Third implied Displays MSTR operation-dependent information

Fourth implied Low byte: slot address of the NOE module
High byte: MBP-to-Ethernet Transporter (MET) Map index

Fifth implied Byte 4 of the 32-bit destination IP Address

Sixth implied Byte 3 of the 32-bit destination IP Address

Seventh implied Byte 2 of the 32-bit destination IP Address

Eighth implied Byte 1 of the 32-bit destination IP Address

MSTR: Master

418 840 USE 506 00 October 2002

Control Block for
SY/MAX
EthernetEthernet

The first of seven contiguous 4x registers is entered in the top node. The remaining
six registers are implied:

Data Area
(Middle Node)

The 4x register entered in the middle node is the first in a group of contiguous
holding registers that comprise the data area. For operations that provide the
communication processor with data, such as a Write operation, the data area is the
source of the data. For operations that acquire data from the communication
processor, such as a Read operation, the data area is the destination for the data.

In the case of the Ethernet Read (See Read CTE (Config Extension Table) MSTR
Operation, p. 435) and Write (See Write CTE (Config Extension Table) MSTR
Operation, p. 437) CTE operations, the middle node stores the contents of the
Ethernet configuration extension table in a series of registers.

Register Content

Displayed Identifies one of the nine MSTR operations legal for SY/MAX
(1, 2, 10 ... 12)

First implied Displays error status (See Run Time Errors , p. 446)

Second implied Displays Read/Write length (number of registers transferred)

Third implied Displays Read/Write base address

Fourth implied Low byte: slot address of the NOE module (e.g., slot 10 = 0A00, slot
6 = 0600)
High byte: MBP-to-Ethernet Transporter (MET) Map index

Fifth implied Destination drop number (or set to FF hex)

Sixth implied Terminator (set to FF hex)

MSTR: Master

840 USE 506 00 October 2002 419

Write MSTR Operation

Short
Description

An MSTR Write operation transfers data from a master source device to a specified
slave destination device on the network. Read and Write use one data master
transaction path and may be completed over multiple scans.
If you attempt to program the MSTR to Write its own station address, an error will be
generated in the first implied register of the MSTR control block. It is possible to
attempt a Write operation to a nonexistent register in the slave device. The slave will
detect this condition and report it, this may take several scans.

Network
Implementation

The MSTR Write operation can be implemented on the Modbus Plus, TCP/IP
Ethernet, and SY/MAX Ethernet networks.

Control Block
Utilization

In a Write operation, the registers in the MSTR control block (the top node) contain
the information that differs depending on the type of network you are using:
l Modbus Plus
l TCP/IP Ethernet
l SY/MAX Ethernet

Control Block for
Modbus Plus

Control Block for Modbus Plus

Register Function Content

Displayed Operation type 1 = Write

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error,
when relevant

Second implied Length Number of registers to be sent to slave

Third implied Slave device data
area

Specifies starting 4x register in the slave to be
written to (1 = 40001, 49 = 40049)

Fourth ... Eighth
implied

Routing 1 ... 5 Designates the first ... fifth routing path addresses,
respectively; the last nonzero byte in the routing
path is the destination device

MSTR: Master

420 840 USE 506 00 October 2002

Control Block for
TCP/IP Ethernet

Control Block for TCP/IP Ethernet

Control Block for
SY/MAX Ethernet

Control Block for SY/MAX Ethernet

Register Function Content

Displayed Operation type 1 = Write

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error:
Exception code + 3000: Exception response,
where response size is correct
4001: Exception response, where response size is
incorrect
4001: Read/Write

Second implied Length Number of registers to be sent to slave

Third implied Slave device data
area

Specifies starting 4x register in the slave to be
written to (1 = 40001, 49 = 40049)

Fourth implied Low byte Slot address of the network adapter module

Fifth ... eighth
implied

Destination Each register contains one byte of the 32-bit IP
address

Register Function Content

Displayed Operation type 1 = Write

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error,
when relevant

Second implied Length Number of registers to be sent to slave

Third implied Slave device data
area

Specifies starting 4x register in the slave to be
written to (1 = 40001, 49 = 40049)

Fourth implied Slot ID Low byte: slot address of the network adapter
module

Fourth implied Slot ID High byte: Destination drop number

Fifth ... eighth
implied

Terminator FF hex

MSTR: Master

840 USE 506 00 October 2002 421

READ MSTR Operation

Short
Description

An MSTR Read operation transfers data from a specified slave source device to a
master destination device on the network. Read and Write use one data master
transaction path and may be completed over multiple scans.
If you attempt to program the MSTR to Read its own station address, an error will
be generated in the first implied register of the MSTR control block. It is possible to
attempt a Read operation to a nonexistent register in the slave device. The slave will
detect this condition and report it, this may take several scans.

Network
Implementation

The MSTR Read operation can be implemented on the Modbus Plus, TCP/IP
Ethernet, and SY/MAX Ethernet networks.

Control Block
Utilization

In a Read operation, the registers in the MSTR control block (the top node) contain
the information that differs depending on the type of network you are using:
l Modbus Plus
l TCP/IP Ethernet
l SY/MAX Ethernet

Control Block for
Modbus Plus

Control Block for Modbus Plus

Register Function Content

Displayed Operation type 2 = Read

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error,
when relevant

Second implied Length Number of registers to be read from slave

Third implied Slave device data
area

Specifies starting 4x register in the slave to be read
from(1 = 40001, 49 = 40049)

Fourth ... Eighth
implied

Routing 1 ... 5 Designates the first ... fifth routing path addresses,
respectively; the last nonzero byte in the routing
path is the destination device

MSTR: Master

422 840 USE 506 00 October 2002

Control Block for
TCP/IP
EthernetEthernet

Control Block for TCP/IP Ethernet

Control Block for
SY/MAX Ethernet

Control Block for SY/MAX Ethernet

Register Function Content

Displayed Operation type 2 = Read

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error:
Exception code + 3000: Exception response,
where response size is correct
4001: Exception response, where response size is
incorrect
4001: Read/Write

Second implied Length Number of registers to be read from slave

Third implied Slave device data
area

Specifies starting 4x register in the slave to be read
from (1 = 40001, 49 = 40049)

Fourth implied Low byte Slot address of the network adapter module

Fifth ... eighth
implied

Destination Each register contains one byte of the 32-bit IP
address

Register Function Content

Displayed Operation type 2 = Read

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error,
when relevant

Second implied Length Number of registers to be read from slave

Third implied Slave device data
area

Specifies starting 4x register in the slave to be read
from (1 = 40001, 49 = 40049)

Fourth implied Slot ID Low byte: slot address of the network adapter
module

Fourth implied Slot ID High byte: Destination drop number

Fifth ... eighth
implied

Terminator FF hex

MSTR: Master

840 USE 506 00 October 2002 423

Get Local Statistics MSTR Operation

Short
Description

The Get Local Statistics operation obtains information related to the local node,
where the MSTR has been programmed. This operation takes one scan to complete
and does not require a data master transaction path.

Network
Implementation

The Get Local Statistics operation (type 3 in the displayed register of the top node)
can be implemented for Modbus Plus and TCP/IP Ethernet networks. It is not used
for SY/MAX Ethernet.
The following network statistics are available:
l Modbus Plus Network Statistics, p. 440
l TCP/IP Ethernet Statistics, p. 445

Control Block
Utilization

In a Get local statistics operation, the registers in the MSTR control block (the top
node) contain the information that differs depending on the type of network you are
using:
l Modbus Plus
l TCP/IP Ethernet

Control Block for
Modbus Plus

Control Block for Modbus Plus

Register Function Content

Displayed Operation type 3

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error,
when relevant

Second implied Length Starting from offset, the number of words of
statistics from the local processor’s statistics table
(See Modbus Plus Network Statistics, p. 440); the
length must be > 0 ≤ data area

Third implied Offset An offset value relative to the first available word in
the local processor’s statistics table; if the offset is
specified as 1, the function obtains statistics starting
with the second word in the table

Fourth implied Routing 1 If this is the second of two local nodes, set the high
byte to a value of 1
Note: If your PLC does not support Modbus Plus
option modules (S985s or NOMs), the fourth implied
register is not used.

MSTR: Master

424 840 USE 506 00 October 2002

Control Block for
TCP/IP Ethernet

Control Block for TCP/IP Ethernet

Register Function Content

Displayed Operation type 3

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error,
when relevant

Second implied Length Starting from offset, the number of words of
statistics from the local processor’s statistics table
(See TCP/IP Ethernet Statistics, p. 445); the length
must be > 0 ≤ data area

Third implied Offset An offset value relative to the first available word in
the local processor’s statistics table, if the offset is
specified as 1, the function obtains statistics starting
with the second word in the table

Fourth implied Slot ID Low byte: Slot address of the network adapter
module

Fifth ... Eighth
implied

Not applicable

MSTR: Master

840 USE 506 00 October 2002 425

Clear Local Statistics MSTR Operation

Short
Description

The Clear local statistics operation clears statistics relative to the local node (where
the MSTR has been programmed). This operation takes one scan to complete and
does not require a data master transaction path.

Network
Implementation

The Clear Local Statistics operation (type 4 in the displayed register of the top node)
can be implemented for Modbus Plus and TCP/IP Ethernet networks. It is not used
for SY/MAX Ethernet.
The following network statistics are available:
l Modbus Plus Network Statistics, p. 440
l TCP/IP Ethernet Statistics, p. 445

Control Block
Utilization

In a Clear local statistics operation, the registers in the MSTR control block (the top
node) differ according to the type of network in use:
l Modbus Plus
l TCP/IP Ethernet

Control Block for
Modbus Plus

Control Block for Modbus Plus

Note: When you issue the Clear Local Statistics operation, only words 13 ... 22 in
the statistics table (See Modbus Plus Network Statistics, p. 440) are cleared

Register Function Content

Displayed Operation type 4

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error,
when relevant

Second implied Reserved

Third implied Reserved

Fourth implied Routing 1 If this is the second of two local nodes, set the high
byte to a value of 1
Note: If your PLC does not support Modbus Plus
option modules (S985s or NOMs), the fourth implied
register is not used.

MSTR: Master

426 840 USE 506 00 October 2002

Control Block for
TCP/IP Ethernet

Control Block for TCP/IP Ethernet

Register Function Content

Displayed Operation type 4

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error,
when relevant

Second implied Reserved

Third implied Reserved

Fourth implied Slot ID Low byte: Slot address of the network adapter
module

Fifth ... Eighth
implied

Reserved

MSTR: Master

840 USE 506 00 October 2002 427

Write Global Data MSTR Operation

Short
Description

The Write global data operation transfers data to the communications processor in
the current node so that it can be sent over the network when the node gets the
token. All nodes on the local network link can receive this data. This operation takes
one scan to complete and does not require a data master transaction path.

Network
Implementation

The Write global data operation (type 5 in the displayed register of the top node) can
be implemented only for Modbus Plus networks.

Control Block
Utilization

The registers in the MSTR control block (the top node) are used in a Write global
data operation

Register Function Content

Displayed Operation type 5

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error,
when relevant

Second implied Length Specifies the number of registers from the data area
to be sent to the comm processor; the value of the
length must be ≤ 32 and must not exceed the size of
the data area

Third implied Reserved

Fourth implied Routing 1 If this is the second of two local nodes, set the high
byte to a value of 1
Note: If your PLC does not support Modbus Plus
option modules (S985s or NOMs), the fourth implied
register is not used.

MSTR: Master

428 840 USE 506 00 October 2002

Read Global Data MSTR Operation

Short
Description

The Read global data operation gets data from the communications processor in
any node on the local network link that is providing global data. This operation may
require multiple scans to complete if global data is not currently available from the
requested node. If global data is available, the operation completes in a single scan.
No master transaction path is required.

Network
Implementation

The Read global data operation (type 6 in the displayed register of the top node) can
be implemented only for Modbus Plus networks.

Control Block
Utilization

The registers in the MSTR control block (the top node) are used in a Read global
data operation

Register Function Content

Displayed Operation type 6

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error,
when relevant

Second implied Length Specifies the number of words of global data to be
requested from the comm processor designated by
the routing 1 parameter; the value of the length must
be > 0 ≤ 32 and must not exceed the size of the data
area

Third implied Available words Contains the number of words available from the
requested node; the value is automatically updated
by internal software

Fourth implied Routing 1 The low byte specifies the address of the node
whose global data are to be returned (a value
between 1 ... 64); if this is the second of two local
nodes, set the high byte to a value of 1
Note: If your PLC does not support Modbus Plus
option modules (S985s or NOMs), the high byte of
the fourth implied register is not used and the
highbyte bits must all be set to 0.

MSTR: Master

840 USE 506 00 October 2002 429

Get Remote Statistics MSTR Operation

Short
Description

The Get Remote Statistics operation obtains information relative to remote nodes on
the network. This operation may require multiple scans to complete and does not
require a master data transaction path.

Network
Implementation

The Get Remote Statistics operation (type 7 in the displayed register of the top
node) can be implemented for Modbus Plus and TCP/IP Ethernet networks. It is not
used for SY/MAX Ethernet.

Control Block
Utilization

In a Get remote statistics operation, the registers in the MSTR control block (the top
node) contain the information that differs depending on the type of network you are
using:
l Modbus Plus
l TCP/IP Ethernet

Control Block for
Modbus Plus

Control Block for Modbus Plus

The remote comm processor always returns its complete statistics table when a
request is made, even if the request is for less than the full table. The MSTR
instruction then copies only the amount of words you have requested to the
designated 4x registers.

Register Function Content

Displayed Operation type 7

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error,
when relevant

Second implied Length Starting from an offset, the number of words of
statistics to be obtained from a remote node; the
length must be > 0 ≤ total number of statistics
available (54) and must not exceed the size of the
data area

Third implied Offset Specifies an offset value relative to the first
available word in the statistics table (See Modbus
Plus Network Statistics, p. 440), the value must not
exceed the number of statistic words available.

Fourth ... Eighth
implied

Routing 1 ... 5 Designates the first ... fifth routing path addresses,
respectively; the last nonzero byte in the routing
path is the destination device.

MSTR: Master

430 840 USE 506 00 October 2002

Control Block for
TCP/IP Ethernet

Control Block for TCP/IP Ethernet

Clear Remote Statistics MSTR Operation

Short
Description

The Clear remote statistics operation clears statistics related to a remote network
node from the data area in the local node. This operation may require multiple scans
to complete and uses a single data master transaction path.

Network
Implementation

The Clear remote statistics operation (type 8 in the displayed register of the top
node) can be implemented for Modbus Plus and TCP/IP Ethernet networks. It is not
used for SY/MAX Ethernet.
The following network statistics are available:
l Modbus Plus Network Statistics, p. 440
l TCP/IP Ethernet Statistics, p. 445

Control Block
Utilization

In a Clear remote statistics operation, the registers in the MSTR control block (the
top node) contain information that differs according to the type of network in use:
l Modbus Plus
l TCP/IP Ethernet

Register Function Content

Displayed Operation type 7

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error,
when relevant

Second implied Length Starting from offset, the number of words of
statistics from the local processor’s statistics table
(See TCP/IP Ethernet Statistics, p. 445); the length
must be > 0 ≤ data area

Third implied Offset An offset value relative to the first available word in
the local processor’s statistics table, if the offset is
specified as 1, the function obtains statistics starting
with the second word in the table

Fourth implied Low byte Slot address of the network adapter module

Fifth ... Eighth
implied

Destination Each register contains one byte of the 32-bit IP
address

Note: When you issue the Clear Remote Statistics operation, only words 13 ... 22
in the statistics table (See Modbus Plus Network Statistics, p. 440) are cleared

MSTR: Master

840 USE 506 00 October 2002 431

Control Block for
Modbus Plus

Control Block for Modbus Plus

Control Block for
TCP/IP Ethernet

Control Block for TCP/IP Ethernet

Register Function Content

Displayed Operation type 8

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error,
when relevant

Second implied Reserved

Third implied Reserved

Fourth ... Eighth
implied

Routing 1 ... 5 Designates the first ... fifth routing path addresses,
respectively; the last nonzero byte in the routing
path is the destination device

Register Function Content

Displayed Operation type 8

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error,
when relevant

Second implied Not applicable

Third implied

Fourth implied Low byte Slot address of the network adapter module

Fifth ... Eighth
implied

Destination Each register contains one byte of the 32-bit IP
address

MSTR: Master

432 840 USE 506 00 October 2002

Peer Cop Health MSTR Operation

Short
Description

The peer cop health operation reads selected data from the peer cop
communications health table and loads that data to specified 4x registers in state
RAM. The peer cop communications health table is 12 words long, and the words
are indexed via this MSTR operation as words 0 ... 11.

Network
Implementation

The peer cop health operation (type 9) in the displayed register of the top node) can
be implemented only for Modbus Plus networks.

Control Block
Utilization

The registers in the MSTR control block (the top node) are used in a Peer cop health
operation:

Peer Cop
Communications
Health Status
Information

The peer cop communications health table comprises 12 contiguous registers that
can be indexed in an MSTR operation as words 0 ... 11. Each bit in each of the table
words is used to represent an aspect of communications health relative to a specific
node on the Modbus Plus network.

Register Function Content

Displayed Operation type 9

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error,
when relevant

Second implied Data size Number of words requested from peer cop table
(range 1 ... 12)

Third implied Index First word from the table to be read (range 0 ... 11,
where 0 = the first word in the peer cop table and 11
= the last word in the table)

Fourth implied Routing 1 If this is the second of two local nodes, set the high
byte to a value of 1
Note: If your PLC does not support Modbus Plus
option modules (S985s or NOMs), the fourth implied
register is not used.

MSTR: Master

840 USE 506 00 October 2002 433

Bit-to-Network
Node
Relationship

The bits in words 0 ... 3 represent the health of the global input communication
expected from nodes 1 ... 64. The bits in words 4 ... 7 represent the health of the
output from a specific node. The bits in words 8 ... 11 represent the health of the
input to a specific node:

Type of Status Word Index Bit-to-network Node Relationship

Global Input 0

1

2

3

Specific Output 4

5

6

7

Specific Input 8

9

10

11

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

MSTR: Master

434 840 USE 506 00 October 2002

State of a Peer
Cop Health Bit

The state of a peer cop health bit reflects the current communication status of its
associated node. A health bit is set when its associated node accepts inputs for its
peer copped input data group or hears that another node has accepted specific
output data from the its peer copped output data group. A health bit is cleared when
no communication has occurred for its associated data group within the configured
peer cop health time-out period.
All health bits are cleared when the Put Peer Cop interface command is executed at
PLC start-up time. Table values are not valid until at least one full token rotation
cycle has been completed after execution of the Put Peer Cop interface command.
The health bit for a given node is always zero when its associated peer cop entry is
null.

Reset Option Module MSTR Operation

Short
Description

The Reset option module operation causes a Quantum NOE option module to enter
a reset cycle to reset its operational environment.

Network
Implementation

The Reset option module operation (type 10 in the displayed register of the top
node) can be implemented for TCP/IP and SY/MAX Ethernet networks, accessed
via the appropriate network adapter. Modbus Plus networks do not use this
operation.

Control Block
Utilization

In a Reset option module operation, the registers in the MSTR control block (the top
node) differ according to the type of network in use:
l TCP/IP Ethernet
l SY/MAX Ethernet

Control Block for
TCP/IP Ethernet

Control Block for TCP/IP Ethernet

Register Function Content

Displayed Operation type 10

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error,
when relevant

Second implied Not applicable

Third implied

Fourth implied Slot ID Number displayed in the low byte, in the range 1 ...
16 indicating the slot in the local backplane where
the option module resides

Fifth ... Eighth
implied

Not applicable

MSTR: Master

840 USE 506 00 October 2002 435

Control Block for
SY/MAX Ethernet

Control Block for SY/MAX Ethernet

Read CTE (Config Extension Table) MSTR Operation

Short
Description

The Read CTE operation reads a given number of bytes from the Ethernet
configuration extension table to the indicated buffer in PLC memory. The bytes to be
read begin at a byte offset from the beginning of the CTE. The content of the
Ethernet CTE table (See CTE Display Implementation (Middle Node), p. 437) is
displayed in the middle node of the MSTR block.

Network
Implementation

The Read CTE operation (type 11 in the displayed register of the top node) can be
implemented for TCP/IP and SY/MAX Ethernet networks, accessed via the
appropriate network adapter. Modbus Plus networks do not use this operation.

Control Block
Utilization

In a Read CTE operation, the registers in the MSTR control block (the top node)
differ according to the type of network in use:
l TCP/IP Ethernet
l SY/MAX Ethernet

Register Function Content

Displayed Operation type 10

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error,
when relevant

Second implied Not applicable

Third implied

Fourth implied Slot ID Low byte: slot address of the network adapter
module

Fifth ... Eighth
implied

Not applicable

MSTR: Master

436 840 USE 506 00 October 2002

Control Block for
TCP/IP Ethernet

Control Block for TCP/IP Ethernet

Control Block for
SY/MAX Ethernet

Control Block for SY/MAX Ethernet

Register Function Content

Displayed Operation type 11

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error,
when relevant

Second implied Not applicable

Third implied

Fourth implied Map index Either a value displayed in the high byte of the
register or not used

Slot ID Number displayed in the low byte, in the range 1 ...
16 indicating the slot in the local backplane where
the option module resides

Fifth ... Eighth
implied

Not applicable

Register Function Content

Displayed Operation type 11

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error,
when relevant

Second implied Data Size Number of words transferred

Third implied Base Address Byte offset in PLC register structure indicating
where the CTE bytes will be written

Fourth implied Low byte Slot address of the NOE module

High byte Terminator (FF hex)

Fifth ... Eighth
implied

Not applicable

MSTR: Master

840 USE 506 00 October 2002 437

CTE Display
Implementation
(Middle Node)

The values in the Ethernet configuration extension table (CTE) are displayed in a
series of registers in the middle node of the MSTR instruction when a Read CTE
operation is implemented. The middle node contains the first of 11 contiguous 4x
registers.
The registers display the following CTE data:

Write CTE (Config Extension Table) MSTR Operation

Short
Description

The Write CTE operation writes the configuration CTE table from the data specified
in the middle node to an indicated Ethernet configuration extension table or a
specified slot.

Network
Implementation

The Write CTE operation (type 12 in the displayed register of the top node) can be
implemented for TCP/IP and SY/MAX Ethernet networks, via the appropriate
network adapter. Modbus Plus networks do not use this operation.

Control Block
Utilization

In a Write CTE operation, the registers in the MSTR control block (the top node)
differ according to the type of network in use:
l TCP/IP Ethernet
l SY/MAX Ethernet

Parameter Register Content

Frame type Displayed 1 = 802.3
2 = Ethernet

IP address First implied First byte of the IP address

Second implied Second byte of the IP address

Third implied Third byte of the IP address

Fourth implied Fourth byte of the IP address

Subnetwork mask Fifth implied Hi word

Sixth implied Low word

Gateway Seventh implied First byte of the gateway

Eighth implied Second byte of the gateway

Ninth implied Third byte of the gateway

Tenth implied Fourth byte of the gateway

MSTR: Master

438 840 USE 506 00 October 2002

Control Block for
TCP/IP Ethernet

Control Block for TCP/IP Ethernet

Control Block for
SY/MAX Ethernet

Control Block for SY/MAX Ethernet

Register Function Content

Displayed Operation type 12

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error,
when relevant

Second implied Not applicable

Third implied

Fourth implied Map index Either a value displayed in the high byte of the
register or not used

Slot ID Number displayed in the low byte, in the range 1 ...
16 indicating the slot in the local backplane where
the option module resides

Fifth ... Eighth
implied

Not applicable

Register Function Content

Displayed Operation type 12

First implied Error status (See
Run Time Errors ,
p. 446)

Displays a hex value indicating an MSTR error,
when relevant

Second implied Data Size Number of words transferred

Third implied Base Address Byte offset in PLC register structure indicating
where the CTE bytes will be written

Fourth implied Low byte Slot address of the NOE module

High byte Destination drop number

Fifth implied Terminator FF hex

Sixth ... Eighth
implied

Not applicable

MSTR: Master

840 USE 506 00 October 2002 439

CTE Display
Implementation
(Middle Node)

The values in the Ethernet configuration extension table (CTE) are displayed in a
series of registers in the middle node of the MSTR instruction when a Write CTE
operation is implemented. The middle node contains the first of 11 contiguous 4x
registers.
The registers are used to transfer the following CTE data:

Parameter Register Content

Frame type Displayed 1 = 802.3
2 = Ethernet

IP address First implied First byte of the IP address

Second implied Second byte of the IP address

Third implied Third byte of the IP address

Fourth implied Fourth byte of the IP address

Subnetwork mask Fifth implied Hi word

Sixth implied Low word

Gateway Seventh implied First byte of the gateway

Eighth implied Second byte of the gateway

Ninth implied Third byte of the gateway

Tenth implied Fourth byte of the gateway

MSTR: Master

440 840 USE 506 00 October 2002

Modbus Plus Network Statistics

Modbus Plus
Network
Statistics

The following table shows the statistics available on the Modbus Plus network. You
may acquire this information by using the appropriate MSTR operation or by using
Modbus function code 8.

Modbus Plus Network Statistics

Note: When you issue the Clear local or Clear remote statistics operations, only
words 13 ... 22 are cleared.

Word Bits Meaning

00 Node type ID

0 Unknown node type

1 PLC node

2 Modbus bridge node

3 Host computer node

4 Bridge Plus node

5 Peer I/O node

01 0 ... 11 Software version number in hex (to read, strip bits 12-15 from
word)

12 ... 14 Reserved

15 Defines Word 15 error counters (see Word 15)
Most significant bit defines use of error counters in Word 15.
Least significant half of upper byte, plus lower byte, contain
software
version:

02 Network address for this station

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Software version number (in HEX)

Word 15 error counter (see word 15)

MSTR: Master

840 USE 506 00 October 2002 441

03 MAC state variable:

0 Power up state

1 Monitor offline state

2 Duplicate offline state

3 Idle state

4 Use token state

5 Work response state

6 Pass token state

7 Solicit response state

8 Check pass state

9 Claim token state

10 Claim response state

04 Peer status (LED code); provides status of this unit relative to
the network:

0 Monitor link operation

32 Normal link operation

64 Never getting token

96 Sole station

128 Duplicate station

05 Token pass counter; increments each time this station gets the
token

06 Token rotation time in ms

07 LO Data master failed during token ownership bit map

HI Program master failed during token ownership bit map

08 LO Data master token owner work bit map

HI Program master token owner work bit map

09 LO Data slave token owner work bit map

HI Program slave token owner work bit map

10 HI Data slave/get slave command transfer request bit map

11 LO Program master/get master rsp transfer request bit map

HI Program slave/get slave command transfer request bit map

12 LO Program master connect status bit map

HI Program slave automatic logout request bit map

13 LO Pretransmit deferral error counter

HI Receive buffer DMA overrun error counter

Word Bits Meaning

MSTR: Master

442 840 USE 506 00 October 2002

14 LO Repeated command received counter

HI Frame size error counter

15 If Word 1 bit 15 is not set, Word 15 has the following meaning:

LO Receiver collision-abort error counter

HI Receiver alignment error counter

If Word 1 bit 15 is set, Word 15 has the following meaning:

LO Cable A framing error

HI Cable B framing error

16 LO Receiver CRC error counter

HI Bad packet-length error counter

17 LO Bad link-address error counter

HI Transmit buffer DMA-underrun error counter

18 LO Bad internal packet length error counter

HI Bad MAC function code error counter

19 LO Communication retry counter

HI Communication failed error counter

20 LO Good receive packet success counter

HI No response received error counter

21 LO Exception response received error counter

HI Unexpected path error counter

22 LO Unexpected response error counter

HI Forgotten transaction error counter

23 LO Active station table bit map, nodes 1 ... 8

HI Active station table bit map, nodes 9 ...16

24 LO Active station table bit map, nodes 17 ... 24

HI Active station table bit map, nodes 25 ... 32

25 LO Active station table bit map, nodes 33 ... 40

HI Active station table bit map, nodes 41 ... 48

26 LO Active station table bit map, nodes 49 ... 56

HI Active station table bit map, nodes 57 ... 64

27 LO Token station table bit map, nodes 1 ... 8

HI Token station table bit map, nodes 9 ... 16

28 LO Token station table bit map, nodes 17 ... 24

HI Token station table bit map, nodes 25 ... 32

Word Bits Meaning

MSTR: Master

840 USE 506 00 October 2002 443

29 LO Token station table bit map, nodes 33 ... 40

HI Token station table bit map, nodes 41 ... 48

30 LO Token station table bit map, nodes 49 ... 56

HI Token station table bit map, nodes 57 ... 64

31 LO Global data present table bit map, nodes 1 ... 8

HI Global data present table bit map, nodes 9 ... 16

32 LO Global data present table bit map, nodes 17 ... 24

HI Global data present table bit map, nodes 25 ... 32

33 LO Global data present table bit map, nodes 33 ... 40

HI Global data present table bit map, nodes 41 ... 48

34 LO Global data present table map, nodes 49 ... 56

HI Global data present table bit map, nodes 57 ... 64

35 LO Receive buffer in use bit map, buffer 1-8

HI Receive buffer in use bit map, buffer 9 ... 16

36 LO Receive buffer in use bit map, buffer 17 ... 24

HI Receive buffer in use bit map, buffer 25 ... 32

37 LO Receive buffer in use bit map, buffer 33 ... 40

HI Station management command processed initiation counter

38 LO Data master output path 1 command initiation counter

HI Data master output path 2 command initiation counter

39 LO Data master output path 3 command initiation counter

HI Data master output path 4 command initiation counter

40 LO Data master output path 5 command initiation counter

HI Data master output path 6 command initiation counter

41 LO Data master output path 7 command initiation counter

HI Data master output path 8 command initiation counter

42 LO Data slave input path 41 command processed counter

HI Data slave input path 42 command processed counter

43 LO Data slave input path 43 command processed counter

HI Data slave input path 44 command processed counter

44 LO Data slave input path 45 command processed counter

HI Data slave input path 46 command processed counter

45 LO Data slave input path 47 command processed counter

HI Data slave input path 48 command processed counter

Word Bits Meaning

MSTR: Master

444 840 USE 506 00 October 2002

46 LO Program master output path 81 command initiation counter

HI Program master output path 82 command initiation counter

47 LO Program master output path 83 command initiation counter

HI Program master output path 84 command initiation counter

48 LO Program master command initiation counter

HI Program master output path 86 command initiation counter

49 LO Program master output path 87 command initiation counter

HI Program master output path 88 command initiation counter

50 LO Program slave input path C1 command processed counter

HI Program slave input path C2 command processed counter

51 LO Program slave input path C3 command processed counter

HI Program slave input path C4 command processed counter

52 LO Program slave input path C5 command processed counter

HI Program slave input path C6 command processed counter

53 LO Program slave input path C7 command processed counter

HI Program slave input path C8 command processed counter

Word Bits Meaning

MSTR: Master

840 USE 506 00 October 2002 445

TCP/IP Ethernet Statistics

TCP/IP Ethernet
Statistics

A TCP/IP Ethernet board responds to Get Local Statistics and Set Local Statistics
commands with the following information:

Word Meaning

00 ... 02 MAC addr., e.g., if the MAC addr. is 00 00 54 00 12 34, it is displayed as follows:

Word Content

 00 00 00

 01 00 54

 02 34 12

03 Board status Meaning

0x0001 Running

0x4000 APPI LED (1=ON, 0 = OFF)

0x8000 Link LED

04 and 05 Number of receiver interrupts

06 and 07 Number of transmitter interrupts

08 and 09 Transmit-timeout error count

10 and 11 Collision-detect error count

12 and 13 Missed packets

14 and 15 Memory error count

16 and 17 Number of times driver has restarted lance

18 and 19 Receive framing error count

20 and 21 Receiver overflow error count

22 and 23 Receive CRC error count

24 and 25 Receive buffer error count

26 and 27 Transmit buffer error count

28 and 29 Transmit silo underflow count

30 and 31 Late collision count

32 and 33 Lost carrier count

34 and 35 Number of retries

36 and 37 IP addr., e.g., if the IP addr. is 198.202.137.113 (or c6 CA 89 71), it is displayed
as follows:

Word Content

 36 89 71

 37 C6 CA

MSTR: Master

446 840 USE 506 00 October 2002

Run Time Errors

Runtime Errors If an error occurs during a MSTR operation, a hexadecimal error code will be
displayed in the first implied register in the control block (the top node).
Function error codes are network-specific:
l Modbus Plus and SY/MAX Ethernet Error Codes, p. 446
l SY/MAX-specific Error Codes, p. 448
l TCP/IP Ethernet Error Codes, p. 450
l CTE Error Codes for SY/MAX and TCP/IP Ethernet, p. 452

Modbus Plus and SY/MAX Ethernet Error Codes

Form of the
Function Error
Code

The form of the function error code for Modbus Plus and SY/MAX Ethernet
transactions is Mmss, where
l M represents the major code
l m represents the minor code
l ss represents a subcode

Hexadecimal
Error Code

HEX Error Code for Modbus Plus and SY/MAX Ethernet:

Hex Error
Code

Meaning

1001 User has aborted the MSTR element

2001 An unsupported operation type has been specified in the control block

2002 One or more control block parameter has been changed while the MSTR
element is active (applies only to operations that take multiple scans to
complete). Control block parameters may be changed only when the MSTR
element is not active.

2003 Invalid value in the length field of the control block

2004 Invalid value in the offset field of the control block

2005 Invalid values in the length and offset fields of the control block

2006 Invalid slave device data area

2007 Invalid slave device network area

2008 Invalid slave device network routing

2009 Route equal to your own address

200A Attempting to obtain more global data words than available

30ss Modbus slave exception response (See ss HEX Value in Error Code 30ss,
p. 447)

4001 Inconsistent Modbus slave response

MSTR: Master

840 USE 506 00 October 2002 447

ss HEX Value in
Error Code 30ss

The ss subfield in error code 30ss is:

ss Hex Value in
Error Code 6mss

The m subfield in error code 6mss is an index into the routing information indicating
where an error has been detected (a value of 0 indicates the local node, a 2 the
second device on the route, etc.).

The ss subfield in error code 6mss is:

5001 Inconsistent network response

6mss) Routing failure (See ss Hex Value in Error Code 6mss, p. 447)

Hex Error
Code

Meaning

ss Hex Value Meaning

01 Slave device does not support the requested operation

02 Nonexistent slave device registers requested

03 Invalid data value requested

04 Reserved

05 Slave has accepted long-duration program command

06 Function can’t be performed now: a long-duration command in effect

07 Slave rejected long-duration program command

08 ... 255 Reserved

ss Hex Value Meaning

01 No response received

02 Program access denied

03 Node off-line and unable to communicate

04 Exception response received

05 Router node data paths busy

06 Slave device down

07 Bad destination address

08 Invalid node type in routing path

10 Slave has rejected the command

20 Initiated transaction forgotten by slave device

40 Unexpected master output path received

80 Unexpected response received

F001 Wrong destination node specified for the MSTR operation

MSTR: Master

448 840 USE 506 00 October 2002

SY/MAX-specific Error Codes

Types or Errors Three additional types of errors may be reported in the MSTR instruction when SY/
MAX Ethernet is being used.

The error codes have the following designations:
l 71xx errors: Errors detected by the remote SY/MAX device
l 72xx errors: Errors detected by the serve
l 73xx errors: Errors detected by the Quantum translator

Hexadecimal
Error Code SY/
MAX-specific

HEX Error Code SY/MAX-specific:

Hex Error Code Meaning

7101 Illegal opcode detected by the remote SY/MAX device

7103 Illegal address detected by the remote SY/MAX device

7109 Attempt to write a read-only register detected by the remote SY/MAX
device

710F Receiver overflow detected by the remote SY/MAX device

7110 Invalid length detected by the remote SY/MAX device

7111 Remote device inactive, not communicating (occurs after retries and
time-out have been exhausted) detected by the remote SY/MAX device

7113 Invalid parameter on a read operation detected by the remote SY/MAX
device

711D Invalid route detected by the remote SY/MAX device

7149 Invalid parameter on a write operation detected by the remote SY/MAX
device

714B Illegal drop number detected by the remote SY/MAX device

7201 Illegal opcode detected by the SY/MAX server

7203 Illegal address detected by the SY/MAX server

7209 Attempt to write to a read-only register detected by the SY/MAX server

720F Receiver overflow detected by the SY/MAX server

7210 Invalid length detected by the SY/MAX server

7211 Remote device inactive, not communicating (occurs after retries and
time-out have been exhausted) detected by the SY/MAX server

7213 Invalid parameter on a read operation detected by the SY/MAX server

721D Invalid route detected by the SY/MAX server

7249 Invalid parameter on a write operation detected by the SY/MAX server

724B Illegal drop number detected by the SY/MAX server

MSTR: Master

840 USE 506 00 October 2002 449

7301 Illegal opcode in an MSTR block request by the Quantum translator

7303 Read/Write QSE module status (200 route address out of range)

7309 Attempt to write to a read-only register when performing a status write
(200 route)

731D Invalid rout detected by Quantum translator
Valid routes are:
l dest_drop, 0xFF
l 200, dest_drop, 0xFF
l 100+drop, dest_drop, 0xFF
All other routing values generate an error

734B One of the following errors has occurred:
l No CTE (configuration extension) table was configured
l No CTE table entry was created for the QSE Module slot number
l No valid drop was specified
l The QSE Module was not reset after the CTE was created

Note: After writing and configuring the CTE and downloading it to the
QSE Module, you must reset the QSE Module to make the changes
take effect.

l When using an MSTR instruction, no valid slot or drop was specified

Hex Error Code Meaning

MSTR: Master

450 840 USE 506 00 October 2002

TCP/IP Ethernet Error Codes

Error in an MSTR
Routine

An error in an MSTR routine over TCP/IP Ethernet may produce one of the following
errors in the MSTR control block.
The form of the code is Mmss, where
l M represents the major code
l m represents the minor code
l ss represents a subcode

Hexadecimal
Error Code for
MSTR Routine
over TCP/IP
Ethernet

HEX Error Code MSTR routine over TCP/IP Ethernet:

ss Hex Value in
Error Code 30ss

The ss subfield in error code 30ss is:

Hex Error Code Meaning

1001 User has aborted the MSTR element

2001 An unsupported operation type has been specified in the control block

2002 One or more control block parameter has been changed while the MSTR
element is active (applies only to operations that take multiple scans to
complete). Control block parameters may be changed only when the
MSTR element is not active

2003 Invalid value in the length field of the control block

2004 Invalid value in the offset field of the control block

2005 Invalid values in the length and offset fields of the control block

2006 Invalid slave device data area

3000 Generic Modbus fail code

30ss Modbus slave exception response (See ss Hex Value in Error Code
30ss, p. 450)

4001 Inconsistent Modbus slave response

ss Hex Value Meaning

01 Slave device does not support the requested operation

02 Nonexistent slave device registers requested

03 Invalid data value requested

04 Reserved

05 Slave has accepted long-duration program command

06 Function can’t be performed now: a long-duration command in effect

07 Slave rejected long-duration program command

MSTR: Master

840 USE 506 00 October 2002 451

HEX Error Code
TCP/IP Ethernet
Network

An error on the TCP/IP Ethernet network itself may produce one of the following
errors in the MSTR control block:

Hex Error Code Meaning

5004 Interrupted system call

5005 I/O error

5006 No such address

5009 The socket descriptor is invalid

500C Not enough memory

500D Permission denied

5011 Entry exists

5016 An argument is invalid

5017 An internal table has run out of space

5020 The connection is broken

5023 This operation would block and the socket is nonblocking

5024 The socket is nonblocking and the connection cannot be completed

5025 The socket is nonblocking and a previous connection attempt has not yet
completed

5026 Socket operation on a nonsocket

5027 The destination address is invalid

5028 Message too long

5029 Protocol wrong type for socket

502A Protocol not available

502B Protocol not supported

502C Socket type not supported

502D Operation not supported on socket

502E Protocol family not supported

502F Address family not supported

5030 Address is already in use

5031 Address not available

5032 Network is down

5033 Network is unreachable

5034 Network dropped connection on reset

5035 The connection has been aborted by the peer

5036 The connection has been reset by the peer

5037 An internal buffer is required, but cannot be allocated

5038 The socket is already connected

MSTR: Master

452 840 USE 506 00 October 2002

CTE Error Codes for SY/MAX and TCP/IP Ethernet

CTE Error Codes
for SY/MAX and
TCP/IP Ethernet

HEX Error Code MSTR routine over TCP/IP Ethernet:

5039 The socket is not connected

503A Can’t send after socket shutdown

503B Too many references; can’t splice

503C Connection timed out

503D The attempt to connect was refused

5040 Host is down

5041 The destination host could not be reached from this node

5042 Directory not empty

5046 NI_INIT returned -1

5047 The MTU is invalid

5048 The hardware length is invalid

5049 The route specified cannot be found

504A Collision in select call; these conditions have already been selected by
another task

504B The task id is invalid

F001 In Reset mode

Hex Error Code Meaning

Hex Error Code Meaning

7001 The is no Ethernet configuration extension

7002 The CTE is not available for access

7003 The offset is invalid

7004 The offset + length is invalid

7005 Bad data field in the CTE

840 USE 506 00 October 2002 453

89
MU16: Multiply 16 Bit

At a Glance

Introduction This chapter describes the instruction MU16.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 454

Representation 454

MU16: Multiply 16 Bit

454 840 USE 506 00 October 2002

Short Description

Function
Description

The MU16 instruction performs signed or unsigned multiplication on the 16-bit
values in the top and middle nodes, then posts the product in two contiguous holding
registers in the bottom node.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

value 1

value 2

MU16
product

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = enables value 1 x value 2

Bottom input 0x, 1x None ON = signed operation
OFF = unsigned operation

value 1
(top node)

3x, 4x INT, UINT Multiplicand, can be displayed explicitly as
an integer (range 1 ... 65 535, enter e.g.
#65535) or stored in a register

value 2
(middle node)

3x, 4x INT, UINT Multiplier, can be displayed explicitly as an
integer (range 1 ... 65 535) or stored in a
register

product
(bottom node)

4x INT, UINT First of two contiguous holding registers:
displayed register contains half of the
product and the implied register contains
the other half

Top output 0x None Echoes the state of the top input

840 USE 506 00 October 2002 455

90
MUL: Multiply

At a Glance

Introduction This chapter describes the instruction MUL.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 456

Representation 456

Example 456

MUL: Multiply

456 840 USE 506 00 October 2002

Short Description

Function
Description

The MUL instruction multiplies unsigned value 1 (its top node) by unsigned value 2
(its middle node) and stores the product in two contiguous holding registers in the
bottom node.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

Example

Product of
Instruction MUL

For example, if value 1 = 8 000 and value 2 = 2, the product is 16 000. The displayed
register contains the value 0001 (the high-order half of the product), and implied
register contains the value 6 000 (the low-order half of the product).

value 1

value 2

MUL
result

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = value 1 multiplied by value 2

value 1
(top node)

3x, 4x UINT Multiplicand, can be displayed explicitly as an
integer (range 1 ... 9 999) or stored in a register

value 2
(middle node)

3x, 4x UINT Multiplier, can be displayed explicitly as an
integer (range 1 ... 9 999) or stored in a register

result
(bottom node)

4x UINT Product (first of two contiguous holding registers;
displayed: high-order digits; implied: low-order
digits)

Top output 0x None Echoes the state of the top input

840 USE 506 00 October 2002 457

91
NBIT: Bit Control

At a Glance

Introduction This chapter describes the instruction NBIT.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 458

Representation 458

NBIT: Bit Control

458 840 USE 506 00 October 2002

Short Description

Function
Description

The normal bit (NBIT) instruction lets you control the state of a bit from a register by
specifying its associated bit number in the bottom node. The bits being controlled
are similar to coils, when a bit is turned ON, it stays ON until a control signal turns it
OFF.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

Note: The NBIT instruction does not follow the same rules of network placement
as 0x-referenced coils do. An NBIT instruction cannot be placed in column 11 of a
network and it can be placed to the left of other logic nodes on the same rungs of
the ladder.

register #

NBIT

bit #
(1 ... 16)

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = sets the specified bit to 1
OFF = clears the specified bit to 0

register #
(top node)

4x WORD Holding register whose bit pattern is being
controlled

bit #
(bottom node)

INT, UINT Indicates which one of the 16 bits is being
controlled

Top output 0x None Echoes the state of the top input:
ON = top input ON and specified bit set to
1
OFF = top input OFF and specified bit set
to 0

840 USE 506 00 October 2002 459

92
NCBT: Normally Closed Bit

At a Glance

Introduction This chapter describes the instruction NCBT.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 460

Representation 460

NCBT: Normally Closed Bit

460 840 USE 506 00 October 2002

Short Description

Function
Description

The normally closed bit (NCBT) instruction lets you sense the logic state of a bit in
a register by specifying its associated bit number in the bottom node. The bit is
representative of an N.C contact. It passes power from the top output when the
specified bit is OFF and the top input is ON.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

register #

NCBT

bit #
(1 ... 16)

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = enables bit sensing

register #
(top node)

3x, 4x WORD Register whose bit pattern is being used to
represent N.C. contacts

bit #
(bottom node)

INT, UINT (Indicates which one of the 16 bits is being
sensed

Top output 0x None ON = top input is ON and specified bit is
OFF (logic state 0)

840 USE 506 00 October 2002 461

93
NOBT: Normally Open Bit

At a Glance

Introduction This chapter describes the instruction NOBT.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 462

Representation 462

NOBT: Normally Open Bit

462 840 USE 506 00 October 2002

Short Description

Function
Description

The normally open bit (NOBT) instruction lets you sense the logic state of a bit in a
register by specifying its associated bit number in the bottom node. The bit is
representative of an N.O contact.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

register #

NOBT

bit #
(1 ... 16)

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = enables bit sensing

register #
(top node)

3x, 4x WORD Register whose bit pattern is being used to
represent N.O. contacts

bit #
(bottom node)

INT, UINT (Indicates which one of the 16 bits is being
sensed

Top output 0x None ON = top input is ON and specified bit is
ON (logic state 1)

840 USE 506 00 October 2002 463

94
NOL: Network Option Module for
Lonworks

At a Glance

Introduction This chapter describes the instruction NOL.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 464

Representation 466

Detailed Description 465

NOL: Network Option Module for Lonworks

464 840 USE 506 00 October 2002

Short Description

Function
Requirements

The following steps are necessary before using this instruction:

Function
Description

The NOL instruction is provided to facilitate the movement of the large amount of
data between the NOL module and the controller register space. The NOL Module
is mapped for 16 input registers (3X) and 16 output registers (4X). Of these
registers, two input and two output registers are for handshaking between the NOL
Module and the instruction. The remaining fourteen input and fourteen output
registers are used to transport the data.

Step Action

1 Add loadable NSUP.exe to the controller’s configuration
Note: This loadable needs only be loaded once to support multiple loadables,
such as ECS.exe and XMIT.exe.

CAUTION

The outputs of the instruction turn on, regardless of the input
states

When the NSUP loadable is not installed or is installed after the NOL
loadable or is installed in a Quantum PLC with an executive < V2.0, all
three outputs turn on, regardless of the input states.

Failure to observe this precaution can result in injury or
equipment damage.

Step Action

2 Unpack and install the DX Loadable NOL; further information you will find in the
chapter Installation of DX Loadables, p. 41.

NOL: Network Option Module for Lonworks

840 USE 506 00 October 2002 465

Detailed Description

Register Block
(Middle Node)

This block provides the registers for configuration and status information, the
registers for the health status bits and the registers for the actual data of the
Standard Network Variable Types (SNVTs).
Register Block

The first 16 registers with configuration and status information can be programmed
and monitored via the NOL DX Zoom screen. For setting up the link to the NOL
module the only parameters that need to be entered are the beginning 3x and 4x
registers used when I/O mapping the NOL module.
Further information you will find in the documentation Network Option Module for
LonWorks.

Register Content

Configuration and
Status information

Displayed and first
implied

I/O Map input base (3x)

Second and third implied I/O Map output base (4x)

Fourth implied Enable health bits

Fifth implied Number of input registers

Sixth implied Number of output registers

Seventh implied Number of discrete input registers

Eighth implied Number of discrete output registers

Ninth implied Config checksum (CRC)

10th implied NOL version

11th implied Module firmware version

12th implied NOL DX version

13th implied Module DX version

14th to 15th implied Not used

SNVTs Health Bit
Status
(if enabled in DX-
Zoom screen)

16th to 31st implied Health bits of each programmable network
variable

SNVTs Actual
Data

Enable Health Bit = NO:
from 16th implied up

Data is stored in 4 groups:
l Discrete inputs
l Register inputs
l Discrete outputs
l Register outputs
These groups of data are set up
consecutively and start on word boundaries.

Enable Health Bit = YES:
from 32nd implied up

NOL: Network Option Module for Lonworks

466 840 USE 506 00 October 2002

Count (Bottom
Node)

Defines the total number of registers required by the function block. This value must
be set to a value equal to or greater than the number of data registers required to
transfer and store the network data being used by the NOL module. If the count
value is not large enough for the required data, the error output will be set.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

function #

register

block

NOL

count

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = Enables the NOL function

Middle input 0x, 1x None ON = Initialize: causes the instruction to
re-sync with the module

function #
(top node)

4x INT, UINT,
WORD

Function number selects the function of
the NOL block
Function 0 transfers data to/from the
module. Any other function number yields
an error.

register block
(middle node)

4x INT, UINT,
WORD

Register block (first of 16 contiguous
registers

count
(bottom node)

INT, UINT Total number of registers required by the
instruction

Top output 0x None ON = instruction enabled and no error

Middle output 0x None New data
Set for one sweep when the entire data
block from the module has been written to
the register area.

Bottom output 0x None ON = Error

840 USE 506 00 October 2002 467

95
OR: Logical OR

At a Glance

Introduction This chapter describes the instruction OR.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 468

Representation 469

Parameter Description 469

OR: Logical OR

468 840 USE 506 00 October 2002

Short Description

Function
Description

The OR instruction performs a Boolean OR operation on the bit patterns in the
source and destination matrices.
The ORed bit pattern is then posted in the destination matrix, overwriting its previous
contents.

WARNING

Overriding of any disabled coils within the destination matrix
without enabling them

OR will override any disabled coils within the destination matrix without
enabling them. This can cause personal injury if a coil has disabled an
operation for maintenance or repair because the coil’s state can be
changed by the OR operation.

Failure to observe this precaution can result in severe injury or
equipment damage.

0 1 1 0

0 0

OR

0 1

OR

1 1

OR

1 1

OR
destination

bits

source
bits

OR: Logical OR

840 USE 506 00 October 2002 469

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

Parameter Description

Matrix Length
(Bottom Node)

The integer entered in the bottom node specifies the matrix length, i.e. the number
of registers or 16-bit words in the two matrices. The matrix length can be in the range
1 ... 100. A length of 2 indicates that 32 bits in each matrix will be ORed.

source

matrix

destination

matrix

OR

length

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None Initiates OR

source matrix
(top node)

0x, 1x, 3x, 4x ANY_BIT First reference in the source matrix.

destination
matrix
(middle node)

0x, 4x ANY_BIT First reference in the destination matrix

length
(bottom node)

INT, UINT Matrix length, range: 1 ... 100.

Top output 0x None Echoes state of the top input

OR: Logical OR

470 840 USE 506 00 October 2002

CBA

840 USE 506 00 October 2002 i

A
AD16, 55
ADD, 57
Add 16 Bit, 55
Addition, 57

AD16, 55
ADD, 57

Advanced Calculations, 472
Analog Input, 479
Analog Output, 489
Analog Values, 15
AND, 59
ASCII Functions

READ, 615
WRIT, 707

Average Weighted Inputs Calculate, 493

B
Base 10 Antilogarithm, 139
Base 10 Logarithm, 215
BCD, 63
Binary to Binary Code, 63
Bit Control, 457
Bit pattern comparison

CMPR, 89
Bit Rotate, 75
BLKM, 65
BLKT, 69
Block Move, 65
Block Move with Interrupts Disabled, 73
Block to Table, 69

BMDI, 73
BROT, 75

C
Calculated preset formula, 499
Central Alarm Handler, 485
Changing the Sign of a Floating Point
Number, 155
Check Sum, 85
CHS, 79
CKSM, 85
Closed Loop Control, 15
CMPR, 89
Coils, 43
Communications

MSTR, 411
COMP, 93
Compare Register, 89
Complement a Matrix, 93
Comprehensive ISA Non Interacting PID,
519
Configure Hot Standby, 79
Contacts, 43
Convertion

BCD to binary, 63
binary to BCD, 63

Index

Index

ii 840 USE 506 00 October 2002

Counters / Timers
T.01 Timer, 687
T0.1 Timer, 689
T1.0 Timer, 691
T1MS Timer, 693
UCTR, 705

Counters/Timers
DCTR, 97

D
Data Logging for PCMCIA Read/Write
Support, 107
DCTR, 97
Derivative Rate Calculation over a Specified
Time, 567
DIOH, 99
Distributed I/O Health, 99
DIV, 103
Divide, 103
Divide 16 Bit, 117
DLOG, 107
Double Precision Addition, 127
Double Precision Division, 187
Double Precision Multiplication, 223
Double Precision Subtraction, 259
Down Counter, 97
DRUM, 113
DRUM Sequencer, 113
DV16, 117

E
EMTH, 121
EMTH Subfunction

EMTH-ADDDP, 127
EMTH-ADDFP, 131, 135
EMTH-ANLOG, 139
EMTH-ARCOS, 143
EMTH-ARSIN, 147
EMTH-ARTAN, 151
EMTH-CHSIN, 155
EMTH-CMPFP, 159
EMTH-CMPIF, 163
EMTH-CNVDR, 167

EMTH-CNVFI, 171
EMTH-CNVIF, 175
EMTH-CNVRD, 179
EMTH-COS, 183
EMTH-DIVDP, 187
EMTH-DIVFI, 191
EMTH-DIVFP, 195
EMTH-DIVIF, 199
EMTH-ERLOG, 203
EMTH-EXP, 207
EMTH-LNFP, 211
EMTH-LOG, 215
EMTH-LOGFP, 219
EMTH-MULDP, 223
EMTH-MULFP, 227
EMTH-MULIF, 231
EMTH-PI, 235
EMTH-POW, 239
EMTH-SINE, 243
EMTH-SQRFP, 247
EMTH-SQRT, 251
EMTH-SQRTP, 255
EMTH-SUBDP, 259
EMTH-SUBFI, 263
EMTH-SUBFP, 267
EMTH-SUBIF, 271
EMTH-TAN, 275

EMTH-ADDDP, 127
EMTH-ADDFP, 131
EMTH-ADDIF, 135
EMTH-ANLOG, 139
EMTH-ARCOS, 143
EMTH-ARSIN, 147
EMTH-ARTAN, 151
EMTH-CHSIN, 155
EMTH-CMPFP, 159
EMTH-CMPIF, 163
EMTH-CNVDR, 167
EMTH-CNVFI, 171
EMTH-CNVIF, 175
EMTH-CNVRD, 179
EMTH-COS, 183
EMTH-DIVDP, 187
EMTH-DIVFI, 191
EMTH-DIVFP, 195
EMTH-DIVIF, 199

Index

840 USE 506 00 October 2002 iii

EMTH-ERLOG, 203
EMTH-EXP, 207
EMTH-LNFP, 211
EMTH-LOG, 215
EMTH-LOGFP, 219
EMTHMULDP, 223
EMTH-MULFP, 227
EMTH-MULIF, 231
EMTH-PI, 235
EMTH-POW, 239
EMTH-SINE, 243
EMTH-SQRFP, 247
EMTH-SQRT, 251
EMTH-SQRTP, 255
EMTH-SUBDP, 259
EMTH-SUBFI, 263
EMTH-SUBFP, 267
EMTH-SUBIF, 271
EMTH-TAN, 275
Engineering Unit Conversion and Alarms,
297
ESI, 279
EUCA, 297
Exclusive OR, 731
Extended Math, 121
Extended Memory Read, 723
Extended Memory Write, 727

F
Fast I/O Instructions

BMDI, 73
ID, 343
IE, 347
IMIO, 351
IMOD, 357
ITMR, 365

FIN, 309
First In, 309
First Out, 313
First-order Lead/Lag Filter, 537
Floating Point - Integer Subtraction, 263
Floating Point Addition, 131
Floating Point Arc Cosine of an Angle (in
Radians), 143
Floating Point Arc Tangent of an Angle (in

Radians), 151
Floating Point Arcsine of an Angle (in
Radians), 147
Floating Point Common Logarithm, 219
Floating Point Comparison, 159
Floating Point Conversion of Degrees to
Radians, 167
Floating Point Conversion of Radians to
Degrees, 179
Floating Point Cosine of an Angle (in
Radians), 183
Floating Point Divided by Integer, 191
Floating Point Division, 195
Floating Point Error Report Log, 203
Floating Point Exponential Function, 207
Floating Point Multiplication, 227
Floating Point Natural Logarithm, 211
Floating Point Sine of an Angle (in Radians),
243
Floating Point Square Root, 247, 251
Floating Point Subtraction, 267
Floating Point Tangent of an Angle (in
Radians), 275
Floating Point to Integer, 317
Floating Point to Integer Conversion, 171
Formatted Equation Calculator, 509
Formatting Messages, 29
Four Station Ratio Controller, 571
FOUT, 313
FTOI, 317

H
History and Status Matrices, 319
HLTH, 319
Hot standby

CHS, 79

I
IBKR, 333
IBKW, 335
ICMP, 337
ID, 343
IE, 347
IMIO, 351

Index

iv 840 USE 506 00 October 2002

Immediate I/O, 351
IMOD, 357
Indirect Block Read, 333
Indirect Block Write, 335
Input Compare, 337
Input Selection, 581
Installation of DX Loadables, 41
Instruction

Coils, Contacts and Interconnects, 43
Instruction Groups, 5

ASCII Communication Instructions, 7
Coils, Contacts and Interconnects, 14
Counters and Timers Instructions, 7
Fast I/O Instructions, 8
Loadable DX, 9
Math Instructions, 9
Matrix Instructions, 11
Miscellaneous, 12
Move Instructions, 13
Overview, 6
Skips/Specials, 13
Special Instructions, 14

Integer - Floating Point Subtraction, 271
Integer + Floating Point Addition, 135
Integer Divided by Floating Point, 199
Integer to Floating Point, 371
Integer x Floating Point Multiplication, 231
Integer-Floating Point Comparison, 163
Integer-to-Floating Point Conversion, 175
Integrate Input at Specified Interval, 515
Interconnects, 43
Interrupt Disable, 343
Interrupt Enable, 347
Interrupt Handling, 37
Interrupt Module Instruction, 357
Interrupt Timer, 365
ISA Non Interacting PI, 551
ITMR, 365
ITOF, 371

J
JSR, 373
Jump to Subroutine, 373

L
LAB, 375
Label for a Subroutine, 375
Limiter for the Pv, 525
LL984

AD16, 55
ADD, 57
AND, 59
BCD, 63
BLKM, 65
BLKT, 69
BMDI, 73
BROT, 75
CHS, 79
CKSM, 85
Closed Loop Control / Analog Values, 15
CMPR, 89
Coils, Contacts and Interconnects, 43
COMP, 93
DCTR, 97
DIOH, 99
DIV, 103
DLOG, 107
DRUM, 113
DV16, 117
EMTH, 121
EMTH-ADDDP, 127
EMTH-ADDFP, 131
EMTH-ADDIF, 135
EMTH-ANLOG, 139
EMTH-ARCOS, 143
EMTH-ARSIN, 147
EMTH-ARTAN, 151
EMTH-CHSIN, 155
EMTH-CMPFP, 159
EMTH-CMPIF, 163
EMTH-CNVDR, 167
EMTH-CNVFI, 171
EMTH-CNVIF, 175
EMTH-CNVRD, 179
EMTH-COS, 183
EMTH-DIVDP, 187
EMTH-DIVFI, 191
EMTH-DIVFP, 195
EMTH-DIVIF, 199

Index

840 USE 506 00 October 2002 v

EMTH-ERLOG, 203
EMTH-EXP, 207
EMTH-LNFP, 211
EMTH-LOG, 215
EMTH-LOGFP, 219
EMTH-MULDP, 223
EMTH-MULFP, 227
EMTH-MULIF, 231
EMTH-PI, 235
EMTH-POW, 239
EMTH-SINE, 243
EMTH-SQRFP, 247
EMTH-SQRT, 251
EMTH-SQRTP, 255
EMTH-SUBDP, 259
EMTH-SUBFI, 263
EMTH-SUBFP, 267
EMTH-SUBIF, 271
EMTH-TAN, 275
ESI, 279
EUCA, 297
FIN, 309
Formatting Messages for ASCII READ/
WRIT Operations, 29
FOUT, 313
FTOI, 317
HLTH, 319
IBKR, 333
IBKW, 335
ICMP, 337
ID, 343
IE, 347
IMIO, 351
IMOD, 357
Interrupt Handling, 37
ITMR, 365
ITOF, 371
JSR, 373
LAB, 375
LOAD, 379
MAP 3, 383
MBIT, 391
MBUS, 395
MRTM, 405
MSTR, 411
MU16, 453

MUL, 455
NBIT, 457
NCBT, 459
NOBT, 461
NOL, 463
OR, 467
PCFL, 471
PCFL-AIN, 479
PCFL-ALARM, 485
PCFL-AOUT, 489
PCFL-AVER, 493
PCFL-CALC, 499
PCFL-DELAY, 503
PCFL-EQN, 509
PCFL-INTEG, 515
PCFL-KPID, 519
PCFL-LIMIT, 525
PCFL-LIMV, 529
PCFL-LKUP, 533
PCFL-LLAG, 537
PCFL-MODE, 541
PCFL-ONOFF, 545
PCFL-PI, 551
PCFL-PID, 555
PCFL-RAMP, 561
PCFL-RATE, 567
PCFL-RATIO, 571
PCFL-RMPLN, 577
PCFL-SEL, 581
PCFL-TOTAL, 585
PEER, 591
PID2, 595
R --> T, 609
RBIT, 613
READ, 615
RET, 621
SAVE, 623
SBIT, 627
SCIF, 629
SENS, 635
SKPC, 639
SKPR, 643
SRCH, 647
STAT, 651
SU16, 675
SUB, 677

Index

vi 840 USE 506 00 October 2002

Subroutine Handling, 39
T.01 Timer, 687
T-->R, 679
T-->T, 683
T0.1 Timer, 689
T1.0 Timer, 691
T1MS Timer, 693
TBLK, 699
TEST, 703
UCTR, 705
WRIT, 707
XMIT, 713
XMRD, 723
XMWT, 727
XOR, 731

LOAD, 379
Load Flash, 379
Load the Floating Point Value of "Pi", 235
Loadable DX

CHS, 79
DRUM, 113
ESI, 279
EUCA, 297
HLTH, 319
ICMP, 337
Installation, 41
MAP 3, 383
MBUS, 395
MRTM, 405
NOL, 463
PEER, 591
XMIT, 713

Logarithmic Ramp to Set Point, 577
Logical And, 59
Logical OR, 467
Look-up Table, 533

M
MAP 3, 383
MAP Transaction, 383
Master, 411

Math
AD16, 55
ADD, 57
BCD, 63
DIV, 103
DV16, 117
FTOI, 317
ITOF, 371
MU16, 453
MUL, 455
SU16, 675
SUB, 677
TEST, 703

Matrix
AND, 59
BROT, 75
CMPR, 89
COMP, 93
MBIT, 391
NBIT, 457
NCBT, 459, 461
OR, 467
RBIT, 613
SBIT, 627
SENS, 635
XOR, 731

MBIT, 391
MBUS, 395
MBUS Transaction, 395
Miscellaneous

CKSM, 85
DLOG, 107
EMTH, 121
EMTH-ADDDP, 127
EMTH-ADDFP, 131
EMTH-ADDIF, 135
EMTH-ANLOG, 139
EMTH-ARCOS, 143, 183
EMTH-ARSIN, 147
EMTH-ARTAN, 151
EMTH-CHSIN, 155
EMTH-CMPFP, 159
EMTH-CMPIF, 163
EMTH-CNVDR, 167
EMTH-CNVFI, 171

Index

840 USE 506 00 October 2002 vii

EMTH-CNVIF, 175
EMTH-CNVRD, 179
EMTH-DIVDP, 187
EMTH-DIVFI, 191
EMTH-DIVFP, 195
EMTH-DIVIF, 199
EMTH-ERLOG, 203
EMTH-EXP, 207
EMTH-LNFP, 211
EMTH-LOG, 215
EMTH-LOGFP, 219
EMTH-MULDP, 223
EMTH-MULFP, 227
EMTH-MULIF, 231
EMTH-PI, 235
EMTH-POW, 239
EMTH-SINE, 243
EMTH-SQRFP, 247
EMTH-SQRT, 251
EMTH-SQRTP, 255
EMTH-SUBDP, 259
EMTH-SUBFI, 263
EMTH-SUBFP, 267
EMTH-SUBIF, 271
EMTH-TAN, 275
LOAD, 379
MSTR, 411
SAVE, 623
SCIF, 629
XMRD, 723
XMWT, 727

Modbus Plus
MSTR, 411

Modbus Plus Network Statistics
MSTR, 440

Modify Bit, 391
Move

BLKM, 65
BLKT, 69
FIN, 309
FOUT, 313
IBKR, 333
IBKW, 335
R --> T, 609
SRCH, 647
T-->R, 679

T-->T, 683
TBLK, 699

MRTM, 405
MSTR, 411

Clear Local Statistics, 425
Clear Remote Statistics, 430
CTE Error Codes for SY/MAX and TCP/
IP Ethernet, 452
Get Local Statistics, 423
Get Remote Statistics, 429
Modbus Plus and SY/MAX Ethernet
Error Codes, 446
Modbus Plus Network Statistics, 440
Peer Cop Health, 432
Read CTE (Config Extension Table), 435
Read Global Data, 428
Reset Option Module, 434
SY/MAX-specific Error Codes, 448
TCP/IP Ethernet Error Codes, 450
TCP/IP Ethernet Statistics, 445
Write CTE (Config Extension Table), 437
Write Global Data, 427

MU16, 453
MUL, 455
Multiply, 455
Multiply 16 Bit, 453
Multi-Register Transfer Module, 405

N
NBIT, 457
NCBT, 459
Network Option Module for Lonworks, 463
NOBT, 461
NOL, 463
Normally Closed Bit, 459
Normally Open Bit, 461

O
ON/OFF Values for Deadband, 545
One Hundredth Second Timer, 687
One Millisecond Timer, 693
One Second Timer, 691
One Tenth Second Timer, 689
OR, 467

Index

viii 840 USE 506 00 October 2002

P
PCFL, 471
PCFL Subfunctions

General, 17
PCFL-AIN, 479
PCFL-ALARM, 485
PCFL-AOUT, 489
PCFL-AVER, 493
PCFL-CALC, 499
PCFL-DELAY, 503
PCFL-EQN, 509
PCFL-INTEG, 515
PCFL-KPID, 519
PCFL-LIMIT, 525
PCFL-LIMV, 529
PCFL-LKUP, 533
PCFL-LLAG, 537
PCFL-MODE, 541
PCFL-ONOFF, 545
PCFL-PI, 551
PCFL-PID, 555
PCFL-RAMP, 561
PCFL-RATE, 567
PCFL-RATIO, 571
PCFL-RMPLN, 577
PCFL-SEL, 581
PCFL-Subfunction

PCFL-AIN, 479
PCFL-ALARM, 485
PCFL-AOUT, 489
PCFL-AVER, 493
PCFL-CALC, 499
PCFL-DELAY, 503
PCFL-EQN, 509
PCFL-INTEG, 515
PCFL-KPID, 519
PCFL-LIMIT, 525
PCFL-LIMV, 529
PCFL-LKUP, 533
PCFL-LLAG, 537
PCFL-MODE, 541
PCFL-ONOFF, 545
PCFL-PI, 551
PCFL-PID, 555
PCFL-RAMP, 561

PCFL-RATE, 567
PCFL-RATIO, 571
PCFL-RMPLN, 577
PCFL-SEL, 581
PCFL-TOTAL, 585

PCFL-TOTAL, 585
PEER, 591
PEER Transaction, 591
PID Algorithms, 555
PID Example, 21
PID2, 595
PID2 Level Control Example, 25
Process Control Function Library, 471
Process Square Root, 255
Process Variable, 16
Proportional Integral Derivative, 595
Put Input in Auto or Manual Mode, 541

R
R --> T, 609
Raising a Floating Point Number to an
Integer Power, 239
Ramp to Set Point at a Constant Rate, 561
RBIT, 613
READ, 615

MSTR, 421
Read, 615
READ/WRIT Operations, 29
Register to Table, 609
Regulatory Control, 472
Reset Bit, 613
RET, 621
Return from a Subroutine, 621

S
SAVE, 623
Save Flash, 623
SBIT, 627
SCIF, 629
Search, 647
SENS, 635
Sense, 635
Sequential Control Interfaces, 629
Set Bit, 627

Index

840 USE 506 00 October 2002 ix

Set Point Vaiable, 16
Skip (Constants), 639
Skip (Registers), 643
Skips / Specials

RET, 621
SKPC, 639
SKPR, 643

Skips/Specials
JSR, 373
LAB, 375

SKPC, 639
SKPR, 643
Special

DIOH, 99
PCFL, 471
PCFL-, 489
PCFL-AIN, 479
PCFL-ALARM, 485
PCFL-AVER, 493
PCFL-CALC, 499
PCFL-DELAY, 503
PCFL-EQN, 509
PCFL-KPID, 519
PCFL-LIMIT, 525
PCFL-LIMV, 529
PCFL-LKUP, 533
PCFL-LLAG, 537
PCFL-MODE, 541
PCFL-ONOFF, 545
PCFL-PI, 551
PCFL-PID, 555
PCFL-RAMP, 561
PCFL-RATE, 567
PCFL-RATIO, 571
PCFL-RMPLN, 577
PCFL-SEL, 581
PCFL-TOTAL, 585
PCPCFL-INTEGFL, 515
PID2, 595
STAT, 651

SRCH, 647
STAT, 651
Status, 651
SU16, 675
SUB, 677
Subroutine Handling, 39

Subtract 16 Bit, 675
Subtraction, 677
Support of the ESI Module, 279

T
T.01 Timer, 687
T-->R, 679
T-->T, 683
T0.1 Timer, 689
T1.0 Timer, 691
T1MS Timer, 693
Table to Block, 699
Table to Register, 679
Table to Table, 683
TBLK, 699
TCP/IP Ethernet Statistics

MSTR, 445
TEST, 703
Test of 2 Values, 703
Time Delay Queue, 503
Totalizer for Metering Flow, 585

U
UCTR, 705
Up Counter, 705

V
Velocity Limiter for Changes in the Pv, 529

W
WRIT, 707
Write, 707

MSTR, 419

X
XMIT, 713
XMIT Communication Block, 713
XMRD, 723
XMWT, 727
XOR, 731

Index

x 840 USE 506 00 October 2002

