
33
00

22
61

.0
0

Concept
Block Library LL984
Volume 1
840 USE 506 00 eng Version 2.6

© 2002 Schneider Electric All Rights Reserved

II

III

Table of Contents

About the book . XI

Part I General Information . 1
Introduction . 1

Chapter 1 Instructions . 3
Parameter Assignment of Instuctions . 3

Chapter 2 Instruction Groups .5
At a Glance . 5
Instruction Groups. 6
ASCII Functions . 7
Counters and Timers Instructions . 7
Fast I/O Instructions . 8
Loadable DX . 9
Math Instructions. 9
Matrix Instructions . 11
Miscellaneous . 12
Move Instructions . 13
Skips/Specials . 13
Special Instructions . 14
Coils, Contacts and Interconnects. 14

Chapter 3 Closed Loop Control / Analog Values 15
At a Glance . 15
Closed Loop Control / Analog Values . 16
PCFL Subfunctions . 17
A PID Example . 21
PID2 Level Control Example . 25

Chapter 4 Formatting Messages for ASCII READ/WRIT Operations29
At a Glance . 29
Formatting Messages for ASCII READ/WRIT Operations 30
Format Specifiers . 31
Special Set-up Considerations for Control/Monitor Signals Format 34

IV

Chapter 5 Interrupt Handling . 37
Interrupt Handling . 37

Chapter 6 Subroutine Handling . 39
Subroutine Handling . 39

Chapter 7 Installation of DX Loadables. 41
Installation of DX Loadables . 41

Chapter 8 Coils, Contacts and Interconnects. 43
At a Glance . 43
Coils . 44
Contacts. 46
Interconnects (Shorts) . 48

Part II Instruction Descriptions .49
At a Glance . 49

Chapter 9 AD16: Ad 16 Bit . 55
At a Glance . 55
Short Description . 56
Representation. 56

Chapter 10 ADD: Addition . 57

Chapter 11 AND: Logical And . 59

Chapter 12 BCD: Binary to Binary Code . 63

Chapter 13 BLKM: Block Move . 65

Chapter 14 BLKT: Block to Table. 69

Chapter 15 BMDI: Block Move with Interrupts Disabled 73

Chapter 16 BROT: Bit Rotate . 75

Chapter 17 CHS: Configure Hot Standby . 79

Chapter 18 CKSM: Check Sum. 85

Chapter 19 CMPR: Compare Register . 89

Chapter 20 COMP: Complement a Matrix . 93

Chapter 21 DCTR: Down Counter . 97

Chapter 22 DIOH: Distributed I/O Health . 99

Chapter 23 DIV: Divide . 103

V

Chapter 24 DLOG: Data Logging for PCMCIA Read/Write Support.107

Chapter 25 DRUM: DRUM Sequencer. 113

Chapter 26 DV16: Divide 16 Bit .117

Chapter 27 EMTH: Extended Math .121

Chapter 28 EMTH-ADDDP: Double Precision Addition 127

Chapter 29 EMTH-ADDFP: Floating Point Addition 131

Chapter 30 EMTH-ADDIF: Integer + Floating Point Addition135

Chapter 31 EMTH-ANLOG: Base 10 Antilogarithm 139

Chapter 32 EMTH-ARCOS: Floating Point Arc Cosine of an Angle
(in Radians) . 143

Chapter 33 EMTH-ARSIN: Floating Point Arcsine of an Angle
(in Radians) . 147

Chapter 34 EMTH-ARTAN: Floating Point Arc Tangent of an Angle
(in Radians) . 151

Chapter 35 EMTH-CHSIN: Changing the Sign of a
Floating Point Number . 155

Chapter 36 EMTH-CMPFP: Floating Point Comparison 159

Chapter 37 EMTH-CMPIF: Integer-Floating Point Comparison163

Chapter 38 EMTH-CNVDR: Floating Point Conversion of Degrees to
Radians . 167

Chapter 39 EMTH-CNVFI: Floating Point to Integer Conversion 171

Chapter 40 EMTH-CNVIF: Integer-to-Floating Point Conversion. 175

Chapter 41 EMTH-CNVRD: Floating Point Conversion of Radians to
Degrees . 179

Chapter 42 EMTH-COS: Floating Point Cosine of an Angle
(in Radians) . 183

Chapter 43 EMTH-DIVDP: Double Precision Division.187

Chapter 44 EMTH-DIVFI: Floating Point Divided by Integer. 191

Chapter 45 EMTH-DIVFP: Floating Point Division. 195

VI

Chapter 46 EMTH-DIVIF: Integer Divided by Floating Point 199

Chapter 47 EMTH-ERLOG: Floating Point Error Report Log. 203

Chapter 48 EMTH-EXP: Floating Point Exponential Function. 207

Chapter 49 EMTH-LNFP: Floating Point Natural Logarithm 211

Chapter 50 EMTH-LOG: Base 10 Logarithm . 215

Chapter 51 EMTH-LOGFP: Floating Point Common Logarithm 219

Chapter 52 EMTH-MULDP: Double Precision Multiplication 223

Chapter 53 EMTH-MULFP: Floating Point Multiplication. 227

Chapter 54 EMTH-MULIF: Integer x Floating Point Multiplication 231

Chapter 55 EMTH-PI: Load the Floating Point Value of "Pi" 235

Chapter 56 EMTH-POW: Raising a Floating Point Number to an
Integer Power . 239

Chapter 57 EMTH-SINE: Floating Point Sine of an Angle (in Radians) . 243

Chapter 58 EMTH-SQRFP: Floating Point Square Root. 247

Chapter 59 EMTH-SQRT: Floating Point Square Root 251

Chapter 60 EMTH-SQRTP: Process Square Root. 255

Chapter 61 EMTH-SUBDP: Double Precision Subtraction 259

Chapter 62 EMTH-SUBFI: Floating Point - Integer Subtraction 263

Chapter 63 EMTH-SUBFP: Floating Point Subtraction 267

Chapter 64 EMTH-SUBIF: Integer - Floating Point Subtraction 271

Chapter 65 EMTH-TAN: Floating Point Tangent of an Angle
(in Radians) . 275

Index . i
The chapters marked gray are not included in this
volume.

Chapter 66 ESI: Support of the ESI Module . 279

Chapter 67 EUCA: Engineering Unit Conversion and Alarms 297

VII

Chapter 68 FIN: First In .309

Chapter 69 FOUT: First Out. .313

Chapter 70 FTOI: Floating Point to Integer . 317

Chapter 71 HLTH: History and Status Matrices. 319

Chapter 72 IBKR: Indirect Block Read . 333

Chapter 73 IBKW: Indirect Block Write . 335

Chapter 74 ICMP: Input Compare . 337

Chapter 75 ID: Interrupt Disable . 343

Chapter 76 IE: Interrupt Enable. .347

Chapter 77 IMIO: Immediate I/O . 351

Chapter 78 IMOD: Interrupt Module Instruction .357

Chapter 79 ITMR: Interrupt Timer . 365

Chapter 80 ITOF: Integer to Floating Point . 371

Chapter 81 JSR: Jump to Subroutine. 373

Chapter 82 LAB: Label for a Subroutine . 375

Chapter 83 LOAD: Load Flash . 379

Chapter 84 MAP 3: MAP Transaction . 383

Chapter 85 MBIT: Modify Bit .391

Chapter 86 MBUS: MBUS Transaction . 395

Chapter 87 MRTM: Multi-Register Transfer Module 405

Chapter 88 MSTR: Master . 411

Chapter 89 MU16: Multiply 16 Bit . 453

Chapter 90 MUL: Multiply . 455

Chapter 91 NBIT: Bit Control. .457

Chapter 92 NCBT: Normally Closed Bit .459

Chapter 93 NOBT: Normally Open Bit .461

VIII

Chapter 94 NOL: Network Option Module for Lonworks 463

Chapter 95 OR: Logical OR . 467

Chapter 96 PCFL: Process Control Function Library 471

Chapter 97 PCFL-AIN: Analog Input . 479

Chapter 98 PCFL-ALARM: Central Alarm Handler 485

Chapter 99 PCFL-AOUT: Analog Output . 489

Chapter 100 PCFL-AVER: Average Weighted Inputs Calculate 493

Chapter 101 PCFL-CALC: Calculated preset formula 499

Chapter 102 PCFL-DELAY: Time Delay Queue. 503

Chapter 103 PCFL-EQN: Formatted Equation Calculator 509

Chapter 104 PCFL-INTEG: Integrate Input at Specified Interval 515

Chapter 105 PCFL-KPID: Comprehensive ISA Non Interacting PID 519

Chapter 106 PCFL-LIMIT: Limiter for the Pv . 525

Chapter 107 PCFL-LIMV: Velocity Limiter for Changes in the Pv. 529

Chapter 108 PCFL-LKUP: Look-up Table . 533

Chapter 109 PCFL-LLAG: First-order Lead/Lag Filter 537

Chapter 110 PCFL-MODE: Put Input in Auto or Manual Mode 541

Chapter 111 PCFL-ONOFF: ON/OFF Values for Deadband 545

Chapter 112 PCFL-PI: ISA Non Interacting PI . 551

Chapter 113 PCFL-PID: PID Algorithms . 555

Chapter 114 PCFL-RAMP: Ramp to Set Point at a Constant Rate 561

Chapter 115 PCFL-RATE: Derivative Rate Calculation over a
Specified Timeme . 567

Chapter 116 PCFL-RATIO: Four Station Ratio Controller 571

Chapter 117 PCFL-RMPLN: Logarithmic Ramp to Set Point. 577

Chapter 118 PCFL-SEL: Input Selection . 581

Chapter 119 PCFL-TOTAL: Totalizer for Metering Flow 585

IX

Chapter 120 PEER: PEER Transaction. 591

Chapter 121 PID2: Proportional Integral Derivative 595

Chapter 122 R −−> T: Register to Table .609

Chapter 123 RBIT: Reset Bit . 613

Chapter 124 READ: Read. 615

Chapter 125 RET: Return from a Subroutine. .621

Chapter 126 SAVE: Save Flash .623

Chapter 127 SBIT: Set Bit .627

Chapter 128 SCIF: Sequential Control Interfaces . 629

Chapter 129 SENS: Sense . 635

Chapter 130 SKPC: Skip (Constants) . 639

Chapter 131 SKPR: Skip (Registers) .643

Chapter 132 SRCH: Search . 647

Chapter 133 STAT: Status . 651

Chapter 134 SU16: Subtract 16 Bit . 675

Chapter 135 SUB: Subtraction . 677

Chapter 136 T−−>R: Table to Register .679

Chapter 137 T−−>T: Table to Table . 683

Chapter 138 T.01 Timer: One Hundredth Second Timer.687

Chapter 139 T0.1 Timer: One Tenth Second Timer 689

Chapter 140 T1.0 Timer: One Second Timer . 691

Chapter 141 T1MS Timer: One Millisecond Timer. 693

Chapter 142 TBLK: Table to Block . 699

Chapter 143 TEST: Test of 2 Values . 703

Chapter 144 UCTR: Up Counter . 705

Chapter 145 WRIT: Write . 707

X

Chapter 146 XMIT: XMIT Communication Block. 713

Chapter 147 XMRD: Extended Memory Read . 723

Chapter 148 XMWT: Extended Memory Write. 727

Chapter 149 XOR: Exclusive OR . 731

Glossary . 735

840 USE 506 00 October 2002 XI

About the book

At a Glance

Document Scope This documentation will help you configure the LL984-instructions from Concept.

Validity Note This documentation is valid for Concept 2.6 under Microsoft Windows 98, Microsoft
Windows 2000, Microsoft Windows XP and Microsoft Windows NT 4.x.

Related
Documents

User Comments We welcome your comments about this document. You can reach us by e-mail at
TECHCOMM@modicon.com

Note: For additional up-to-date notes, please refer to the file README of Concept.

Title of Documentation Reference Number

Concept Installation Instruction 840 USE 502 00

Concept User Manual 840 USE 503 00

Concept IEC Library 840 USE 504 00

Concept-EFB User Manual 840 USE 505 00

XMIT Function Block User Guide 840 USE 113 00

Network Option Module for LonWorks 840 USE 109 00

Quantum Hot Standby Planning and Installation Guide 840 USE 106 00

Modbus Plus Network Planning and Installation Guide 890 USE 100 00

Quantum 140 ESI 062 10 ASCII Interface Module User Guide 840 USE 1116 00

Modicon S980 MAP 3.0 Network Interface Controller User Guide GM-MAP3-001

About the book

XII 840 USE 506 00 October 2002

840 USE 506 00 October 2002 1

I
General Information

Introduction

At a Glance In this part you will find general information about the instruction groups and the use
of instructions.

What’s in this
part?

This part contains the following chapters:

Chapter Chaptername Page

1 Instructions 3

2 Instruction Groups 5

3 Closed Loop Control / Analog Values 15

4 Formatting Messages for ASCII READ/WRIT Operations 29

5 Interrupt Handling 37

6 Subroutine Handling 39

7 Installation of DX Loadables 41

8 Coils, Contacts and Interconnects 43

General Information

2 840 USE 506 00 October 2002

840 USE 506 00 October 2002 3

1
Instructions

Parameter Assignment of Instuctions

General Programming for electrical controls involves a user who implements Operational
Coded instructions in the form of visual objects organized in a recognizable ladder
form. The program objects designed, at the user level, is converted to computer
usable OP codes during the download process. the Op codes are decoded in the
CPU and acted upon by the controllers firmware functions to implement the desired
control.
Each instruction is composed of an operation, nodes required for the operation and
in- and outputs.

Instructions

4 840 USE 506 00 October 2002

Parameter
Assignment

Parameter assignment with the instruction DV16 as an example:

Operation The operation determines which functionality is to be executed by the instruction,
e.g. shift register, conversion operations.

Nodes, In- and
Outputs

The nodes and in- and outputs determines what the operation will be executed with.

Instruction

Inputs Operation Nodes Outputs

Top output

Middle output

Bottom output

top nodeTop input

middle nodeMiddle input

DV16Bottom input

bottom node

e.g. DV16

840 USE 506 00 October 2002 5

2
Instruction Groups

At a Glance

Introduction In this chapter you will find an overwiew of the instruction groups and their
accompanying instructions.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Instruction Groups 6

ASCII Functions 7

Counters and Timers Instructions 7

Fast I/O Instructions 8

Loadable DX 9

Math Instructions 9

Matrix Instructions 11

Miscellaneous 12

Move Instructions 13

Skips/Specials 13

Special Instructions 14

Coils, Contacts and Interconnects 14

Instruction Groups

6 840 USE 506 00 October 2002

Instruction Groups

General All instructions are attached to one of the following groups:
l ASCII Functions (See ASCII Functions, p. 7)
l Counters/Timers (See Counters and Timers Instructions, p. 7)
l Fast I/O Instructions (See Fast I/O Instructions, p. 8)
l Loadable DX (See Loadable DX, p. 9)
l Math (See Math Instructions, p. 9)
l Matrix (See Matrix Instructions, p. 11)
l Miscellaneous (See Miscellaneous, p. 12)
l Move (See Move Instructions, p. 13)
l Skips/Specials (See Skips/Specials, p. 13)
l Special (See Special Instructions, p. 14)
l Coils, Contacts and Interconnects, p. 14

Overview of all
Instructions

Overwiew of instructions per instruction group

Industruction Selection

Group

Counters/Timers

Help on Instruction Help

Math
Move
Matrix
Special
Skips/Specials
Miscellaneous
ASCII Functions
Fast I/O Instruction
Loadable DX

Element

CHS
DRUM

EUCA
HLTH
ICMP
MAP3
MBUS
MRTM

PEER

BMDI
ID
IE
IMIO
IMOD
ITMR
MAP3

READ
WRIT

CKSM
DLOG
EMATH
LOAD
MSTR
SAVE
SCIF
XMRD
XMWT

DCTR
T.01
T0.1
T1.0
T1MS
UCTR

BLKM
BLKT
FIN
FOUT
IBKR
IBKW
R>T
SRCH
T>R
T>T
TBLK

DIOH
PCFL
PID2
STAT

JSR
LAB
RET
SKPC
SKPR

AD16
ADD
BCD
DIV
DV16
FTOI
ITOF
MU16
MUL
SU16
SUB
TEST

AND
BROT
CMPR
COMP
MBIT
NBIT
NCBT
NOBT
OR
RBIT
SBIT
SENS
XOR

Close

NOL

XMIT

ESI

Instruction Groups

840 USE 506 00 October 2002 7

ASCII Functions

ASCII Functions This group provides the following instructions:

PLCs that support ASCII messaging use instructions called READ and WRIT to
handle the sending of messages to display devices and the receiving of messages
from input devices. These instructions provide the routines necessary for
communication between the ASCII message table in the PLC’s system memory and
an interface module at the Remote I/O drops.
Further information you will find in the chapter Formatting Messages for ASCII
READ/WRIT Operations, p. 29.

Counters and Timers Instructions

Counters and
Timers
Instructions

The table shows the counters and timers instructions:

Instruction Meaning Available at PLC family

Quantum Compact Momentum Atrium

READ Read ASCII messages yes no no no

WRIT Write ASCII messages yes no no no

Instruction Meaning Available at PLC family

Quantum Compact Momentum Atrium

UCTR Counts up from 0 to a
preset value

yes yes yes yes

DCTR Counts down from a
preset value to 0

yes yes yes yes

T1.0 Timer that increments in
seconds

yes yes yes yes

T0.1 Timer that increments in
tenths of a second

yes yes yes yes

T.01 Timer that increments in
hundredths of a second

yes yes yes yes

T1MS Timer that increments in
one millisecond

yes (CPU
242 02
only)

yes yes yes

Instruction Groups

8 840 USE 506 00 October 2002

Fast I/O Instructions

Fast I/O
Instructions

The following instructions are designed for a variety of functions known generally as
fast I/O updating:

Further information you will find in the chapter Interrupt Handling, p. 37.

Instruction Meaning Available at PLC family

Quantum Compact Momentum Atrium

BMDI Block move with interrupts
disabled

yes yes no yes

ID Disable interrupt yes yes no yes

IE Enable interrupt yes yes no yes

IMIO Immediate I/O instruction yes yes no yes

IMOD Interrupt module
instruction

yes no no yes

ITMR Interval timer interrupt no yes no yes

Note: The Fast I/O Instructions are only available after configuring a CPU without
extension.

Instruction Groups

840 USE 506 00 October 2002 9

Loadable DX

Loadable DX This group provides the following instructions:

Further information you will find in Installation of DX Loadables, p. 41.

Math Instructions

Math
Instructions

Two groups of instructions that support basic math operations are available. The first
group comprises four integer-based instructions: ADD, SUB, MUL and DIV.

The second group contains five comparable instructions, AD16, SU16, TEST, MU16
and DV16, that support signed and unsigned 16-bit math calculations and
comparisons.

Three additional instructions, ITOF, FTOI and BCD, are provided to convert the
formats of numerical values (from integer to floating point, floating point to integer,
binary to BCD and BCD to binary). Conversion operations are usful in expanded
math.

Instruction Meaning Available at PLC family

Quantum Compact Momentum Atrium

CHS Hot standby (Quantum) yes no no no

DRUM DRUM sequenzer yes yes no yes

ESI Support of the ESI module
140 ESI 062 10

yes no no no

EUCA Engineering unit
conversion and alarms

yes yes no yes

HLTH History and status
matrices

yes yes no yes

ICMP Input comparison yes yes no yes

MAP3 MAP 3 Transaction no no no no

MBUS MBUS Transaction no no no no

MRTM Multi-register transfer
module

yes yes no yes

NOL Transfer to/from the NOL
Module

yes no no no

PEER PEER Transaction no no no no

XMIT RS 232 Master Mode yes yes yes no

Instruction Groups

10 840 USE 506 00 October 2002

Integer Based
Instructions

This part of the group provides the following instructions:

Comparable
Instructions

This part of the group provides the following instructions:

Format
Conversion

This part of the group provides the following instructions:

Instruction Meaning Available at PLC family

Quantum Compact Momentum Atrium

ADD Addition yes yes yes yes

DIV Division yes yes yes yes

MUL Multiplication yes yes yes yes

SUB Subtraction yes yes yes yes

Instruction Meaning Available at PLC family

Quantum Compact Momentum Atrium

AD16 Add 16 bit yes yes yes yes

DV16 Divide 16 bit yes yes yes yes

MU16 Multiply 16 bit yes yes yes yes

SU16 Subtract 16 bit yes yes yes yes

TEST Test of 2 values yes yes yes yes

Instruction Meaning Available at PLC family

Quantum Compact Momentum Atrium

BCD Conversion from binary to
binary code or binary code
to binary

yes yes yes yes

FTOI Conversion from floating
point to integer

yes yes yes yes

ITOF Conversion from integer to
floating point

yes yes yes yes

Instruction Groups

840 USE 506 00 October 2002 11

Matrix Instructions

Matrix
Instructions

A matrix is a sequence of data bits formed by consecutive 16-bit words or registers
derived from tables. DX matrix functions operate on bit patterns within tables.

Just as with move instructions, the minimum table length is 1 and the maximum table
length depends on the type of instruction you use and on the size of the CPU (24-
bit) in your PLC.

Groups of 16 discretes can also be placed in tables. The reference number used is
the first discrete in the group, and the other 15 are implied. The number of the first
discrete must be of the first of 16 type 000001, 100001, 000017, 100017, 000033,
100033, ... , etc..

This group provides the following instructions:

Instruction Meaning Available at PLC family

Quantum Compact Momentum Atrium

AND Logical AND yes yes yes yes

BROT Bit rotate yes yes yes yes

CMPR Compare register yes yes yes yes

COMP Complement a matrix yes yes yes yes

MBIT Modify bit yes yes yes yes

NBIT Bit control yes yes no yes

NCBT Normally open bit yes yes no yes

NOBT Normally closed bit yes yes no yes

OR Logical OR yes yes yes yes

RBIT Reset bit yes yes no yes

SBIT Set bit yes yes no yes

SENS Sense yes yes yes yes

XOR Exclusive OR yes yes yes yes

Instruction Groups

12 840 USE 506 00 October 2002

Miscellaneous

Miscellaneous This group provides the following instructions:

Instruction Meaning Available at PLC family

Quantum Compact Momentum Atrium

CKSM Check sum yes yes yes yes

DLOG Data Logging for PCMCIA
Read/Write Support

no yes no no

EMTH Extended Math Functions yes yes yes yes

LOAD Load flash yes
(CPU
434 12/
534 14
only)

yes yes
(CCC
960 x0/
980 x0 only)

no

MSTR Master yes yes yes yes

SAVE Save flash yes
(CPU
434 12/
534 14
only)

yes yes
(CCC
960 x0/
980 x0 only)

no

SCIF Sequential control
interfaces

yes yes no yes

XMRD Extended memory read yes no no yes

XMWT Extended memory write yes no no yes

Instruction Groups

840 USE 506 00 October 2002 13

Move Instructions

Move
Instructions

This group provides the following instructions:

Skips/Specials

Skips/Specials This group provides the following instructions:

The SKP instruction is a standard instruction in all PLCs. It should be used with
caution.

Instruction Meaning Available at PLC family

Quantum Compact Momentum Atrium

BLKM Block move yes yes yes yes

BLKT Table to block move yes yes yes yes

FIN First in yes yes yes yes

FOUT First out yes yes yes yes

IBKR Indirect block read yes yes no yes

IBKW Indirect block write yes yes no yes

R → T Register to tabel move yes yes yes yes

SRCH Search table yes yes yes yes

T → R Table to register move yes yes yes yes

T → T Table to table move yes yes yes yes

TBLK Table to block move yes yes yes yes

Instruction Meaning Available at PLC family

Quantum Compact Momentum Atrium

JSR Jump to subroutine yes yes yes yes

LAB Label for a subroutine yes yes yes yes

RET Return from a subroutine yes yes yes yes

SKPC Skip (constant) yes yes yes yes

SKPR Skip (register) yes yes yes yes

Instruction Groups

14 840 USE 506 00 October 2002

Special Instructions

Special
Instructions

These instructions are used in special situations to measure statistical events on the
overall logic system or create special loop control situations.

This group provides the following instructions:

Coils, Contacts and Interconnects

Coils, Contacts
and
Interconnects

Coils, Contacts and Interconnects are availabel at all PLC families:
l Normal coil
l Memory-retentive, or latched, coil
l Normally open (N.O.) contact
l Normally closed (N.C.) contact
l Positive transitional (P.T.) contact
l Negative transitional (N.T.) contact
l Horizontal Short
l Vertical Short

DANGER

Inputs and outputs that normally effect control may be
unintentionally skipped (or not skipped).

SKP is a dangerous instruction that should be used carefully. If inputs
and outputs that normally effect control are unintentionally skipped (or
not skipped), the result can create hazardous conditions for personnel
and application equipment.

Failure to observe this precaution will result in death or serious
injury.

Instruction Meaning Available at PLC family

Quantum Compact Momentum Atrium

DIOH Distributed I/O health yes no no yes

PCFL Process control function
library

yes yes no yes

PID2 Proportional integral
derivative

yes yes yes yes

STAT Status yes yes yes yes

840 USE 506 00 October 2002 15

3
Closed Loop Control / Analog
Values

At a Glance

Introduction In this chapter you will find general information about configuring closed loop control
and using analog values.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Closed Loop Control / Analog Values 16

PCFL Subfunctions 17

A PID Example 21

PID2 Level Control Example 25

Closed Loop Control / Analog Values

16 840 USE 506 00 October 2002

Closed Loop Control / Analog Values

General An analog closed loop control system is one in which the deviation from an ideal
process condition is measured, analyzed and adjusted in an attempt to obtain and
maintain zero error in the process condition. Provided with the Enhanced Instruction
Set is a proportional-integral-derivative function block called PID2, which allows you
to establish closed loop (or negative feedback) control in ladder logic.

Definition of Set
Point and
Process Variable

The desired (zero error) control point, which you will define in the PID2 block, is
called the set point (SP). The conditional measurement taken against SP is called
the process variable (PV). The difference between the SP and the PV is the
deviation or error (E). E is fed into a control calculation that produces a manipulated
variable (Mv) used to adjust the process so that PV = SP (and, therefore, E = 0).

Control
End Device

Control
Calculation

Process

Mv
(Output)

Process
Transmitter

PV

PV (Input)

SP
E

+

_

Closed Loop Control / Analog Values

840 USE 506 00 October 2002 17

PCFL Subfunctions

General The PCFL instruction gives you access to a library of process control functions
utilizing analog values.
PCFL operations fall into three major categories:
l Advanced Calculations
l Signal Processing
l Regulatory Control

Advanced
Calculations

Advanced calculations are used for general mathematical purposes and are not
limited to process control applications. With advanced calculations, you can create
custom signal processing algorithms, derive states of the controlled process, derive
statistical measures of the process, etc.
Simple math routines have already been offered in the EMTH instruction. The
calculation capability included in PCFL is a textual equation calculator for writing
custom equations instead of programming a series of math operations one by one.

Signal
Processing

Signal processing functions are used to manipulate process and derived process
signals. They can do this in a variety of ways; they linearize, filter, delay and
otherwise modify a signal. This category would include functions such as an Analog
Input/Output, Limiters, Lead/Lag and Ramp generators.

Regulatory
Control

Regulatory functions perform closed loop control in a variety of applications.
Typically, this is a PID (proportional integral derivative) negative feedback control
loop. The PID functions in PCFL offer varying degrees of functionality. Function PID
has the same general functionality as the PID2 instruction but uses floating point
math and represents some options differently. PID is beneficial in cases where PID2
is not suitable because of numerical concerns such as round-off.

Closed Loop Control / Analog Values

18 840 USE 506 00 October 2002

Explanation of
Formula
Elements

Meaning of formula elements in the following formulas:

General
Equations

The following general equations are valid:

Formula elements Meaning

Y Manipulated variable output

YP Proportional part of the calculation

YI Integral part of the calculation

YD Derivative part of the calculation

Bias Constant added to input

BT Bumpless transfer register

SP Set point

KP Proportional gain

Dt Time since last solve

TI Integral time constant

TD Derivative time constant

TD1 Derivative time lag

XD Error term, deviation

XD_1 Previous error term

X Process input

X_1 Previous process input

Equation Condition /Requirement

Integral bit ON

Integral bit OFF

High/low limits

with

Gain reduction

Gain reduction zone not used

Y YP YI YD BIAS+ + +=

Y YP YD BIAS BT+ + +=

Yhigh Y Ylow≤ ≤

YP YI YD f XD()=, ,

XD SP X GRZ 1 KGRZ–()×()±–=

XD SP X–=

Closed Loop Control / Analog Values

840 USE 506 00 October 2002 19

Proportional
Calculations

The following equations are valid:

Integral
Calculation

The following equations are valid:

Derivative
Calculation

The following equations are valid:

Equation Condition /Requirement

Proportional bit ONYP KP XD×=

YP 0=

Equation Condition /Requirement

Integral bit ON
YI YI KP

∆t
TI
------ XD_1 XD+

2
------------------------------××+=

YI 0=

Equation Condition /Requirement

Base derivative or PV

Derivative bit ON

DXD X_1 X–=

DXD XD X_1–=

YD TD1 YD×() TD KP× DXD×()+
∆t TD1+

---=

D 0=

Closed Loop Control / Analog Values

20 840 USE 506 00 October 2002

Structure
Diagram

Structure Diagram

1

0

GAIN

b)

1

0

- GAIN

c)

a)

Y (n)
b)

a)

c)

HIGH

LOW

Manual
Automatic

Halt

+

_

SET POINT
SP

CONTROL
INPUT

X(n)

1 = PROPORTION ON

PROPORTIONAL

Anti-Windup-Reset CONTROL DEVIATION

0

1

1 = INTEGRAL ON

0 = base Derivative on XD
1 = base Derivative on X

1

0

0

1

1 = DERIVATIVE ON

INTEGRAL
TI

P+I+D

DERVATIVE
TD

Contributions

SUMMING
JUNCTION

+

Anti-Windup-Limits OPERATING
MODES

CONTROL
OUTPUT

MODE SELECT

Closed Loop Control / Analog Values

840 USE 506 00 October 2002 21

A PID Example

Description This example illustrates how a typical PID loop could be configured using PCFL
function PID. The calculation begins with the AIN function, which takes raw input
simulated to cause the output to run between approximately 20 and 22 when the
engineering unit scale is set to 0 ... 100.

LL984 Ladder Diagram

The process variable over time should look something like this:

3

T0.1

400185

AIN

PCFL

400100

14

LKUP

PCFL

400120

39

RAMP

PCFL

400160

14

MODE

PCFL

400190

8

PID

PCFL

400200

44

AOUT

PCFL

400250

9

000100

400112

BLKM

400120

2

400157

BLKM

400200

2

400172

BLKM

400190

2

400196

BLKM

400206

2

400242

BLKM

400250

2

000100

Time

Process Variable Value

20

22

Closed Loop Control / Analog Values

22 840 USE 506 00 October 2002

Main PID Ladder
Logic

The AIN output is block moved to the LKUP function, which is used to scale the input
signal. We do this because the input sensor is not likely to produce highly linear
readings; the result is an ideal linear signal:

The look-up table output is block moved to the PID function. RAMP is used to control
the rise (or fall) of the set point for the PID controller with regard to the rate of ramp
and the solution interval. In this example, the set point is established in another logic
section to simulate a remote setting. The MODE function is placed after the RAMP
so that we can switch between the RAMP-generated set point or a manual value.

7 Points Defined
In Look Up table

Input0

100

80

60

50

40

20

1008060504020

Linearized Signal

Actual Input

*

*

*

*
*

*

Closed Loop Control / Analog Values

840 USE 506 00 October 2002 23

Simulated
Process

The PID function is actually controlling the process simulated by this logic (value in
400100: 878(Dec)):

The process simulator is comprised of two LLAG functions that act as a filter and
input to a DELAY queue that is also a PCFL function block. This arrangement is the
equivalent of a second-order process with dead time.

The solution intervals for the LLAG filters do not affect the process dynamics and
were chosen to give fast updates. The solution interval for the DELAY queue is set
at 1000 ms with a delay of 5 intervals,i.e. 5 s. The LLAG filters each have lead terms
of 4 s and lag terms of 10 s. The gain for each is 1.0.

In process control terms the transfer function can be expressed as:

The AOUT function is used only to convert the simulated process output control
value into a range of 0 ... 4 095, which simulates a field device. This integer signal
is used as the process input in the first network.

3

T0.1

400188

LLAG

PCFL

400260

20

LLAG

PCFL

400280

20

DELAY

PCFL

400300

32

AOUT

PCFL

400340

9

000103

000103

400278

BLKM

400280

1

400298

BLKM

400300

1

400330

BLKM

400340

1

400348

BLKM

400100

1

000103
400242

BLKM

400260

1

Gp S() 4S 1+() 4S 1+()e
5S–

10S 1+() 10S 1+()
---=

Closed Loop Control / Analog Values

24 840 USE 506 00 October 2002

PID Parameters The PID controller is tuned to control this process at 20.0, using the Ziegler-Nichols
tuning method. The resulting controller gain is 2.16, equivalent to a proportional
band of 46.3%.

The integral time is set at 12.5 s/repeat (4.8 repeats/ min). The derivative time is
initially 3 s, then reduced to 0.3 s to de-emphasize the derivative effect.
An AOUT function is used after the PID. It conditions the PID control output by
scaling the signal back to an integer for use as the control value.

The entire control loop is preceded by a 0.1 s timer. The target solution interval for
the entire loop is 1 s, and the full solve is 1 s. However, the nontime-dependent
functions that are used (AIN, LKUP, MODE, and AOUT) do not need to be solved
every scan. To reduce the scan time impact, these functions are scheduled to solve
less frequently. The example has a loop solve every 3 s, reducing the average scan
time dramatically.

Note: It is still important to be aware of the maximum scan impact. When
programming other loops, you will not want all of the loops to solve on the same
scan

Closed Loop Control / Analog Values

840 USE 506 00 October 2002 25

PID2 Level Control Example

Description Here is a simplified P&I diagram for an inlet separator in a gas processing plant.
There is a two-phase inlet stream: liquid and gas.

LT-1 4 ... 20 mA level transmitter

I/P-1 4 ... 20 mA current to pneumatic converter

LV-1 control valve, fail CLOSED

LSH-1 high level switch, normally closed

LSL-1 low level switch, normally open

LC-1 level controller

I/P-1 Mv to control the flow into tank T-1

Plant
Inlet

FCV
Inlet Block

Inlet Vent

Vent
Blowdown

GasLSH
1

LSL
1

PV-1

FC

Condensate

LV

LT
1

LC
1

I/P
1

Closed Loop Control / Analog Values

26 840 USE 506 00 October 2002

The liquid is dumped from the tank to maintain a constant level. The control objective
is to maintain a constant level in the separator. The phases must be separated
before processing; separation is the role of the inlet separator, PV-1. If the level
controller, LC-1, fails to perform its job, the inlet separator could fill, causing liquids
to get into the gas stream; this could severely damage devices such as gas
compressors.

Ladder Logic
Diagram

The level is controlled by device LC-1, a Quantum controller connected to an analog
input module; I/P-1 is connected to an analog output module. We can implement the
control loop with the following 984 ladder logic:

The first SUB block is used to move the analog input from LT-1 to the PID2 analog
input register, 40113. The second SUB block is used to move the PID2 output Mv to
the I/O mapped output I/P-1. Coil 00101 is used to change the loop from AUTO to
MANUAL mode, if desired. For AUTO mode, it should be ON.

000102

000101
400100

PID2

400200

30

400102

SUB

#0

400500

300001

SUB

#0

400113

000103

Closed Loop Control / Analog Values

840 USE 506 00 October 2002 27

Register Content Specify the set point in mm for input scaling (E.U.). The full input range will be 0 ...
4000 mm (for 0 ... 4095 raw analog). Specify the register content of the top node in
the PID2 block as follows:

Register Content
Numeric

Content
Meaning

Comments

400100 Scaled PV (mm) PID2 writes this

400101 2000 Scaled SP (mm) Set to 2000 mm (half full) initially

400102 0000 Loop output (0 ... 4095 PID2 writes this; keep it set to 0 to be
safe

400103 3500 Alarm High Set Point (mm) If the level rises above 3500 mm,
coil 000102 goes ON

400104 1000 Alarm Low Set Point (mm) If the level drops below 1000 mm,
coil 000103 goes ON

400105 0100 PB (%) The actual value depends on the
process dynamics

400106 0500 Integral constant (5.00
repeats/min)

The actual value depends on the
process dynamics

400107 0000 Rate time constant (per min) Setting this to 0 turns off the
derivative mode

400108 0000 Bias (0 ... 4095) This is set to 0, since we have an
integral term

400109 4095 High windup limit (0 ... 4095) Normally set to the maximum

400110 0000 Low windup limit (0 ... 4095) Normally set to the minimum

400111 4000 High engineering range (mm) The scaled value of the process
variable when the raw input is at
4095

400112 0000 Low engineering range (mm) The scaled value of the process
variable when the raw input is at 0

400113 Raw analog measure
(0 ... 4095)

A copy of the input from the analog
input module register (300001)
copied by the first SUB

400114 0000 Offset to loop counter register Zero disables this feature.
Normally, this is not used

400115 0000 Max loops solved per scan See register 400114

Closed Loop Control / Analog Values

28 840 USE 506 00 October 2002

The values in the registers in the 400200 destination block are all set by the PID2
block.

400116 0102 Pointer to reset feedback If you leave this as zero, the PID2
function automatically supplies a
pointer to the loop output register. If
the actual output (400500) could be
changed from the value supplied by
PID2, then this register should be
set to 500 (400500) to calculate the
integral properly

400117 4095 Output clamp high (0 ... 4095) Normally set to maximum

400118 0000 Output clamp low (0 ... 4095) Normally set to minimum

400119 0015 Rate Gain Limit Constant
(2 ... 30)

Normally set to about 15. The actual
value depends on how noisy the
input signal is. Since we are not
using derivative mode, this has no
effect on PID2

400120 0000 Pointer to track input Used only if the PRELOAD feature
is used. If the PRELOAD is not
used, this is normally zero

Register Content
Numeric

Content
Meaning

Comments

840 USE 506 00 October 2002 29

4
Formatting Messages for ASCII
READ/WRIT Operations

At a Glance

Introduction In this chapter you will find general information about formatting messages for ASCII
READ/WRIT operations.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Formatting Messages for ASCII READ/WRIT Operations 30

Format Specifiers 31

Special Set-up Considerations for Control/Monitor Signals Format 34

Formatting Messages for ASCII READ/WRIT Operations

30 840 USE 506 00 October 2002

Formatting Messages for ASCII READ/WRIT Operations

General The ASCII messages used in the READ and WRIT instructions can be created via
your panel software using the format specifiers described below. Format specifiers
are character symbols that indicate:
l The ASCII characters used in the message
l Register content displayed in ASCII character format
l Register content displayed in hexadecimal format
l Register content displayed in integer format
l Subroutine calls to execute other message formats

Overview Format
Specifiers

The following format specifiers can be used;

Specifier Meaning

/ ASCII return (CR) and linefeed (LF)

" " Enclosure for octal control code

‘ ´ Enclosure for ASCII text characters

X Space indicator

() Repeat contents of the parentheses

I Integer

L Leading zeros

A Alphanumeric

O Octal

B Binary

H Hexadecimal

Formatting Messages for ASCII READ/WRIT Operations

840 USE 506 00 October 2002 31

Format Specifiers

Format Specifier
/

ASCII return (CR) and linefeed (LF)

Format Specifier
" "

Enclosure for octal control code

Format Specifier
‘ ´

Enclosure for ASCII text characters

Format Specifier
X

Space indicator, e.g., 14X indicates 14 spaces left open from the point where the
specifier occurs.

Field width None (defaults to 1)

Prefix None (defaults to 1)

Input format Outputs CR, LF; no ASCII characters accepted

Output format Outputs CR, LF

Field width Three digits enclosed in double quotes

Prefix None

Input format Accepts three octal control characters

Output format Outputs three octal control characters

Field width 1 ... 128 characters

Prefix None (defaults to 1)

Input format Inputs number of upper and/or lower case printable characters
specified by the field width

Output format Outputs number of upper and/or lower case printable characters
specified by the field width

Field width None (defaults to 1)

Prefix 1 ... 99 spaces

Input format Inputs specified number of spaces

Output format Outputs specified number of spaces

Formatting Messages for ASCII READ/WRIT Operations

32 840 USE 506 00 October 2002

Format Specifier
()

Repeat contents of the parentheses, e.g., 2 (4X, I5) says repeat 4X, I5 two
times

Format Specifier
I

Integer, e.g., I5 specifies five integer characters

Format Specifier
L

Leading zeros, e.g., L5 specifies five leading zeros

Format Specifier
A

Alphanumeric, e.g., A27 specifies 27 alphanumeric characters, no suffix allowed

Field width None

Prefix 1 ... 255

Input format Repeat format specifiers in parentheses the number of times
specified by the prefix

Output format Repeat format specifiers in parentheses the number of times
specified by the prefix

Field width 1 ... 8 characters

Prefix 1 ... 99

Input format Accepts ASCII characters 0 ... 9. If the field width is not satisfied, the
most significant characters in the field are padded with zeros

Output format Outputs ASCII characters 0 ... 9. If the field width is not satisfied, the
most significant characters in the field are padded with zeros. The
overflow field consists of asterisks.

Field width 1 ... 8 characters

Prefix 1 ... 99

Input format Accepts ASCII characters 0 ... 9. If the field width is not satisfied, the
most significant characters in the field are padded with zeros

Output format Outputs ASCII characters 0 ... 9. If the field width is not satisfied, the
most significant characters in the field are padded with zeros. The
overflow field consists of asterisks.

Field width None (defaults to 1)

Prefix 1 ... 99

Input format Accepts any 8-bit character except reserved delimiters such as CR,
LF, ESC, BKSPC, DEL.

Output format Outputs any 8-bit character

Formatting Messages for ASCII READ/WRIT Operations

840 USE 506 00 October 2002 33

Format Specifier
O

Octal, e.g., O2 specifies two octal characters

Format Specifier
B

Binary, e.g., B4 specifies four binary characters

Format Specifier
H

Hexadecimal, e.g., H2 specifies two hex characters

Field width 1 ... 6 characters

Prefix 1 ... 99

Input format Accepts ASCII characters 0 ... 7. If the field width is not satisfied, the
most significant characters are padded with zeros.

Output format Outputs ASCII characters 0 ... 7. If the field width is not satisfied, the
most significant characters are padded with zeros. No overflow
indicators.

Field width 1 ... 16 characters

Prefix 1 ... 99

Input format Accepts ASCII characters 0 and 1. If the field width is not satisfied,
the most significant characters are padded with zeros.

Output format Outputs ASCII characters 0 and 1. If the field width is not satisfied,
the most significant characters are padded with zeros. No overflow
indicators.

Field width 1 ... 4 characters

Prefix 1 ... 99

Input format Accepts ASCII characters 0 ... 9 and A ... F. If the field width is not
satisfied, the most significant characters are padded with zeros.

Output format Outputs ASCII characters 0 ... 9 and A ... F. If the field width is not
satisfied, the most significant characters are padded with zeros. No
overflow indicators.

Formatting Messages for ASCII READ/WRIT Operations

34 840 USE 506 00 October 2002

Special Set-up Considerations for Control/Monitor Signals Format

General To control and monitor the signals used in the messaging communication, specify
code 1002 in the first register of the control block (the register displayed in the top
node). Via this format, you can control the RTS and CTS lines on the port used for
messaging.

The first three registers in the data block (the displayed register and the first and
second implied registers in the middle node) have predetermined content:

These three data block registers are required for this format, and therefore the
allowable range for the length value (specified in the bottom node) is 3 ... 255.

Control Mask
Word

Usage of word:

Note: In this format, only the local port can be used for messaging, i.e., a parent
PLC cannot monitor or control the signals on a child port. Therefore, the port
number specified in the fifth implied node of the control block must always be 1.

Register Content

Displayed Stores the control mask word

First implied Stores the control data word

Second implied Stores the status word

Bit Function

1 1 = port can be taken
0 = port cannot be taken

2 - 15 Not used

16 1 = control RTS
0 = do not control RTS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Formatting Messages for ASCII READ/WRIT Operations

840 USE 506 00 October 2002 35

Control Data
Word

Usage of word:

Status Word Usage of word:

Bit Function

1 1 = take port
0 = return port

2 - 15 Not used

16 1 = activate RTS
0 = deactivate RTS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bit Function

1 1 = port taken

2 1 = port ACTIVE as Modbus slave

3 - 13 Not used

14 1 = DSR ON

15 1 = CTS ON

16 1 = RTS ON

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Formatting Messages for ASCII READ/WRIT Operations

36 840 USE 506 00 October 2002

840 USE 506 00 October 2002 37

5
Interrupt Handling

Interrupt Handling

Interrupt-related
Performance

The interrupt-related instructions operate with minimum processing overhead. The
performance of interrupt-related instructions is especially critical. Using a interval
timer interrupt (ITMR) instruction adds about 6% to the scan time of the scheduled
ladder logic, this increase does not include the time required to execute the interrupt
handler subroutine associated with the interrupt.

Interrupt Latency
Time

The following table shows the minimum and maximum interrupt latency times you
can expect:

These latency times assume only one interrupt at a time.

Interrupt
Priorities

The PLC uses the following rules to choose which interrupt handler to execute in the
event that multiple interrupts are received simultaneously:
l An interrupt generated by an interrupt module has a higher priority than an

interrupt generated by a timer.
l Interrupts from modules in lower slots of the local backplane have priority over

interrupts from modules in the higher slots.

If the PLC is executing an interrupt handler subroutine when a higher priority
interrupt is received, the current interrupt handler is completed before the new
interrupt handler is begun.

ITMR overhead No work to do 60 ms/ms

Response time Minimum 98 ms

Maximum during logic solve and
Modbus command reception

400 ms

Total overhead (not counting normal logic solve time) 155 ms

Interrupt Handling

38 840 USE 506 00 October 2002

Instructions that
Cannot Be Used
in an Interrupt
Handler

The following (nonreenterant) ladder logic instructions cannot be used inside an
interrupt handler subroutine:
l MSTR
l READ / WRIT
l PCFL / EMTH
l T1.0, T0.1, T.01 and T1MS timers (will not set error bit 2, timer results invalid)
l Equation Networks
l User loadables (will not set error bit 2)

If any of these instructions are placed in an interrupt handler, the subroutine will be
aborted, the error output on the ITMR or IMOD instruction that generated the
interrupt will go ON, and bit 2 in the status register will be set.

Interrupt with
BMDI/ID/IE

Three interrupt mask/unmask control instructions are available to help protect data
in both the normal (scheduled) ladder logic and the (unscheduled) interrupt handling
subroutine logic. These are the Interrupt Disable (ID) instruction, the Interrupt
Enable (IE) instruction, and the Block Move with Interrupts Disabled (BMDI)
instruction.

An interrupt that is executed in the timeframe after an ID instruction has been solved
and before the next IE instruction has been solved is buffered. The execution of a
buffered interrupt takes place at the time the IE instruction is solved. If two or more
interrupts of the same type occur between the ID ... IE solve, the mask interrupt
overrun error bit is set, and the subroutine initiated by the interrupts is executed only
one time

The BMDI instruction can be used to mask both a timer-generated and local I/O-
generated interrupts, perform a single block data move, then unmask the interrupts.
It allows for the exchange of a block of data either within the subroutine or at one or
more places in the scheduled logic program.

BMDI instructions can be used to reduce the time between the disable and enable
of interrupts. For example, BMDI instructions can be used to protect the data used
by the interrupt handler when the data is updated or read by Modbus, Modbus Plus,
Peer Cop or Distributed I/O (DIO).

840 USE 506 00 October 2002 39

6
Subroutine Handling

Subroutine Handling

Subroutine Handling

40 840 USE 506 00 October 2002

JSR / LAB
Method

The example below shows a series of three user logic networks, the last of which is
used for an up-counting subroutine. Segment 32 has been removed from the order-
of-solve table in the segment scheduler:

When input 100001 to the JSR block in network 2 of segment 1 transitions from OFF
to ON, the logic scan jumps to subroutine #1 in network 1 of segment 32.

The subroutine will internally loop on itself ten times, counted by the ADD block. The
first nine loops end with the JSR block in the subroutine (network 1 of segment 32)
sending the scan back to the LAB block. Upon completion of the tenth loop, the RET
block sends the logic scan back to the scheduled logic at the JSR node in network
2 of segment 1.

Scheduled Logic Flow

Segment 001
Network 00001

Network 00002

Segment 002
Network 00001

00001

00001
JSR10001

40256

40256

00001
ADD

40256

40256

40256
SUB

40256

40999

00010
SUB

00001

00001
JSR

00001
RET

00001
LAB

Segment 032
Network 00001

Subroutine Segment

840 USE 506 00 October 2002 41

7
Installation of DX Loadables

Installation of DX Loadables

How to install the
DX Loadables

The DX loadable instructions are only available if you have installed them. With the
installation of the Concept software, DX loadables are located on your hard disk.
Now you have to unpack and install the loadables you want to use as follows:

Step Action

1 With the menu command Project → Configurator you open the
configurator

2 With Configure → Loadables... you open the dialog box Loadables

3 Press the command button Unpack... to open the standard Windows dialog
box Unpack Loadable File where the multifile loadables (DX loadables) can
be selected. Select the loadable file you need, click the button OK and it is
inserted into the list box Available:.

4 Now press the command button Install=> to install the loadable selected in
the list box Available:. The installed loadable will be displayed in the list box
Installed:.

5 Press the command button Edit... to open the dialog box Loadable
Instruction Configuration. Change the opcode if necessary or accept
the default. You can assign an opcode to the loadable in the list box Opcode in
order to enable user program access through this code. An opcode that is
already assigned to a loadable, will be identified by a *. Click the button OK.

6 Click the button OK in the dialog box Loadables.

Configuration loadables count is adjusted. The installed loadable is available for
programming at the menu Objects → List Instructions → DX

Loadable.

Installation of DX Loadables

42 840 USE 506 00 October 2002

840 USE 506 00 October 2002 43

8
Coils, Contacts and Interconnects

At a Glance

Introduction In this chapter you will find information about Coils, Contacts and Interconnects
(Shorts.)

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Coils 44

Contacts 46

Interconnects (Shorts) 48

Coils, Contacts and Interconnects

44 840 USE 506 00 October 2002

Coils

Definition of
Coils

A coil is a discrete output that is turned ON and OFF by power flow in the logic
program. A single coil is tied to a 0x reference in the PLC’s state RAM. Because
output values are updated in state RAM by the PLC, a coil may be used internally in
the logic program or externally via the I/O map to a discrete output unit in the control
system. When a coil is ON, it either passes power to a discrete output circuit or
changes the state of an internal relay contact in state RAM.

There are two types of coils:
l A normal coil
l A memory-retentive, or latched, coil

Coils, Contacts and Interconnects

840 USE 506 00 October 2002 45

Normal Coil A normal coil is a discrete output shown as a 0x reference.

A normal coil is ON or OFF, depending on power flow in the program.

A ladder logic network can contain up to seven coils, no more than one per row.
When a coil is placed in a row, no other logic elements or instruction nodes can
appear to the right of the coil’s logic-solve position in the row. Coils are the only
ladder logic elements that can be inserted in column 11 of a network.

To define a discrete reference for the coil, select it in the editor and click to open a
dialog box called Coil.

Symbol

WARNING

Forcing of Coils

When a discrete input (1x) is disabled, signals from its associated input
field device have no control over its ON/OFF state. When a discrete
output (0x) is disabled, the PLC’s logic scan has no control over the ON/
OFF state of the output. When a discrete input or output has been
disabled, you can change its current ON/OFF state with the Force
command.
There is an important exception when you disable coils. Data move and
data matrix instructions that use coils in their destination node
recognize the current ON/OFF state of all coils in that node, whether
they are disabled or not. If you are expecting a disabled coil to remain
disabled in such an instruction, you may cause unexpected or
undesirable effects in your application.
When a coil or relay contact has been disabled, you can change its
state using the Force ON or Force OFF command. If a coil or relay is
enabled, it cannot be forced.

Failure to observe this precaution can result in severe injury or
equipment damage.

????

Coils, Contacts and Interconnects

46 840 USE 506 00 October 2002

Retentive Coil If a retentive (latched) coil is energized when the PLC loses power, the coil will come
back up in the same state for one scan when the PLC’s power is restored.

To define a discrete reference for the coil, select it in the editor and click to open a
dialog box called Retentative coil (latch).

Symbol

Contacts

Definition of
Contacts

Contacts are used to pass or inhibit power flow in a ladder logic program. They are
discrete, i.e., each consumes one I/O point in ladder logic. A single contact can be
tied to a 0x or 1x reference number in the PLC’s state RAM, in which case each
contact consumes one node in a ladder network.

Four kinds of contacts are available:
l Normally open (N.O.) contacts
l Normally closed (N.C.) contacts
l Positive transitional (P.T.) contacts
l Negative transitional (N.T.) contacts

Contact
Normally Open

A normally open (NO) contact passes power when it is ON.
To define a discrete reference for the NO contact, select it in the editor and click to
open a dialog called Normally open contact.

Symbol

Contact
Normally Closed

A normally closed (NC) contact passes power when it is OFF.

To define a discrete reference for the NC contact, double ckick on it in the ladder
node to open a dialog called Normally closed contact.

Symbol

????
L

????

????

Coils, Contacts and Interconnects

840 USE 506 00 October 2002 47

Contact Pos
Trans

A positive transitional (PT) contact passes power for only one scan as it transitions
from OFF to ON.

To define a discrete reference for the PT contact, select it in the editor and click to
open a dialog called Positive transition contact.

Symbol

Contact Neg
Trans

A negative transitional (NT) contact passes power for only one scan as it transitions
from ON to OFF.

To define a discrete reference for the NT contact, select it in the editor and click to
open a dialog called Contact negative transition .

Symbol

????

????

Coils, Contacts and Interconnects

48 840 USE 506 00 October 2002

Interconnects (Shorts)

Definition of
Interconnects
(Shorts)

Shorts are simply straight-line connections between contacts and/or instructions in
a ladder logic network. Shorts may be inserted horizontally or vertically in a network.

Two kinds of shorts are available:
l Horizontal Short
l Vertical Short

Horizontal Short A short is a straight-line connection between contacts and/or nodes in an instruction
through which power flow can be controlled.

A horizontal short is used to extend logic out across a row in a network without
breaking the power flow. Each horizontal short consumes one node in the network,
and uses a word of memory in the PLC.

Symbol

Vertical Short A vertical short connects contacts or nodes in an instruction positioned one above
the other in a column. Vertical shorts can also connect inputs or outputs in an
instruction to create either-or conditions. When two contacts are connected by a
vertical short, power is passed when one or both contacts receive power.

The vertical short is unique in two ways:
l It can coexist in a network node with another element or nodal value
l It does not consume any PLC memory

Symbol

840 USE 506 00 October 2002 49

II
Instruction Descriptions

At a Glance

Introduction The instruction descriptions are arranged alphabetically according to their
abbreviations.

Instruction Descriptions

50 840 USE 506 00 October 2002

What’s in this
part?

This part contains the following chapters:

Chapter Chaptername Page

9 AD16: Ad 16 Bit 55

10 ADD: Addition 57

11 AND: Logical And 59

12 BCD: Binary to Binary Code 63

13 BLKM: Block Move 65

14 BLKT: Block to Table 69

15 BMDI: Block Move with Interrupts Disabled 73

16 BROT: Bit Rotate 75

17 CHS: Configure Hot Standby 79

18 CKSM: Check Sum 85

19 CMPR: Compare Register 89

20 COMP: Complement a Matrix 93

21 DCTR: Down Counter 97

22 DIOH: Distributed I/O Health 99

23 DIV: Divide 103

24 DLOG: Data Logging for PCMCIA Read/Write Support 107

25 DRUM: DRUM Sequencer 113

26 DV16: Divide 16 Bit 117

27 EMTH: Extended Math 121

28 EMTH-ADDDP: Double Precision Addition 127

29 EMTH-ADDFP: Floating Point Addition 131

30 EMTH-ADDIF: Integer + Floating Point Addition 135

31 EMTH-ANLOG: Base 10 Antilogarithm 139

32 EMTH-ARCOS: Floating Point Arc Cosine of an Angle (in
Radians)

143

33 EMTH-ARSIN: Floating Point Arcsine of an Angle (in Radians) 147

34 EMTH-ARTAN: Floating Point Arc Tangent of an Angle (in
Radians)

151

35 EMTH-CHSIN: Changing the Sign of a Floating Point Number 155

36 EMTH-CMPFP: Floating Point Comparison 159

37 EMTH-CMPIF: Integer-Floating Point Comparison 163

38 EMTH-CNVDR: Floating Point Conversion of Degrees to
Radians

167

39 EMTH-CNVFI: Floating Point to Integer Conversion 171

Instruction Descriptions

840 USE 506 00 October 2002 51

40 EMTH-CNVIF: Integer-to-Floating Point Conversion 175

41 EMTH-CNVRD: Floating Point Conversion of Radians to
Degrees

179

42 EMTH-COS: Floating Point Cosine of an Angle (in Radians) 183

43 EMTH-DIVDP: Double Precision Division 187

44 EMTH-DIVFI: Floating Point Divided by Integer 191

45 EMTH-DIVFP: Floating Point Division 195

46 EMTH-DIVIF: Integer Divided by Floating Point 199

47 EMTH-ERLOG: Floating Point Error Report Log 203

48 EMTH-EXP: Floating Point Exponential Function 207

49 EMTH-LNFP: Floating Point Natural Logarithm 211

50 EMTH-LOG: Base 10 Logarithm 215

51 EMTH-LOGFP: Floating Point Common Logarithm 219

52 EMTH-MULDP: Double Precision Multiplication 223

53 EMTH-MULFP: Floating Point Multiplication 227

54 EMTH-MULIF: Integer x Floating Point Multiplication 231

55 EMTH-PI: Load the Floating Point Value of "Pi" 235

56 EMTH-POW: Raising a Floating Point Number to an Integer
Power

239

57 EMTH-SINE: Floating Point Sine of an Angle (in Radians) 243

58 EMTH-SQRFP: Floating Point Square Root 247

59 EMTH-SQRT: Floating Point Square Root 251

60 EMTH-SQRTP: Process Square Root 255

61 EMTH-SUBDP: Double Precision Subtraction 259

62 EMTH-SUBFI: Floating Point - Integer Subtraction 263

63 EMTH-SUBFP: Floating Point Subtraction 267

64 EMTH-SUBIF: Integer - Floating Point Subtraction 271

65 EMTH-TAN: Floating Point Tangent of an Angle (in Radians) 275

66 ESI: Support of the ESI Module 279

67 EUCA: Engineering Unit Conversion and Alarms 297

68 FIN: First In 309

69 FOUT: First Out 313

70 FTOI: Floating Point to Integer 317

71 HLTH: History and Status Matrices 319

72 IBKR: Indirect Block Read 333

Chapter Chaptername Page

Instruction Descriptions

52 840 USE 506 00 October 2002

73 IBKW: Indirect Block Write 335

74 ICMP: Input Compare 337

75 ID: Interrupt Disable 343

76 IE: Interrupt Enable 347

77 IMIO: Immediate I/O 351

78 IMOD: Interrupt Module Instruction 357

79 ITMR: Interrupt Timer 365

80 ITOF: Integer to Floating Point 371

81 JSR: Jump to Subroutine 373

82 LAB: Label for a Subroutine 375

83 LOAD: Load Flash 379

84 MAP 3: MAP Transaction 383

85 MBIT: Modify Bit 391

86 MBUS: MBUS Transaction 395

87 MRTM: Multi-Register Transfer Module 405

88 MSTR: Master 411

89 MU16: Multiply 16 Bit 453

90 MUL: Multiply 455

91 NBIT: Bit Control 457

92 NCBT: Normally Closed Bit 459

93 NOBT: Normally Open Bit 461

94 NOL: Network Option Module for Lonworks 463

95 OR: Logical OR 467

96 PCFL: Process Control Function Library 471

97 PCFL-AIN: Analog Input 479

98 PCFL-ALARM: Central Alarm Handler 485

99 PCFL-AOUT: Analog Output 489

100 PCFL-AVER: Average Weighted Inputs Calculate 493

101 PCFL-CALC: Calculated preset formula 499

102 PCFL-DELAY: Time Delay Queue 503

103 PCFL-EQN: Formatted Equation Calculator 509

104 PCFL-INTEG: Integrate Input at Specified Interval 515

105 PCFL-KPID: Comprehensive ISA Non Interacting PID 519

106 PCFL-LIMIT: Limiter for the Pv 525

Chapter Chaptername Page

Instruction Descriptions

840 USE 506 00 October 2002 53

107 PCFL-LIMV: Velocity Limiter for Changes in the Pv 529

108 PCFL-LKUP: Look-up Table 533

109 PCFL-LLAG: First-order Lead/Lag Filter 537

110 PCFL-MODE: Put Input in Auto or Manual Mode 541

111 PCFL-ONOFF: ON/OFF Values for Deadband 545

112 PCFL-PI: ISA Non Interacting PI 551

113 PCFL-PID: PID Algorithms 555

114 PCFL-RAMP: Ramp to Set Point at a Constant Rate 561

115 PCFL-RATE: Derivative Rate Calculation over a Specified
Timeme

567

116 PCFL-RATIO: Four Station Ratio Controller 571

117 PCFL-RMPLN: Logarithmic Ramp to Set Point 577

118 PCFL-SEL: Input Selection 581

119 PCFL-TOTAL: Totalizer for Metering Flow 585

120 PEER: PEER Transaction 591

121 PID2: Proportional Integral Derivative 595

122 R −−> T: Register to Table 609

123 RBIT: Reset Bit 613

124 READ: Read 615

125 RET: Return from a Subroutine 621

126 SAVE: Save Flash 623

127 SBIT: Set Bit 627

128 SCIF: Sequential Control Interfaces 629

129 SENS: Sense 635

130 SKPC: Skip (Constants) 639

131 SKPR: Skip (Registers) 643

132 SRCH: Search 647

133 STAT: Status 651

134 SU16: Subtract 16 Bit 675

135 SUB: Subtraction 677

136 T−−>R: Table to Register 679

137 T−−>T: Table to Table 683

138 T.01 Timer: One Hundredth Second Timer 687

139 T0.1 Timer: One Tenth Second Timer 689

140 T1.0 Timer: One Second Timer 691

Chapter Chaptername Page

Instruction Descriptions

54 840 USE 506 00 October 2002

141 T1MS Timer: One Millisecond Timer 693

142 TBLK: Table to Block 699

143 TEST: Test of 2 Values 703

144 UCTR: Up Counter 705

145 WRIT: Write 707

146 XMIT: XMIT Communication Block 713

147 XMRD: Extended Memory Read 723

148 XMWT: Extended Memory Write 727

149 XOR: Exclusive OR 731

Chapter Chaptername Page

840 USE 506 00 October 2002 55

9
AD16: Ad 16 Bit

At a Glance

Introduction This chapter describes the instruction AD16.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 56

Representation 56

AD16: Ad 16 Bit

56 840 USE 506 00 October 2002

Short Description

Function
Description

The AD16 instruction performs signed or unsigned 16-bit addition on value 1 (its top
node) and value 2 (its middle node), then posts the sum in a 4x holding register in
the bottom node.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

value 1

value 2

AD16

sum

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = add value 1 and value 2

Bottom input 0x, 1x None ON = signed operation
OFF = unsigned operation

value 1
(top node)

3x, 4x INT, UINT Addend, can be displayed explicitly as an
integer (range 1 ... 65 535) or stored in a
register

value 2
(middle node)

3x, 4x INT, UINT Addend, can be displayed explicitly as an
integer (range 1 ... 65 535) or stored in a
register

sum
(bottom node)

4x INT, UINT Sum of 16 bit addition

Top output 0x None ON = successful completion of the
operation

Bottom output 0x None ON = overflow in the sum:

840 USE 506 00 October 2002 57

10
ADD: Addition

At a Glance

Introduction This chapter describes the instruction ADD.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 58

Representation 58

ADD: Addition

58 840 USE 506 00 October 2002

Short Description

Function
Description

The ADD instruction adds unsigned value 1 (its top node) to unsigned value 2 (its
middle node) and stores the sum in a holding register in the bottom node.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

value 1

value 2

ADD

sum

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = add value 1 and value 2

value 1
(top node)

3x, 4x INT, UINT Addened, can be displayed explicitly as an
integer (range 1 ... 9 999) or stored in a
register

value 2
(middle node)

3x, 4x INT, UINT Addend, can be displayed explicitly as an
integer (range 1 ... 9 999) or stored in a
register

sum
(bottom node)

4x INT, UINT Sum

Top output 0x None ON = overflow in the sum: sum > 9 999

840 USE 506 00 October 2002 59

11
AND: Logical And

At a Glance

Introduction This chapter describes the instruction AND.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 60

Representation 61

Parameter Description 61

AND: Logical And

60 840 USE 506 00 October 2002

Short Description

Function
Description

The AND instruction performs a Boolean AND operation on the bit patterns in the
source and destination matrices.
The ANDed bit pattern is then posted in the destination matrix, overwriting its
previous contents:

WARNING

Overriding of any disabled coils within the destination matrix
without enabling them.

AND will override any disabled coils within the destination matrix
without enabling them.This can cause personal injury if a coil has
disabled an operation for maintenance or repair because the coil’s state
can be changed by the AND operation.

Failure to observe this precaution can result in severe injury or
equipment damage.

0 1 1 0

0 0

AND

0 0

AND

1 1

AND

1 0

AND
destination

bits

source
bits

AND: Logical And

840 USE 506 00 October 2002 61

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

Parameter Description

Matrix Length
(Bottom Node)

The integer entered in the bottom node specifies the matrix length, i.e. the number
of registers or 16-bit words in the two matrices. The matrix length can be in the range
1 ... 100. A length of 2 indicates that 32 bits in each matrix will be ANDed.

DATAsourceDATA

matrix

destination

matrix

AND

length

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None Initiates AND

source matrix
(top node)

0x, 1x, 3x, 4x BOOL,
WORD

First reference in the source matrix

destination
matrix
(middle node)

0x, 4x BOOL,
WORD

First reference in the destination matrix

length
(bottom node)

INT, UINT Matrix length; range 1 ... 100.

Top output 0x None Echoes state of the top input

AND: Logical And

62 840 USE 506 00 October 2002

840 USE 506 00 October 2002 63

12
BCD: Binary to Binary Code

At a Glance

Introduction This chapter describes the instruction BCD.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 64

Representation 64

BCD: Binary to Binary Code

64 840 USE 506 00 October 2002

Short Description

Function
Description

The BCD instruction can be used to convert a binary value to a binary coded decimal
(BCD) value or a BCD value to a binary value. The type of conversion to be
performed is controlled by the state of the bottom input.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

source

register

destination

register

BCD

#1

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = enable conversion

Bottom input 0x, 1x None ON = BCD → binary conversion
OFF = binary → BCD conversion

Source register
(top node)

3x, 4x INT, UINT Source register where the numerical value
to be converted is stored

Destination
register
(middle node)

4x INT, UINT Destination register where the converted
numerical value is posted

#1
(bottom node)

INT, UINT Constant value, can not be changed

Top output 0x None Echoes the state of the top input

Bottom output 0x None ON = error in the conversion operation

840 USE 506 00 October 2002 65

13
BLKM: Block Move

At a Glance

Introduction This chapter describes the instruction BLKM.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 66

Representation 67

BLKM: Block Move

66 840 USE 506 00 October 2002

Short Description

Function
Description

The BLKM (block move) instruction copies the entire contents of a source table to a
destination table in one scan.

WARNING

Overriding of any disabled coils within a destination table without
enabling them.

BLKM will override any disabled coils within a destination table without
enabling them. This can cause injury if a coil has been disabled for
repair or maintenance because the coil’s state can change as a result
of the BLKM instruction.

Failure to observe this precaution can result in severe injury or
equipment damage.

BLKM: Block Move

840 USE 506 00 October 2002 67

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

source

table

destination

table

BLKM

table

length

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates block move

source table
(top node)

0x, 1x, 3x, 4x ANY_BIT Source table that will have its contents
copied in the block move

destination
table
(middle node)

0x, 4x ANY_BIT Destination table where the contents of the
source table will be copied in the block
move

table length
(bottom node)

INT, UINT Table size (number of registers or 16-bit
words) for both the source and destination
tables; they are of equal length.
Range: 1 ... 100.

Top output 0x None Echos the state of the top input

BLKM: Block Move

68 840 USE 506 00 October 2002

840 USE 506 00 October 2002 69

14
BLKT: Block to Table

At a Glance

Introduction This chapter describes the instruction BLKT.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 70

Representation 71

Parameter Description 72

BLKT: Block to Table

70 840 USE 506 00 October 2002

Short Description

Function
Description

The BLKT (block-to-table) instruction combines the functions of R→T and BLKM in
a single instruction. In one scan, it can copy data from a source block to a destination
block in a table. The source block is of a fixed length. The block within the table is of
the same length, but the overall length of the table is limited only by the number of
registers in your system configuration.

WARNING

All the 4x registers in your PLC can be corrupted with data copied
from the source block.

BLKT is a powerful instruction that can corrupt all the 4x registers in
your PLC with data copied from the source block. You should use
external logic in conjunction with the middle or bottom input to confine
the value in the pointer to a safe range.

Failure to observe this precaution can result in severe injury or
equipment damage.

BLKT: Block to Table

840 USE 506 00 October 2002 71

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

source

block

pointer

BLKT

block length

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates the DX move

Middle input 0x, 1x None ON = hold pointer

Bottom input 0x, 1x None ON = reset pointer to zero

source block
(top node)

4x BYTE, WORD First holding register in the block of
contiguous registers whose content will be
copied to a block of registers in the
destination table.

pointer
(middle node)

4x BYTE, WORD Pointer to the destination table

block length
(bottom node)

INT, UINT Block length (number of 4x registers) of
the source block and of the destination
block. Range: 1 ... 100.

Top output 0x None ON = operation successful

Middle output 0x None ON = error / move not possible

BLKT: Block to Table

72 840 USE 506 00 October 2002

Parameter Description

Middle and
Bottom Input

The middle and bottom input can be used to control the pointer so that source data
is not copied into registers that are needed for other purposes in the logic program.
When the middle input is ON, the value in the pointer register is frozen while the
BLKT operation continues. This causes new data being copied to the destination to
overwrite the block data copied on the previous scan.
When the bottom input is ON, the value in the pointer register is reset to zero. This
causes the BLKT operation to copy source data into the first block of registers in the
destination table.

Pointer (Middle
Node)

The 4x register entered in the middle node is the pointer to the destination table. The
first register in the destination table is the next contiguous register after the pointer,
e.g. if the pointer register is 400107, then the first register in the destination table is
400108.

The value stored in the pointer register indicates where in the destination table the
source data will begin to be copied. This value specifies the block number within the
destination table.

Note: The destination table is segmented into a series of register blocks, each of
which is the same length as the source block. Therefore, the size of the destination
table is a multiple of the length of the source block, but its overall size is not
specifically defined in the instruction. If left uncontrolled, the destination table could
consume all the 4x registers available in the PLC configuration.

840 USE 506 00 October 2002 73

15
BMDI: Block Move with Interrupts
Disabled

At a Glance

Introduction This chapter describes the instruction BMDI.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 74

Representation 74

BMDI: Block Move with Interrupts Disabled

74 840 USE 506 00 October 2002

Short Description

Function
Description

The BMDI instruction masks the interrupt, initiates a block move (BLKM) operation,
then unmasks the interrupts.
Further Information you will find in the chapter "Interrupt Handling, p. 37".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

Note: This instruction is only available after configuring a CPU without extension.

source

table

destination

table

BMDI

table

length

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = masks interrupt, initiates a block
move, then unmasks the interrupts

source table
(top node)

0x, 1x, 3x, 4x INT, UINT,
WORD

Source table that will have its contents
copied in the block move

destination
table
(middle node)

0x, 4x INT, UINT,
WORD

Destination table where the contents of the
source table will be copied in the block
move

table length
(bottom node)

INT, UINT Integer value, specifies the table size, i.e.
the number of registers, in the source and
destination tables (they are of equal
length). Range: 1 ... 100.

Top output 0x None Echoes the state of the top input

840 USE 506 00 October 2002 75

16
BROT: Bit Rotate

At a Glance

Introduction This chapter describes the instruction BROT.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 76

Representation 77

Parameter Description 78

BROT: Bit Rotate

76 840 USE 506 00 October 2002

Short Description

Function
Description

The BROT (bit rotate) instruction shifts the bit pattern in a source matrix, then posts
the shifted bit pattern in a destination matrix. The bit pattern shifts left or right by one
position per scan.

WARNING

Overriding of any disabled coils within a destination matrix
without enabling them.

BROT will override any disabled coils within a destination matrix without
enabling them. This can cause injury if a coil has been disabled for
repair or maintenance if BROT unexpectedly changes the coil’s state.

Failure to observe this precaution can result in severe injury or
equipment damage.

BROT: Bit Rotate

840 USE 506 00 October 2002 77

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

source

matrix

destination

matrix

BROT

length

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = shifts bit pattern in source matrix by
one

Middle input 0x, 1x None ON= shift left
OFF = shift right

Bottom input 0x, 1x None OFF = exit bit falls out of the destination
matrix
ON = exit bit wraps to start of the
destination matrix

source matrix
(top node)

0x, 1x, 3x, 4x ANY_BIT First reference in the source matrix, i.e. in
the matrix that will have its bit pattern
shifted

destination
matrix
(middle node)

0x, 4x ANY_BIT First reference in the destination matrix,
i.e. in the matrix that shows the shifted bit
pattern

length
(bottom node)

0x INT, UINT Matrix length; range: 1 ... 100

Top output 0x None Echoes state of the top input

Middle output 0x None OFF = exit bit is 0
ON = exit bit is 1

BROT: Bit Rotate

78 840 USE 506 00 October 2002

Parameter Description

Matrix Length
(Bottom Node)

The integer value entered in the bottom node specifies the matrix length, i.e. the
number of registers or 16-bit words in each of the two matrices. The source matrix
and destination matrix have the same length. The matrix length can range from 1 ...
100, e.g. a matrix length of 100 indicates 1600 bit locations.

Result of the
Shift (Middle
Output)

The middle output indicates the sense of the bit that exits the source matrix (the
leftmost or rightmost bit) as a result of the shift.

840 USE 506 00 October 2002 79

17
CHS: Configure Hot Standby

At a Glance

Introduction This chapter describes the instruction CHS.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 80

Representation 81

Detailed Description 82

CHS: Configure Hot Standby

80 840 USE 506 00 October 2002

Short Description

Function
Description

The logic in the CHS loadable is the engine that drives the Hot Standby capability in
a Quantum PLC system. Unlike the HSBY instruction, the use of the CHS instruction
in the ladder logic program is optional. However, the loadable software itself must
be installed in the Quantum PLC in order for a Hot Standby system to be
implemented.

Note: This instruction is only available, if you have unpacked and installed the DX
Loadables; further information in the chapter "Installation of DX Loadables, p. 41".

CHS: Configure Hot Standby

840 USE 506 00 October 2002 81

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

command

register

nontransfer

area

CHS

length

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None Execute Hot Standby (unconditionally)

Middle input 0x, 1x None ON = Enable command register

Bottom input 0x, 1x None ON = Enable nontransfer area
OFF = nontransfer area will not be used
and the Hot Standby status register will not
exist

command
register
(top node)

4x INT, UINT,
WORD

Hot Standby command register

nontransfer
area
(middle node)

4x INT, UINT,
WORD

First register in the nontransfer area of
state RAM

length
(bottom node)

INT, UINT Number of registers of the Hot Standby
nontransfer area in state RAM; range 4 ...
8000

Top output 0x None Hot Standby system ACTIVE

Middle output 0x None PLC cannot communicate with its CHS
module

Bottom output 0x None Configuration extension screens are
defining the Hot Standby configuration

CHS: Configure Hot Standby

82 840 USE 506 00 October 2002

Detailed Description

Hot Standby
System
Configuration via
the CHS
Instruction

Program the CHS instruction in network 1, segment 1 of your ladder logic program
and unconditionally connect the top input to the power rail via a horizontal short (as
the HSBY instruction is programmed in a 984 Hot Standby system).
This method is particularly useful if you are porting Hot Standby code from a 984
application to a Quantum application. The structure of the CHS instruction is almost
exactly the same as the HSBY instruction. You simply remove the HSBY instruction
from the 984 ladder logic and replace it with a CHS instruction in the Quantum logic.
If you are using the CHS instruction in ladder logic, the only difference between it
and the HSBY instruction is the use of the bottom output. This output senses
whether or not method 2 has been used. If the Hot Standby configuration extension
screens have been used to define the Hot Standby configuration, the configuration
parameters in the screens will override any different parameters defined by the CHS
instruction at system startup.
For detailes discussion of the issues related to the configuration extension
capabilities of a Quantum Hot Standby system, refer to the Modicon Quantum Hot
Standby System Planning and Installation Guide.

Parameter
Description
Execute Hot
Standby (Top
Input)

When the CHS instruction is inserted in ladder logic to control the Hot Standby
configuration parameters, its top input must be connected directly to the power rail
by a horizontal short. No control logic, such as contacts, should be placed between
the rail and the input to the top node.

WARNING

Erratic behavior in the Hot Standby system

Although it is legal to enable and disable the nontransfer area while the
Hot Standby system is running, we strongly discourage this practice. It
can lead to erratic behavior in the Hot Standby system.

Failure to observe this precaution can result in severe injury or
equipment damage.

CHS: Configure Hot Standby

840 USE 506 00 October 2002 83

Parameter
Description
Command
Register (Top
Node)

The 4x register entered in the top node is the Hot Standby command register; eight
bits in this register are used to configure and control Hot Standby system
parameters:
Usage of command word:

Bit Function

1 - 5 Not used

6 0 = swap Modbus port 3 address during switchover
1 = no swap

7 0 = swap Modbus port 2 address during switchover
1 = no swap

8 0 = swap Modbus port 1 address during switchover
1 = no swap

9 - 11 Not used

12 0 = allow exec upgrade only after application stops
1 = allow the upgrade without stopping the application

13 0 = force standby offline if there is a logic mismatch
1 = do not force

14 0 = controller B is in OFFLINE mode
1 = controller B is in RUN

15 0 = controller A is in OFFLINE mode
1 = controller A is in RUN

16 0 = disable keyswitch override
1 = enable the override

Note: The Hot Standby command register must be outside of the nontransfer area
of state RAM.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CHS: Configure Hot Standby

84 840 USE 506 00 October 2002

Parameter
Description
Nontransfer Area
(Middle Node)

The 4x register entered in the middle node is the first register in the nontransfer area
of state RAM. The nontransfer area must contain at least four registers, the first
three of which have a predefined usage:

The content of the remaining registers is application-specific; the length is defined
in the parameter "length" (bottom node).
The 4x registers in the nontransfer area are never transferred from the primary to
the standby PLC during the logic scans. One reason for scheduling additional
registers in the nontransfer area is to reduce the impact of state RAM transfer on the
total system scan time.

CHS Status
Register

Usage of status word:

Register Content

Displayed and first implied Reverse transfer registers for passing information from the
standby to the primary PLC

Second implied CHS Status Register, p. 84

Bit Function

1 1 = the top output is ON (indicating Hot Standby system is active)

2 1 = the middle output is ON (indicating an error condition)

3 - 10 Not used

11 0 = PLC switch is set to A
1 = PLC switch is set to B

12 0 = PLC logic is matched
1 = there is a logic mismatch

13 - 14 The 2 bit value is:
l 0 1 if the other PLC is in OFFLINE mode
l 1 0 if other PLC is running in primary mode
l 1 1 if other PLC is running in standby mode

15 - 16 The 2 bit value is:
l 0 1 if this PLC is in OFFLINE mode
l 1 0 if this PLC is running in primary mode
l 1 1 if this PLC is running in standby mode

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

840 USE 506 00 October 2002 85

18
CKSM: Check Sum

At a Glance

Introduction This chapter describes the instruction CKSM.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 86

Representation 86

Parameter Description 87

CKSM: Check Sum

86 840 USE 506 00 October 2002

Short Description

Function
Description

Several PLCs that do not support Modbus Plus come with a standard checksum
(CKSM) instruction. CKSM has the same opcode as the MSTR instruction and is not
provided in executive firmware for PLCs that support Modbus Plus.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

source

result/
count

CKSM

length

Parameters State RAM
Reference

Data Type Meaning

Top input (See
Inputs, p. 87)

0x, 1x None Initiates checksum calculation of source
table

Middle input 0x,1x None Cksm select 1

Bottom input 0x, 1x None Cksm select 2

source
(top node)

4x INT, UINT First holding register in the source table.
The checksum calculation is performed on
the registers in this table.

result/count
(middle node)

4x INT, UINT First of two contiguous registers

length
(bottom node)

INT Number of 4x registers in the source table;
range: 1 ... 255

Top output 0x None ON = calculation successful

Bottom output 0x None ON = implied register count > length or
implied register count =0

CKSM: Check Sum

840 USE 506 00 October 2002 87

Parameter Description

Inputs The states of the inputs indicate the type of checksum calculation to be performed:

Result / Count
(Middle Node)

The 4x register entered in the middle node is the first of two contiguous 4x registers:

CKSM Calculation Top Input Middle Input Bottom Input

Straight Check ON OFF ON

Binary Addition Check ON ON ON

CRC-16 ON ON OFF

LRC ON OFF OFF

Register Content

Displayed Stores the result of the checksum calculation

First implied Posts a value that specifies the number of registers selected from
the source table as input to the calculation. The value posted in the
implied register must be ≤ length of source table.

CKSM: Check Sum

88 840 USE 506 00 October 2002

840 USE 506 00 October 2002 89

19
CMPR: Compare Register

At a Glance

Introduction This chapter describes the instruction CMPR.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 90

Representation 90

Parameter Description 91

CMPR: Compare Register

90 840 USE 506 00 October 2002

Short Description

Function
Description

The CMPR instruction compares the bit pattern in matrix a against the bit pattern in
matrix b for miscompares. In a single scan, the two matrices are compared bit
position by bit position until a miscompare is found or the end of the matrices is
reached (without miscompares).

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

matrix a

pointer
register

CMPR

length

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = intiiates compare operation

Middle input 0x, 1x None OFF = restart at last miscompare
ON = restart at the beginning

matrix a
(top node)

0x, 1x, 3x, 4x ANY_BIT First reference in matrix a, one of the two
matrices to be compared

pointer register
(midlle node)

4x WORD Pointer to matrix b: the first register in
matrix b is the next contiguous 4x register
following the pointer register

length
(bottom node)

INT, UINT Matrix length; range: 1 ... 100

Top output 0x None Echoes state of the top input

Middle output 0x None ON = miscompare detected

Bottom output 0x None ON = miscompared bit in matrix a is 1
OFF = miscompared bit in matrix a is 0

CMPR: Compare Register

840 USE 506 00 October 2002 91

Parameter Description

Pointer Register
(Middle Node)

The pointer register entered in the middle node must be a 4x holding register. It is
the pointer to matrix b, the other matrix to be compared. The first register in matrix
b is the next contiguous 4x register following the pointer register.
The value stored inside the pointer register increments with each bit position in the
two matrices that is being compared. As bit position 1 in matrix a and matrix b is
compared, the pointer register contains a value of 1; as bit position 2 in the matrices
are compared, the pointer value increments to 2; etc.
When the outputs signal a miscompare, you can check the accumulated count in the
pointer register to determine the bit position in the matrices of the miscompare.

Matrix Length
(Bottom Node)

The integer value entered in the bottom node specifies a length of the two matrices,
i.e. the number of registers or 16-bit words in each matrix. (Matrix a and matrix b
have the same length.) The matrix length can range from 1 ... 100, i.e. a length of 2
indicates that matrix a and matrix b contain 32 bits.

CMPR: Compare Register

92 840 USE 506 00 October 2002

840 USE 506 00 October 2002 93

20
COMP: Complement a Matrix

At a Glance

Introduction This chapter describes the instruction COMP.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 94

Representation 95

Parameter Description 95

COMP: Complement a Matrix

94 840 USE 506 00 October 2002

Short Description

Function
Description

The COMP instruction complements the bit pattern, i.e. changes all 0’s to 1’s and all
1’s to 0’s, of a source matrix, then copies the complemented bit pattern into a
destination matrix. The entire COMP operation is accomplished in one scan.

WARNING

Overriding of any disabled coils in the destination matrix without
enabling them.

COMP will override any disabled coils in the destination matrix without
enabling them. This can cause injury if a coil has been disabled for
repair or maintenance because the coil’s state can be changed by the
COMP operation.

Failure to observe this precaution can result in severe injury or
equipment damage.

COMP: Complement a Matrix

840 USE 506 00 October 2002 95

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

Parameter Description

Matrix Length
(Bottom Node)

The integer value entered in the bottom node specifies a matrix length, i.e. the
number of registers or 16-bit words in the matrices. Matrix length can range from
1 ... 100. A length of 2 indicates that 32 bits in each matrix will be complemented.

source

destination

COMP

length

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates the complement operation

source
(top node)

0x, 1x, 3x, 4x ANY_BIT First reference in the source matrix, which
contains the original bit pattern before the
complement operation

destination
(middle node)

0x, 4x ANY_BIT First reference in the destination matrix
where the complemented bit pattern will
be posted

length
(bottom node)

INT, UINT Matrix length; range: 1 ... 100.

Top output 0x None Echoes state of the top input

COMP: Complement a Matrix

96 840 USE 506 00 October 2002

840 USE 506 00 October 2002 97

21
DCTR: Down Counter

At a Glance

Introduction This chapter describes the instruction DCTR.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 98

Representation 98

DCTR: Down Counter

98 840 USE 506 00 October 2002

Short Description

Function
Description

The DCTR instruction counts control input transitions from OFF to ON down from a
counter preset value to zero.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

counter

preset

DCTR

accumulated

count

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None OFF → ON = initiates the counter
operation

Bottom input 0x, 1x None OFF = accumulated count is reset to
preset value
ON = counter accumulating

counter preset
(top node)

3x, 4x INT, UINT Preset value, can be displayed explicitly
as an integer (range 1 ... 65 535) or stored
in a register

accumulated
count
(bottom node)

4x INT, UINT Count value (actual value); which
decrements by one on each transition from
OFF to ON of the top input until it reaches
zero.

Top output 0x None ON = accumulated count = 0

Bottom output 0x None ON = accumulated count > 0

840 USE 506 00 October 2002 99

22
DIOH: Distributed I/O Health

At a Glance

Introduction This chapter describes the instruction DIOH.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 100

Representation 100

Parameter Description 101

DIOH: Distributed I/O Health

100 840 USE 506 00 October 2002

Short Description

Function
Description

The DIOH instruction lets you retrieve health data from a specified group of drops
on the distributed I/O network. It accesses the DIO health status table, where health
data for modules in up to 189 distributed drops is stored.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

source

destination

DIOH

length
(1 ... 192)

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates the retrieval of the specified
status words from the DIO health table into
the destination table

source
(top node)

INT, UINT Source value (four-digit constant in the
form xxyy)

destination
(middle node)

4x INT, UINT,
WORD

First holding register in the destination
table, i.e. in a block of contiguous registers
where the retrieved health status
information is stored

length
(bottom node)

INT, UINT Length of the destination table, range
1 ... 64

Top output 0x None Echoes the state of the top input

Bottom output 0x None ON = invalid source entry

DIOH: Distributed I/O Health

840 USE 506 00 October 2002 101

Parameter Description

Source Value
(Top Node)

The source value entered in the top node is a four-digit constant in the form xxyy,
where:

For example, if you are interested in retrieving drop status starting at distributed drop
#1 on a network being handled by a DIO processor in slot 3, enter 0301 in the top
node.

Length of
Destination
Table (Bottom
Node)

The integer value entered in the bottom node specifies the length, i.e. the number of
4x registers, in the destination table. The length is in the range 1 ... 64.

Digits Meaning

xx Decimal value in the range 00 ... 16, indicating the slot number in which the
relevant DIO processor resides. The value 00 can always be used to indicate the
Modbus Plus ports on the PLC, regardless of the slot in which it resides.

yy Decimal value in the range 1 ... 64, indicating the drop number on the appropriate
token ring

Note: If you specify a length that excedes the number of drops available, the
instruction will return status information only for the drops available. For example,
if you specify the 63rd drop number (yy) in the top node register and then request
a length of 5, the instruction will give you only two registers (the 63rd and 64th drop
status words) in the destination table.

DIOH: Distributed I/O Health

102 840 USE 506 00 October 2002

840 USE 506 00 October 2002 103

23
DIV: Divide

At a Glance

Introduction This chapter describes the instruction DIV.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 104

Representation 105

Example 106

DIV: Divide

104 840 USE 506 00 October 2002

Short Description

Function
Description

The DIV instruction divides unsigned value 1 (its top node) by unsigned value 2 (its
middle node) and posts the quotient and remainder in two contiguous holding
registers in the bottom node.

DIV: Divide

840 USE 506 00 October 2002 105

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

value 1

value 2

DIV

result/

remainder

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = value 1 divided by value 2

Middle input 0x, 1x None ON = decimal remainder
OFF = fraction remainder

value 1
(top node)

3x, 4x INT, UINT Dividend, can be displayed explicitly as an
integer (range 1 ... 9 999) or stored in two
contiguous registers (displayed for hig-
horder half, implied for low-order half)

value 2
(middle node)

3x, 4x INT, UINT Divisor, can be displayed explicitly as an
integer (range 1 ... 9 999) or stored in a
register

result /
remainder
(bottom node)

4x INT, UINT First of two contiguous holding registers:
displayed: result of division
implied: remainder (either a decimal or a
fraction, depending on the state of middle
input)

Top output 0x None ON = division successful

Middle output 0x None ON = overflow:
if result > 9 999, a 0 value is returned

Bottom output 0x None ON = value 2 = 0

DIV: Divide

106 840 USE 506 00 October 2002

Example

Quotient of
Instruction DIV

The state of the middle input indicates whether the remainder will be expressed as
a decimal or as a fraction. For example, if value 1 = 8 and value 2 = 3, the decimal
remainder (middle input ON) is 6666; the fractional remainder (middle input OFF) is
2.

840 USE 506 00 October 2002 107

24
DLOG: Data Logging for PCMCIA
Read/Write Support

At a Glance

Introduction This chapter describes the instruction DLOG.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 108

Representation 109

Parameter Description 110

Run Time Error Handling 111

DLOG: Data Logging for PCMCIA Read/Write Support

108 840 USE 506 00 October 2002

Short Description

Function
Description

PCMCIA read and write support consists of a configuration extension to be
implemented using a DLOG instruction. The DLOG instruction provides the facility
for an application to copy data to a PCMCIA flash card, copy data from a PCMCIA
flash card, erase individual memory blocks on a PCMCIA flash card, and to erase
an entire PCMCIA flash card. The data format and the frequency of data storage are
controlled by the application.

Note: This instruction is only available with the PLC family TSX Compact.

Note: The DLOG instruction will only operate with PCMCIA linear flash cards that
use AMD flash devices.

DLOG: Data Logging for PCMCIA Read/Write Support

840 USE 506 00 October 2002 109

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

control

block

data

area

DLOG

length

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = DLOG operation enabled, it should
remain ON until the operation has
completed successfully or an error has
occurred.

Middle input 0x, 1x None ON = stops the currently active operation

control block
(top node)

4x INT, UINT First of five contiguous registers in the
DLOG control block

data area
(middle node)

4x INT, UINT First 4x register in a data area used for the
source or destination of the specified
operation

length
(bottom node)

INT, UINT Maximum number of registers reserved for
the data area, range: 0 ... 100.

Top output 0x None Echoes state of the top input

Middle output 0x None ON = error during DLOG operation
(operation terminated unsuccessfully)

Bottom output 0x None ON = DLOG operation finishes
successfully (operation successful)

DLOG: Data Logging for PCMCIA Read/Write Support

110 840 USE 506 00 October 2002

Parameter Description

Control Block
(Top Node)

The 4x register entered in the top node is the first of five contiguous registers in the
DLOG control block.
The control block defines the function of the DLOG command, the PCMCIA flash
card window and offset, a return status word, and a data word count value.

Register Function Content

Displayed Error Status Displays DLOG errors in HEX values

First implied Operation Type 1 = Write to PCMCIA Card
2 = Read to PCMCIA Card
3 = Erase One Block
4 = Erase Entire Card Content

Second
implied

Window
(Block Identifier)

This register identifies a particular block (PCMCIA
memory window) located on the PCMCIA card
(1 block=128k bytes)
The number of blocks are dependent on the memory
size of the PCMCIA card. (e.g.. 0 ... 31 Max. for a 4Meg
PCMCIA card).

Third implied Offset
(Byte Address
within the Block)

Particular range of bytes located within a particular
block on the PCMCIA card.
Range: 1 ... 128k bytes

Fourth implied Count Number of 4x registers to be written or read to the
PCMCIA card. Range: 0 ... 100.

Note: PCMCIA Flash Card address are address on a Window:Offset basis.
Windows have a set size of 128k bytes (65 535 words (16-bit values)). No Write or
Read operation can cross the boundary from one window to the next. Therefore,
offset (third implied register) plus length (fourth implied register) must always be
less or equal to 128k bytes (65 535 words).

DLOG: Data Logging for PCMCIA Read/Write Support

840 USE 506 00 October 2002 111

Data Area
(Middle Node)

The 4x register entered in the middle node is the first register in a contiguous block
of 4x word registers, that the DLOG instruction will use for the source or destination
of the operation specified in the top node’s control block.

Length (Bottom
Node)

The integer value entered in the bottom node is the length of the data area, i.e., the
maximum number of words (registers) allowed in a transfer to/from the PCMCIA
flash card. The length can range from 0 ... 100.

Run Time Error Handling

Error Codes The displayed register of the control block contains the following DLOG errors in
Hex-code.
Hex Error Codes DLOG

Operation State Ram
Reference

Function

Write 4x Source Address

Read 4x Destination Address

Erase Block none None

Erase Card none None

Error Code
in Hex

Content

1 The count parameter of the control block > the DLOG block length during a
WRITE operation (01)

2 PCMCIA card operation failed when intially started (write/read/erase)

3 PCMCIA card operation failed during execution (write/read/erase)

DLOG: Data Logging for PCMCIA Read/Write Support

112 840 USE 506 00 October 2002

840 USE 506 00 October 2002 113

25
DRUM: DRUM Sequencer

At a Glance

Introduction This chapter describes the instruction DRUM.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 114

Representation 115

Parameter Description 115

DRUM: DRUM Sequencer

114 840 USE 506 00 October 2002

Short Description

Function
Description

The DRUM instruction operates on a table of 4x registers containing data
representing each step in a sequence. The number of registers associated with this
step data table depends on the number of steps required in the sequence. You can
pre-allocate registers to store data for each step in the sequence, thereby allowing
you to add future sequencer steps without having to modify application logic.
DRUM incorporates an output mask that allows you to selectively mask bits in the
register data before writing it to coils. This is particularly useful when all physical
sequencer outputs are not contiguous on the output module. Masked bits are not
altered by the DRUM instruction, and may be used by logic unrelated to the
sequencer.

Note: This instruction is only available, if you have unpacked and installed the DX
Loadables; further information in the chapter "Installation of DX Loadables, p. 41".

DRUM: DRUM Sequencer

840 USE 506 00 October 2002 115

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

Parameter Description

Step Pointer (Top
Node)

The 4x register entered in the top node stores the current step number. The value
in this register is referenced by the DRUM instruction each time it is solved. If the
middle input to the block is ON, the contents of the register in the top node are
incremented to the next step in the sequence before the block is solved.

step

pointer

step data

table

DRUM

length

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates DRUM sequencer

Middle input 0x, 1x None ON = step pointer increments to next step

Bottom input 0x, 1x None ON = reset step pointer to 0

step pointer
(top node)

4x INT, UINT Current step number

step data table
(middle node)

4x INT, UINT First register in a table of step data
information

length
(bottom node)

INT, UINT Number of application-specific registers
used in the step data table, range: 1 .. 999

Top output 0x None Echos state of the top input

Middle output 0x None ON = step pointer value = length

Bottom output 0x None ON = Error

DRUM: DRUM Sequencer

116 840 USE 506 00 October 2002

Step Data Table
(Middle Node)

The 4x register entered in the middle node is the first register in a table of step data
information.
The first six registers in the step data table hold constant and variable data required
to solve the block:

The remaining registers contain data for each step in the sequence.

Length (Bottom
Node)

The integer value entered in the bottom node is the length, i.e., the number of
application-specific registers used in the step data table. The length can range from
1 ... 999 in a 24-bit CPU.
The total number of registers required in the step data table is the length + 6. The
length must be greater or equal to the value placed in the steps used register in the
middle node.

Register Name Content

Displayed masked output data Loaded by DRUM each time the block is solved;
contains the contents of the current step data
register masked with the outputmask register

First implied current step data Loaded by DRUM each time the block is solved;
contains data from the step pointer, causes the
block logic to automatically calculate register
offsets when accessing step data in the step
data table

Second implied output mask Loaded by user before using the block, DRUM
will not alter output mask contents during logic
solve; contains a mask to be applied to the data
for each sequencer step

Third implied machine ID number Identifies DRUM/ICMP blocks belonging to a
specific machine configuration; value range: 0
... 9 999 (0 = block not configured); all blocks
belonging to same machine configuration have
the same machine ID number

Fourth implied profile ID number Identifies profile data currently loaded to the
sequencer; value range: 0... 9 999 (0 = block not
configured); all blocks with the same machine
ID number must have the same profile ID
number

Fifth implied steps used Loaded by user before using the block, DRUM
will not alter steps used contents during logic
solve; contains between 1 ... 999 for 24 bit
CPUs, specifying the actual number of steps to
be solved; the number must be greater or less
than the table length in the bottom node

840 USE 506 00 October 2002 117

26
DV16: Divide 16 Bit

At a Glance

Introduction This chapter describes the instruction DV16.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 118

Representation 118

Example 119

DV16: Divide 16 Bit

118 840 USE 506 00 October 2002

Short Description

Function
Description

The DV16 instruction performs a signed or unsigned division on the 16-bit values in
the top and middle nodes (value 1 / value 2), then posts the quotient and remainder
in two contiguous 4x holding registers in the bottom node.

Representation

Symbol Representation of the instruction

value 1

value 2

DV16
quotient

DV16: Divide 16 Bit

840 USE 506 00 October 2002 119

Parameter
Description

Description of the instruction’s parameters

Example

Quotient of
Instruction DV16

The state of the middle input indicates whether the remainder will be expressed as
a decimal or as a fraction. For example, if value 1 = 8 and value 2 = 3, the decimal
remainder (middle input OFF) is 6666; the fractional remainder (middle input ON) is
2.

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = enables value 1 / value 2

Middle input 0x, 1x None OFF = decimal remainder
ON = fractional remainder

Bottom input 0x, 1x None ON = signed operation
OFF = unsigned operation

value 1
(top node)

3x, 4x INT, UINT Dividend, can be displayed explicitly as an
integer (range 1 ... 65 535) or stored in two
contiguous registers (displayed for high-
order half, implied for low-order half)

value 2
(middle node)

3x, 4x INT, UINT Divisor, can be displayed explicitly as an
integer (range 1 ... 65 535, enter e.g.
#65535) or stored in a register

quotient
(bottom node)

4x INT, UINT First of two contiguous holding registers:
displayed: result of division
implied: remainder (either a decimal or a
fraction, depending on the state of middle
input)

Top output 0x None ON = Divide operation completed
successfully

Middle output 0x None ON = overflow:
quotient > 65 535 in unsigned operation
-32 768 > quotient > 32 767 in signed
operation

Bottom output 0x None ON = value 2 = 0

DV16: Divide 16 Bit

120 840 USE 506 00 October 2002

840 USE 506 00 October 2002 121

27
EMTH: Extended Math

At a Glance

Introduction This chapter describes the instruction EMTH.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 122

Representation 123

Parameter Description 124

Floating Point EMTH Functions 126

EMTH: Extended Math

122 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction accesses a library of double-precision math, square root and
logarithm calculations and floating point (FP) arithmetic functions.
The EMTH instruction allows you to select from a library of 38 extended math
functions. Each of the functions has an alphabetical indicator of variable
subfunctions that can be selected from a pulldown menu in your panel software and
appears in the bottom node. EMTH control inputs and outputs are function-
dependent.

EMTH: Extended Math

840 USE 506 00 October 2002 123

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

Top Output

Middle Output

Bottom Output

topTop Input

node

middle

node
Middle Input

EMTHBottom Input

subfunction

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None Depends on the selected EMTH function,
see "Inputs, Outputs and Bottom Node,
p. 124"

Middle input 0x, 1x None Depends on the selected EMTH function

Bottom input 0x, 1x None Depends on the selected EMTH function

top node 3x, 4x DINT, UDINT,
REAL

Two consecutive registers, usually 4x
holding registers but, in the integer math
cases, either 4x or 3x registers

middle node 4x DINT, UDINT,
REAL

Two, four, or six consecutive registers,
depending on the function you are
implementing.

subfunction
(bottom node)

An alphabetical lable, identifing the EMTH
function, see "Inputs, Outputs and Bottom
Node, p. 124"

Top output 0x None Depends on the selected EMTH function,
see "Inputs, Outputs and Bottom Node,
p. 124"

Middle output 0x None Depends on the selected EMTH function

Bottom output 0x None Depends on the selected EMTH function

EMTH: Extended Math

124 840 USE 506 00 October 2002

Parameter Description

Inputs, Outputs
and Bottom Node

The implementation of inputs to and outputs from the block depends on the EMTH
subfunction you select. An alphabetical indicator of variable subfunctions appears in
the bottom node identifing the EMTH function you have chosen from the library.

You will find the EMTH subfunctions in the following tables:
l Double Precision Math
l Integer Math
l Floating Point Math

Subfunctions for
Double Precision
Math

Double Precision Math

Subfunctions for
Integer Math

Integer Math

EMTH Function Subfunction Active Inputs Active Outputs

Addition ADDDP Top Top and Middle

Subtraction SUBDP Top Top, Middle and Bottom

Multiplication MULDP Top Top and Middle

Division DIVDP Top and Middle Top, Middle and Bottom

EMTH Function Subfunction Active Inputs Active Outputs

Square root SQRT Top Top and Middle

Process square root SQRTP Top Top and Middle

Logarithm LOG Top Top and Middle

Antilogarithm ANLOG Top Top and Middle

EMTH: Extended Math

840 USE 506 00 October 2002 125

Subfunctions for
Floating Point
Math

Floating Point Math (See Floating Point EMTH Functions, p. 126)

EMTH Function Subfunction Active Inputs Active Outputs

Integer-to-FP conversion CNVIF Top Top

Integer + FP ADDIF Top Top

Integer - FP SUBIF Top Top

Integer x FP MULIF Top Top

Integer / FP DIVIF Top Top

FP - Integer SUBFI Top Top

FP / Integer DIVFI Top Top

Integer-FP comparison CMPIF Top Top

FP-to-Integer conversion CNVFI Top Top and Middle

Addition ADDFP Top Top

Subtraction SUBFP Top Top

Multiplication MULFP Top Top

Division DIVFP Top Top

Comparison CMPFP Top Top, Middle and Bottom

Square root SQRFP Top Top

Change sign CHSIN Top Top

Load Value of p PI Top Top

Sine in radians SINE Top Top

Cosine in radians COS Top Top

Tangent in radians TAN Top Top

Arcsine in radians ARSIN Top Top

Arccosine in radians ARCOS Top Top

Arctangent in radians ARTAN Top Top

Radians to degrees CNVRD Top Top

Degrees to radians CNVDR Top Top

FP to an integer power POW Top Top

Exponential function EXP Top Top

Natural log LNFP Top Top

Common log LOGFP Top Top

Report errors ERLOG Top Top and Middle

EMTH: Extended Math

126 840 USE 506 00 October 2002

Floating Point EMTH Functions

Use of Floating
Point Functions

To make use of the floating point (FP) capability, the four-digit integer values used
in standard math instructions must be converted to the IEEE floating point format.
All calculations are then performed in FP format and the results must be converted
back to integer format.

The IEEE
Floating Point
Standard

EMTH floating point functions require values in 32-bit IEEE floating point format.
Each value has two registers assigned to it, the eight most significant bits
representing the exponent and the other 23 bits (plus one assumed bit) representing
the mantissa and the sign of the value.

It is virtually impossible to recognize a FP representation on the programming panel.
Therefore, all numbers should be converted back to integer format before you
attempt to read them.

Dealing with
Negative
Floating Point
Numbers

Standard integer math calculations do not handle negative numbers explicitly. The
only way to identify negative values is by noting that the SUB function block has
turned the bottom output ON.
If such a negative number is being converted to floating point, perform the Integer-
to-FP conversion (EMTH subfunction CNVIF), then use the Change Sign function
(EMTH subfunction CHSIN) to make it negative prior to any other FP calculations.

Note: Floating point calculations have a mantissa precision of 24 bits, which
guarantees the accuracy of the seven most significant digits. The accuracy of the
eighth digit in an FP calculation can be inexact.

840 USE 506 00 October 2002 127

28
EMTH-ADDDP: Double Precision
Addition

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-ADDDP.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 128

Representation 128

Parameter Description 129

EMTH-ADDDP: Double Precision Addition

128 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Double Precision Math (See Subfunctions for Double Precision Math, p. 124)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

operand 1

operand 2

and sum

EMTH

ADDDP

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = adds operands and posts sum in
designated registers

operand 1
(top node)

4x DINT, UDINT Operand 1 (first of two contiguous
registers)

operand 2 and
sum
(middle node)

4x DINT, UDINT Operand 2 and sum (first of six contiguous
registers)

ADDDP
(bottom node)

Selection of the subfunction ADDDP

Top output 0x None ON = operation successful

Middle output 0x None ON = operand out of range or invalid

EMTH-ADDDP: Double Precision Addition

840 USE 506 00 October 2002 129

Parameter Description

Operand 1 (Top
Node)

The first of two contiguous 4x registers is entered in the top node. The second 4x
register is implied. Operand 1 is stored here.

Operand 2 and
Sum (Middle
Node)

The first of six contiguous 4x registers is entered in the middle node. The remaining
five registers are implied:

Register Content

Displayed Register stores the low-order half of operand 1
Range 0 000 ... 9 999, for a combined double precision value in the
range 0 ... 99 999 999

First implied Register stores the high-order half of operand 1
Range 0 000 ... 9 999, for a combined double precision value in the
range 0 ... 99 999 999

Register Content

Displayed Register stores the low-order half of operand 2, respectively, for a
combined double precision value in the range 0 ... 99 999 999

First implied Register stores the high-order half of operand 2, respectively, for a
combined double precision value in the range 0 ... 99 999 999

Second implied The value stored in this register indicates whether an overflow
condition exists (a value of 1 = overflow)

Third implied Register stores the low-order half of the double precision sum.

Fourth implied Register stores the high-order half of the double precision sum.

Fifth implied Register is not used in the calculation but must exist in state RAM

EMTH-ADDDP: Double Precision Addition

130 840 USE 506 00 October 2002

840 USE 506 00 October 2002 131

29
EMTH-ADDFP: Floating Point
Addition

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-ADDFP.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 132

Representation 132

Parameter Description 133

EMTH-ADDFP: Floating Point Addition

132 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

value 1

val.ue 2

and sum

EMTH

ADDFP

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = enables FP addition

value 1
(top node)

4x REAL Floating point value 1 (first of two
contiguous registers)

value 2 and
sum
(middle node)

4x REAL Floating point value 2 and the sum (first of
four contiguous registers)

ADDFP
(bottom node)

Selection of the subfunction ADDFP

Top output 0x None ON = operation successful

EMTH-ADDFP: Floating Point Addition

840 USE 506 00 October 2002 133

Parameter Description

Floating Point
Value 1 (Top
Node)

The first of two contiguous 4x registers is entered in the top node. The second
register is implied.

Floating Point
Value 2 and Sum
(Middle Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied

Register Content

Displayed
First implied

Registers store the FP value 1.

Register Content

Displayed
First implied

Registers store the FP value 2.

Second implied
Third implied

Registers store the sum of the addition in FP format (See The IEEE
Floating Point Standard, p. 126).

EMTH-ADDFP: Floating Point Addition

134 840 USE 506 00 October 2002

840 USE 506 00 October 2002 135

30
EMTH-ADDIF: Integer + Floating
Point Addition

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-ADDIF.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 136

Representation 136

Parameter Description 137

EMTH-ADDIF: Integer + Floating Point Addition

136 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

integer

FP and

sum

EMTH

ADDIF

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates integer + FP operation

integer
(top node)

4x DINT, UDINT Integer value (first of two contiguous
registers)

FP and sum
(middle node)

4x REAL FP value and sum (first of four contiguous
registers)

ADDIF
(bottom node)

Selection of the subfunction ADDIF

Top output 0x None ON = operation successful

EMTH-ADDIF: Integer + Floating Point Addition

840 USE 506 00 October 2002 137

Parameter Description

Integer Value
(Top Node)

The first of two contiguous 4x registers is entered in the top node. The second
register is implied.

FP Value and
Sum (Middle
Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied

Register Content

Displayed
First implied

The double precision integer value to be added to the FP value is
stored here.

Register Content

Displayed
First implied

Registers store the FP value to be added in the operation.

Second implied
Third implied

The sum is posted here in FP format (See The IEEE Floating Point
Standard, p. 126).

EMTH-ADDIF: Integer + Floating Point Addition

138 840 USE 506 00 October 2002

840 USE 506 00 October 2002 139

31
EMTH-ANLOG: Base 10
Antilogarithm

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-ANLOG.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 140

Representation 140

Parameter Description 141

EMTH-ANLOG: Base 10 Antilogarithm

140 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Integer Math (See Subfunctions for Integer Math, p. 124)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

source

result

EMTH

ANLOG

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = enables antilog(x) operation

source
(top node)

3x, 4x INT, UINT Source value

result
(middle node)

4x DINT, UDINT Result (first of two contiguous registers)

ANLOG
(bottom node)

Selection of the subfunction ANLOG

Top output 0x None ON = operation successful

Middle output 0x None ON = an error or value out of range

EMTH-ANLOG: Base 10 Antilogarithm

840 USE 506 00 October 2002 141

Parameter Description

Source Value
(Top Node)

The top node is a single 4x holding register or 3x input register. The source value,
i.e. the value on which the antilog calculation will be performed, is stored here in the
fixed decimal format 1.234. It must be in the range 0 ... 7 999, representing a source
value up to a maximum of 7.999.

Result (Middle
Node)

The first of two contiguous 4x registers is entered in the middle node. The second
register is implied. The result of the antilog calculation is posted here in the fixed
decimal format 12345678:

The largest antilog value that can be calculated is 99770006 (9977 posted in the
displayed register and 0006 posted in the implied register).

Register Content

Displayed Most significant bits

First implied Least significant bits

EMTH-ANLOG: Base 10 Antilogarithm

142 840 USE 506 00 October 2002

840 USE 506 00 October 2002 143

32
EMTH-ARCOS: Floating Point Arc
Cosine of an Angle (in Radians)

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-ARCOS.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 144

Representation 144

Parameter Description 145

EMTH-ARCOS: Floating Point Arc Cosine of an Angle (in Radians)

144 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

value

arc cosine

of value

EMTH

ARCOS

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = calculates arc cosine of the value

value
(top node)

4x REAL FP value indicating the cosine of an angle
(first of two contiguous registers)

arc cosine of
value
(middle node)

4x REAL Arc cosine in radians of the value in the top
node (first of four contiguous registers)

ARCOS
(bottom node)

Selection of the subfunction ARCOS

Top output 0x None ON = operation successful

EMTH-ARCOS: Floating Point Arc Cosine of an Angle (in Radians)

840 USE 506 00 October 2002 145

Parameter Description

Value (Top Node) The first of two contiguous 4x registers is entered in the top node. The second
register is implied.

If the value is not in the range of -1.0 ... +1.0:
l The arc cosine is not computed
l An invalid result is returned
l An error is flagged in the EMTH-ERLOG (See EMTH-ERLOG: Floating Point

Error Report Log, p. 203) function

Arc Cosine of
Value (Middle
Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied

Register Content

Displayed
First implied

An FP value indicating the cosine of an angle between 0 ... p radians
is stored here.
This value must be in the range of -1.0 ... +1.0;

Register Content

Displayed
First implied

Registers are not used but their allocation in state RAM is required.

Second implied
Third implied

The arc cosine in radians of the FP value in the top node is posted
here.

Note: To preserve registers, you can make the 4x reference numbers assigned to
the displayed register and the first implied register in the middle node equal to the
register references in the top node, since the first two middle-node registers are not
used.

EMTH-ARCOS: Floating Point Arc Cosine of an Angle (in Radians)

146 840 USE 506 00 October 2002

840 USE 506 00 October 2002 147

33
EMTH-ARSIN: Floating Point
Arcsine of an Angle (in Radians)

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-ARSIN.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 148

Representation 148

Parameter Description 149

EMTH-ARSIN: Floating Point Arcsine of an Angle (in Radians)

148 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

value

arcsine of

value

EMTH

ARSIN

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = calculates the arcsine of the value

value
(top node)

4x REAL FP value indicating the sine of an angle
(first of two contiguous registers)

arcsine of value
(middle node)

4x REAL Arcsine of the value in the top node (first of
four contiguous registers)

ARSIN
(bottom node)

Selection of the subfunction ARSIN

Top output 0x None ON = operation successful

EMTH-ARSIN: Floating Point Arcsine of an Angle (in Radians)

840 USE 506 00 October 2002 149

Parameter Description

Value (Top Node) The first of two contiguous 4x registers is entered in the top node. The second
register is implied.

If the value is not in the range of -1.0 ... +1.0:
l The arcsine is not computed
l An invalid result is returned
l An error is flagged in the EMTH-ERLOG (See EMTH-ERLOG: Floating Point

Error Report Log, p. 203) function

Arcsine of Value
(Middle Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied

Register Content

Displayed
First implied

An FP value indicating the sine of an angle between -π/2 ... π/2
radians is stored here. This value (the sine of an angle) must be in
the range of -1.0 ... +1.0;

Register Content

Displayed
First implied

Registers are not used but their allocation in state RAM is required.

Second implied
Third implied

The arcsine of the value in the top node is posted here in FP format
(See The IEEE Floating Point Standard, p. 126).

Note: To preserve registers, you can make the 4x reference numbers assigned to
the displayed register and the first implied register in the middle node equal to the
register references in the top node, since the first two middle-node registers are not
used.

EMTH-ARSIN: Floating Point Arcsine of an Angle (in Radians)

150 840 USE 506 00 October 2002

840 USE 506 00 October 2002 151

34
EMTH-ARTAN: Floating Point Arc
Tangent of an Angle (in Radians)

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-ARTAN.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 152

Representation 152

Parameter Description 153

EMTH-ARTAN: Floating Point Arc Tangent of an Angle (in Radians)

152 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

value

arc tangent

of value

EMTH

ARTAN

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = calculates the arc tangent of the
value

value
(top node)

4x REAL FP value indicating the tangent of an angle
(first of two contiguous registers)

arc tangent of
value
(middle node)

4x REAL Arc tangent of the value in the top node
(first of four contiguous registers)

ARTAN
(bottom node)

Selection of the subfunction ARTAN

Top output 0x None ON = operation successful

EMTH-ARTAN: Floating Point Arc Tangent of an Angle (in Radians)

840 USE 506 00 October 2002 153

Parameter Description

Value (Top Node) The first of two contiguous 4x registers is entered in the top node. The second
register is implied.

Arc Tangent of
Value (Middle
Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied

Register Content

Displayed
First implied

An FP value indicating the tangent of an angle between -π/2 ... π/2
radians is stored here. Any valid FP value is allowed.;

Register Content

Displayed
First implied

Registers are not used but their allocation in state RAM is required.

Second implied
Third implied

The arc tangent in radians of the FP value in the top node is posted
here.

Note: To preserve registers, you can make the 4x reference numbers assigned to
the displayed register and the first implied register in the middle node equal to the
register references in the top node, since the first two middle-node registers are not
used.

EMTH-ARTAN: Floating Point Arc Tangent of an Angle (in Radians)

154 840 USE 506 00 October 2002

840 USE 506 00 October 2002 155

35
EMTH-CHSIN: Changing the Sign
of a Floating Point Number

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-CHSIN.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 156

Representation 156

Parameter Description 157

EMTH-CHSIN: Changing the Sign of a Floating Point Number

156 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

value

-(value)

EMTH

CHSIN

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = changes the sign of FP value

value
(top node)

4x REAL Floating point value (first of two contiguous
registers)

-(value)
(middle node)

4x REAL Floating point value with changed sign
(first of four contiguous registers)

CHSIN
(bottom node)

Selection of the subfunction CHSIN

Top output 0x None ON = operation successful

EMTH-CHSIN: Changing the Sign of a Floating Point Number

840 USE 506 00 October 2002 157

Parameter Description

Floating Point
Value (Top Node)

The first of two contiguous 4x registers is entered in the top node. The second
register is implied.

Floating Point
Value with
changed sign
(Middle Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied

Register Content

Displayed
First implied

The FP value whose sign will be changed is stored here.

Register Content

Displayed
First implied

Registers are not used but their allocation in state RAM is required.

Second implied
Third implied

The top node FP value with changed sign is posted here.

Note: To preserve registers, you can make the 4x reference numbers assigned to
the displayed register and the first implied register in the middle node equal to the
register references in the top node, since the first two middle-node registers are not
used.

EMTH-CHSIN: Changing the Sign of a Floating Point Number

158 840 USE 506 00 October 2002

840 USE 506 00 October 2002 159

36
EMTH-CMPFP: Floating Point
Comparison

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-CMPFP.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 160

Representation 160

Parameter Description 161

EMTH-CMPFP: Floating Point Comparison

160 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

value 1

value 2

EMTH

CMPFP

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates comparison

value 1
(top node)

4x DINT, UDINT First floating point value (first of two
contiguous registers)

value 2
(middle node)

4x REAL Second floating point value (first of four
contiguous registers)

CMPFP
(bottom node)

Selection of the subfunction CMPFP

Top output 0x None ON = operation successful

Middle output 0x None ON = value 1 > value 2 when the bottom
output is OFF

Bottom output 0x None ON = value 1 < value 2 when the middle
output is OFF

EMTH-CMPFP: Floating Point Comparison

840 USE 506 00 October 2002 161

Parameter Description

Value 1 (Top
Node)

The first of two contiguous 4x registers is entered in the top node. The second
register is implied:

Value 2 (Middle
Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied:

Middle and
Bottom Output

When EMTH function CMPFP compares its two FP values, the combined states of
the middle and the bottom output indicate their relationship:

Register Content

Displayed
First implied

The first FP value (value 1) to be compared is stored here.

Register Content

Displayed
First implied

The second FP value (value 2) to be compared is stored here.

Second implied
Third implied

Registers are not used but their allocation in state RAM is required.

Middle Output Bottom Output Relationship

ON OFF value 1 > value 2

OFF ON value 1 < value 2

ON ON value 1 = value 2

EMTH-CMPFP: Floating Point Comparison

162 840 USE 506 00 October 2002

840 USE 506 00 October 2002 163

37
EMTH-CMPIF: Integer-Floating
Point Comparison

At a Glance

Introduction This chapter describes the EMTH EMTH subfunction EMTH-CMPIF.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 164

Representation 164

Parameter Description 165

EMTH-CMPIF: Integer-Floating Point Comparison

164 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

integer

FP

EMTH

CMPIF

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates comparison

integer
(top node)

4x DINT, UDINT Integer value (first of two contiguous
registers)

FP
(middle node)

4x REAL Floating point value (first of four
contiguous registers)

CMPIF
(bottom node)

Selection of the subfunction CMPIF

Top output 0x None ON = operation successful

Middle output 0x None ON = integer > FP when the bottom output
is OFF

Bottom output 0x None ON = integer < FP when the middle output
is OFF

EMTH-CMPIF: Integer-Floating Point Comparison

840 USE 506 00 October 2002 165

Parameter Description

Integer Value
(Top Node)

The first of two contiguous 4x registers is entered in the top node. The second
register is implied:

Floating Point
Value (Middle
Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied:

Middle and
Bottom Output

When EMTH function CMPIF compares its integer and FP values, the combined
states of the middle and the bottom output indicate their relationship:

Register Content

Displayed
First implied

The double precision integer value to be compared is stored here.

Register Content

Displayed
First implied

The FP value to be compared is stored here.

Second implied
Third implied

Registers are not used but their allocation in state RAM is required.

Middle Output Bottom Output Relationship

ON OFF integer > FP

OFF ON integer < FP

ON ON integer = FP

EMTH-CMPIF: Integer-Floating Point Comparison

166 840 USE 506 00 October 2002

840 USE 506 00 October 2002 167

38
EMTH-CNVDR: Floating Point
Conversion of Degrees to Radians

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-CNVDR.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 168

Representation 168

Parameter Description 169

EMTH-CNVDR: Floating Point Conversion of Degrees to Radians

168 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

value

result

EMTH

CNVDR

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates conversion of value 1 to
value 2 (result)

value
(top node)

4x REAL Value in FP format of an angle in degrees
(first of two contiguous registers)

result
(middle node)

4x REAL Converted result (in radians) in FP format
(first of four contiguous registers)

CNVDR
(bottom node)

Selection of the subfunction CNVDR

Top output 0x None ON = operation successful

EMTH-CNVDR: Floating Point Conversion of Degrees to Radians

840 USE 506 00 October 2002 169

Parameter Description

Value (Top Node) The first of two contiguous 4x registers is entered in the top node. The second
register is implied:

Result in
Radians (Middle
Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied:

Register Content

Displayed
First implied

The value in FP format (See The IEEE Floating Point Standard,
p. 126) of an angle in degrees is stored here.

Register Content

Displayed
First implied

Registers are not used but their allocation in state RAM is required.

Second implied
Third implied

The converted result in FP format (See The IEEE Floating Point
Standard, p. 126) of the top-node value (in radians) is posted here.

Note: To preserve registers, you can make the 4x reference numbers assigned to
the displayed register and the first implied register in the middle node equal to the
register references in the top node, since the first two middle-node registers are not
used.

EMTH-CNVDR: Floating Point Conversion of Degrees to Radians

170 840 USE 506 00 October 2002

840 USE 506 00 October 2002 171

39
EMTH-CNVFI: Floating Point to
Integer Conversion

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-CNVFI.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 172

Representation 172

Parameter Description 173

Runtime Error Handling 173

EMTH-CNVFI: Floating Point to Integer Conversion

172 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

FP

integer

EMTH

CNVFI

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates FP to integer conversion

FP
(top node)

4x REAL Floating point value to be converted (first
of two contiguous registers)

integer
(middle node)

4x DINT, UDINT Integer value (first of four contiguous
registers)

CNVFI
(bottom node)

Selection of the subfunction CNVFI

Top output 0x None ON = operation successful

Bottom output 0x None OFF = positive integer value
ON = negative integer value

EMTH-CNVFI: Floating Point to Integer Conversion

840 USE 506 00 October 2002 173

Parameter Description

Integer Value
(Middle Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied:

Runtime Error Handling

Runtime Errors If the resultant integer is too large for double precision integer format (> 99 999 999),
the conversion still occurs but an error is logged in the EMTH_ERLOG (See EMTH-
ERLOG: Floating Point Error Report Log, p. 203) function.

Register Content

Displayed
First implied

Registers are not used but their allocation in state RAM is required.

Second implied
Third implied

The double precision integer result of the conversion is stored here.
This value should be the largest integer value possible that is ≤ the
FP value.
For example, the FP value 3.5 is converted to the integer value 3,
while the FP value -3.5 is converted to the integer value -4.

Note: To preserve registers, you can make the 4x reference numbers assigned to
the displayed register and the first implied register in the middle node equal to the
register references in the top node, since the first two middle-node registers are not
used.

EMTH-CNVFI: Floating Point to Integer Conversion

174 840 USE 506 00 October 2002

840 USE 506 00 October 2002 175

40
EMTH-CNVIF: Integer-to-Floating
Point Conversion

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-CNVIF.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 176

Representation 176

Parameter Description 177

Runtime Error Handling 177

EMTH-CNVIF: Integer-to-Floating Point Conversion

176 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

integer

result

EMTH

CNVIF

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates FP to integer conversion

integer
(top node)

4x DINT, UDINT Integer value (first of two contiguous
registers)

result
(middle node)

4x REAL Result (first of four contiguous registers)

CNVIF
(bottom node)

Selection of the subfunction CNVIF

Top output 0x None ON = operation successful

EMTH-CNVIF: Integer-to-Floating Point Conversion

840 USE 506 00 October 2002 177

Parameter Description

Integer Value
(Top Node)

The first of two contiguous 4x registers is entered in the top node. The second
register is implied:

Result (Middle
Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied.

Runtime Error Handling

Runtime Errors If an invalid integer value (> 9 999) is entered in either of the two top-node registers,
the FP conversion will be performed but an error will be reported and logged in the
EMTH_ERLOG (See EMTH-ERLOG: Floating Point Error Report Log, p. 203)
function. The result of the conversion may not be correct.

Register Content

Displayed
First implied

The double precision integer value to be converted to 32-bit FP
format (See The IEEE Floating Point Standard, p. 126) is stored
here.

Register Content

Displayed
First implied

Registers are not used but their allocation in state RAM is required.

Second implied
Third implied

The FP result of the conversion is posted here.

Note: To preserve registers, you can make the 4x reference numbers assigned to
the displayed register and the first implied register in the middle node equal to the
register references in the top node, since the first two middle-node registers are not
used.

EMTH-CNVIF: Integer-to-Floating Point Conversion

178 840 USE 506 00 October 2002

840 USE 506 00 October 2002 179

41
EMTH-CNVRD: Floating Point
Conversion of Radians to Degrees

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-CNVRD.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 180

Representation 180

Parameter Description 181

EMTH-CNVRD: Floating Point Conversion of Radians to Degrees

180 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

value

result

EMTH

CNVRD

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates conversion of value 1 to
value 2

value
(top node)

4x REAL Value in FP format of an angle in radians
(first of two contiguous registers)

result
(middle node)

4x REAL Converted result (in degrees) in FP format
(first of four contiguous registers)

CNVRD
(bottom node)

Selection of the subfunction CNVRD

Top output 0x None ON = operation successful

EMTH-CNVRD: Floating Point Conversion of Radians to Degrees

840 USE 506 00 October 2002 181

Parameter Description

Value (Top Node) The first of two contiguous 4x registers is entered in the top node. The second
register is implied:

Result in
Degrees (Middle
Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied.

Register Content

Displayed
First implied

The value in FP format (See The IEEE Floating Point Standard,
p. 126) of an angle in radians is stored here.

Register Content

Displayed
First implied

Registers are not used but their allocation in state RAM is required.

Second implied
Third implied

The converted result in FP format (See The IEEE Floating Point
Standard, p. 126) of the top-node value (in degrees) is posted here.

Note: To preserve registers, you can make the 4x reference numbers assigned to
the displayed register and the first implied register in the middle node equal to the
register references in the top node, since the first two middle-node registers are not
used.

EMTH-CNVRD: Floating Point Conversion of Radians to Degrees

182 840 USE 506 00 October 2002

840 USE 506 00 October 2002 183

42
EMTH-COS: Floating Point Cosine
of an Angle (in Radians)

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-COS.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 184

Representation 184

Parameter Description 185

EMTH-COS: Floating Point Cosine of an Angle (in Radians)

184 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

value

cosine of

value

EMTH

COS

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = calculates the cosine of the value

value
(top node)

4x REAL FP value indicating the value of an angle in
radians (first of two contiguous registers)

cosine of value
(middle node)

4x REAL Cosine of the value in the top node (first of
four contiguous registers)

COS
(bottom node)

Selection of the subfunction COS

Top output 0x None ON = operation successful

EMTH-COS: Floating Point Cosine of an Angle (in Radians)

840 USE 506 00 October 2002 185

Parameter Description

Value (Top Node) The first of two contiguous 4x registers is entered in the top node. The second
register is implied.

If the magnitude of this value is ≥ 65 536.0:
l The cosine is not computed
l An invalid result is returned
l An error is flagged in the EMTH-ERLOG (See EMTH-ERLOG: Floating Point

Error Report Log, p. 203) function

Cosine of Value
(Middle Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied

Register Content

Displayed
First implied

An FP value indicating the value of an angle in radians is stored
here. The magnitude of this value must be < 65 536.0.

Register Content

Displayed
First implied

Registers are not used but their allocation in state RAM is required.

Second implied
Third implied

The cosine of the value in the top node is posted here in FP format
(See The IEEE Floating Point Standard, p. 126).

Note: To preserve registers, you can make the 4x reference numbers assigned to
the displayed register and the first implied register in the middle node equal to the
register references in the top node, since the first two middle-node registers are not
used.

EMTH-COS: Floating Point Cosine of an Angle (in Radians)

186 840 USE 506 00 October 2002

840 USE 506 00 October 2002 187

43
EMTH-DIVDP: Double Precision
Division

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-DIVDP.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 188

Representation 188

Parameter Description 189

Runtime Error Handling 189

EMTH-DIVDP: Double Precision Division

188 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Double Precision Math (See Subfunctions for Double Precision Math, p. 124)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

operand 1

operand 2
quotient

remainder

EMTH

DIVDP

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = operand 1 divided by operand 2 and
result posted in designated registers."

Middle input 0x, 1x None ON = decimal remainder
OFF = fractional remainder

operand 1
top node

4x DINT, UDINT Operand 1 (first of two contiguous
registers)

operand 2
quotient
remainder
middle node

4x DINT, UDINT Operand 2, quotient and remainder (first of
six contiguous registers)

DIVDP
(bottom node)

Selection of the subfunction DIVDP"

Top output 0x None ON = operation successful"

Middle output 0x None ON = an operand out of range or invalid

Bottom output 0x None ON = operand 2 = 0

EMTH-DIVDP: Double Precision Division

840 USE 506 00 October 2002 189

Parameter Description

Operand 1 (Top
Node)

The first of two contiguous 4x registers is entered in the top node. The second
register is implied.

Each register holds a value in the range 0000 ... 9 999, for a combined double
precision value in the range 0 ... 99 999 999.

Operand 2,
Quotient and
Remainder
(Middle Node)

The first of six contiguous 4x registers is entered in the middle node. The remaining
five registers are implied

Runtime Error Handling

Runtime Errors Since division by 0 is illegal, a 0 value causes an error, an error trapping routine sets
the remaining middle-node registers to 0000 and turns the bottom output ON.

Register Content

Displayed Low-order half of operand 1 is stored here.

First implied High-order half of Operand 1 is stored here.

Register Content

Displayed Register stores the low-order half of operand 2, respectively, for a
combined double precision value in the range 0 ... 99 999 999

First implied Register stores the high-order half of operand 2, respectively, for a
combined double precision value in the range 0 ... 99 999 999.

Second implied
Third implied

Registers store an eight-digit quotient.

Fourth implied
Fifth implied

Registers store the remainder.
l If it is expressed as a decimal, it is four digits long and only the

fourth implied register is used.
l If it is expressed as a fraction, it is eight digits long and both

registers are used

EMTH-DIVDP: Double Precision Division

190 840 USE 506 00 October 2002

840 USE 506 00 October 2002 191

44
EMTH-DIVFI: Floating Point
Divided by Integer

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-DIVFI.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 192

Representation 192

Parameter Description 193

EMTH-DIVFI: Floating Point Divided by Integer

192 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

FP

integer and

EMTH

DIVFI

quotient

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates FP / integer operation

FP
(top node)

4x REAL Floating point value (first of two contiguous
registers)

integer and
quotient
(middle node)

4x DINT, UDINT Integer value and quotient (first of four
contiguous registers)

DIVFI
(bottom node)

Selection of the subfunction DIVFI

Top output 0x None ON = operation successful

EMTH-DIVFI: Floating Point Divided by Integer

840 USE 506 00 October 2002 193

Parameter Description

Floating Point
Value (Top Node)

The first of two contiguous 4x registers is entered in the top node. The second
register is implied:

Integer Value and
Quotient (Middle
Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied.

Register Content

Displayed
First implied

The FP value to be divided by the integer value is stored here.

Register Content

Displayed
First implied

The double precision integer value that divides the FP value is
posted here.

Second implied
Third implied

The quotient is posted here in FP format (See The IEEE Floating
Point Standard, p. 126).

EMTH-DIVFI: Floating Point Divided by Integer

194 840 USE 506 00 October 2002

840 USE 506 00 October 2002 195

45
EMTH-DIVFP: Floating Point
Division

At a Glance

Introduction This chapter describes the instrcution EMTH-DIVFP.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 196

Representation 196

Parameter Description 197

EMTH-DIVFP: Floating Point Division

196 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

value 1

value 2 and

EMTH

DIVFP

quotient

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates value 1 / value 2 operation

value 1
(top node)

4x REAL Floating point value 1 (first of two
contiguous registers)

value 2 and
quotient
(middle node)

4x REAL Floating point value 2 and the quotient
(first of four contiguous registers)

DIVFP
(bottom node)

Selection of the subfunction DIVFP

Top output 0x None ON = operation successful

EMTH-DIVFP: Floating Point Division

840 USE 506 00 October 2002 197

Parameter Description

Floating Point
Value 1 (Top
Node)

The first of two contiguous 4x registers is entered in the top node. The second
register is implied:

Floating Point
Value 2 and
Quotient (Middle
Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied:

Register Content

Displayed
First implied

FP value 1, which will be divided by the value 2, is stored here.

Register Content

Displayed
First implied

FP value 2, the value by which value 1 is divided, is stored here

Second implied
Third implied

The quotient is posted here in FP format (See The IEEE Floating
Point Standard, p. 126).

EMTH-DIVFP: Floating Point Division

198 840 USE 506 00 October 2002

840 USE 506 00 October 2002 199

46
EMTH-DIVIF: Integer Divided by
Floating Point

At a Glance

Introduction This chapter describes the instrcution EMTH-DIVIF.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 200

Representation 200

Parameter Description 201

EMTH-DIVIF: Integer Divided by Floating Point

200 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

integer

FP and

EMTH

DIVIF

quotient

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates integer / FP operation

integer
(top node)

4x DINT, UDINT Integer value (first of two contiguous
registers)

FP and quotient
(middle node)

4x REAL FP value and quotient (first of four
contiguous registers)

DIVIF
(bottom node)

Selection of the subfunction DIVIF

Top output 0x None ON = operation successful

EMTH-DIVIF: Integer Divided by Floating Point

840 USE 506 00 October 2002 201

Parameter Description

Integer Value
(Top Node)

The first of two contiguous 4x registers is entered in the top node. The second
register is implied:

Floating Point
Value and
Quotient (Middle
Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied.

Register Content

Displayed
First implied

The double precision integer value to be divided by the FP value is
stored here.

Register Content

Displayed
First implied

The FP value to be divided in the operation is posted here.

Second implied
Third implied

The quotient is posted here in FP format (See The IEEE Floating
Point Standard, p. 126).

EMTH-DIVIF: Integer Divided by Floating Point

202 840 USE 506 00 October 2002

840 USE 506 00 October 2002 203

47
EMTH-ERLOG: Floating Point
Error Report Log

At a Glance

Introduction This chapter describes the instrcution EMTH-ERLOG.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 204

Representation 204

Parameter Description 205

EMTH-ERLOG: Floating Point Error Report Log

204 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

not used

error data

EMTH

ERLOG

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = retrieves a log of error types since
last invocation

not used
(top node)

4x INT, UINT,
DINT, UDINT,
REAL

Not used in the operation (first of two
contiguous registers)

error data
(middle node)

4x INT, UINT,
DINT, UDINT,
REAL

Error log register (first of four contiguous
registers)

ERLOG
(bottom node)

Selection of the subfunction ERLOG

Top output 0x None ON = retrieval successful

Middle output 0x None ON = nonzero values in error log register
OFF = all zeros in error log register

EMTH-ERLOG: Floating Point Error Report Log

840 USE 506 00 October 2002 205

Parameter Description

Not used (Top
Node)

The first of two contiguous 4x registers is entered in the top node. The second
register is implied:

Error Data
(Middle Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied.

Error Log
Register

Usage of error log register:

If the bit is set to 1, then the specific error condition exists for that bit.

Register Content

Displayed
First implied

These two registers are not used in the operation but their allocation
in state RAM is required.

Register Content

Displayed
First implied

These two registers are not used but their allocation in state RAM is
required.

Second implied Error log register, see table (See Error Log Register, p. 205).

Third implied This register has all its bits cleared to zero.

Note: To preserve registers, you can make the 4x reference numbers assigned to
the displayed register and the first implied register in the middle node equal to the
register references in the top node, since these registers must be allocated but
none are used.

Bit Function

1 - 8 Function code of last error logged

9 - 11 Not used

12 Integer/FP conversion error

13 Exponential function power too large

14 Invalid FP value or operation

15 FP overflow

16 FP underflow

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

EMTH-ERLOG: Floating Point Error Report Log

206 840 USE 506 00 October 2002

840 USE 506 00 October 2002 207

48
EMTH-EXP: Floating Point
Exponential Function

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-EXP.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 208

Representation 208

Parameter Description 209

EMTH-EXP: Floating Point Exponential Function

208 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

value

EMTH

EXP

result

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = calculates exponential function of
the value

value
(top node)

4x REAL Value in FP format (first of two contiguous
registers)

result
(middle node)

4x REAL Exponential of the value in the top node
(first of four contiguous registers)

EXP
(bottom node)

Selection of the subfunction EXP

Top output 0x None ON = operation successful

EMTH-EXP: Floating Point Exponential Function

840 USE 506 00 October 2002 209

Parameter Description

Value (Top Node) The first of two contiguous 4x registers is entered in the top node. The second
register is implied:

Result (Middle
Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied:

Register Content

Displayed
First implied

A value in FP format (See The IEEE Floating Point Standard, p. 126)
in the range -87.34 ... +88.72 is stored here.
If the value is out of range, the result will either be 0 or the maximum
value. No error will be flagged.

Register Content

Displayed
First implied

These registers are not used but their allocation in state RAM is
required

Second implied
Third implied

The exponential of the value in the top node is posted here in FP
format (See The IEEE Floating Point Standard, p. 126).

Note: To preserve registers, you can make the 4x reference numbers assigned to
the displayed register and the first implied register in the middle node equal to the
register references in the top node, since the first two middle-node registers are not
used.

EMTH-EXP: Floating Point Exponential Function

210 840 USE 506 00 October 2002

840 USE 506 00 October 2002 211

49
EMTH-LNFP: Floating Point
Natural Logarithm

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-LNFP.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 212

Representation 212

Parameter Description 213

EMTH-LNFP: Floating Point Natural Logarithm

212 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

value

EMTH

LNFP

result

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = calculates the natural log of the
value

value
(top node)

4x REAL Value > 0 in FP format (first of two
contiguous registers)

result
(middle node)

4x REAL Natural logarithm of the value in the top
node (first of four contiguous registers)

LNFP
(bottom node)

Selection of the subfunction LNFP

Top output 0x None ON = operation successful

EMTH-LNFP: Floating Point Natural Logarithm

840 USE 506 00 October 2002 213

Parameter Description

Value (Top Node) The first of two contiguous 4x registers is entered in the top node. The second
register is implied:

Result (Middle
Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied:

Register Content

Displayed
First implied

A value > 0 is stored here in FP format (See The IEEE Floating Point
Standard, p. 126).
If the value ≤ 0, an invalid result will be returned in the middle node
and an error will be logged in the EMTH-ERLOG function.

Register Content

Displayed
First implied

These registers are not used but their allocation in state RAM is
required

Second implied
Third implied

The natural logarithm of the value in the top node is posted here in
FP format (See The IEEE Floating Point Standard, p. 126).

Note: To preserve registers, you can make the 4x reference numbers assigned to
the displayed register and the first implied register in the middle node equal to the
register references in the top node, since the first two middle-node registers are not
used.

EMTH-LNFP: Floating Point Natural Logarithm

214 840 USE 506 00 October 2002

840 USE 506 00 October 2002 215

50
EMTH-LOG: Base 10 Logarithm

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-LOG.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 216

Representation 216

Parameter Description 217

EMTH-LOG: Base 10 Logarithm

216 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Integer Math (See Subfunctions for Integer Math, p. 124)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

source

result

EMTH

LOG

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = enables log(x) operation

source
(top node)

3x, 4x DINT, UDINT Source value (first of two contiguous
registers)

result
(middle node)

4x INT, UINT Result

LOG
(bottom node)

Selection of the subfunction LOG

Top output 0x None ON = operation successful

Middle output 0x None ON = an error or value out of range

EMTH-LOG: Base 10 Logarithm

840 USE 506 00 October 2002 217

Parameter Description

Source Value
(Top Node)

The first of two contiguous 3x or 4x registers is entered in the top node. The second
register is implied. The source value upon which the log calculation will be
performed is stored in these registers.
If you specify a 4x register, the source value may be in the range 0 ... 99 999 99:

If you specify a 3x register, the source value may be in the range 0 ... 9 999:

Result (Middle
Node)

The middle node contains a single 4x holding register where the result of the base
10 log calculation is posted. The result is expressed in the fixed decimal format
1.234, and is truncated after the third decimal position.
The largest result that can be calculated is 7.999, which would be posted in the
middle register as 7999.

Register Content

Displayed The high-order half of the value is stored here.

First implied The low-order half of the value is stored here.

Register Content

Displayed The source value upon which the log calculation will be performed is
stored here

First implied This register is required but not used.

EMTH-LOG: Base 10 Logarithm

218 840 USE 506 00 October 2002

840 USE 506 00 October 2002 219

51
EMTH-LOGFP: Floating Point
Common Logarithm

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-LOGFP.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 220

Representation 220

Parameter Description 221

EMTH-LOGFP: Floating Point Common Logarithm

220 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

value

EMTH

LOGFP

result

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = calculates the common log of the
value

value
(top node)

4x REAL Value > 0 in FP format (first of two
contiguous registers)

result
(middle node)

4x REAL Common logarithm of the value in the top
node (first of four contiguous registers)

LOGFP
(bottom node)

Selection of the subfunction LOGFP

Top output 0x None ON = operation successful

EMTH-LOGFP: Floating Point Common Logarithm

840 USE 506 00 October 2002 221

Parameter Description

Value (Top Node) The first of two contiguous 4x registers is entered in the top node. The second
register is implied:

Result (Middle
Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied:

Register Content

Displayed
First implied

A value > 0 is stored here in FP format (See The IEEE Floating Point
Standard, p. 126).
If the value ≤ 0, an invalid result will be returned in the middle node
and an error will be logged in the EMTH-ERLOG function.

Register Content

Displayed
First implied

These registers are not used but their allocation in state RAM is
required

Second implied
Third implied

The common logarithm of the value in the top node is posted here in
FP format (See The IEEE Floating Point Standard, p. 126).

Note: To preserve registers, you can make the 4x reference numbers assigned to
the displayed register and the first implied register in the middle node equal to the
register references in the top node, since the first two middle-node registers are not
used.

EMTH-LOGFP: Floating Point Common Logarithm

222 840 USE 506 00 October 2002

840 USE 506 00 October 2002 223

52
EMTH-MULDP: Double Precision
Multiplication

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-MULDP.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 224

Representation 224

Parameter Description 225

EMTH-MULDP: Double Precision Multiplication

224 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Double Precision Math (See Subfunctions for Double Precision Math, p. 124)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

operand 1

operand 2/

product

EMTH

MULDP

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = operand 1 x operand 2 and product
posted in designated registersoperand 1

operand 1
(top node)

4x DINT, UDINT Operand 1 (first of two contiguous
registers)

operand 2 /
product
(middle node)

4x DINT, UDINT Operand 2 and product (first of six
contiguous registers)

MULDP
(bottom node)

Selection of the subfunction MULDP

Top output 0x None ON = operation successful

Middle output 0x None ON = operand out of range

EMTH-MULDP: Double Precision Multiplication

840 USE 506 00 October 2002 225

Parameter Description

Operand 1 (Top
Node)

The first of two contiguous 4x registers is entered in the top node. The second 4x
register is implied. Operand 1 is stored here.

Operand 2 and
Product (Middle
Node)

The first of six contiguous 4x registers is entered in the middle node. The remaining
five registers are implied:

Register Content

Displayed Register stores the low-order half of operand 1
Range 0 000 ... 9 999, for a combined double precision value in the
range 0 ... 99 999 999

First implied Register stores the high-order half of operand 1
Range 0 000 ... 9 999, for a combined double precision value in the
range 0 ... 99 999 999

Register Content

Displayed Register stores the low-order half of operand 2, respectively, for a
combined double precision value in the range 0 ... 99 999 999

First implied Register stores the high-order half of operand 2, respectively, for a
combined double precision value in the range 0 ... 99 999 999

Second implied
Third implied
Fourth implied
Fifth implied

These registers store the double precision product in the range 0 ...
9 999 999 999 999 999

EMTH-MULDP: Double Precision Multiplication

226 840 USE 506 00 October 2002

840 USE 506 00 October 2002 227

53
EMTH-MULFP: Floating Point
Multiplication

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-MULFP.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 228

Representation 228

Parameter Description 229

EMTH-MULFP: Floating Point Multiplication

228 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

value 1

value 2 and

EMTH

MULFP

product

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates FP multiplication

value 1
(top node)

4x REAL Floating point value 1 (first of two
contiguous registers)

value 2 and
product
(middle node)

4x REAL Floating point value 2 and the product (first
of four contiguous registers)

MULFP
(bottom node)

Selection of the subfunction MULFP

Top output 0x None ON = operation successful

EMTH-MULFP: Floating Point Multiplication

840 USE 506 00 October 2002 229

Parameter Description

Floating Point
Value 1 (Top
Node)

The first of two contiguous 4x registers is entered in the top node. The second
register is implied:

Floating Point
Value 2 and
Product (Middle
Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied:

Register Content

Displayed
First implied

FP value 1 in the multiplication operation is stored here.

Register Content

Displayed
First implied

FP value 2 in the multiplication operation is stored here.

Second implied
Third implied

The product of the multiplication is stored here in FP format (See
The IEEE Floating Point Standard, p. 126).

EMTH-MULFP: Floating Point Multiplication

230 840 USE 506 00 October 2002

840 USE 506 00 October 2002 231

54
EMTH-MULIF: Integer x Floating
Point Multiplication

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-MULIF.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 232

Representation 232

Parameter Description 233

EMTH-MULIF: Integer x Floating Point Multiplication

232 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

integer

FP and

EMTH

MULIF

product

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates integer x FP operation

integer
(top node)

4x DINT, UDINT Integer value (first of two contiguous
registers)

FP and product
(middle node)

4x REAL FP value and product (first of four
contiguous registers)

MULIF
(bottom node)

Selection of the subfunction MULIF

Top output 0x None ON = operation successful

EMTH-MULIF: Integer x Floating Point Multiplication

840 USE 506 00 October 2002 233

Parameter Description

Integer Value
(Top Node)

The first of two contiguous 4x registers is entered in the top node. The second
register is implied:

FP Value and
Product (Middle
Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied:

Register Content

Displayed
First implied

The double precision integer value to be multiplied by the FP value
is stored here.

Register Content

Displayed
First implied

The FP value to be multiplied in the operation is stored here.

Second implied
Third implied

The product of the multiplication is stored here in FP format (See
The IEEE Floating Point Standard, p. 126).

EMTH-MULIF: Integer x Floating Point Multiplication

234 840 USE 506 00 October 2002

840 USE 506 00 October 2002 235

55
EMTH-PI: Load the Floating Point
Value of "Pi"

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-PI (Load the Floating Point
Value of π).

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 236

Representation 236

Parameter Description 237

EMTH-PI: Load the Floating Point Value of "Pi"

236 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

not used

FP value

EMTH

PI

of π

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = loads FP value of π to middle node
register

not used
(top node)

4x REAL First of two contiguous registers

FP value of π
(middle node)

4x REAL FP value of π (first of four contiguous
registers)

PI
(bottom node)

Selection of the subfunction PI

Top output 0x None ON = operation successful

EMTH-PI: Load the Floating Point Value of "Pi"

840 USE 506 00 October 2002 237

Parameter Description

Not used (Top
Node)

The first of two contiguous 4x registers is entered in the middle node. The second
register is implied:

Floating Point
Value of π
(Middle Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied:

Register Content

Displayed
First implied

These registers are not used but their allocation in state RAM is
required.

Register Content

Displayed
First implied

These registers are not used but their allocation in state RAM is
required.

Second implied
Third implied

The FP value of π is posted here.

Note: To preserve registers, you can make the 4x reference numbers assigned to
the displayed register and the first implied register in the middle node equal to the
register references in the top node, since the first two middle-node registers are not
used.

EMTH-PI: Load the Floating Point Value of "Pi"

238 840 USE 506 00 October 2002

840 USE 506 00 October 2002 239

56
EMTH-POW: Raising a Floating
Point Number to an Integer Power

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-POW.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 240

Representation 240

Parameter Description 241

EMTH-POW: Raising a Floating Point Number to an Integer Power

240 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

FP value

integer

EMTH

POW

and result

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = calculates FP value raised to the
power of integer value

FP value
(top node)

4x REAL FP value (first of two contiguous registers)

integer and
result
(middle node)

4x INT, UINT Integer value and result (first of four
contiguous registers)

POW
(bottom node)

Selection of the subfunction POW

Top output 0x None ON = operation successful

EMTH-POW: Raising a Floating Point Number to an Integer Power

840 USE 506 00 October 2002 241

Parameter Description

FP Value (Top
Node)

The first of two contiguous 4x registers is entered in the top node. The second
register is implied:

Integer and
Result (Middle
Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied:

Register Content

Displayed
First implied

The FP value to be raised to the integer power is stored here.

Register Content

Displayed The bit values in this register must all be cleared to zero.

First implied An integer value representing the power to which the top-node value
will be raised is stored here.

Second implied
Third implied

The result of the FP value being raised to the power of the integer
value is stored here.

EMTH-POW: Raising a Floating Point Number to an Integer Power

242 840 USE 506 00 October 2002

840 USE 506 00 October 2002 243

57
EMTH-SINE: Floating Point Sine of
an Angle (in Radians)

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-SINE.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 244

Representation 244

Parameter Description 245

EMTH-SINE: Floating Point Sine of an Angle (in Radians)

244 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

value

sine of

EMTH

SINE

value

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = calculates the sine of the value

value
(top node)

4x REAL FP value indicating the value of an angle in
radians (first of two contiguous registers)

sine of value
(middle node)

4x REAL Sine of the value in the top node (first of
four contiguous registers)

SINE
(bottom node)

Selection of the subfunction SINE

Top output 0x None ON = operation successful

EMTH-SINE: Floating Point Sine of an Angle (in Radians)

840 USE 506 00 October 2002 245

Parameter Description

Value (Top Node) The first of two contiguous 4x registers is entered in the top node. The second
register is implied.

If the magnitude is ≥ 65 536.0:
l The sine is not computed
l An invalid result is returned
l An error is flagged in the EMTH-ERLOG (See EMTH-ERLOG: Floating Point

Error Report Log, p. 203) function

Sine of Value
(Middle Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied

Register Content

Displayed
First implied

An FP value indicating the value of an angle in radians is stored
here. The magnitude of this value must be < 65 536.0.

Register Content

Displayed
First implied

Registers are not used but their allocation in state RAM is required.

Second implied
Third implied

The sine of the value in the top node is posted here in FP format
(See The IEEE Floating Point Standard, p. 126).

Note: To preserve registers, you can make the 4x reference numbers assigned to
the displayed register and the first implied register in the middle node equal to the
register references in the top node, since the first two middle-node registers are not
used.

EMTH-SINE: Floating Point Sine of an Angle (in Radians)

246 840 USE 506 00 October 2002

840 USE 506 00 October 2002 247

58
EMTH-SQRFP: Floating Point
Square Root

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-SQRFP.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 248

Representation 248

Parameter Description 249

EMTH-SQRFP: Floating Point Square Root

248 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

value

result

EMTH

SQRFP

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates square root on FP value

value
(top node)

4x REAL Floating point value (first of two contiguous
registers)

result
(middle node)

4x REAL Result in FP format (first of four contiguous
registers)

SQRFP
(bottom node)

Selection of the subfunction SQRFP

Top output 0x None ON = operation successful

EMTH-SQRFP: Floating Point Square Root

840 USE 506 00 October 2002 249

Parameter Description

Floating Point
Value (Top Node)

The first of two contiguous 4x registers is entered in the top node. The second
register is implied.

Result (Middle
Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied

Register Content

Displayed
First implied

The FP value on which the square root operation is performed is
stored here.

Register Content

Displayed
First implied

Registers are not used but their allocation in state RAM is required.

Second implied
Third implied

The result of the square root operation is posted here in FP format
(See The IEEE Floating Point Standard, p. 126).

Note: To preserve registers, you can make the 4x reference numbers assigned to
the displayed register and the first implied register in the middle node equal to the
register references in the top node, since the first two middle-node registers are not
used.

EMTH-SQRFP: Floating Point Square Root

250 840 USE 506 00 October 2002

840 USE 506 00 October 2002 251

59
EMTH-SQRT: Floating Point
Square Root

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-SQRT.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 252

Representation 252

Parameter Description 253

EMTH-SQRT: Floating Point Square Root

252 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Integer Math (See Subfunctions for Integer Math, p. 124)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

source

result

EMTH

SQRT

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates a standard square root
operation

source
(top node)

3x, 4x DINT, UDINT Source value (first of two contiguous
registers)

result
(middle node)

4x DINT, UDINT Result (first of two contiguous registers)

SQRT
(bottom node)

Selection of the subfunction SQRT

Top output 0x None ON = operation successful

Middle output 0x None ON =source value out of range

EMTH-SQRT: Floating Point Square Root

840 USE 506 00 October 2002 253

Parameter Description

Source Value
(Top Node)

The first of two contiguous 3x or 4x registers is entered in the top node. The second
register is implied. The source value, i.e. the value for which the square root will be
derived, is stored here.
If you specify a 4x register, the source value may be in the range 0 ... 99 999 99:

If you specify a 3x register, the source value may be in the range 0 ... 9 999:

Result (Middle
Node)

Enter the first of two contiguous 4x registers in the middle node. The second register
is implied. The result of the standard square root operation is stored here in the
fixed-decimal format: 1234.5600.:.

Register Content

Displayed The high-order half of the value is stored here.

First implied The low-order half of the value is stored here.

Register Content

Displayed The square root calculation is done on only the value in the
displayed register

First implied This register is required but not used.

Register Content

Displayed This register stores the four-digit value to the left of the first decimal
point.

First implied This register stores the four-digit value to the right of the first decimal
point.

Note: Numbers after the second decimal point are truncated; no round-off
calculations are performed.

EMTH-SQRT: Floating Point Square Root

254 840 USE 506 00 October 2002

840 USE 506 00 October 2002 255

60
EMTH-SQRTP: Process Square
Root

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-SQRTP.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 256

Representation 256

Parameter Description 257

Example 258

EMTH-SQRTP: Process Square Root

256 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Integer Math (See Subfunctions for Integer Math, p. 124)".

The process square root function tailors the standard square root function for closed
loop analog control applications. It takes the result of the standard square root result,
multiplies it by 63.9922 (the square root of 4 095) and stores that linearized result in
the middle-node registers.

The process square root is often used to linearize signals from differential pressure
flow transmitters so that they may be used as inputs in closed loop control
operations.

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

source

linearized

EMTH

SQRTP

result

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates process square root operation

source
(top node)

3x, 4x DINT,
UDINT

Source value (first of two contiguous registers)

linearized result
(middle node)

4x DINT,
UDINT

Linearized result (first of two contiguous
registers)

SQRTP
(bottom node)

Selection of the subfunction SQRPT

Top output 0x None ON = operation successful

Middle output 0x None ON =source value out of range

EMTH-SQRTP: Process Square Root

840 USE 506 00 October 2002 257

Parameter Description

Source Value
(Top Node)

The first of two contiguous 3x or 4x registers is entered in the top node. The second
register is implied. The source value, i.e. the value for which the square root will be
derived, is stored here. In order to generate values that have meaning, the source
value must not exceed 4 095.
If you specify a 4x register:

If you specify a 3x register:

Linearized
Result (Middle
Node)

The first of two contiguous 4x registers is entered in the middle node. The second
register is implied. The linearized result of the process square root operation is
stored here n the fixed-decimal format 1234.5600..

Register Content

Displayed Not used

First implied The source value will be stored here

Register Content

Displayed The source value will be stored here

First implied Not used.

Register Content

Displayed This register stores the four-digit value to the left of the first decimal
point.

First implied This register stores the four-digit value to the right of the first decimal
point.

Note: Numbers after the second decimal point are truncated; no round-off
calculations are performed.

EMTH-SQRTP: Process Square Root

258 840 USE 506 00 October 2002

Example

Process Square
Root Function

This example gives a quick overview of how the process square root is calculated.
Instruction

Suppose a source value of 2000 is stored in register 300030 of EMTH function
SQRTP.
First, a standard square root operation is performed:

Then this result is multiplied by 63.9922, yielding a linearized result of 2861.63:

The linearized result is placed in the two registers in the middle node:

Register Part of the result

400030 2861 (four-digit value to the left of the first decimal point)

400031 6300 (four-digit value to the right of the first decimal point)

300030

400030

EMTH

SQRTP

2000 0044.72=

0044.72 63.9922× 2861.63=

840 USE 506 00 October 2002 259

61
EMTH-SUBDP: Double Precision
Subtraction

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-SUBDP.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 260

Representation 260

Parameter Description 261

EMTH-SUBDP: Double Precision Subtraction

260 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Double Precision Math (See Subfunctions for Double Precision Math, p. 124)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

operand 1

operand 2/

EMTH

SUBDP

difference

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = subtracts operand 2 from operand 1
and posts difference in designated
registers

operand 1
(top node)

4x DINT, UDINT Operand 1 (first of two contiguous
registers)

operand 2/
difference
(middle node)

4x DINT, UDINT Operand 2 and difference (first of six
contiguous registers)

SUBDP
(bottom node)

Selection of the subfunction SUBDP

Top output 0x None ON = operand 1 > operand 2

Middle output 0x None ON = operand 1 = operand 2

Bottom output 0x None ON = operand 1 < operand 2

EMTH-SUBDP: Double Precision Subtraction

840 USE 506 00 October 2002 261

Parameter Description

Operand 1 (Top
Node)

The first of two contiguous 4x registers is entered in the top node. The second 4x
register is implied. Operand 1 is stored here.

Operand 2 and
Product (Middle
Node)

The first of six contiguous 4x registers is entered in the middle node. The remaining
five registers are implied:

Register Content

Displayed Register stores the low-order half of operand 1
Range 0 000 ... 9 999, for a combined double precision value in the
range 0 ... 99 999 999

First implied Register stores the high-order half of operand 1
Range 0 000 ... 9 999, for a combined double precision value in the
range 0 ... 99 999 999

Register Content

Displayed Register stores the low-order half of operand 2 for a combined
double precision value in the range 0 ... 99 999 999

First implied Register stores the high-order half of operand 2 for a combined
double precision value in the range 0 ... 99 999 999

Second implied This register stores the low-order half of the absolute difference in
double precision format

Third implied This register stores the high-order half of the absolute difference in
double precision format

Fourth implied 0 = operands in range
1 = operands out of range

Fifth implied This register is not used in the calculation but must exist in state
RAM.

EMTH-SUBDP: Double Precision Subtraction

262 840 USE 506 00 October 2002

840 USE 506 00 October 2002 263

62
EMTH-SUBFI: Floating Point -
Integer Subtraction

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-SUBFI.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 264

Representation 264

Parameter Description 265

EMTH-SUBFI: Floating Point - Integer Subtraction

264 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

FP

integer and

EMTH

SUBFI

difference

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates FP - integer operation

FP
(top node)

4x REAL Floating point value (first of two contiguous
registers)

integer and
difference
(middle node)

4x DINT, UDINT Integer value and difference (first of four
contiguous registers)

SUBFI
(bottom node)

Selection of the subfunction SUBFI

Top output 0x None ON = operation successful

EMTH-SUBFI: Floating Point - Integer Subtraction

840 USE 506 00 October 2002 265

Parameter Description

Floating Point
Value (Top Node)

The first of two contiguous 4x registers is entered in the top node. The second
register is implied.

Sine of Value
(Middle Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied

Register Content

Displayed
First implied

The FP value from which the integer value is subtracted is stored
here.

Register Content

Displayed
First implied

Registers store the double precision integer value to be subtracted
from the FP value.

Second implied
Third implied

The difference is posted here in FP format (See The IEEE Floating
Point Standard, p. 126).

EMTH-SUBFI: Floating Point - Integer Subtraction

266 840 USE 506 00 October 2002

840 USE 506 00 October 2002 267

63
EMTH-SUBFP: Floating Point
Subtraction

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-SUBFP.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 268

Representation 268

Parameter Description 269

EMTH-SUBFP: Floating Point Subtraction

268 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

value 1

value 2 and

EMTH

SUBFP

difference

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates FP value 1 - value 2
subtraction

value 1
(top node)

4x REAL Floating point value 1 (first of two
contiguous registers)

value 2 and
difference
(middle node)

4x REAL Floating point value 2 and the difference
(first of four contiguous registers)

SUBFP
(bottom node)

Selection of the subfunction SUBFP

Top output 0x None ON = operation successful

EMTH-SUBFP: Floating Point Subtraction

840 USE 506 00 October 2002 269

Parameter Description

Floating Point
Value 1 (Top
Node)

The first of two contiguous 4x registers is entered in the top node. The second
register is implied.

Floating Point
Value 2 (Top
Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied

Register Content

Displayed
First implied

FP value 1 (the value from which value 2 will be subtracted) is stored
here.

Register Content

Displayed
First implied

FP value 2 (the value to be subtracted from value 1) is stored in
these registers

Second implied
Third implied

The difference of the subtraction is stored here in FP format (See
The IEEE Floating Point Standard, p. 126).

EMTH-SUBFP: Floating Point Subtraction

270 840 USE 506 00 October 2002

840 USE 506 00 October 2002 271

64
EMTH-SUBIF: Integer - Floating
Point Subtraction

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-SUBIF.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 272

Representation 272

Parameter Description 273

EMTH-SUBIF: Integer - Floating Point Subtraction

272 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

integer

FP and

EMTH

SUBIF

difference

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = initiates integer - FP operation

integer
(top node)

4x DINT, UDINT Integer value (first of two contiguous
registers)

FP and
difference
(middle node)

4x REAL FP value and difference (first of four
contiguous registers)

SUBIF
(bottom node)

Selection of the subfunction SUBIF

Top output 0x None ON = operation successful

EMTH-SUBIF: Integer - Floating Point Subtraction

840 USE 506 00 October 2002 273

Parameter Description

Integer Value
(Top Node)

The first of two contiguous 4x registers is entered in the top node. The second
register is implied.

FP Value and
Difference
(Middle Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied

Register Content

Displayed
First implied

The double precision integer value from which the FP value is
subtracted is stored here.

Register Content

Displayed
First implied

Registers store the FP value to be subtracted from the integer value.

Second implied
Third implied

The difference is posted here in FP format (See The IEEE Floating
Point Standard, p. 126).

EMTH-SUBIF: Integer - Floating Point Subtraction

274 840 USE 506 00 October 2002

840 USE 506 00 October 2002 275

65
EMTH-TAN: Floating Point
Tangent of an Angle (in Radians)

At a Glance

Introduction This chapter describes the EMTH subfunction EMTH-TAN.

What’s in this
chapter?

This chapter contains the following topics:

Topic Page

Short Description 276

Representation 277

Parameter Description 278

EMTH-TAN: Floating Point Tangent of an Angle (in Radians)

276 840 USE 506 00 October 2002

Short Description

Function
Description

This instruction is a subfunction of the EMTH instruction. It belongs to the category
"Floating Point Math (See Subfunctions for Floating Point Math, p. 125)".

EMTH-TAN: Floating Point Tangent of an Angle (in Radians)

840 USE 506 00 October 2002 277

Representation

Symbol Representation of the instruction

Parameter
Description

Description of the instruction’s parameters

value

tangent of

EMTH

TAN

value

Parameters State RAM
Reference

Data Type Meaning

Top input 0x, 1x None ON = calculates the tangent of the value

value
(top node)

4x REAL FP value indicating the value of an angle in
radians (first of two contiguous registers)

tangent of value
(middle node)

4x REAL Tangent of the value in the top node (first
of four contiguous registers)

TAN
(bottom node)

Selection of the subfunction TAN

Top output 0x None ON = operation successful

EMTH-TAN: Floating Point Tangent of an Angle (in Radians)

278 840 USE 506 00 October 2002

Parameter Description

Value (Top Node) The first of two contiguous 4x registers is entered in the top node. The second
register is implied.

If the magnitude is ≥ 65 536.0:
l The tangent is not computed
l An invalid result is returned
l An error is flagged in the EMTH-ERLOG (See EMTH-ERLOG: Floating Point

Error Report Log, p. 203) function

Tangent of Value
(Middle Node)

The first of four contiguous 4x registers is entered in the middle node. The remaining
three registers are implied

Register Content

Displayed
First implied

An FP value indicating the value of an angle in radians is stored
here. The magnitude of this value must be < 65 536.0.

Register Content

Displayed
First implied

Registers are not used but their allocation in state RAM is required.

Second implied
Third implied

The tangent of the value in the top node is posted here in FP format
(See The IEEE Floating Point Standard, p. 126).

Note: To preserve registers, you can make the 4x reference numbers assigned to
the displayed register and the first implied register in the middle node equal to the
register references in the top node, since the first two middle-node registers are not
used.

CBA

840 USE 506 00 October 2002 i

A
AD16, 55
ADD, 57
Add 16 Bit, 55
Addition, 57

AD16, 55
ADD, 57

Advanced Calculations, 472
Analog Input, 479
Analog Output, 489
Analog Values, 15
AND, 59
ASCII Functions

READ, 615
WRIT, 707

Average Weighted Inputs Calculate, 493

B
Base 10 Antilogarithm, 139
Base 10 Logarithm, 215
BCD, 63
Binary to Binary Code, 63
Bit Control, 457
Bit pattern comparison

CMPR, 89
Bit Rotate, 75
BLKM, 65
BLKT, 69
Block Move, 65
Block Move with Interrupts Disabled, 73
Block to Table, 69

BMDI, 73
BROT, 75

C
Calculated preset formula, 499
Central Alarm Handler, 485
Changing the Sign of a Floating Point
Number, 155
Check Sum, 85
CHS, 79
CKSM, 85
Closed Loop Control, 15
CMPR, 89
Coils, 43
Communications

MSTR, 411
COMP, 93
Compare Register, 89
Complement a Matrix, 93
Comprehensive ISA Non Interacting PID,
519
Configure Hot Standby, 79
Contacts, 43
Convertion

BCD to binary, 63
binary to BCD, 63

Index

Index

ii 840 USE 506 00 October 2002

Counters / Timers
T.01 Timer, 687
T0.1 Timer, 689
T1.0 Timer, 691
T1MS Timer, 693
UCTR, 705

Counters/Timers
DCTR, 97

D
Data Logging for PCMCIA Read/Write
Support, 107
DCTR, 97
Derivative Rate Calculation over a Specified
Time, 567
DIOH, 99
Distributed I/O Health, 99
DIV, 103
Divide, 103
Divide 16 Bit, 117
DLOG, 107
Double Precision Addition, 127
Double Precision Division, 187
Double Precision Multiplication, 223
Double Precision Subtraction, 259
Down Counter, 97
DRUM, 113
DRUM Sequencer, 113
DV16, 117

E
EMTH, 121
EMTH Subfunction

EMTH-ADDDP, 127
EMTH-ADDFP, 131, 135
EMTH-ANLOG, 139
EMTH-ARCOS, 143
EMTH-ARSIN, 147
EMTH-ARTAN, 151
EMTH-CHSIN, 155
EMTH-CMPFP, 159
EMTH-CMPIF, 163
EMTH-CNVDR, 167

EMTH-CNVFI, 171
EMTH-CNVIF, 175
EMTH-CNVRD, 179
EMTH-COS, 183
EMTH-DIVDP, 187
EMTH-DIVFI, 191
EMTH-DIVFP, 195
EMTH-DIVIF, 199
EMTH-ERLOG, 203
EMTH-EXP, 207
EMTH-LNFP, 211
EMTH-LOG, 215
EMTH-LOGFP, 219
EMTH-MULDP, 223
EMTH-MULFP, 227
EMTH-MULIF, 231
EMTH-PI, 235
EMTH-POW, 239
EMTH-SINE, 243
EMTH-SQRFP, 247
EMTH-SQRT, 251
EMTH-SQRTP, 255
EMTH-SUBDP, 259
EMTH-SUBFI, 263
EMTH-SUBFP, 267
EMTH-SUBIF, 271
EMTH-TAN, 275

EMTH-ADDDP, 127
EMTH-ADDFP, 131
EMTH-ADDIF, 135
EMTH-ANLOG, 139
EMTH-ARCOS, 143
EMTH-ARSIN, 147
EMTH-ARTAN, 151
EMTH-CHSIN, 155
EMTH-CMPFP, 159
EMTH-CMPIF, 163
EMTH-CNVDR, 167
EMTH-CNVFI, 171
EMTH-CNVIF, 175
EMTH-CNVRD, 179
EMTH-COS, 183
EMTH-DIVDP, 187
EMTH-DIVFI, 191
EMTH-DIVFP, 195
EMTH-DIVIF, 199

Index

840 USE 506 00 October 2002 iii

EMTH-ERLOG, 203
EMTH-EXP, 207
EMTH-LNFP, 211
EMTH-LOG, 215
EMTH-LOGFP, 219
EMTHMULDP, 223
EMTH-MULFP, 227
EMTH-MULIF, 231
EMTH-PI, 235
EMTH-POW, 239
EMTH-SINE, 243
EMTH-SQRFP, 247
EMTH-SQRT, 251
EMTH-SQRTP, 255
EMTH-SUBDP, 259
EMTH-SUBFI, 263
EMTH-SUBFP, 267
EMTH-SUBIF, 271
EMTH-TAN, 275
Engineering Unit Conversion and Alarms,
297
ESI, 279
EUCA, 297
Exclusive OR, 731
Extended Math, 121
Extended Memory Read, 723
Extended Memory Write, 727

F
Fast I/O Instructions

BMDI, 73
ID, 343
IE, 347
IMIO, 351
IMOD, 357
ITMR, 365

FIN, 309
First In, 309
First Out, 313
First-order Lead/Lag Filter, 537
Floating Point - Integer Subtraction, 263
Floating Point Addition, 131
Floating Point Arc Cosine of an Angle (in
Radians), 143
Floating Point Arc Tangent of an Angle (in

Radians), 151
Floating Point Arcsine of an Angle (in
Radians), 147
Floating Point Common Logarithm, 219
Floating Point Comparison, 159
Floating Point Conversion of Degrees to
Radians, 167
Floating Point Conversion of Radians to
Degrees, 179
Floating Point Cosine of an Angle (in
Radians), 183
Floating Point Divided by Integer, 191
Floating Point Division, 195
Floating Point Error Report Log, 203
Floating Point Exponential Function, 207
Floating Point Multiplication, 227
Floating Point Natural Logarithm, 211
Floating Point Sine of an Angle (in Radians),
243
Floating Point Square Root, 247, 251
Floating Point Subtraction, 267
Floating Point Tangent of an Angle (in
Radians), 275
Floating Point to Integer, 317
Floating Point to Integer Conversion, 171
Formatted Equation Calculator, 509
Formatting Messages, 29
Four Station Ratio Controller, 571
FOUT, 313
FTOI, 317

H
History and Status Matrices, 319
HLTH, 319
Hot standby

CHS, 79

I
IBKR, 333
IBKW, 335
ICMP, 337
ID, 343
IE, 347
IMIO, 351

Index

iv 840 USE 506 00 October 2002

Immediate I/O, 351
IMOD, 357
Indirect Block Read, 333
Indirect Block Write, 335
Input Compare, 337
Input Selection, 581
Installation of DX Loadables, 41
Instruction

Coils, Contacts and Interconnects, 43
Instruction Groups, 5

ASCII Communication Instructions, 7
Coils, Contacts and Interconnects, 14
Counters and Timers Instructions, 7
Fast I/O Instructions, 8
Loadable DX, 9
Math Instructions, 9
Matrix Instructions, 11
Miscellaneous, 12
Move Instructions, 13
Overview, 6
Skips/Specials, 13
Special Instructions, 14

Integer - Floating Point Subtraction, 271
Integer + Floating Point Addition, 135
Integer Divided by Floating Point, 199
Integer to Floating Point, 371
Integer x Floating Point Multiplication, 231
Integer-Floating Point Comparison, 163
Integer-to-Floating Point Conversion, 175
Integrate Input at Specified Interval, 515
Interconnects, 43
Interrupt Disable, 343
Interrupt Enable, 347
Interrupt Handling, 37
Interrupt Module Instruction, 357
Interrupt Timer, 365
ISA Non Interacting PI, 551
ITMR, 365
ITOF, 371

J
JSR, 373
Jump to Subroutine, 373

L
LAB, 375
Label for a Subroutine, 375
Limiter for the Pv, 525
LL984

AD16, 55
ADD, 57
AND, 59
BCD, 63
BLKM, 65
BLKT, 69
BMDI, 73
BROT, 75
CHS, 79
CKSM, 85
Closed Loop Control / Analog Values, 15
CMPR, 89
Coils, Contacts and Interconnects, 43
COMP, 93
DCTR, 97
DIOH, 99
DIV, 103
DLOG, 107
DRUM, 113
DV16, 117
EMTH, 121
EMTH-ADDDP, 127
EMTH-ADDFP, 131
EMTH-ADDIF, 135
EMTH-ANLOG, 139
EMTH-ARCOS, 143
EMTH-ARSIN, 147
EMTH-ARTAN, 151
EMTH-CHSIN, 155
EMTH-CMPFP, 159
EMTH-CMPIF, 163
EMTH-CNVDR, 167
EMTH-CNVFI, 171
EMTH-CNVIF, 175
EMTH-CNVRD, 179
EMTH-COS, 183
EMTH-DIVDP, 187
EMTH-DIVFI, 191
EMTH-DIVFP, 195
EMTH-DIVIF, 199

Index

840 USE 506 00 October 2002 v

EMTH-ERLOG, 203
EMTH-EXP, 207
EMTH-LNFP, 211
EMTH-LOG, 215
EMTH-LOGFP, 219
EMTH-MULDP, 223
EMTH-MULFP, 227
EMTH-MULIF, 231
EMTH-PI, 235
EMTH-POW, 239
EMTH-SINE, 243
EMTH-SQRFP, 247
EMTH-SQRT, 251
EMTH-SQRTP, 255
EMTH-SUBDP, 259
EMTH-SUBFI, 263
EMTH-SUBFP, 267
EMTH-SUBIF, 271
EMTH-TAN, 275
ESI, 279
EUCA, 297
FIN, 309
Formatting Messages for ASCII READ/
WRIT Operations, 29
FOUT, 313
FTOI, 317
HLTH, 319
IBKR, 333
IBKW, 335
ICMP, 337
ID, 343
IE, 347
IMIO, 351
IMOD, 357
Interrupt Handling, 37
ITMR, 365
ITOF, 371
JSR, 373
LAB, 375
LOAD, 379
MAP 3, 383
MBIT, 391
MBUS, 395
MRTM, 405
MSTR, 411
MU16, 453

MUL, 455
NBIT, 457
NCBT, 459
NOBT, 461
NOL, 463
OR, 467
PCFL, 471
PCFL-AIN, 479
PCFL-ALARM, 485
PCFL-AOUT, 489
PCFL-AVER, 493
PCFL-CALC, 499
PCFL-DELAY, 503
PCFL-EQN, 509
PCFL-INTEG, 515
PCFL-KPID, 519
PCFL-LIMIT, 525
PCFL-LIMV, 529
PCFL-LKUP, 533
PCFL-LLAG, 537
PCFL-MODE, 541
PCFL-ONOFF, 545
PCFL-PI, 551
PCFL-PID, 555
PCFL-RAMP, 561
PCFL-RATE, 567
PCFL-RATIO, 571
PCFL-RMPLN, 577
PCFL-SEL, 581
PCFL-TOTAL, 585
PEER, 591
PID2, 595
R --> T, 609
RBIT, 613
READ, 615
RET, 621
SAVE, 623
SBIT, 627
SCIF, 629
SENS, 635
SKPC, 639
SKPR, 643
SRCH, 647
STAT, 651
SU16, 675
SUB, 677

Index

vi 840 USE 506 00 October 2002

Subroutine Handling, 39
T.01 Timer, 687
T-->R, 679
T-->T, 683
T0.1 Timer, 689
T1.0 Timer, 691
T1MS Timer, 693
TBLK, 699
TEST, 703
UCTR, 705
WRIT, 707
XMIT, 713
XMRD, 723
XMWT, 727
XOR, 731

LOAD, 379
Load Flash, 379
Load the Floating Point Value of "Pi", 235
Loadable DX

CHS, 79
DRUM, 113
ESI, 279
EUCA, 297
HLTH, 319
ICMP, 337
Installation, 41
MAP 3, 383
MBUS, 395
MRTM, 405
NOL, 463
PEER, 591
XMIT, 713

Logarithmic Ramp to Set Point, 577
Logical And, 59
Logical OR, 467
Look-up Table, 533

M
MAP 3, 383
MAP Transaction, 383
Master, 411

Math
AD16, 55
ADD, 57
BCD, 63
DIV, 103
DV16, 117
FTOI, 317
ITOF, 371
MU16, 453
MUL, 455
SU16, 675
SUB, 677
TEST, 703

Matrix
AND, 59
BROT, 75
CMPR, 89
COMP, 93
MBIT, 391
NBIT, 457
NCBT, 459, 461
OR, 467
RBIT, 613
SBIT, 627
SENS, 635
XOR, 731

MBIT, 391
MBUS, 395
MBUS Transaction, 395
Miscellaneous

CKSM, 85
DLOG, 107
EMTH, 121
EMTH-ADDDP, 127
EMTH-ADDFP, 131
EMTH-ADDIF, 135
EMTH-ANLOG, 139
EMTH-ARCOS, 143, 183
EMTH-ARSIN, 147
EMTH-ARTAN, 151
EMTH-CHSIN, 155
EMTH-CMPFP, 159
EMTH-CMPIF, 163
EMTH-CNVDR, 167
EMTH-CNVFI, 171

Index

840 USE 506 00 October 2002 vii

EMTH-CNVIF, 175
EMTH-CNVRD, 179
EMTH-DIVDP, 187
EMTH-DIVFI, 191
EMTH-DIVFP, 195
EMTH-DIVIF, 199
EMTH-ERLOG, 203
EMTH-EXP, 207
EMTH-LNFP, 211
EMTH-LOG, 215
EMTH-LOGFP, 219
EMTH-MULDP, 223
EMTH-MULFP, 227
EMTH-MULIF, 231
EMTH-PI, 235
EMTH-POW, 239
EMTH-SINE, 243
EMTH-SQRFP, 247
EMTH-SQRT, 251
EMTH-SQRTP, 255
EMTH-SUBDP, 259
EMTH-SUBFI, 263
EMTH-SUBFP, 267
EMTH-SUBIF, 271
EMTH-TAN, 275
LOAD, 379
MSTR, 411
SAVE, 623
SCIF, 629
XMRD, 723
XMWT, 727

Modbus Plus
MSTR, 411

Modbus Plus Network Statistics
MSTR, 440

Modify Bit, 391
Move

BLKM, 65
BLKT, 69
FIN, 309
FOUT, 313
IBKR, 333
IBKW, 335
R --> T, 609
SRCH, 647
T-->R, 679

T-->T, 683
TBLK, 699

MRTM, 405
MSTR, 411

Clear Local Statistics, 425
Clear Remote Statistics, 430
CTE Error Codes for SY/MAX and TCP/
IP Ethernet, 452
Get Local Statistics, 423
Get Remote Statistics, 429
Modbus Plus and SY/MAX Ethernet
Error Codes, 446
Modbus Plus Network Statistics, 440
Peer Cop Health, 432
Read CTE (Config Extension Table), 435
Read Global Data, 428
Reset Option Module, 434
SY/MAX-specific Error Codes, 448
TCP/IP Ethernet Error Codes, 450
TCP/IP Ethernet Statistics, 445
Write CTE (Config Extension Table), 437
Write Global Data, 427

MU16, 453
MUL, 455
Multiply, 455
Multiply 16 Bit, 453
Multi-Register Transfer Module, 405

N
NBIT, 457
NCBT, 459
Network Option Module for Lonworks, 463
NOBT, 461
NOL, 463
Normally Closed Bit, 459
Normally Open Bit, 461

O
ON/OFF Values for Deadband, 545
One Hundredth Second Timer, 687
One Millisecond Timer, 693
One Second Timer, 691
One Tenth Second Timer, 689
OR, 467

Index

viii 840 USE 506 00 October 2002

P
PCFL, 471
PCFL Subfunctions

General, 17
PCFL-AIN, 479
PCFL-ALARM, 485
PCFL-AOUT, 489
PCFL-AVER, 493
PCFL-CALC, 499
PCFL-DELAY, 503
PCFL-EQN, 509
PCFL-INTEG, 515
PCFL-KPID, 519
PCFL-LIMIT, 525
PCFL-LIMV, 529
PCFL-LKUP, 533
PCFL-LLAG, 537
PCFL-MODE, 541
PCFL-ONOFF, 545
PCFL-PI, 551
PCFL-PID, 555
PCFL-RAMP, 561
PCFL-RATE, 567
PCFL-RATIO, 571
PCFL-RMPLN, 577
PCFL-SEL, 581
PCFL-Subfunction

PCFL-AIN, 479
PCFL-ALARM, 485
PCFL-AOUT, 489
PCFL-AVER, 493
PCFL-CALC, 499
PCFL-DELAY, 503
PCFL-EQN, 509
PCFL-INTEG, 515
PCFL-KPID, 519
PCFL-LIMIT, 525
PCFL-LIMV, 529
PCFL-LKUP, 533
PCFL-LLAG, 537
PCFL-MODE, 541
PCFL-ONOFF, 545
PCFL-PI, 551
PCFL-PID, 555
PCFL-RAMP, 561

PCFL-RATE, 567
PCFL-RATIO, 571
PCFL-RMPLN, 577
PCFL-SEL, 581
PCFL-TOTAL, 585

PCFL-TOTAL, 585
PEER, 591
PEER Transaction, 591
PID Algorithms, 555
PID Example, 21
PID2, 595
PID2 Level Control Example, 25
Process Control Function Library, 471
Process Square Root, 255
Process Variable, 16
Proportional Integral Derivative, 595
Put Input in Auto or Manual Mode, 541

R
R --> T, 609
Raising a Floating Point Number to an
Integer Power, 239
Ramp to Set Point at a Constant Rate, 561
RBIT, 613
READ, 615

MSTR, 421
Read, 615
READ/WRIT Operations, 29
Register to Table, 609
Regulatory Control, 472
Reset Bit, 613
RET, 621
Return from a Subroutine, 621

S
SAVE, 623
Save Flash, 623
SBIT, 627
SCIF, 629
Search, 647
SENS, 635
Sense, 635
Sequential Control Interfaces, 629
Set Bit, 627

Index

840 USE 506 00 October 2002 ix

Set Point Vaiable, 16
Skip (Constants), 639
Skip (Registers), 643
Skips / Specials

RET, 621
SKPC, 639
SKPR, 643

Skips/Specials
JSR, 373
LAB, 375

SKPC, 639
SKPR, 643
Special

DIOH, 99
PCFL, 471
PCFL-, 489
PCFL-AIN, 479
PCFL-ALARM, 485
PCFL-AVER, 493
PCFL-CALC, 499
PCFL-DELAY, 503
PCFL-EQN, 509
PCFL-KPID, 519
PCFL-LIMIT, 525
PCFL-LIMV, 529
PCFL-LKUP, 533
PCFL-LLAG, 537
PCFL-MODE, 541
PCFL-ONOFF, 545
PCFL-PI, 551
PCFL-PID, 555
PCFL-RAMP, 561
PCFL-RATE, 567
PCFL-RATIO, 571
PCFL-RMPLN, 577
PCFL-SEL, 581
PCFL-TOTAL, 585
PCPCFL-INTEGFL, 515
PID2, 595
STAT, 651

SRCH, 647
STAT, 651
Status, 651
SU16, 675
SUB, 677
Subroutine Handling, 39

Subtract 16 Bit, 675
Subtraction, 677
Support of the ESI Module, 279

T
T.01 Timer, 687
T-->R, 679
T-->T, 683
T0.1 Timer, 689
T1.0 Timer, 691
T1MS Timer, 693
Table to Block, 699
Table to Register, 679
Table to Table, 683
TBLK, 699
TCP/IP Ethernet Statistics

MSTR, 445
TEST, 703
Test of 2 Values, 703
Time Delay Queue, 503
Totalizer for Metering Flow, 585

U
UCTR, 705
Up Counter, 705

V
Velocity Limiter for Changes in the Pv, 529

W
WRIT, 707
Write, 707

MSTR, 419

X
XMIT, 713
XMIT Communication Block, 713
XMRD, 723
XMWT, 727
XOR, 731

Index

x 840 USE 506 00 October 2002

