
31
00

28
79

 0
1

SEMI SAN
Elementary Function Block Library
User Guide
Version 1.0

2 31002879 01 May 2002

Table of Contents
Safety Information . 5

About the Book .7

Chapter 1 SEMI SAN Function Block Library .9
Introduction to the SEMI SAN Elementary Function Block Library 9

Chapter 2 Client Side Elementary Function Blocks (EFBs) 13
Overview of Client Side EFBs . 13
SAN_READ EFB. 14
Function Blocks SAN_R_INT, SAN_R_UINT, SAN_R_DINT, SAN_R_UDINT, and
SAN_R_REAL. 17
SAN_WRIT EFB . 18
Function Blocks SAN_W_INT, SAN_W_UINT, SAN_W_DINT, SAN_W_UDINT,
and SAN_W_REAL . 21
Swapping EFBs. 23

Chapter 3 Server Side Elementary Function Blocks (EFBs) 25
Overview of Server Side EFBs . 25
SAN_DEV EFB . 26
SAN_OBJ EFB . 28
SAN_ATTR EFB . 30
SAN_ASMB EFB. 32
SAN_STRUCT EFB . 34
SAN_SMAP EFB. 36

Appendices . 41
At A Glance . 41

Appendix A Error/Status Codes .43
At a Glance . 43
Error/Status Codes for SAN_READ, SAN_R_xx EFBs. 44
Error Codes for SAN_WRIT, SAN_W_xx EFBs . 46
Error/Status Codes for SAN_DEV EFB. 48
Error/Status Codes for SAN_OBJ EFB . 49
31002879 01 May 2002 3

Error/Status Codes for SAN_ATTR EFB . 50
Error/Status Codes for SAN_ASMB EFB. 51
Error/Status Codes for SAN_STRUCT EFB . 52
Error/Status Codes for SAN_SMAP EFB. 53
TCP Error Codes for Read and Write EFBs . 54
MODBUS Error Codes for Read and Write EFBs . 55

Glossary .57
4 31002879 01 May 2002

§

Safety Information
Important Information

NOTICE Read these instructions carefully, and look at the equipment to become familiar with
the device before trying to install, operate, or maintain it. The following special
messages may appear throughout this documentation or on the equipment to warn
of potential hazards or to call attention to information that clarifies or simplifies a
procedure.

The addition of this symbol to a Danger or Warning safety label indicates
that an electrical hazard exists, which will result in personal injury if the
instructions are not followed.
This is the safety alert symbol. It is used to alert you to potential personal
injury hazards. Obey all safety messages that follow this symbol to avoid
possible injury or death.

DANGER indicates an imminently hazardous situation, which, if not avoided, will
result in death, serious injury, or equipment damage.

DANGER

WARNING
WARNING indicates a potentially hazardous situation, which, if not avoided, can result
in death, serious injury, or equipment damage.

CAUTION
CAUTION indicates a potentially hazardous situation, which, if not avoided, can result
in injury or equipment damage.
31002879 01 May 2002 5

Safety Information
PLEASE NOTE Electrical equipment should be serviced only by qualified personnel. No responsi-
bility is assumed by Schneider Electric for any consequences arising out of the use
of this material. This document is not intended as an instruction manual for untrained
persons.
© 2002 Schneider Electric All Rights Reserved
6 31002879 01 May 2002

About the Book
At a Glance

Document Scope This documentation introduces you to the Semiconductor Equipment and Materials
International (SEMI) trade association’s Standard E54 Sensor/Actuator network
(SAN) library of elementary function blocks (EFBs) and gives you detailed
information for their use.

Validity Note This documentation applies to Concept 2.5, SR2 or later.

Related
Documents

Product Related
Warnings

Schneider Electric assumes no responsibility for any errors that may appear in this
document. If you have any suggestions for improvements or amendments or have
found errors in this publication, please notify us.
No part of this document may be reproduced in any form or by any means, electronic
or mechanical, including photocopying, without express written permission of the
Publisher, Schneider Electric.

User Comments We welcome your comments about this document. You can reach us by e-mail at
TECHCOMM@modicon.com

Title of Documentation Reference Number

Concept 2.5 Installation Instructions 840 USE 492 00

Concept 2.5 User Manual 840 USE 493 00

Concept EFB User Manual 840 USE 495 00

Concept 2.5 LL984 Block Library 840 USE 496 00

Momentum M1 Process Adapter and Option Adapter User Guide 870USE10100
31002879 01 May 2002 7

About the Book
8 31002879 01 May 2002

31002879 01 May 2002
1

SEMI SAN Function Block Library
Introduction to the SEMI SAN Elementary Function Block Library

At a Glance The SEMI SAN Elementary Function Block (EFB) Library lets Momentum M1E
processors communicate with sensors and actuators that use the Sensor/Actuator
network (SAN) as defined by the Semiconductor Equipment and Materials
International trade association (SEMI) standard E54.
The Sensor/Actuator network (SAN), as defined by the SEMI standard E54,
provides a standardized object-oriented interface to devices at the user/application
layer. The M1E processors use their Ethernet communication port to communicate
with these devices. M1E processors use either the Modbus or TCP/IP protocol to
communicate.

The following block diagram shows a typical SAN device configuration.

Note: You should refer to, and be familiar with, the SEMI Standard E54 before
using the SEMI SAN Elementary Function Block Library.

Object

Object

Attribute n

Service n

Attribute n

Service n

Attribute 2

Attribute 2

Service 2

Service 2

Service 1

Service 1

Attribute 1

Attribute 1

Link
D
E
V
I
C
E

9

Introduction
M1E Functions The M1E processors function as either a client or a server on the Sensor/Actuator
network. In the client mode you can read and write attribute data with a device. In
the server mode you can create sensors and actuators. This EFB library is
compatible with the PLC programming language, Concept 2.5, SR2 or later.
The SEMI SAN Elementary Function Block Library features are available with the
following M1E processors only (they will not operate with any other Momentum
processors):
l 171CCC96091 Ethernet and I/O bus communications ports
l 171CCC98091 Ethernet and Modbus RS485 communications ports

Note: These processors are not limited to use with the SEMI SAN Elementary
Function Block Library.

Note: These processors are fully functional Momentum M1E controllers, except for
either of two options available in the Code Generation Options dialog box.
l include diagnosis information
l include IEC upload information
Select Project | Code Generation Options
10 31002879 01 May 2002

Introduction
SEMI SAN
Library

The tables below give the names and a short description of the EFBs available in
the SEMI SAN Elementary Function Block Library.
The following client side EFBs are provided in the SEMI SAN Elementary Function
Block Library.

The following server side EFBs are provided in the SEMI SAN Elementary Function
Block Library.

EFB Name Function

SAN_READ Issues a read attribute request to an object and analyzes the data
response.

SAN_READ
Types

SAN_R_INT, SAN_R_UINT, SAN_R_DINT, SAN_R_UDINT,
SAN_R_REAL.
These are similar to the SAN_READ EFB except the data output pin is type
safe and the length pin is not required. Data output type differentiate them.

SAN_WRIT Issues a write attribute request to an object and analyzes the data
response.

SAN_WRIT
Types

SAN_W_INT, SAN_W_UINT, SAN_W_DINT, SAN_W_UDINT,
SAN_W_REAL.
These are similar to the SAN_WRIT EFB except the data output pin is type
safe and the length pin is not required. Data input type differentiate them.

EFB Name Function

SAN_DEV Acts as the collecting point for up to thirty objects belonging to a single
device.

SAN_OBJ Acts as the collecting point for all attributes belonging to a single device’s
object.
The following three object types are supported:
l Sensor/Actuator/Controller Object (SAC)
l Device Manager Object (DM)
l Active Element Object (AE)

SAN_ATTR Acts as the collecting point for all of the configuration items (data) that are
associated with a single attribute.

SAN_ASMB Acts as the collecting point for all of the configuration items (data) that are
associated with a single attribute. It can pack several attributes of a device
thereby reducing network traffic by allowing one read or write client access
to all members of the assembly.

SAN_STRUCT The SAN_STRUCT EFB complements the SAN_ATTR EFB by providing
a method of structuring data. It provides the attribute ID for a structured
object.

SAN_SMAP Allows the entire SAN device setup table to be put into 4X registers in state
RAM of the M1E processor.
31002879 01 May 2002 11

Introduction
Important

Note: The SEMI SAN EFB library is not intended to be used with the Concept
simulator.

Note: Attributes, with data types having a length of less than 2 bytes or greater than
4 bytes, must use both a structured data type and either the SAN_READ or
SAN_WRIT EFB.
Use either one of these two types of structured data type:
l Array
l Structure
12 31002879 01 May 2002

31002879 01 May 2002
2

Client Side Elementary Function
Blocks (EFBs)
Overview of Client Side EFBs

Introduction The EFBs used on the client side initiate requests to the server. This chapter gives
you the technical information needed to introduce these EFBs into a sensor/actuator
network with the M1E processors 171CCC96091 or 171CCC98091.
Also found in this chapter is a description of the Swapping EFBs, which are used
with read and write style EFBs to correct byte order.

What’s in this
Chapter?

This chapter contains the following topics:

Note: The SEMI SAN EFB library is not intended to be used with the Concept
simulator.

Topic Page

SAN_READ EFB 14

Function Blocks SAN_R_INT, SAN_R_UINT, SAN_R_DINT, SAN_R_UDINT,
and SAN_R_REAL

17

SAN_WRIT EFB 18

Function Blocks SAN_W_INT, SAN_W_UINT, SAN_W_DINT,
SAN_W_UDINT, and SAN_W_REAL

21

Swapping EFBs 23
13

Client Side EFBs
SAN_READ EFB

Functional
Description

The SAN_READ Elementary Function Block (EFB) issues a read attribute request
to an object. It analyzes the incoming data response to ensure that the data is in the
correct format.

Representation A block representation and a table listing the parameters of the SAN_READ EFB
follow.
The following figure is a block representation of the SAN_READ EFB.

Done

Start

IpAddr

Abort

DeviceID

CIA

Timeout

Active

Done

Error

 Status

Data

Length

Elapsed

SAN_READ
14 31002879 01 May 2002

Client Side EFBs
Parameter
Description

The following table describes the Function Block Parameters.

Parameters Data Type Meaning

Start Input BOOL This initiates a read attribute operation when
transitioning from FALSE to TRUE, and a request
is not in progress, and Abort is FALSE. Use the
Abort input to stop a pending request. Start is only
evaluated when the EFB is not active, it must
transition from TRUE to FALSE and then FALSE
to TRUE when the Active pin is FALSE.

Abort input BOOL This cancels an ongoing request. It must be
FALSE to start a read operation.

IpAddr Input OMP_IP This input parameter provides complete routing
information for the specified OMP attribute on an
Sensor/Actuator Network.
This routing information conforms with the SEMI
standards and is as follows:

l ByteArr5[1] 1st byte of IP address

l ByteArr5[2] 2nd byte of IP address

l ByteArr5[3] 3rd byte of IP address

l ByteArr5[4] 4th byte of IP address

DeviceID input UINT This represents ID of the device to be read.

CIA input OMP_CIA This represents the class ID, instance ID, and
attribute ID of the attribute to be read.

Timeout input TIME Here you can enter the maximum time (Timeout
limit) the EFB should try to complete a transaction,
e.g. 200ms, 5s500ms. If the timeout limit is
reached and the EFB operation is not complete,
the timeout status code will be generated and
Error will be set.
If not connected or set to zero, the EFB will act as
if there is no timeout.

Active Output BOOL This indicates the operation is in progress. It is
TRUE while the read operation is in progress and
then becomes FALSE.

Done Output BOOL This is set to FALSE at the start of a read operation
and becomes TRUE when complete. It remains
TRUE until the start of the next read operation.

Error Output BOOL This is TRUE when the read attribute fails. The
’Status’ output provides additional detail.
31002879 01 May 2002 15

Client Side EFBs
Status Output WORD This presents additional information in case a read
operation fails. See Error/Status Codes for
SAN_READ, SAN_R_xx EFBs, p. 44. It is 0 if
SAN_READ is not started or if the read operation
was successful.

Data Output ANY A variable (located or unlocated) of any data type
may be connected to this pin. The byte length of
the variable will be determined by the EFB. In case
a read operation succeeds, the received data will
be copied into the connected variable. In case the
received data exceeds the size of the connected
variable, the EFB will show an error and no data
will be copied.
Note: If this output is longer than one byte a
swapping EFB must be used. If the data is an
assembly or a structure each element must be
separately swapped.

Length Output UINT After a read operation, ‘Length’ always contains
the byte length of the received attribute. Even in
cases where the variable connected to the 'Data'
parameter is smaller than the received attribute
causing an error, the Length will show the byte
size of the returned data.

Elapsed output TIME This displays the time the EFB is taking to
complete while it is active, and the total time to
complete when Done or Error has occurred. By
observing the Elapsed output, you can make
decisions regarding network performance and the
effect of changing the Start times of EFBs.

Parameters Data Type Meaning
16 31002879 01 May 2002

Client Side EFBs
Function Blocks SAN_R_INT, SAN_R_UINT, SAN_R_DINT, SAN_R_UDINT, and
SAN_R_REAL

Functional
Description

These function blocks are all similar to the SAN_READ EFB except the Data output
pin is type safe and the Length pin is not required. The distinguishing data output
types are found below.

Representation The following figure is a block representation of the these EFBs.

Parameter
Description

The following table describes the Data output types for individual EFBs.

Note: It is not necessary to use a swapping EFB on the DATA pin with these type
safe EFBs.

Done

Start

IpAddr

Abort

DeviceID

CIA

Timeout

Active

Done

Error

 Status

Data

Elapsed

SAN_R_INT

EFB Name Data Output Type Description

SAN_R_INT INT Integer

SAN_R_UINT UINT Unsigned Integer

SAN_R_DINT DINT Double Integer

SAN_R_UDINT UDINT Unsigned Double Integer

SAN_R_REAL REAL Real
31002879 01 May 2002 17

Client Side EFBs
SAN_WRIT EFB

Functional
Description

The SAN_WRIT Elementary Function Block (EFB) issues a write attribute request
to an object. It analyzes the incoming data response to ensure that the data is in the
correct format.

Representation A block representation and a table listing the parameters of the SAN_WRIT EFB
follow.

Done

Start

IpAddr

Abort

DeviceID

CIA

Data

Active

Done

Error

 Status

Elapsed

SAN_WRIT

Length

Timeout
18 31002879 01 May 2002

Client Side EFBs
Parameter
Description

The following table describes the Function Block Parameters.

Parameters Data Type Meaning

Start Input BOOL This initiates a write attribute operation when
transitioning from FALSE to TRUE, and a request is not
in progress, and Abort is FALSE. Use the Abort input to
stop a pending request. Start is only evaluated when
the EFB is not active, it must transition from TRUE to
FALSE and then FALSE to TRUE when the Active pin
is FALSE.

Abort input BOOL This cancels an ongoing request. It must be FALSE to
start a write operation.

IpAddr Input OMP_IP This input parameter provides complete routing
information for the specified OMP attribute on an
Sensor/Actuator Network.
This routing information conforms with the SEMI
standards and is as follows:

l ByteArr5[1] 1st byte of IP address

l ByteArr5[2] 2nd byte of IP address

l ByteArr5[3] 3rd byte of IP address

l ByteArr5[4] 4th byte of IP address

DeviceID input UINT This represents the ID of the device to be written to.

CIA input OMP_CIA This represents the class ID, instance ID, and attribute
ID of the attribute to be written.

Timeout input TIME Enter the maximum number of milliseconds the EFB
should try to complete a transaction. If the timeout limit
is reached and the EFB operation is not complete, the
timeout status code will be generated and Error will be
set. If not connected or set to zero, the EFB will act as if
there was no timeout.

Data Input ANY A variable (located or unlocated) of any data type may
be connected to this pin. The byte length of the variable
will be determined by the EFB internally. The amount of
bytes taken from the connected variable is defined by
parameter Length. The byte stream will start at the
lowest physical address (little endian) of that variable.
Note: Data to this pin must be swapped by a swapping
EFB. If the data is an assembly or a structure each
element must be separately swapped.
31002879 01 May 2002 19

Client Side EFBs
Length Input UINT This specifies the number of bytes to be taken from the
variable connected to the ’Data’ parameter. If Length
specifies more bytes than the variable connected to
Data can provide, an error will occur and an appropriate
error code will be set in the Status output. See Error
Codes for SAN_WRIT, SAN_W_xx EFBs, p. 46.

Active Output BOOL This indicates the operation is in progress. It is TRUE
while the write operation is in progress and then
becomes FALSE.

Done Output BOOL This is set to FALSE at the start of a write operation and
becomes TRUE when complete. It remains TRUE until
the start of the next write operation.

Error Output BOOL This is TRUE when the write attribute fails. The ’Status’
output provides additional detail.

Status Output WORD This presents additional information in case a write
operation fails. See Error Codes for SAN_WRIT,
SAN_W_xx EFBs, p. 46. It is 0 if SAN_WRIT is not
started or if the write operation was successful.

Elapsed output TIME This displays the time the EFB is taking to complete
while it is active, and the total time to complete when
Done or Error has occurred. By observing the Elapsed
output, the user can make decisions regarding network
performance and the effect of changing the Start times
of EFBs in the user program.

Parameters Data Type Meaning
20 31002879 01 May 2002

Client Side EFBs
Function Blocks SAN_W_INT, SAN_W_UINT, SAN_W_DINT, SAN_W_UDINT, and
SAN_W_REAL

Functional
Description

These function blocks are all similar to the SAN_WRIT EFB except the Data output
pin is type safe and the Length pin is not required. The distinguishing data output
types are found below.

Representation The following figure is a block representation of the these EFBs.

Note: It is not necessary to use a swapping EFB on the DATA pin with these type
safe EFBs.

Done

Start

IpAddr

Abort

DeviceID

CIA

Data

Active

Done

Error

 Status

Elapsed

SAN_W_INT

Timeout
31002879 01 May 2002 21

Client Side EFBs
Parameter
Description

The following table describes the Data output types for individual EFBs.

EFB Name Data Output Type Description

SAN_W_INT INT Integer

SAN_W_UINT UINT Unsigned Integer

SAN_W_DINT DINT Double Integer

SAN_W_UDINT UDINT Unsigned Double Integer

SAN_W_REAL REAL Real

Note: For more detailed information see SAN_WRIT EFB, p. 18.
22 31002879 01 May 2002

Client Side EFBs
Swapping EFBs

Functional
Description

Swapping EFBs correct the data byte sequence out of a READ EFB or into a WRITE
EFB. There are five Swapping EFBs, each for a particular Data type. They all have
one input, labeled In, and one output, labeled Out.

Block Structure Here is a universal block structure of a Swapping EFB.

Swapping EFB
List

Here is a list of all the Swapping EFBs. The names indicate which data type the
particular Swapping EFB is used for.
l SW_INT
l SW_UINT
l SW_DINT
l SW_UDINT
l SW_REAL

How They Are
Used l When used with a SAN_READ EFB the Data input to the Swapping EFB comes

from the data output of a SAN_READ Data pin, usually after the data has been
input to a structure representing a SAN_ASMB or SAN STRUCT. In these cases
a swapping EFB must be used on each individual member of the structure. The
correct Concept byte order is then found on the output of the Swapping EFBs.
Choose the proper Swapping EFB type by identifying data type.

l When used with a SAN_WRIT EFB the Data input to the Swapping EFB is a
Concept register, variable, structure or constant. In the case of a structure,
typically representing a SAN_ASMB or SAN_STRUCT, each member of a
Concept-correct structure must be converted to a Wire-correct structure before
the data is connected to the SAN_WRIT Data Input pin. The Swapping EFB Data
output is connected to the Data input pin of a SAN_WRIT, only for elementary
types, and represents a byte stream that is correct for transmission on the wire.

In Out

SW_xxx
31002879 01 May 2002 23

Client Side EFBs
24 31002879 01 May 2002

31002879 01 May 2002
3

Server Side Elementary Function
Blocks (EFBs)
Overview of Server Side EFBs

Introduction The SEMI SAN Elementary Function Block library has six EFBs that you can use on
the server side of a sensor/actuator network. EFBs used on the server side respond
to requests from clients. This chapter gives you the technical information needed for
the introduction of these function blocks into a sensor/actuator network with M1E
processors 171CCC96091 or 171CCC98091.

What’s in this
Chapter?

This chapter contains the following topics:

Note: Server Side EFBs are limited to five (5) concurrent devices.

Topic Page

SAN_DEV EFB 26

SAN_OBJ EFB 28

SAN_ATTR EFB 30

SAN_ASMB EFB 32

SAN_STRUCT EFB 34

SAN_SMAP EFB 36
25

Server Side EFBs
SAN_DEV EFB

Functional
Description

The SAN_DEV Elementary Function Block (EFB) acts as the collecting point for all
of the objects that belong to a single device. This EFB supports up to 30 objects for
a single device.

Representation The following figure is a block representation of the SAN_DEV EFB

SAN_DEV

Disable

Device

Object1

Object2

Active

Status

extensible

Object30
26 31002879 01 May 2002

Server Side EFBs
Parameter
Description

The following table describes the Function Block Parameters

Parameters Data Type Meaning

Disable Input BOOL If TRUE, the device and all attached objects
are not visible to the internal OMP handler. If
this input is not connected the OMP handler
assumes FALSE and always ’sees’ the
device.

Device Input BYTE Assigns a logical device number to the
SAN_DEV for use when the PLC is hosting
multiple SAN_DEV objects. The same value
also corresponds to the Unit-ID of the
Modbus/TCP protocol, so that multiple
devices on the same PLC could be
addressed with different Unit-Ids in the
Modbus/TCP message frame, according to
the OMP standard of Modbus/TCP. If the
PLC will host only one device this pin may be
left open to automatically assign the SEMI
default value 0 as the device’s unit number.

Object Input Object ID This should be linked to the ObjectID output
parameter of a SAN_OBJ. Up to 30
SAN_OBJs can be linked or attached to a
SAN_DEV

Active Output BOOL If the value is TRUE then the device has been
accepted by the PLC’s internal OMP handler.
If the value is FALSE then the output
parameter ’Status’ will contain more specific
information.

Status Output WORD The Status Output delivers an error/status
code. See Error/Status Codes for SAN_DEV
EFB, p. 48.
31002879 01 May 2002 27

Server Side EFBs
SAN_OBJ EFB

Functional
Description

The SAN_OBJ EFB encapsulates a SEMI SAN object. This object represents one
of the three types of SAN objects that are related to a device:
The following three object types are supported:
l Sensor/Actuator/Controller Object (SAC)
l Device Manager Object (DM)
l Any other Active Element Object (AE)
The SAN_OBJ acts as the collecting point for all attributes associated with an object.
The class ID and instance ID of an object are assigned to the SAN_OBJ and up to
28 attributes may be assigned.

Representation The following figure is a block representation of the SAN_OBJ EFB.

SAN_OBJ

Disable

ClassID

InstID

Member1

Member2

Active

Status

ObjectID

extensible

Member28
28 31002879 01 May 2002

Server Side EFBs
Parameter
Description

The following table describes the Function Block Parameters

Parameters Data Type Meaning

Disable Input BOOL If TRUE the object, and all attached
attributes, are not visible to the internal OMP
handler. If this input is not connected the
OMP handler assumes FALSE and always
’sees’ the object.

ClassID Input UINT The ClassID identifies the object type that is
to be read or written. The Object Types are
defined in the SEMI Standard E54.1.

InstID Input MEMBER_ID This input defines the instance of the object to
be read or written. Each SAN_OBJ instance
must have a unique identifier (Most identifiers
are defined in the SEMI Standard E54.1).
Example: If a device has four analog values,
each analog value is represented by a
SAN_OBJ, and each SAN_OBJ has a unique
Instance ID.

Member Input 1... 28
Input

Member ID This is linked to the Member ID Output
parameter of a SAN_ATTR Function Block.
See SAN_ATTR EFB, p. 30.

Active Output BOOL This value is TRUE when the object has been
accepted by the PLC’s internal OMP handler.
If the value is FALSE the output parameter
’Status’ will contain more specific information.

Status Output WORD The Status Output provides a error/status
code.

ObjectID Object_ID To assign this object to a certain device this
parameter needs to be connected to one of
the ‘Object’ parameters of a SAN-DEV EFB.
31002879 01 May 2002 29

Server Side EFBs
SAN_ATTR EFB

Functional
Description

The SAN_ATTR EFB completes the SEMI SAN object model by providing the
attribute ID for an object and collecting the actual data from the server PLC.

Representation The following figure is a block representation of the SAN_ATTR EFB.

SAN_ATTR

AttrID

Protect

Active

MemberID

Data

Disable

Status

30 31002879 01 May 2002

Server Side EFBs
Parameter
Description

The following table describes the Function Block Parameters.

Parameters Data Type Meaning

AttrID Input UINT The AttrID input assigns the attribute identifier
to the attribute, according to the SEMI
standard E54.1.

Data Input ANY An IEC variable (located or unlocated) of any
primitive data type may be connected to this.
(Structured data must use the SAN_STRUCT
mechanism EFB). The EFB will then internally
discover the byte length of the particular
variable. This variable holds the attribute’s
actual data. The variable’s actual data may be
read or written by a client using the
SAN_READ and SAN_WRIT EFBs. See
Function Blocks SAN_R_INT, SAN_R_UINT,
SAN_R_DINT, SAN_R_UDINT, and
SAN_R_REAL, p. 17 and Function Blocks
SAN_W_INT, SAN_W_UINT, SAN_W_DINT,
SAN_W_UDINT, and SAN_W_REAL, p. 21.

Protect Input BOOL If the SEMI specification defines the attribute
to be Read-Only this input must be TRUE. If
the attribute is Read-Write, this input must be
FALSE or left unconnected.

Disable Input BOOL If TRUE the attribute is not visible to the
internal OMP handler. If this input is not
connected, the OMP handler assumes FALSE
and always ’sees’ the attribute (and variable).

Active Output BOOL This value is TRUE when the attribute has
been accepted by the PLC’s internal OMP
handler. If the value is FALSE the output
parameter ’Status’ will contain more specific
information.

Status Output WORD The Status Output provides an error/status
code about the device. See Error/Status
Codes for SAN_ATTR EFB, p. 50.

MemID Output Member ID To assign this attribute to a certain object, this
parameter needs to be connected to one of the
’Member..’ inputs of a SAN_OBJ or
SAN_STRUCT, and if applicable SAN_ASMB.
31002879 01 May 2002 31

Server Side EFBs
SAN_ASMB EFB

Functional
Description

The SAN_ASMB Elementary Function Block (EFB) allows the packing of multiple
attributes into one read or write operation. The attributes do not have to come from
the same SAN_OBJ. Assemblies are defined within the SEMI specification for a
device. The EFB has inputs for class ID and instance ID; the attribute ID of all
assemblies is 1 by definition.

Representation The following figure is a block representation of the SAN_ASMB EFB.

SAN_ASMB
Disable Active

StatusClassID

InstID

Member1

Member2

extensible

Member28
32 31002879 01 May 2002

Server Side EFBs
Parameter
Description

The following table describes the Function Block Parameters.

Parameters Data Type Meaning

Disable Input BOOL If TRUE the assembly, and all attached
attributes, are not visible to the internal OMP
handler. If this input is not connected the
OMP handler assumes FALSE and always
’sees’ the assembly.

ClassID Input UINT This assigns the class identifier to the
assembly, according to the SEMI standard
E54.1.

InstID Input UINT This input defines the instance identifier of
the object pointing to a block of data to be
read or written. The Instance Identifiers are
defined in the SEMI Standard E54.1.

Member1 ... 28 Input Member ID This should be linked to the MemID output
parameter of a SAN_ATTR EFB or a
SAN_STRUCT EFB. See SAN_ATTR EFB,
p. 30or SAN_STRUCT EFB, p. 34.

Active Output BOOL This value is TRUE when the assembly has
been accepted by the PLC’s internal OMP
handler. If the value is FALSE the output
parameter ’Status’ will contain more specific
information. See Error/Status Codes for
SAN_ASMB EFB, p. 51.

Status Output WORD The Status Output provides a error/status
code. See Error/Status Codes for
SAN_ASMB EFB, p. 51.
31002879 01 May 2002 33

Server Side EFBs
SAN_STRUCT EFB

Functional
Description

The SAN_STRUCT Elementary Function Block complements the SAN_ATTR EFB
by providing a method of structuring data. It provides the attribute ID for a structured
object.

Representation The following figure is a block representation of the SAN_STRUCT EFB.

SAN_STRUCT

AttrID

Data

Protect

Disable

Active

Status

MemID

MemSize28

Extensible

MenSize1
34 31002879 01 May 2002

Server Side EFBs
Parameter
Description

The following table describes the Function Block Parameters

Parameters Data Type Meaning

AttrID Input UINT The AttrID input assigns the attribute identifier to the
structure, according to the SEMI standard E54.1.

Data ANY The Data input is of type ANY. Structured data is connected
to this pin. The EFB will internally discover the byte length of
the structure. The sum of the values in MemSize must equal
the byte length of the structure. This variable holds the
attribute’s actual data. The variable’s actual data may be
read or written by a client using the SAN_READ and
SAN_WRIT EFBs.

Disable Input BOOL If TRUE the attribute is not visible to the internal OMP
handler. If this input is not connected, the OMP handler
assumes FALSE and always ’sees’ the attribute (and
variable).

Protect Input BOOL If the SEMI specification defines the attribute to be Read-
Only this input must be TRUE. If the attribute is Read-Write,
this input must be FALSE or left unconnected.

MemSize1
Input

Byte Each MemSize input defines the size of an element of the
structure connected to the Data pin. MemSize1 is for the first
element defined in the .DTY file. The total of all MemSize
pins must equal the byte length of the structure connected to
the Data pin. A zero is an invalid entry.

Active Output BOOL This value is TRUE when the attribute has been accepted by
the PLC’s internal OMP handler. If the value is FALSE the
output parameter ’Status’ will contain more specific
information.

Status
Output

WORD This delivers an error code. See Error/Status Codes for
SAN_STRUCT EFB, p. 52.

MemID
Output

MEMBER_ID To assign this attribute to a certain object, this parameter
needs to be connected to one of the ’Member..’ inputs of a
SAN_OBJ or SAN_ASMB.
31002879 01 May 2002 35

Server Side EFBs
SAN_SMAP EFB

Functional
Description

The SAN_SMAP Elementary Function Block (EFB) allows the entire Sensor/
Actuator Network (SAN) device setup table to be put into 4x registers in state RAM
of the M1E processor. This method of configuring the SAN device setup allows the
downloading of different setups without a programming change to the M1E’s logic
program. The name SMAP relates to StateRAM-MAP because the whole device
setup table (MAP) is stored in state RAM (4x).
The SAN_SMAP EFB identifies to the OMP handler the start of a contiguous area
of 4X register memory. This memory will contain a set of structures identifying the
class, instance, and attribute IDs of all SAN attributes in use.
The SAN_SMAP is used as an alternate to using the SAN_DEV, SAN_OBJ,
SAN_ATTR approach. Only one approach or the other should be used. The data for
a SAN_SMAP can be created by a third party configuration tool and written to this
4x memory.

Note: This device’s setup table must be rescanned after a power cycle or the
download of a new application

Note: The scan bit (bit 0) of the Control Code (first register) must be held TRUE
until the SMAP EFB indicates the table has been successfully scanned by the OMP
handler.

Note: The SAN_SMAP uses state RAM instead of IEC program space. To use the
SAN_SMAP function block, the user may have to increase the size of the program
data space in the M1E processor. The default setting is 16386 bytes.
36 31002879 01 May 2002

Server Side EFBs
Representation The following figure is a block representation of the SAN_SMAP EFB.

SAN_SMAP

Disable

MapStart

Active

EntryCt

Device Status
31002879 01 May 2002 37

Server Side EFBs
Parameter
Description

The following table describes the Function Block Parameters

Parameters Data Type Meaning

Disable Input BOOL If TRUE then the device, and all attached objects, are not visible to the internal
OMP handler. If this input is not connected, the OMP handler assumes FALSE and
always ’sees’ the device.

Device Input BYTE The Device input assigns a logical device number to the SAN_DEV for use when
the PLC is hosting multiple SAN_DEV objects. The same value also corresponds
to the Unit-ID of the Modbus/TCP protocol, so that multiple devices on the same
PLC could be addressed with different Unit-Ids in the Modbus/TCP message
frame, according to the OMP standard of Modbus/TCP. If the PLC will host only
one device this pin may be left open to automatically assign the value 0 as the
device’s unit number.
38 31002879 01 May 2002

Server Side EFBs
MapStart Input UINT This value tells the EFB where the SAN device setup table starts in the 4x register
area. If MapStart contains 1 the EFB would expect the device setup to start at
4x00001. The address is the first register of a contiguous block of memory. The
data elements within this area represent a ’scattering’ of memory locations.

The first register contains a control code.
The Control Code register is a bit mask that tells the OMP handler when to scan
the map for data, as follows:

If the Scan flag is set, the SAN_SMAP EFB will scan the table and publish the
contents to the PLC’s internal OMP handler.
Note: This scanning will take place every scan cycle as long as this bit is set. To
save processing time, set this bit to zero when changes will no longer be made.

Note: The device setup table has to be re-scanned after a power-cycle (unless
battery backup is available) or the download of a new application.
The second register in the device setup contains the number of entries (attribute
descriptors) that will start in the third register.
Every entry in the device setup has the following structure:

If the NumEntries is 1, the entry is treated as an attribute, if it is greater than one it
is treated as an assembly or structure, if it is 0 there is an error and the entire
SAN_SMAP is invalid. If an attribute is a structure, each member must be entered
as a primitive type, not one entry for the entire structure. The second entry in the
device setup table will immediately follow the first one and so on.

Active Output BOOL This value is TRUE when the SAN_SMAP has been accepted by the PLC’s internal
OMP handler. If the value is FALSE the output parameter ’Status’ will contain more
specific information.

Parameters Data Type Meaning

1st Register 2nd Register 3rd to (n - 1) Registers Last Register
Code Control Number

Entries
n Data structures

MSB15

reserved

1 0LSB

Scan Field

Class
Instance
Attribute
Settings

NumEntries
Length_1
Offset_1

Length_n
Offset_n

(UINT) :
(UINT) :
(UINT) :
(UINT) :

(UINT) :
(UINT) :
(UINT) :

(UINT) :
(UINT) :

class identifier
instance identifier
attribute identifier
characteristics bit mask
 bit 0 = 0 : read/write access
 bit 0 = 1 : read only access
Number of attributes
length of attribute in bytes
4x offset of attribute

length of last attribute
4x offset of last attribute
31002879 01 May 2002 39

Server Side EFBs
Status Output WORD The Status Output provides a error/status codeError/Status Codes for SAN_SMAP
EFB, p. 53.

EntryCT Output UINT The EntryCt Output indicates the number of entries of the device setup table that
were scanned. If an error occurs during the scan, the EntryCT output indicates
which entry caused the error.

Parameters Data Type Meaning
40 31002879 01 May 2002

Appendices
At A Glance

Overview The following contains detailed information on the Error/Status Codes applicable to
the SEMI SAN Function Block Library..

What’s in this
Appendix?

The appendix contains the following chapters:

Chapter Chapter Name Page

A Error/Status Codes 43
31002879 01 May 2002 41

Appendices
42 31002879 01 May 2002

31002879 01 May 2002
A

Error/Status Codes
At a Glance

Overview The following contains detailed information on the Error/Status codes applicable to
the SEMI SAN Function Block Library. Codes for EFBs, TCP, and MODBUS are
included.

What’s in this
Chapter?

This chapter contains the following topics:

Topic Page

Error/Status Codes for SAN_READ, SAN_R_xx EFBs 44

Error Codes for SAN_WRIT, SAN_W_xx EFBs 46

Error/Status Codes for SAN_DEV EFB 48

Error/Status Codes for SAN_OBJ EFB 49

Error/Status Codes for SAN_ATTR EFB 50

Error/Status Codes for SAN_ASMB EFB 51

Error/Status Codes for SAN_STRUCT EFB 52

Error/Status Codes for SAN_SMAP EFB 53

TCP Error Codes for Read and Write EFBs 54

MODBUS Error Codes for Read and Write EFBs 55
43

Error codes
Error/Status Codes for SAN_READ, SAN_R_xx EFBs

Error Code Table The following table describes the error codes for the SAN_READ, SAN_R_xx EFBs.

Status (Hex) (Dec) Description

0x0000 0 Either success or ’Start’ is not set

0x80 32768+ OMP specific response error, refer to OMP-Modbus/TCP
specification for details. (reproduced below)

0x81xx The response contained a Modbus error code. The error code is
anded with 8100 hex. (see below for codes)

0x8801 34817 The EFB could not gain access to the ethernet. All OMP paths
have been taken by other EFBs. Add a TON delay to the start if
synchronized.

0x8803 34819 The EFB could not gain access to the ethernet. This PLC does
not implement the OMP handler.

0x8804 34820 The EFB could not connect to the assigned IP address, check for
valid address

0x8805 34821 The EFB could not send to the assigned IP address.

0x8806 34822 Fatal error: The EFB could not gain the OMP handler

0x8807 34823 Fatal error: The EFB could not gain access to the OMP handler

0x8808 34824 The response sent back was not Modbus/TCP compatible (MB
length < 3 byte)

0x8809 34825 SEMI SAN is not supported by the remote host.

0x880A 34826 The response sent back was not compliant to the SEMI SAN
specification (fragment < 9 byte)

0x880B 34827 The response sent back used message fragmentation which is
not supported by this PLC. This is also generated if the CIA pin
is not hooked up.

0x880C 34828 The response contained the wrong service code(0x08 was
expected)

0x880D 34829 The received attribute is too long to fit into the variable connected
to pin ’Data’. Look at the parameter ’Length’ to see how big the
received attribute actually is.

0x880E 34830 The response sent back was too small (<= 9 bytes)

0x880F 34831 The data size was not equal to the specific EFB data type. The
wrong EFB was used.

0x8811 34833 The connection was interrupted or reset by the OMP server

0x8812 34834 The connection was closed for unknown reason.
44 31002879 01 May 2002

Error codes
0x8901 35073 The EFB was aborted by the user (via the Abort pin)

0x8902 35074 The user-set timeout occurred during connection.

0x8903 35075 The user-set timeout occurred after connection and before
completion.

Status (Hex) (Dec) Description
31002879 01 May 2002 45

Error codes
Error Codes for SAN_WRIT, SAN_W_xx EFBs

Error Code Table The following table describes the error codes for the SAN_WRIT, SAN_W_xx EFBs.

Status (Hex) (Dec) Description

0x0000 0 Either success or ’Start’ is not set

0x80xx 32768+ OMP specific response error, refer to OMP-Modbus/TCP
specification for further detail. (reproduced after SAN_READ)

0x81xx The response contained a Modbus error code. The error code is
anded with 8100 hex. (see below for codes)

0x8801 34817 The EFB could not gain access to the ethernet. All available OMP
paths have been taken by other EFBs. Add a TON delay to the
start if synchronized.

0x8803 34819 The EFB could not gain access to the ethernet. This PLC does
not implement the OMP handler.

0x8804 34820 The EFB could not connect to the assigned IP address check for
valid address.

0x8805+ 34821 The EFB could not send to the assigned IP address.

0x8806 34822 Fatal error: The EFB could not gain access to the OMP handler

0x8807 34823 Fatal error: The EFB could not gain access the OMP handler

0x8808 34824 The response sent back was not even Modbus/TCP compatible
(MB length < 3 byte)

0x8809 34825 The SEMI SAN (OMP on Modbus/TCP) is not supported by the
remote host.

0x880A 34826 The response sent back was not compliant to the SEMI SAN
specification (fragment < 9 byte)

0x880B 34827 The response sent back used message fragmentation which is
not supported by this PLC. This is also generated if the CIA pin is
not hooked up.

0x880C 34828 The response contained the wrong service code (0x08 was
expected)

0x880E 34830 The response sent back is too small (<= 9 bytes)

0x880F 34831 The data block to be sent is too large, since message
fragmentation is not supported by this PLC. Make sure the
’Length’ parameter is smaller than 189 and also smaller or equal
the size of the variable connected to ’Data’

0x8811 34833 The connection was interrupted or reset by the OMP server

0x8812 34834 The connection was closed for unknown reason.

0x8813 34835 The data length is set to 0
46 31002879 01 May 2002

Error codes
0x8901 35073 The EFB was aborted by the user (via the Abort pin)

0x8902 35074 The user-set timeout occurred, via Timeout input.

Status (Hex) (Dec) Description
31002879 01 May 2002 47

Error codes
Error/Status Codes for SAN_DEV EFB

Error Code Table The following table descibes the error codes for the SAN_DEV EFB.

Status (Hex) (Dec) Description

0x4000 16384 Inactive, parameter ’Disable’ has been set

0x4001 16385 Device has been published and accepted by the PLC’s internal
OMP handler

0x8001 32769 Device could not be published to the OMP handler. Check
whether the PLC supports OMP.

0x8002 32770 PLC’s internal OMP handler is filled, no more Devices (max. is 5
concurrent devices)
48 31002879 01 May 2002

Error codes
Error/Status Codes for SAN_OBJ EFB

Error Code Table The following table descibes the error codes for the SAN_OBJ EFB.

Status (Hex) (Dec) Description

0x4000 16384 Inactive, parameter ’Disable’ has been set

0x4002 16386 Object has been published and accepted by the PLC’s internal
OMP handler

0x8002 32770 Object could not be linked to the device. Make sure the ObjectID
output is connected to one of the Objectxx inputs of the device
EFB. Also SAN_DEV is disabled or OMP not installed
31002879 01 May 2002 49

Error codes
Error/Status Codes for SAN_ATTR EFB

Error Code Table The following table descibes the error codes for the SAN_ATTR EFB.

Status (Hex) (Dec) Description

0x4000 16384 Inactive, parameter ’Disable’ has been set

0x4003 16387 Attribute has been published and accepted by the PLC’s internal
OMP handler

0x4111 16667 The attribute’s link process is still ongoing. This should happen for
a maximum of one scan only.

0x8003 32771 Attribute could not be linked to the device.Make sure that the
MemID Output is connected to a Memberxx Input of an object
EFB SAN_OBJ. All higher objects must be enabled. OMP not
implemented.
50 31002879 01 May 2002

Error codes
Error/Status Codes for SAN_ASMB EFB

Error Code Table The following table descibes the error codes for the SAN_ASMB EFB.

Status (Hex) (Dec) Description

0x4000 16384 Inactive, parameter ’Disable’ has been set

0x4004 16988 Assembly object was published and accepted by the PLC’s
internal OMP handler.

0x4111 16667 Assembly object’s link process is still ongoing. This should
happen for a maximum of one scan only.

0x8004 92772 Assembly object could not be linked to the device. Make sure the
associated instances of SAN_ATTR, SAN_OBJ, and SAN__DEV
are active and linked properly. OMP not implemented.
31002879 01 May 2002 51

Error codes
Error/Status Codes for SAN_STRUCT EFB

Error Code Table The following table descibes the error codes for the SAN_STRUCT EFB.

Status (Hex) (Dec) Description

0x4000 16384 Inactive, parameter ’Disable’ has been set

0x4111 16667 The Structure’s link process is still ongoing. This should happen
for a maximum of one scan only.

0x8003 32771 Structure could not be linked to the device. Make sure that the
MemID Output is connected to a Memberxx Input of an object
EFB SAN_OBJ. All higher objects must be enabled. OMP not
implemented.

0x8006 32772 One of the MemSize data pins was empty, before the last used
pin

0x8007 32773 One of the MemSize data pins contained a zero size.

0x8008 32774 The size of the ANY input was not equal to the sum of MemSize
values
52 31002879 01 May 2002

Error codes
Error/Status Codes for SAN_SMAP EFB

Error Code Table The following table describes the error codes for the SAN_SMAP EFB.

Status (Hex) (Dec) Description

0x4000 16384 Inactive, input ’Disable’ is set

0x4001 16385 Device has been published to the internal OMP handler with all
configured entries.

0xA001 40962 The EFB could not gain access to the PLC’s internal Object
Messaging Protocol handler (OMP). Shouldn’t happen.

0xA002 40963 The EFB could not gain access to the PLC’s internal Object
Messaging Protocol handler (OMP). This PLC does not have any
internal OMP handler.

0xA003 40964 Fatal: EFB lost access to PLC’s internal OMP handler.

0xA004 40965 First bit of control register was not set on the very first scan for the
SAN_EFB, so that no device could be published to the internal
OMP handler

0xA006 Scan bit of Control register is not set, normal operation

0xB001 45057 Noentries would fit into the 4x registers starting at MapStart

0xB002 45058 MapStart contains 0, which is invalid.

0xB003 45059 Not enough 4x registers left to store the configured amount of
entries.

0xC001 49153 Not enough registers for attributes, look at Output ’EntryCt’ to see
which entry caused the Problem.

0xC004 49156 insufficient internal memory, use one more instance of
SAN_SMAP to cover the rest of the device setup table. The
output ’EntryCt’ tells which entry did not fit.

0xC008 49160 Fatal: Previous created object could not be found. (Should not
happen.)

0xC009 49161 A Length entry is 0. The output ’EntryCt’ tells which entry did not
fit.

0xC00A 49162 NumEntries member of SMAP is zero, it must be at least one.
31002879 01 May 2002 53

Error codes
TCP Error Codes for Read and Write EFBs

Error Code Table The following table describes the error codes for the SEMI_SAN TCP.

Status (Hex) (Dec) Description

0x8001 32769 Invalid Service code. Can also be generated if connected with
wrong IP address or wrong device.

0x8002 32770 Invalid service code Parameter

0x8003 32771 Invalid attribute

0x8004 32772 Attribute out of range

0x8005 32773 Not valid in this range

0x8006 32774 Fragmentation error

0x8007 32775 Fragments from multiple messages

0x80FF 33023 Unspecified error
54 31002879 01 May 2002

Error codes
MODBUS Error Codes for Read and Write EFBs

Error Code Table The following table describes the error codes for MODBUS.

Status (Hex) (Dec) Description

0x8101 33025 Illegal Function, bad Modbus function code. This code will also
be returned if the OMP server PLC is not running, or does not
support SEMI SAN. This code is also returned by an attempt to
write to a read-only attribute.

0x8102 33026 Illegal data address

0x8103 33027 Illegal data value

0x8104 33028 Illegal response length

0x8105 33029 Acknowledge, for use in programming commands

0x8106 33030 Slave device busy or OMP Server had no more paths available,
try again (Possibly too many client EFB’s are triggered
simultaneously).

0x8107 33031 Negative Acknowledge, for use in programming commands

0x8108 33032 Memory parity error

0x810A 33034 Gateway path not available

0x810B 33035 Gateway target device failed to respond
31002879 01 May 2002 55

Error codes
56 31002879 01 May 2002

Glossary
attribute An attribute is a common component for all objects. It represents a certain value or
data related to the object.

client The client sends and receives information to and from the device. The send and
receive processes are encapsulated as services.
A client communicating on a Sensor/Actuator network always issues requests to one
or more server(s) on the same network. A request consists of data that identifies the
device’s object and the object’s services. Some services require additional
parameters, as part of the request. The client should check the required response
for successful completion.

device In this application, a device is automation equipment used for measurement and
control specific to the manufacturing process of semiconductor components.

A

C

D

31002879 01 May 2002 57

Glossary
IP Address Internet Protocol Address; The unique unit or node 32-bit address assigned to a
device connected to the Ethernet Communication Network, Internet, or an intranet.

object An object provides either internal services to the device, or the inputting and
outputting of data.
There are several types of objects, such as the following:
l The objects that perform internal management functions include:

l Sensor/Actuator/Controller Object (SAC) that coordinates the interaction
among all of the Active Element Objects

l Device Manager Object (DM) that performs overall device management
l The objects that provide process oriented Attributes and Services are called

Active Element (AE) objects and include the following:
l Sensor Objects, which provide data such as Values, Report Inhibit Timer, and

Report Rate output from the process measurement
l Actuator Objects, which receive data (attribute) input from the M1E processor.

The data includes Settings, Safe State, WatchDog Timer
l Controller Objects, which include Data Types, Data Units, Setpoint, Control

Variable, and Process Variable

object
messaging
protocol (OMP)
handler

The OMP is the firmware in the M1E processor that supports SEMI SAN
communications.

object-oriented Small pieces of data and programming code encapsulated for use in a program, and
carrying properties that conform to a standard.

object-oriented
software

A software language that operates on objects versus traditional text-based
programs. Each object is a portable software module that can be linked with other
objects to form an application program.

I

O

58 31002879 01 May 2002

Glossary
protocol The rules for standardized formats for the data transfer, data packets, and network
management tools used to communicate with devices on a network. Ethernet can
support multiple protocols depending on the types of devices and the type of
information that is communicated.

Sensor/Actuator
Network (SAN)

A common device networking methodology at the user/application layer. Its main
focus is devices. The SAN is independent of any particular network protocol layer.
With the Momentum M1E processor, Schneider’s Modbus/TCP protocol layer is
used for the Sensor/Actuator Network.

server The server builds the non-standardized link between the Sensor/Actuator network
(standardized) and the actual process-connected device. This makes the actual
device appear to the network as an aggregation of objects.
A server on a Sensor/Actuator network hosts one or more devices from a
communications point of view. The server represents at least the SAN gateway to
the device which the client wants to interrogate. The server may or may not also host
the actual device. After receiving a request (for a service) from a client, it checks
whether the object and the object's service exist If so, it passes the request and
parameters to that object. This process is purely internal and may be implemented
differently with any server-device combination. Every request will generate a
response.

P

S

31002879 01 May 2002 59

Glossary
60 31002879 01 May 2002

	Table of Contents
	Safety Information
	About the Book
	SEMI SAN Function Block Library
	Client Side Elementary Function Blocks (EFBs)
	Server Side Elementary Function Blocks (EFBs)
	Appendices
	Error/Status Codes
	Glossary

