Modicon TSX Quantum

PROFIBUS-DP under Concept

User Manual

840 USE 487 00

11/00

Breite: 185 Höhe: 230

Data, Illustrations, Alterations

Data and illustrations are not binding. We reserve the right to alter products in line with our policy of continuous product development. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us using the form on one of the last pages of this publication.

Training Schneider Automation offers suitable further training on the system.

Hotline

See addresses for the Technical Support Centers at the end of this publication.

Copyright All terms used in this publication to denote Schneider Automation products are trademarks of Schneider Automation.

All other terms used in this publication to denote products may be registered trademarks and/or trademarks of the corresponding Corporations. Microsoft and MS-DOS are registered trademarks of Microsoft Corporation, Windows is a brandname of Microsoft Corporation in the USA and other countries. IBM is a registered trademark of International Business Machines Corporation.

Intel is a registered trademark of the Intel Corporation.

Copyright All rights are reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including copying, processing or by online file transfer, without permission in writing by Schneider Automation. You are not authorized to translate this document into any other language.

© 2000 Schneider Automation GmbH. All rights reserved

Contents

	Info	1
	Employed Symbols Employed Terminology and Abbreviations	2 3
	Supplemental Documentation Validity Reference	3 4
Kapitel 1	General Information 1	1
1.1	Introduction to the ISO OSI Reference Model 1	12
1.1.1	Application Note 1	12
1.1.2	Open Communication 1	12
1.1.3	The ISO OSI Reference Model 1	13
1.1.4	The Seven Layers in a Telephone Conversation (an Example)	16
1.2	General Information about PROFIBUS DP	17
1.2.1		17
1.2.2	PROFIBUS DP Layers	19
1.2.3	Standardized System Behavior	21 27
1.2.4	Data Transmission between the DP Master (Class 1) and DP Slaves	24
1.2.6	Sync and Freeze Mode (not supported by the CRP 811)	26
1.2.7	Data Transmission between the DP Master and Configuration Devices	27
1.2.8	Master and Slave Time Monitoring 2	28
1.2.9	Device Data Base (DDB/GSD) permits Open Configuration	29
1.3	CRP 811 – Master (Class 1) Functionality and Performance Data 3	30
1.3.1	Read DP Slave Diagnostic Data and Store in State RAM	30
1.3.2	Data Transmission	32
1.3.3	Control Commands	38
1.3.4	CRP 811 Failure Behavior	39
1.3.5	Diagrams of Processing and Delay Times on the Bus	10
1.3.6	I/O Performance Figures	11
Kapitel 2	PROFIBUS DP Overview 4	5
2.1	Product Overview	16
2.1.1	I/O Node Systems Overview	16
2.1.2	TSX Quantum PROFIBUS DP Components	17
2.1.3	PROFIBUS DP Slave Component Assignments 4	19
2.2	TIO and Compact Slave State RAM Assignment Tables 5	50
2.2.1	BDO 354 – Discrete Output / 32–Bit, 24 VDC 5	50
2.2.2	BDI 354 – Discrete Input / 32–Bit, 24 VDC	52
2.2.3	BDM 344 – Discrete Input and Output / 16–Bit, 24 VDC	לנ 24
2.2.4	DAP 204 – Discrete Output / 4–Bit, 24 VDC	50
2.2.5		אכ

I

2.2.6	DAP 220 – Discrete Input and Output / 8–Bit. 24 VDC	60
2.2.7	DEP 216 – Discrete Input / 16–Bit, 24 VDC	62
Kapitel 3	Hardware Installation	65
3.1	General Information Regarding PROFIBUS DP Installation	66
3.1.1	General Information	66
3.1.2	Quantum–Specific PROFIBUS DP Specifications	66
3.1.3	PROFIBUS DP Network Nodes	67
3.1.4	Configuration Limits	67
3.1.5	Segmentation Example of a PROFIBUS Installation with Repeaters	68
3.1.6	PROFIBUS DP Cable and Bus Specifications	68
3.2	Installation Guidelines	70
3.2.1	Bus Segment Installation	70
3.2.2	Indoor Cable Routing	70
3.2.3	Outdoor Cable Routing	72
3.2.4	Grounding and Shielding for Installations with Potential Equalization	77
3.2.5	Grounding and Shielding for Installations without Potential Equalization	80
3.2.6	PROFIBUS DP Repeaters	84
3.2.7	Subrack Grounding Procedures	85
3.3	Specifications	87
3.3.1	Cable Specification	87
3.3.2	Connector Specification	88
3.3.3	Cable Testing with 490 NAD 911 03/04/05 Bus Connectors	88
3.4	Schneider Automation Products for PROFIBUS Installation with Quantum	89
Kapitel 4	Software Configuration	87
4.1	PROFIBUS DP Information	88
4.1.1	General Information	88
4.1.2	Configuration Limits	88
4.1.3	Single Master Bus Line Example	89
4.1.4	Dual Master Bus Line Example	91
4.1.5	A Configuration Example with Slave Nodes	93
4.1.6	Exemplary Load and Commissioning Configuration	94
4.1.7	Software Installation of the Bus Configuration Tool	98
4.1.8	Configuration Sequence	99
4.2	Incremental Configuration	101
4.2.1	Example Guidelines	101
4.2.2	Handling Peculiarities of the Bus Configuration Tool	101
4.2.3	Bus Topology Configuration (1st Step)	102
4.2.4	Bus Assignment and I/O Mapping under Concept	123
4.2.5	Assignment of the I/O and Diagnostic Signals	129
4.2.6	Loading and Starting the PLC Station	133

Ш

Kapitel 5	CRP 811 Diagnostic Facilities	135
5.1	Scope of the Diagnostic Support	136
5.2	RS-232C Diagnostic Interface	
5.2.1	Output to Printer	
5.2.2	Menu System	
5.3	LED Diagnostics	143
5.4	CDS Task Diagnostics	
5.5	CCMP Task Diagnostics	
5.6	Back Plane Handler Task Diagnostics	
5.7	PC Card Handler Task Diagnostics	
5.8	Textboxes for Terminal Menu Handler	157
Anhang A	Module Description Appendices	
	140 CRP 811 Communication Module PROFIBUS-DP	181
	AS–BDEA 203 PROFIBUS–DP Coupler	

Info

1

Caution

Controller applications which underlie stringent safety requirements must conform with relevant regulations.

For security reasons and to ensure the retention of documented systems data, component repairs should only be carried out by the manufacturer.

Employed Symbols

Note

This symbol serves to highlight important facts.

Caution

This symbol points out frequently occurring sources of error.

Warning

This symbol alerts the user to principal sources of danger which can cause significant injury and financial damages, or other serious consequences.

Expert

This symbol will be used whenever far-reaching information is offered, exclusively intended for experts (those individuals possessing specialized training). Disregarding this information has no influence on the intelligibility of this publication, and will not reduce the usage spectrum of the product.

Тір

This symbol points out explanations of invaluable Tips & Tricks regarding product usage.

This symbol highlights application examples.

Proceed as follows:

This symbol marks the start of an instruction sequence whose execution is required to achieve a particular product function.

This symbol indicates manuals or other sources which elaborate on the addressed topic in more detail.

Employed Terminology and Abbreviations

The notation applied to numerical values conforms to international practice, as well as a SI (Système International d' Unités) sanctioned representation. This notational format requires a space between hundreds and thousands, and the use of the decimal point (for example: 12 345.67).

- ASIC Application Specific Integrated Circuit
- AWP PLC User program
 - BP Back plane
- CRP 811 PROFIBUS DP module for TSX Quantum
 - **DP** Distributed peripherals
- **GSD, DDB** Device Data Base (PROFIBUS DP)
 - **ISO** International Standardization Organization
 - MB+ Modbus Plus network under Quantum
- PLC, SPS Programmable Logic Controller
 - PUTE Programming Unit and Test Environment (PC)
 - TIO Terminal I/O

Supplemental Documentation

Title	Туре
PROFIBUS User Organization Installation Guidelines PROFIBUS Nutzerorganisation e.V. Haid– und Neu–Straße 7 D–76131 Karlsruhe, Germany	Order No.: 2.111
Modicon TSX Momentum, I/O Units, User Manual	870 USE 002 02
Modicon TSX Momentum, PROFIBUS DP Communications Adapter, User Manual	870 USE 004 02
Field Bus Specification, Part 2	EN 50170 Field Bus, Part 2
Implementation Guidelines	DIN 19429 Parts 1 and 3

Validity Reference

The version relationships between ConCept and the required software and firmware is listed in the following table:

Table 1	Version o	dependencies
---------	-----------	--------------

Required CPU Exec		ConCept >= V 2.2
PLC	Module	FW/SW
Exec	CPU x13	>= V 2.20 (Q186V220.bin)
	CPU 424	>= V 2.18 (Q486V218.bin)
	CPU 434 CPU 534	>= V 1.05 (Q58V105b.bin)
PROFIBUS configu	ration	ConCept V 2.2
Order Ident.	Module	FW/SW
140 CRP 811 00	CRP 811	>= V 4.10D
	NHP811	>= V 5.02I
TLX L FBCM (Hilscher SyCon–PB/GS)	Config. tool	>= V 2.6.0.0
	DDB files	>= V 3.00

F

Note

Any updates to newer releases must be performed for all components.

General Information

1

5

The following topics will be presented in this chapter:

- Introduction to the ISO OSI Reference Model, Section 1.1.
- General Information about PROFIBUS DP, Section 1.2.
- CRP 811 Master (Class 1) Functionality and Performance Data, Section 1.3.

1.1 Introduction to the ISO OSI Reference Model

The following topics will be presented:

- Application Note, Section 1.1.1.
- Open Communication, Section 1.1.2.
- The ISO OSI Reference Model, Section 1.1.3.
- The Seven Layers in a Telephone Conversation (an Example), Section 1.1.4.

1.1.1 Application Note

The PROFIBUS is a proven fieldbus for communication in accordance with EN 501 70 (DIN 19245), between PCs, PLCs, control and observation units, sensors, and actuators. It is:

- Open
- Vendor-independent
- Proven
- Certified
- Future–oriented

In order to aid your general understanding, here are some key communication Concepts relevant to PROFIBUS.

1.1.2 **Open Communication**

Open communication (OSI = Open System Interconnection) refers to data exchange between stations by different manufacturers via a data network using standardized protocols.

In 1984 the ISO (International Standardization Organization) passed the international standard ISO 7498 as a basis for open communication, also known as the ISO OSI reference model.

1.1.3 The ISO OSI Reference Model

Layer	Layer	Function
7 Application, Processing	7 Application	Provides useful communication services for the user.
6 Presentation	6 Presentation	Determines the meaning of data exchanged between user programs in different stations.
5 Session, Communication Control	5 Session	Provides the tools required for opening, carrying out, and ending a communication session. Communication between layers is synchronized using these tools.
4 Transport	4 Transport	Defines secure data transport, also for larger amounts of data, via several transmission paths (buses) and stations.
3 Network	3 Network	Defines the transfer details of messages via several transmission paths (buses) and stations.
2 Data Link	2 Data Link	Defines the bus access control functions, data security implementation, processing of transmission protocols and message blocks.
1 Physical	1 Physical	Chooses the transmission medium and the physical bus interface.

Hereafter follows a tabular summary of the model.

Significance of the 7 Layers

As the table indicates, the reference model is made up of 7 layers. Each layer carries out a defined range of functions that will be described below. For each layer there are also a variety of national and international standards. Protocols are carried out between communication partners in the same layer. Communication between two devices only functions when both devices have the same standards (and thus, the same protocols) implemented on all existing layers. Some of these layers can be left empty.

What is a Communications Profile

The sum of protocols used by the reference model is also referred to as the communications profile. In order to exchange data via a common data network, devices must have the same communications profile, e.g. MAP, PROFIBUS, or MMSE.

Services between the Layers

Each layer provides services for the layer above at what is called the service access point (SAP) (Figure 1, left). Each service access point has an address in the reference model. The layer currently under observation in the reference model then becomes the user in relation to the layer below it (Figure 1, right). The advantage of the layer model is that the user only needs to master the functionality of the layer it deals with directly; the other layers remain hidden.

Figure 1 Service model (left), recursive application of the service model (right)

Significance of the Layers

Only layers 1 and 2 are required if, for example, data are only to be transferred over a point-to-point connection. The higher-level layers provide more comfort for more complex configurations. A setup that goes up to layer 7 frees the user (programmer) completely from all technical aspects of the communication, and he can use his application in a familiar environment. At the sending device, the data flows from top to bottom through the layers, and at the receiving device from bottom to top. In each layer other than layer 1, the sending end adds protocol information that is then used in the corresponding layer on the receiving end (Figure 2).

Figure 2 information flow within the reference model

1.1.4 The Seven Layers in a Telephone Conversation (an Example)

Since the description of the OSI reference model is very abstract, we will try to explain what happens using a telephone conversation as our example.

The reference model demonstrated by a telephone conversation		
Layer	Function	Example
7 Application	Communications request from the application	Boss asks secretary to communicate data by telephone from Frankfurt to Tokyo
6 Presentation	Arbitrate transfer syntax	English Language
5 Session	Dialog management	If the connection is lost for whatever reason, a new connection is established; where necessary, the session is spread out over several phone conversations; synchronization
4 Transport	Segmentation, repeti- tion, acknowledgement, flow control	Adapt information flow to allow for breathing; confirm whether understood; adjust speaking speed
3 Network	Routing	Dialing protocol of the long-distance exchanges
2 Data Link	Message block composition error check Media access	Compose sentences, if necessary spell out words (redundancy to prevent errors); who may speak? Special rules e.g. for conference calls
1 Physical	Bit transmission; coupling to medium	Sound transmission; conversion from sound waves to electrical signals

1.2 General Information about PROFIBUS DP

This section presents:

- Basic Characteristics, Section 1.2.1.
- PROFIBUS DP Layers, Section 1.2.2.
- System Configurations and Device Types, Section 1.2.3.
- System Behavior, Section 1.2.4.
- Data Transmission between the DP Master (Class 1) and DP Slaves, Section 1.2.5.
- Sync und Freeze Mode (not supported by the CRP 811), Section 1.2.6.
- Data Transmission between the DP Master and Configuration Devices, Section 1.2.7.
- Master and Slave Time Monitoring, Section 1.2.8.
- Device Data Base (DDB/GSD) permits Open Configuration, Section 1.2.9.

1.2.1 Basic Characteristics

Why PROFIBUS DP?

PROFIBUS DP (Distributed Process Periphery) is a speed–optimized PROFIBUS variant using the proven qualities of PROFIBUS transmission technology and bus access protocols, but supplemented with specific functions to meet the stringent demands posed by remote process peripherals.

The success of a bus system depends on more than on high data throughput rates. It must also be easy to install and service, provide good diagnostic capabilities, and an error–free, proven transfer technology, in order to satisfy the user's requirements. PROFIBUS DP combines these characteristics in an optimized manner.

Basic Application Characteristics

- PROFIBUS DP has been designed to carry out high-speed data exchange on the sensor/actuator level.
- Here, central controllers (e.g., PLCs) communicate with their distributed input and output devices via a high-speed serial link.
- Most of the data communication with these distributed devices is done in a cyclic manner.
- The central controller (master) reads the input information from the slaves and writes the output information to the slave devices.
- This process requires the bus cycle time to be shorter than the central controller's program cycle time, which in many applications is approximately 10 ms.

Transfer Speed

The transfer of 2 bytes input and 2 bytes output data per slave for 32 PROFIBUS DP nodes requires roughly 6 ms at 1.5 Mbps, and 2 ms at 12 Mbps. This fully satisfies the system response time requirement. Figure 3 displays PROFIBUS DP's transmission time relative to the number of slaves and the utilized transfer speed.

Data Throughput

DP's high rate of data throughput can be traced to the fact that input and output data are transferred in a message cycle using layer 2's Send and Receive Data service (SRD service). In addition, minimum requirements have been defined for protocol implementation efficiency, and transmission speed can be increased up to 12 Mbps.

Figure 3 Bus cycle times for a mono-master PROFIBUS DP system

Diagnostic Functions

PROFIBUS DP's extensive diagnostic functions permit rapid error localization. Diagnostic messages are transmitted over the bus and collected at the master. These messages are divided into three levels:

- Station-related diagnostics
 These messages concern the general operational status of the whole device, e.g. undervoltage or excessive temperature.
- Module-related diagnostics
 These messages indicate that a fault is present within a specific I/O range, e.g. the 8-bit output module of a device.
- Channel-related diagnostics These messages indicate faults for an individual input/output point (channel), e.g. short circuit on output 7.

Handling and Installation (also refer to the PUO guidelines)

The RS–485 transmission technology can be simply handled. Installation of the twisted pair cable and PROFIBUS nodes must be carried out in accordance with the PUO guideline 2.111. The bus structure permits addition and removal of stations or step–by–step commissioning of the system without influencing the other stations. Later expansions have no effect on stations which are already in operation.

1.2.2 **PROFIBUS DP Layers**

PROFIBUS DP Features

- PROFIBUS DP only uses the functions in layers 1 and 2 of the OSI reference model.
- Layers 3 through 7 are not defined.
- Layer 7 (application layer) is not used in order to achieve the required speed.
- The Direct Data Link Mapper (DDLM) provides the user interface with comfortable access to layer 2.
- The user interface defines application functions for the user, and system and device behaviors for the various PROFIBUS DP device types.

Figure 4 PROFIBUS DP layers

1.2.3 System Configurations and Device Types

Main Features

- PROFIBUS DP can be used with mono
 – or multi–master systems. This provides a
 high degree of flexibility during system configuration.
- Up to 125 devices (master or slaves) can be connected to a single bus.
- Details held in the system configuration are the number of stations, assignments of station address vs. I/O addresses, I/O data format, diagnostic message format, and the bus parameters used such as bus address and transmission rate.

Note

F

The CRP 811 PROFIBUS master is only supported in the primary subrack. CRP operation in RIO (remote I/O) or DIO (distributed I/O) is thus not possible.

DP Device Classes

Every PROFIBUS DP system consists of a variety of device types. There are three types of devices, each used for different tasks:

Class 1 DP Master (DPM1)

This is a central bus controller exchanging information with remote stations (DP slaves) within a specified message cycle.Typical devices include programmable controllers (PLCs), numeric controllers (CNC), or robotic controllers (RC).

Class 2 DP Master (Third Party)

Devices of this type include programming, configuration, and diagnostic devices. They can optionally be used during commissioning to create the DP system configuration.

DP Slave

A DP slave is itself an I/O peripheral device (sensor/actuator) to collect input information and/or send output information to the attached peripherals. It is also possible to have devices which only handle either input or output information. Typical DP slave devices include discrete I/Os for 24/230 V, analog inputs, analog outputs, counters, etc.

The input and output information complement is device dependent, with a maximum of 244 bytes of input and 244 bytes of output information permitted. For reasons of expense and implementation, many of the devices available today work with a maximum user data length of 32 bytes.

System Configurations

Only one master is active on the bus in **mono-master systems** during the bus system operating phase. Figure 5 shows the system configuration of a mono-master system. The programmable controller (PLC) is the central control component. The distributed DP slaves are linked via the transfer medium to the programmable controller. This system configuration achieves the shortest bus cycle time.

Figure 5 PROFIBUS DP mono-master system

Several masters are connected to one bus in **multi-master configurations**. They either form independent subsystems, each consisting of a single DPM1 with privately assigned slaves, or additional configuration and diagnostic devices (see Figure 6). DP slave input and output images can be read by all DP masters. (The class 1 DP

master CRP 811 only allows slaves to be assigned to, and read from, a single master). Outputs may only be written by a single DP master (the DPM1 assigned during configuration).

Multi-master systems achieve an intermediate bus cycle time.

Figure 6 PROFIBUS DP multi-master system

1.2.4 Standardized System Behavior

PROFIBUS DP system behavior has been standardized in order to ensure device exchangeability. System behavior is determined primarily by the operating status of the DPM1. The DPM1 can be controlled either locally or via the bus by the configuration device. There are three main states:

Stop

No data transmission occurs between the DPM1 and the DP slaves in this state.

Clear

The DPM1 reads DP slave input information, while holding the outputs in a secure state.

Operate

The DPM1 is in the data transmission phase:

- In a cyclic data communication inputs of the DP slaves are read, and output information is then transferred to the DP slaves.
- The DPM1 sends its local status cyclically to all of its assigned slaves with a multicast command in configurable time intervals.
- The system reaction to an error during the data transmission phase of the DPM1, e.g. a DP slave failure, is determined by the "auto-clear" configuration parameter.

Caution

CRP 811 only supports "auto-clear" = false

Auto-Clear = True (not supported by the CRP 811)

If this parameter is set to "true", the DPM1 switches outputs of all assigned DP slaves to a secure state as soon as a DP slave is no longer ready for user data transmission. The DPM1 then switches to the Clear state.

Auto-Clear = False

When "false", the DPM1 remains in the Operate state even when an error occurs, allowing the user to specify the system reaction.

1.2.5 Data Transmission between the DP Master (Class 1) and DP Slaves

Data Transmission Handling

Data transmission between the DPM1 and the slaves assigned to it is executed automatically by the DPM1 in a defined, recurring order. During configuration of the bus system, the user specifies the assignments of the DP slaves to the DPM1. Which DP slaves are to be included in or excluded from cyclic user data transmission is also defined during configuration.

Data Transmission Principles and Security

Data transmission between the DPM1 and the slaves is divided into three phases: parameterization, configuration, and data transfer.

Before a DP slave is included in the actual data transfer phase, the DPM1 examines the planned configuration for correspondence with the real device configuration in the parameterization and configuration phases.

This examination requires that the device type, format, length information, and number of inputs and outputs all correspond.

These tests provide the user with reliable protection against parameterization errors. In addition to the user data transfer executed automatically by the DPM1, the user can request that new parameterization data be sent to the slaves.

Figure 7 User data transmission principles

1.2.6 **Sync and Freeze Mode** (not supported by the CRP 811)

Event–Controlled Slave Synchronization

In addition to the station–related user data transfer executed automatically by the DPM1, the DP master can simultaneously send control commands to a single slave, a group of slaves, or all slaves. These control commands are transmitted as multicast functions, and can be issued to set the sync and freeze operating modes, permitting event–controlled DP slave synchronization.

Sync Mode

DP slaves initiate **sync mode** when they receive a sync control command from their assigned DP master. In this operating mode the outputs of all addressed slaves are held at their current state. Any output data gained during subsequent user data transmissions is stored by the slaves, while leaving the states of the targeted outputs unchanged. When the next sync control command from the master is received, stored output data is finally sent to the outputs. The user can terminate the sync operating mode through the unsync control command.

Freeze Mode

Similarly, a freeze control command causes the addressed DP slaves to assume **freeze mode**. In this operating mode input states are held at their current values. Input data for the involved devices are not updated until the DP master sends the next freeze command.

The freeze operating mode is terminated through the unfreeze control command.

1.2.7 Data Transmission between the DP Master and Configuration Devices

Master - Master

In addition to master–slave functions, master–master communication functions are also available under PROFIBUS DP. These enable configuration and diagnostic devices (DPM2) to initiate the following functions as shown in the table below via bus.

Supported Master–Master Functions			
Function	Action	DPM1	DPM2
Get_Master_Diag	Reads DPM1 diagnostic data or the diagnostic summary of the DP slaves.	М	0
Download/Upload Group (Start_Seq, Download/ Upload, End_Seq)	Downloads or uploads all configuration data of a DPM1 and its associated DP slaves.	0	0
Act_Para_Brct	Activates bus parameters simultaneously for all addressed DPM1 devices.	0	0
Act_Param	Activates parameters or operating state change of the addressed DPM1 device.	0	0

M = mandatory

O = optional; not supported by the CRP 811.

Explanation of the above table

In addition to the upload/download functions, master–master functions permit dynamic enabling/disabling of user data transfer between the individual DP slaves and DPM1, whose operating state can also be changed.

1.2.8 Master and Slave Time Monitoring

General Information

For security reasons, distributed systems must be equipped with effective protective functions against transmission equipment failures or parameterization errors. PROFIBUS DP uses monitoring mechanisms for both master and slaves. The type of mechanism employed is time monitoring. The monitoring interval is specified during configuration of the DP system.

At the DP master

The DPM1 monitors slave data transmissions with the Data_Control_Timer. A separate control timer is used for each slave. The time monitor reacts if no correct user data transfer occurs within the monitoring interval. The user is informed when this happens. If the automatic error reaction (Auto_Clear = "true") has been enabled, the DPM1 leaves the Operate state, switches outputs of the assigned DP slaves to secure states, and then changes to its Clear operating state.

At the DP slave

DP slaves make use of response monitoring to detect master or transmission line failures. If no data transmission with the assigned master takes place within the monitoring interval, the slave switches its own outputs to secure states.

Access Protection for Multi-Master Operation

Slave inputs and outputs require access protection in multi–master systems to ensure that only the authorized master has direct access. For all other DP masters, the slaves offer an image of the inputs and outputs which can be read by any master, even without access rights.

1.2.9 Device Data Base (DDB/GSD) permits Open Configuration

Device Characteristics

The features of PROFIBUS DP devices are documented by the vendor in device data sheets and device data base files made available to the user. Structure, content, and coding of these device data base files (DDB/GSD) is standardized. This makes it easy to integrate a wide range of DP slaves with configuration devices from different vendors. The PROFIBUS User Organization (PUO) archives the information from all vendors and will gladly provide further information concerning the DDB/GSD files.

Device Identification

Every DP slave and DPM1 must have a type–specific ident number. The DP master requires this number in order to identify the types of devices connected without creating significant protocol overhead. The master compares the ident numbers of the devices connected with the ident numbers specified by the DPM2 in the configuration data. Transfer of user data cannot begin until the correct device types with the correct station addresses have been connected on the bus. This provides a high degree of security against configuration errors.

Note

F

Manufacturers must apply to the PUO for ident numbers for each unique DP slave and DPM1 type. The PUO handles the administration of the ident numbers as well as the device data base files. For further information, please contact your PUO regional office.

CRP 811 – Master (Class 1) Functionality and Performance Data

The topics presented in this section are:

- Read DP Slave Diagnostic Data and Store in State RAM, Section 1.3.1.
- Data Transmission, Section 1.3.2.
- Control Commands, Section 1.3.3.
- CRP 811 Failure Behavior, Section 1.3.4.
- Diagrams of Processing and Delay Times on the Bus, Section 1.3.5.
- I/O Performance Figures, Section 1.3.6.

1.3.1 Read DP Slave Diagnostic Data and Store in State RAM

Triggering Criteria

The CRP 811 reads diagnostic data automatically from the slaves. The Quantum PLC may be in either STOP or RUN mode. This procedure takes place:

- After CRP 811 power-up
- After CRP 811 hot swap
- After CRP 811 reset from the RS–232C
- In the warm-up and initialization phases of the slaves
- When the slave has new diagnostic data

1.3

State RAM Addresses

Per slave configuration of state RAM diagnostic data:

- Mapping in 3xxxx range => register inputs
- n x INT8 configurable through Concept configuration
- n = 6 : default standard diagnostic value adhering to the standard
- n = 6 : minimum number of diagnostic data
- n = 244 : max. number of diagnostic data per slave

Note

F

The maximum diagnostic data complement and specification can be be gathered from the user manual of the respective DP slave vendor.

Table 2 Specifications valid for Schneider Automation DP slaves:

DP slave type	Max. diagn. bytes	Documentation no.
CLASSIC TIOS	13	
MOMENTUM	19	Refer to documentation
DEA 203	22	

CRP 811 Diagnostic Data Storage Configuration (Buffer Resources)

Diagnostic buffers Default 100, max. 400	
Bytes per buffer	Default 32, slave specifies max. diagnostic data byte length (refer to Table 2).

1.3.2 Data Transmission

Parameter Data Transfer to DP Slave

- Parameter data are automatically sent to the slaves in the warm-up and initialization phases, i.e. not when user data is being transferred.
- Bus-wide parameter data are specified by the DP configuration tool and the DP slave device data base files.
- Vendor DP slave-specific parameter data (user parameter data) are specified through the DP configuration tool and the DP slave device data base files. Refer to the slave vendor's user manual for user parameter data number and significance.

Configuration Data Transfer to DP Slave

- Configuration data are automatically sent to the slaves in the warm-up and initialization phases, i.e. not when user data is being transferred.
- Configuration data are specified by the DP configuration tool and the DP slave device data base files.

Cyclic I/O Data Transfer from State RAM

The permitted input and output mappings are presented below.

References	Concept selection
Outputs with 0xxxx references	Boolean (see note 1)
Outputs with 4xxxx references	Boolean (see note 2)
	Int8, Int16, Int32 (see note 2)
	RAW, String
Inputs n with 1xxxx references	Boolean (see note 1)
Inputs n with 3xxxx references	Boolean
	Int8, Int16, Int32 (see note 2)
	RAW, String (see note 2)

Note

Mapping for 0x/1x references may also be made to byte boundaries.
 No restrictions apply to transitions and forces with 0.xxx / 1.xxx references.

General principles: Max. slave and I/O data complement on a single bus master Two transfer paths must to be taken into account for data transfers between the PROFIBUS slaves and the state RAM on the CPU:

The path from the bus to CRP memory (bus transfer)

• The path from the CRP to the CPU's state RAM (back plane transfer) Restrictions apply to both transfer paths, which in their sum are presented in the following table.

The CPU is chosen based upon the required number of I/O points. The following principles are to be taken into account when interpreting the following table:

Principles

1	Input and output data transfer is accomplished through separate buffers.
2	A complete bus scan (inputs + outputs) may make use of a max. of 16 buffers.
3	An I/O buffer size of 128 bytes can be assumed for the CPU x13 (1). Modular slaves have a buffer transfer size of max. 244 bytes.
4	An I/O buffer size of 128 bytes can be assumed for CPU group (2). Modular slaves have a buffer transfer size of max. 244 bytes.
5	Should e.g. module input data exceed the buffer block limit of 128 resp. 1024 bytes, the remaining module data will be conveyed in the next buffer block.
6	The mapping of input resp. output data within the buffer block for individual slave modules follows the slave addresses in ascending order.

	Max. I/O per node	Max. no. slaves + master	Max. no. slaves: (Example: For a module with max. I/O data) (3)			
Node type	Slave: –Compact or –modular with max. 1x I/O module.	Slave: -modular with more than 1x I/O module.	Master: CRP 811	Module with mi- nimum I/O data	-Compact or -modular with max. 1x I/O module.	-modular with more than 1x I/O module.
CPU x13 (1)	128 I–bytes +128 O–bytes	244 I–bytes +244 O–bytes	1024 I–bytes +1024 O–bytes	124	16 slaves with 64 I–bytes +64 O–bytes	8 slaves with 122 I–bytes +122 O–bytes
CPU 424 (2) CPU 434 (2) CPU 534 (2)	244 I–bytes +244 O–bytes	244 I–bytes +244 O–bytes	7808 I–bytes +7808 O–bytes	124	32 slaves with 244 I–bytes +244 O–bytes	32 slaves with 244 I–bytes +244 O–bytes

Compact and modular I/O byte lengths for various CPU types

(3) If one halves the byte sizes per slave for the example above, the no. of possible slaves doubles. If the In byte size in the example above (64 In bytes) is increased to 65 for this module type, then the total modules of this type which can be configured on a bus drops to 10.

Example of an I/O scan of Compact slaves with the small CPU (1) The following example should demonstrate the principal relationships.

Figure 8 How many Compact slave nodes (w/32 In and 16 Out) fit on this bus?

Input byte extent:		Output byte extent:
Slaves 1–4, 32 I each>	Buffer 1 128 bytes	Slaves 1–8, 16 O each—> Buffer 11 128 bytes
Slaves 5–8, 32 I each—>	Buffer 2 128 bytes	Slaves 9–16, 16 O each—> Buffer 12 128 bytes
Slaves 9–12, 32 I each>	Buffer 3 128 bytes	Slaves 17–24, 16 O each—> Buffer 13 128 bytes
Slaves 13–16, 32 I each—>	Buffer 4 128 bytes	Slaves 25–32, 16 O each—> Buffer 14 128 bytes
Slaves 17–20, 32 I each—>	Buffer 5 128 bytes	Slaves 33–40, 16 o each—> Buffer 15 128 bytes
Slaves 21–24, 32 I each—>	Buffer 6 128 bytes	40 sloves fit on this hus
Slaves 25–28, 32 I each—>	Buffer 7 128 bytes	each with 32 I/16 O. Buffer 16 is not uti- lized.
Slaves 29–32, 32 I each—>	Buffer 8 128 bytes	
Slaves 33–36, 32 I each—>	Buffer 9 128 bytes	
Slaves 37–40, 32 I each—>	Buffer 10 128 bytes	

Example of a scan of slaves with modular I/O for the small CPU (1) The following example should demonstrate the principal relationships.

Figure 9 How many modular I/O slave nodes (w/32 I and 16 O) fit on this bus?

Input byte extent:			Output byte extent:		
Slave 1: I/O modules 1–7, →	Buffer 1	128 bytes	Slave 1: I/O modules 1–8,		
32 I each (max. 244 bytes per mess.)	Buffer 2	96 bytes	16 O each I/O modules 9–14.		
(Buffer 2	32 bytes	16 O each		
I/O modules 8–14, 32 I each ─►	Buffer 3	128 bytes	I/O modules 1–2, → Buffer 12 32 bytes 16 O each		
(max. 244 bytes per mess.)	Buffer 4	64 bytes	I/O modules 3–10, Buffer 13 128 bytes		
	Buffer 4	64 bytes	I/O modules 11–14, Buffer 14 64 bytes		
I/O modules 1–7,►	Buffer 5	128 bytes	Slave 3: I/O modules 1–4, Buffer 14 64 bytes		
(max. 244 bytes per mess.)	Buffer 6	32 bytes	16 U each		
I/O modules 8–14,	Buffer 6	96 bytes	16 O each Buffer 15 128 bytes		
32 I each (max. 244 bytes per mess.)	Buffer 7	128 bytes	==> 3 modular slaves fit on this bus.		
Slave 3:	Buffer 8	128 bytes	with a total of 40 I/O modules (32 I/16 O). A total of 1280 I and 640 O points.		
32 I each (max. 244 bytes per mess.)	Buffer 9	96 bytes	Buffer 16 is not utilized.		
I/O modules 8–12,►	Buffer 9	32 bytes	Note: 1 slave contains 14 I/O modules (32 I/16 O).		
(max. 244 bytes per mess.)	Buffer 10	128 bytes			

Example of an I/O scan of Compact slaves with the large CPU (2) The following example should demonstrate the principal relationships.

Figure 10 How many Compact slave nodes (w/32 I and 16 O) fit on this bus?

Input byte extent:	Output byte extent:
Slaves 1–8, 32 I each	Slaves 1–16, 16 A each Buffer 11 1024 bytes
Slaves 9–16, 32 I each	Slaves 17–32, 16 A each - Buffer 12 1024 bytes
Slaves 17–24, 32 I each Buffer 3 1024 bytes	Slaves 33–48, 16 A each — Buffer 13 1024 bytes
Slaves 25–32, 32 I each Buffer 4 1024 bytes	Slaves 49–64, 16 A each - Buffer 14 1024 bytes
Slaves 33–40, 32 I each → Buffer 5 1024 bytes	Slaves 65–80, 16 A each - Buffer 15 1024 bytes
Slaves 41–48, 32 I each → Buffer 6 1024 bytes	==> 80 slaves fit on this bus,
Slaves 49–56, 32 I each → Buffer 7 1024 bytes	each with 32 I/16 O. A total of 2560 I and 1280 O points. Buffer 16 is not utilized.
Slaves 57–64, 32 I each - Buffer 8 1024 bytes	
Slaves 65–72, 32 I each → Buffer 9 1024 bytes	
Slaves 73–80, 32 I each → Buffer 10 1024 bytes	

Example of a scan of slaves with modular I/O for the large CPU (2) The following example should demonstrate the principal relationships.

Note

23 modular slaves are configured on this bus, each with 14x (32 I/16 O) modules. A total of 10240 I and 5120 O points. Buffer 16 is not utilized.

Figure 11 How many modular I/O slave nodes (w/32 I and 16 O) fit on this bus?
Slave 1: 1024 bytes Slave 1: 1024 bytes 100 modules 1-14, 16 0 each 11 12 12 12 12 12 12 12 1024 bytes 1024 bytes 1024 bytes 1024 bytes 100 modules 1-14, 16 0 each 1024 bytes 100 modules 1-14, 16 0 each 1024 bytes 100 modules 1-14, 16 0 each 1024 bytes 1024 bytes <th>Input byte extent:</th> <th></th> <th></th> <th>Output byte extent:</th> <th></th> <th></th>	Input byte extent:			Output byte extent:		
I/O modules 1–14, 32 I each Slave 2: Buffer 1 448 bytes 448 bytes 1/28 bytes 448 bytes 1/20 modules 1–14, 16 O each Slave 2: Buffer 1 448 bytes 1/28 bytes 50 bytes 1/20 modules 1–14, 16 O each Slave 2: 50 bytes 1/20 modules 1–14, 16 O each Slave 4: 50 bytes 1/20 modules 1–14, 16 O each Slave 4: 50 bytes 1/20 modules 1–14, 16 O each Slave 5: 50 bytes 1/20 modules 1–14, 16 O each Slave 6: 50 bytes 1/20 modules 1–14, 16 O each Slave 6: 50 bytes 1/20 modules 1–14, 16 O each Slave 7: 50 bytes 1/20 modules 1–14, 16 O each Slave 10: 50 bytes 1/20 modules 1–14, 16 O each Slave 10: 50 bytes 1/20 modules 1–14, 16 O each Slave 11: 50 bytes 1/20 modules 1–14, 16 O each Slave 12: 50 bytes 1/20 modules 1–14, 16 O each Slave 12: 50 bytes 1/20 modules 1–14, 16 O each Slave 11: 50 bytes 1/20 modules 1–14, 16 O each Slave 12: 50 bytes 1/20 modules 1–14, 16 O each Slave 12: <td< td=""><td>Slave 1:</td><td></td><td>1024 bytes</td><td>Slave 1:</td><td></td><td>1024 bytes</td></td<>	Slave 1:		1024 bytes	Slave 1:		1024 bytes
Slave 2. Promodules 1-14, 32 I each Buffer 1 448 bytes 1/0 modules 1-14, 16 0 each Buffer 1 ViO modules 1-4, 32 I each Slave 3: 1/0 modules 1-14, 16 0 each Buffer 1 1/24 bytes 1/0 modules 1-14, 16 0 each Buffer 1 ViO modules 1-14, 32 I each Slave 4: 320 bytes 1/0 modules 1-14, 16 0 each Slave 4: 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 16 0 each ViO modules 1-14, 32 I each Buffer 3 Buffer 3 1024 bytes 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 16 0 each ViO modules 1-14, 32 I each Buffer 3 1024 bytes 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 16 0 each ViO modules 1-14, 32 I each Buffer 4 448 bytes 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 16 0 each ViO modules 1-14, 32 I each Buffer 5 64 bytes 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 16 0 each ViO modules 1-14, 32 I each Buffer 6 3/48 bytes 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 16 0 each ViO modules 1-14, 32 I each Buffer 6 3/48 bytes 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 16 0 each </td <td>I/O modules 1–14, 32 I each</td> <td></td> <td>448 bytes</td> <td>I/O modules 1–14, 16 O each</td> <td></td> <td></td>	I/O modules 1–14, 32 I each		448 bytes	I/O modules 1–14, 16 O each		
Slave 3: I/O modules 1-4, 32 each Slave 4: I/O modules 5-14, 32 each Slave 4: I/O modules 1-14, 16 0 each Slave 5: I/O modules 1-14, 16 0 each Slave 5: I/O modules 1-14, 32 each Slave 7: I/O modules 1-14, 32 each Slave 7: I/O modules 1-14, 32 each Slave 8: I/O modules 1-14, 32 each Slave 9: I/O modules 1-14, 32 each Slave 10: I/O modules 1-14, 32 each Slave 11: I/O modules 1-14, 32 each Slave 11: I/O modules 1-14, 32 each Slave 12: I/O modules 1-14, 32 each Slave 13: I/O modules 1-14, 32 each Slave 15: I/O modules 1-14, 16 0 each Slave 15: I/O modules 1-14, 32 each Slave 15: I/O modules 1-14, 32 each Slave 15: I/O modules 1-14, 32 each Slave 15: I/O modules 1-14, 16 0 each Slave 21: I/O modu	I/O modules 1–14, 32 I each	Buffer 1	448 bytes	I/O modules 1–14, 16 O each		4 x 224
I/O modules 1-4, 32 each I/O modules 1-14, 32 each I/O modules 1-14, 16 0 each I/O modules 1-14, 16 0 each Slave 4: I/O modules 1-14, 32 each Buffer 2 448 bytes I/O modules 1-4, 16 0 each I/O modules 1-4, 16 0 each VO modules 1-14, 32 each I/O modules 1-14, 16 0 each VO modules 1-12, 32 each I/O modules 1-14, 32 each I/O modules 1-14, 16 0 each I/O modules 1-14, 16 0 each I/O modules 1-14, 16 0 each V/O modules 1-14, 32 each I/O modules 1-14, 16 0 each I/O modules 1-14, 16 0 each I/O modules 1-14, 16 0 each V/O modules 1-14, 32 each I/O modules 1-14, 16 0 each I/O modules 1-14, 16 0 each I/O modules 1-14, 16 0 each V/O modules 1-14, 32 each I/O modules 1-14, 16 0 each I/O modules 1-14, 16 0 each I/O modules 1-14, 16 0 each V/O modules 1-14, 32 each I/O modules 1-14, 16 0 each I/O modules 1-14, 16 0 each I/O modules 1-14, 16 0 each V/O modules 1-14, 32 each I/O modules 1-14, 16 0 each I/O modules 1-14, 16 0 each I/O modules 1-14, 16 0 each V/O modules 1-14, 32 each I/O modules 1-14, 16 0 each I/O modules 1-14, 16 0 each I/O modules 1-14, 16 0 each	Slave 3:		128 bytes	Slave 3:	Buffor	bytes
I/O modules 5–14, 32 I each Slave 4: I/O modules 1–14, 32 I each Slave 5: I/O modules 1–8, 32 I each Slave 6: I/O modules 1–14, 32 I each Slave 6: I/O modules 1–14, 32 I each Slave 7: I/O modules 1–14, 32 I each Slave 8: I/O modules 1–14, 32 I each Slave 9: I/O modules 1–14, 32 I each Slave 10: I/O modules 1–14, 32 I each Slave 11: I/O modules 1–14, 32 I each Slave 11: I/O modules 1–14, 32 I each Slave 11: I/O modules 1–14, 32 I each Slave 12: I/O modules 1–14, 32 I each Slave 12: I/O modules 1–14, 32 I each Slave 13: I/O modules 1–14, 32 I each Slave 11: I/O modules 1–14, 32 I each Slave 12: I/O modules 1–14, 16 O each Slave 13: I/O modules 1–14, 32 I each Slave 13: I/O modules 1–14, 32 I each Slave 14: I/O modules 1–14, 32 I each Slave 13: I/O modules 1–14, 32 I each Slave 14: I/O modules 1–14, 32 I each Slave 13: I/O modules 1–14, 32 I each Slave 14: I/O modules 1–14, 32 I each Slave 13: I/O modules 1–14, 32 I each Slave 13: I/O modules 1–14, 16 O each Slave 13: I/O modules 1–14, 16 O each Slave 13: I/O modules 1–14, 16 O each Slave 14: I/O modules 1–14, 16 O each Slave 13: I/O modules 1–14, 16 O each Slave 13: I/O modules 1–14, 16 O each Slave 13: I/O modules 1–14, 16 O each Slave 14: I/O modules 1–14, 16 O each Slave 13: I/O modules 1–14, 16 O each Slave 14: I/O modules 1–14, 16 O each Slave 12: I/O modules 1–14, 16 O each Slave 12: I/O modules 1–14, 16 O each Slave 12: I/O modules 1–14, 16 O each Slave 13: I/O modules 1–14, 16 O each Slave 14: I/O modules 1–14, 16 O each Slave 21: I/O modules 1–14, 16 O each Slave 22: I/O modules 1–14, 16 O each Slave 23: I/O modules 1–14, 16 O each Slave 21: I/O modules 1–14, 16 O each Slave 22: I/O modules 1–1	I/O modules 1–4, 32 I each			Slave 4:	11	129 bytes
320 bytes	I/O modules 5–14, 32 Leach		1024 bytes	I/O modules 1–14, 16 O each		+120 Dytes
I/O modules 1-14, 32 I each Slave 5: I/O modules 9-14, 16 0 each Slave 6: I/O modules 1-4, 16 0 each Slave 6: I/O modules 1-14, 32 I each Slave 7: I/O modules 1-14, 32 I each Slave 8: I/O modules 1-14, 32 I each Slave 8: I/O modules 1-14, 32 I each Slave 9: I/O modules 1-14, 32 I each Slave 9: I/O modules 1-14, 32 I each Slave 10: I/O modules 1-14, 32 I each Slave 10: I/O modules 1-14, 32 I each Slave 11: I/O modules 1-14, 32 I each Slave 12: I/O modules 1-14, 32 I each Slave 12: I/O modules 1-14, 32 I each Slave 12: I/O modules 1-14, 32 I each Slave 11: I/O modules 1-14, 32 I each Slave 12: I/O modules 1-14, 16 0 each Slave 13: I/O modules 1-14, 32 I each Slave 14: I/O modules 1-14, 32 I each Slave 13: I/O modules 1-14, 32 I each Slave 14: I/O modules 1-14, 16 0 each Slave 15: I/O modules 1-14, 16 0 each Slave 20: I/O modules 1-14, 16 0 each Slave 21: I/O modules 1-14, 16 0 each Slave 21: I/O module	Slave 4:		320 bytes	Slave 5: I/O modules 1–8, 16 O each		
Slave 5: 1/0 modules 1–8, 32 I each 256 bytes Slave 6: 1/0 modules 1–14, 16 O each 96 bytes I/O modules 1–14, 32 I each 1/0 modules 1–14, 32 I each 1/0 modules 1–14, 16 O each 96 bytes 1/0 modules 1–14, 16 O each Slave 7: 1/0 modules 1–14, 32 I each 1/0 modules 1–14, 16 O each Slave 8: 1/0 modules 1–14, 32 I each 1/0 modules 1–14, 16 O each 1/0 modules 1–14, 16 O each 1/0 modules 1–14, 16 O each Slave 9: 1/0 modules 1–14, 32 I each 1/0 modules 1–14, 16 O each 1/0 modules 1–14, 16 O each 1/0 modules 1–14, 16 O each Slave 10: 1/0 modules 1–14, 16 O each 1/0 modules 1–14, 16 O each 1/0 modules 1–14, 16 O each 1/0 modules 1–14, 32 I each 1/0 modules 1–14, 16 O each 1/0 modules 1–14, 16 O each 1/0 modules 1–14, 16 O each 1/0 modules 1–14, 32 I each 1/0 modules 1–14, 16 O each 1/0 modules 1–14, 16 O each 1/0 modules 1–14, 16 O each 1/0 modules 1–14, 32 I each 1/0 modules 1–14, 16 O each 1/0 modules 1–14, 16 O each 1/0 modules 1–14, 16 O each 1/0 modules 1–14, 32 I each 1/0 modules 1–14, 16 O each 1/0 modules 1–14, 16 O each 1/0 modules 1–14, 16 O each	I/O modules 1–14, 32 I each	Buffer 2	448 bytes	I/O modules 9–14. 16 O each V		40041
I/O modules 1–8, 32 I each I/O modules 1–14, 16 O each 96 bytes I/O modules 1–14, 32 I each 192 bytes I/O modules 1–14, 16 O each 96 bytes I/O modules 1–14, 32 I each 192 bytes I/O modules 1–14, 16 O each 96 bytes 122 bytes I/O modules 1–14, 32 I each 1024 bytes I/O modules 1–14, 16 O each 122 bytes 122 bytes I/O modules 1–14, 32 I each 1024 bytes I/O modules 1–14, 16 O each 1024 bytes 100 modules 1–14, 16 O each I/O modules 1–14, 32 I each 1024 bytes I/O modules 1–14, 16 O each 1024 bytes 1024 bytes I/O modules 1–2, 32 I each 1024 bytes I/O modules 1–14, 16 O each 1024 bytes 1024 bytes I/O modules 1–2, 32 I each 1024 bytes I/O modules 1–14, 16 O each 1024 bytes 1024 bytes I/O modules 1–14, 32 I each 1024 bytes 1024 bytes 100 modules 1–14, 16 O each 1024 bytes I/O modules 1–14, 32 I each 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes I/O modules 1–14, 132 I each 1024 bytes 1024 bytes 100 modules 1–14, 16 O each 1024 bytes 14 14 14 14 14	Slave 5:		256 bytes	Slave 6:		1024 bytes
I/O modules 9–14, 32 each Slave 6: 192 bytes 1024 bytes	I/O modules 1–8, 32 I each		1024 bytes	I/O modules 1–14, 16 O each Slave 7:		96 bytes
Slave 6: 1/0 modules 1–14, 32 I each Slave 7: 1/0 modules 1–14, 32 I each V/0 modules 1–12, 32 I each 384 bytes V/0 modules 1–14, 32 I each 1024 bytes Slave 8: 1/0 modules 1–14, 32 I each V/0 modules 1–14, 32 I each 1024 bytes Slave 9: 1/0 modules 1–14, 16 O each V/0 modules 1–14, 32 I each 1024 bytes Slave 10: 1/0 modules 1–14, 16 O each V/0 modules 1–14, 32 I each 1024 bytes Slave 11: 1/0 modules 1–14, 16 O each V/0 modules 1–14, 32 I each 1024 bytes Slave 12: 1/0 modules 1–14, 16 O each V/0 modules 1–14, 32 I each 1024 bytes Slave 12: 1/0 modules 1–14, 16 O each V/0 modules 1–14, 32 I each 1024 bytes Slave 13: 1/0 modules 1–14, 16 O each V/0 modules 1–14, 32 I each 1024 bytes Slave 12: 1/0 modules 1–14, 16 O each V/0 modules 1–14, 32 I each 1024 bytes Slave 13: 1/0 modules 1–14, 16 O each V/0 modules 1–14, 32 I each 1024 bytes V/0 modules 1–14, 32 I each 1024 bytes Slave 1	I/O modules 9–14, 32 I each			I/O modules 1–14, 16 O each	Duffer	+ 4x 224
1/0 modules 1-14, 32 I each Buffer 3 448 bytes 1/0 modules 1-14, 16 0 each + 32 bytes 1/0 modules 1-14, 32 I each 1024 bytes 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 16 0 each Slave 9: 1/0 modules 1-14, 32 I each 64 bytes 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 16 0 each Slave 10: 1/0 modules 1-14, 32 I each 8uffer 4 64 bytes 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 32 I each 1024 bytes 1024 bytes 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 32 I each 1024 bytes 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 32 I each 1024 bytes 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 32 I each 1024 bytes 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 32 I each 1024 bytes 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 32 I each 1024 bytes 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 16 0 each 1/0 modules 1-14, 32 I each <td>Slave 6:</td> <td></td> <td>192 Dytes</td> <td>Slave 8:</td> <td>12</td> <td>bytes</td>	Slave 6:		192 Dytes	Slave 8:	12	bytes
Journel 1. 324 bytes J/O modules 1–14, 16 O each 32 bytes J/O modules 1–14, 32 I each 1024 bytes J/O modules 1–2, 16 O each 1024 bytes Slave 8: J/O modules 1–14, 32 I each 64 bytes J/O modules 1–14, 16 O each 1024 bytes Slave 10: J/O modules 1–14, 32 I each 448 bytes 1024 bytes 1024 bytes 192 bytes J/O modules 1–14, 32 I each Slave 11: J/O modules 1–14, 16 O each Slave 12: 1024 bytes 192 bytes J/O modules 1–14, 32 I each Buffer 5 384 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes J/O modules 1–14, 16 O each J/O modules 1–14, 16 O each J/O modules 1–14, 16 O each 1024 bytes 1024 bytes J/O modules 1–14, 32 I each Buffer 6 256 bytes J/O modules 1–14, 16 O each 1024 bytes 1024 bytes 1024 bytes J/O modules 1–14, 32 I each Buffer 7 128 bytes J/O modules 1–14, 16 O each 14 14 448 bytes J/O modules 1–14, 32 I each Buffer 7 128 bytes J/O modules 1–14, 16 O each 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes	I/O modules 1–14, 32 I each	Buffer 3	446 Dytes	Slave 9:		+
I/O modules 13–14, 32 each 1024 bytes Slave 10: I/O modules 1–14, 32 each 1024 bytes 1024 bytes Slave 8: I/O modules 1–14, 32 each Buffer 4 64 bytes 448 bytes 1024 bytes 1024 bytes 1024 bytes Slave 10: I/O modules 1–14, 32 each Buffer 4 64 bytes 448 bytes 1024 bytes 1024 bytes 1024 bytes I/O modules 1–14, 32 each Buffer 5 84 bytes 1024 bytes 1024 bytes 1024 bytes I/O modules 1–14, 32 each Buffer 5 84 bytes 1024 bytes 1024 bytes 1024 bytes I/O modules 1–14, 32 each Buffer 5 84 bytes 1024 bytes 1024 bytes 1024 bytes I/O modules 7–14, 32 each Buffer 6 1024 bytes 1024 bytes 1000 modules 1–14, 16 O each 1024 bytes I/O modules 7–14, 32 each Buffer 6 256 bytes 1024 bytes 10 modules 1–14, 16 O each 14 42 bytes I/O modules 1–14, 32 each Buffer 7 1024 bytes 10 modules 1–14, 16 O each 14 42 bytes 14 42 bytes 44 bytes 10 modules 1–14, 16 O each 14 bytes 42 bytes 42 bytes 44 bytes 10 bytes 44 bytes	I/O modules 1–12. 32 l each		384 bytes	I/O modules 1–14, 16 O each		32 bytes
1/0 modules 13–14, 32 Leach 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/0 modules 1–14, 32 Leach 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/0 modules 1–14, 32 Leach 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/0 modules 1–14, 32 Leach 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/0 modules 1–14, 32 Leach 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/0 modules 1–14, 32 Leach 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/0 modules 1–14, 32 Leach 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/0 modules 1–14, 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/0 modules 1–14, 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/0 modules 1–14, 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/0 modules 1–14, 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/0 modules 1–14, 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/2 Hotes 1/0 modules 1–14, 1/2 Hotes 1/2 Hotes 1/2 Hotes			1024 bytes	Slave 10: I/O modules 1–2 16 O each		
Slave 3: I/O modules 1–14, 32 I each I/O modules 1–14, 32 I each Buffer 4 I/O modules 1–14, 32 I each Buffer 4 I/O modules 1–14, 32 I each Buffer 4 I/O modules 1–2, 32 I each Buffer 4 I/O modules 1–14, 32 I each IO24 bytes I/O modules 1–14, 32 I each Buffer 5 Slave 12: I/O modules 1–14, 32 I each I/O modules 7–14, 32 I each Buffer 6 Slave 13: I/O modules 1–14, 32 I each I/O modules 1–14, 32 I each Buffer 6 Slave 13: I/O modules 1–14, 16 O each I/O modules 1–14, 32 I each Buffer 6 Slave 13: I/O modules 1–14, 16 O each I/O modules 1–14, 32 I each Buffer 6 Slave 13: I/O modules 1–14, 16 O each I/O modules 1–14, 32 I each Buffer 7 I/O modules 1–14, 32 I each <td>I/O modules 13–14, 32 I each</td> <td></td> <td>64 bytes</td> <td>I/O modules 3–14, 16 O each</td> <td></td> <td>1024 bytes</td>	I/O modules 13–14, 32 I each		64 bytes	I/O modules 3–14, 16 O each		1024 bytes
Slave 9: I/O modules 1–14, 16 O each + 3x 224 I/O modules 1–14, 32 I each Buffer 4 448 bytes I/O modules 1–14, 16 O each Slave 10: I/O modules 1–14, 16 O each Slave 12: I/O modules 1–14, 16 O each I/O modules 1–14, 32 I each Buffer 5 Buffer 5 IO modules 1–14, 16 O each Slave 11: I/O modules 1–14, 32 I each Buffer 5 IO modules 1–14, 16 O each I/O modules 1–14, 32 I each Buffer 6 IO modules 1–14, 16 O each IO modules 1–14, 16 O each I/O modules 7–14, 32 I each Buffer 6 IO modules 1–14, 16 O each IO modules 1–14, 16 O each I/O modules 1–14, 32 I each Buffer 6 IO modules 1–14, 16 O each IO modules 1–14, 16 O each I/O modules 1–14, 32 I each Buffer 6 IO modules 1–14, 16 O each IO modules 1–14, 16 O each I/O modules 1–14, 32 I each Buffer 7 IO modules 1–14, 16 O each I/O modules 1–14, 16 O each IO modules 1–14, 16 O each I/O modules 1–14, 32 I each Buffer 7 IO modules 1–14, 16 O each I/O modules 1–14, 16 O each IO modules 1–14, 16 O each I/O modules 1–14, 32 I each Buffer 7 IO modules 1–14, 16 O each IO modules 1–14, 16 O each IO 24 bytes <tr< td=""><td>VO modules 1–14, 32 Leach</td><td></td><td>448 bytes</td><td>Slave 11:</td><td></td><td>192 bytes</td></tr<>	VO modules 1–14, 32 Leach		448 bytes	Slave 11:		192 bytes
I/O modules 1–14, 32 I each 34 bytes I/O modules 1–14, 16 O each 33 224 Slave 10: I/O modules 1–2, 32 I each I/O modules 1–14, 16 O each Slave 13: I/O modules 1–14, 16 O each I/O modul	Slave 9:	Buffer 4	448 bytes	I/O modules 1–14, 16 O each Slave 12:		+
Slave 10: 10:	I/O modules 1–14, 32 I each		64 bytes	I/O modules 1–14, 16 O each	Buffer	3X 224 bytes
1/O modules 1-2, 32 Feach 1024 bytes 1024 bytes 160 bytes 1/O modules 1-14, 16 O each 384 bytes 1/O modules 1-10, 16 O each 1024 bytes 1/O modules 1-14, 32 I each 8uffer 5 384 bytes 1/O modules 1-14, 16 O each 1024 bytes 1/O modules 1-14, 32 I each 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1/O modules 1-14, 32 I each 1024 bytes 1024 bytes 1/O modules 1-14, 16 O each 14 44 bytes 1/O modules 1-14, 32 I each 8uffer 6 256 bytes 1/O modules 1-14, 16 O each 14 44 bytes 1/O modules 1-14, 32 I each 1024 bytes 1/O modules 1-14, 16 O each 14 14 44 bytes 1/O modules 1-14, 32 I each 1024 bytes 1024 bytes 1/O modules 1-14, 16 O each 14 44 bytes 1/O modules 1-14, 32 I each 1024 bytes 1024 bytes 1024 bytes 160 bytes 1024 bytes 1/O modules 1-14, 16 O each 1/O modules 1-14, 16 O each 1024 bytes 1024 bytes 160 bytes 160 bytes 1/O modules 1-14, 32 I each 1024 bytes 128 bytes 1/O modules 1-14, 16 O each 160 bytes 160 b	Slave 10:			Slave 13:	13	+
I/O modules 3–14, 32 I each Slave 11: 384 bytes I/O modules 1–10, 16 O each I/O modules 1–14, 16 O each Slave 12: 1024 bytes 1024 bytes I/O modules 1–14, 32 I each Slave 13: Buffer 5 1024 bytes 1024 bytes 1024 bytes I/O modules 1–14, 32 I each Slave 13: Buffer 6 1024 bytes 1024 bytes 1024 bytes I/O modules 1–14, 32 I each Slave 14: Buffer 6 1024 bytes 1024 bytes 14 14 I/O modules 1–14, 32 I each Slave 14: Buffer 7 1256 bytes 1/O modules 1–14, 16 O each Slave 19: 1/O modules 1–14, 16 O each 14 1024 bytes I/O modules 11–14, 32 I each Slave 15: Buffer 7 128 bytes 1/O modules 1–14, 16 O each 1024 bytes 160 bytes I/O modules 11–14, 32 I each Slave 16: Buffer 7 128 bytes 1/O modules 1–14, 16 O each 160 bytes 160 bytes I/O modules 1–14, 32 I each Buffer 7 128 bytes 1/O modules 1–14, 16 O each 15 160 bytes 160 byt	1/O modules 1–2, 32 Teach		1024 bytes	Slave 14:		160 bytes
Slave 11: I/O modules 1–14, 32 I each Buffer 5 Job bytes I/O modules 11–14, 16 O each 1024 bytes Slave 12: I/O modules 1–6, 32 I each 192 bytes I/O modules 1–14, 16 O each Slave 15: I/O modules 1–14, 16 O each 64 bytes I/O modules 7–14, 32 I each 1024 bytes 1024 bytes I/O modules 1–14, 16 O each Slave 16: I/O modules 1–14, 16 O each 104 bytes I/O modules 1–14, 32 I each Buffer 6 256 bytes I/O modules 1–14, 16 O each Slave 18: I/O modules 1–14, 16 O each I/O I/O modules 1–14, 32 I each Buffer 7 1024 bytes 1024 bytes I/O modules 1–14, 16 O each I/O I/O I/O modules 1–14, 32 I each Buffer 7 128 bytes I/O modules 1–14, 16 O each I/O modules 1–14, 16 O each I/O I/O modules 1–14, 16 O each I/O bytes I/O bytes I/O bytes I/O byte	I/O modules 3–14, 32 I each		384 bytes	I/O modules 1–10, 16 O each		
I/O modules 1–14, 32 reach Sure 13: 192 bytes I/O modules 1–14, 16 O each 64 bytes I/O modules 1–6, 32 l each 1024 bytes I/O modules 1–14, 16 O each Buffer 6 I/O modules 1–14, 16 O each I/O modules 1–14, 16 O each I/A to tytes I/O modules 1–14, 16 O each I/O bytes I/O modules 1–14, 16 O each I/O bytes I/O modules 1–14, 16 O each I/O bytes I/O bytes I/O bytes I/O bytes I/O bytes I/O bytes I/O bytes <td>Slave 11:</td> <td>Buffer 5</td> <td>148 bytes</td> <td>I/O modules 11–14, 16 O each</td> <td></td> <td>1024 bytes</td>	Slave 11:	Buffer 5	148 bytes	I/O modules 11–14, 16 O each		1024 bytes
I/O modules 1–6, 32 I each 192 bytes Slave 16: I/O modules 1–14, 16 O each + 4x 224 bytes I/O modules 7–14, 32 I each 1024 bytes Slave 17: I/O modules 1–14, 16 O each Buffer 6 1024 bytes I/O modules 1–14, 16 O each Slave 17: I/O modules 1–14, 16 O each 14 + 4x 224 bytes I/O modules 1–14, 32 I each Buffer 6 1024 bytes I/O modules 1–14, 16 O each 14 14 + I/O modules 1–14, 32 I each 1024 bytes 1024 bytes I/O modules 5–14 16 O each 1024 bytes I/O modules 1–14, 32 I each 1024 bytes 1024 bytes I/O modules 1–14, 16 O each 1024 bytes I/O modules 1–14, 32 I each Buffer 7 128 bytes I/O modules 1–14, 16 O each 160 bytes I/O modules 1–14, 32 I each Buffer 7 128 bytes I/O modules 1–14, 16 O each 160 bytes I/O modules 1–14, 32 I each I/O modules 1–14, 16 O each Slave 22: I/O modules 1–14, 16 O each 15 160 bytes I/O modules 1–14, 16 O each I/O modules 1–14, 16 O each 15 14 192 bytes	I/O modules 1–14, 32 I each	buller 5	440 Dytes	I/O modules 1–14, 16 O each		64 bytes
I/O modules 7–14, 32 I each 1024 bytes Slave 17: I/O modules 1–14, 16 O each Buffer 4x 224 bytes I/O modules 1–14, 32 I each Buffer 6 256 bytes I/O modules 1–14, 16 O each Slave 17: I/O modules 1–14, 16 O each 14 bytes I/O modules 1–14, 32 I each Buffer 6 256 bytes I/O modules 1–14, 16 O each 14 14 bytes I/O modules 1–14, 32 I each 1024 bytes 1024 bytes I/O modules 5–14 16 O each 14 14 14 14 I/O modules 11–14, 32 I each 1024 bytes 1/O modules 5–14 16 O each 160 bytes 1024 bytes I/O modules 1–14, 32 I each Buffer 7 128 bytes 1/O modules 1–14, 16 O each 160 bytes I/O modules 1–14, 32 I each Buffer 7 128 bytes I/O modules 1–14, 16 O each 160 bytes I/O modules 1–14, 32 I each Buffer 7 128 bytes I/O modules 1–14, 16 O each 15 14 14 14 160 bytes I/O modules 1–14, 16 O each I/O modules 1–14, 16 O each I/O modules 1–14, 16 O each 160 bytes 14 14 160 bytes 14 160 bytes 16 16 16	I/O modules 1–6, 32 I each		192 bytes	Slave 16:		+
I/O modules 7–14, 32 I each Slave 13: I/O modules 1–14, 32 I each Slave 14: I/O modules 1–10, 32 I each Buffer 6 256 bytes 448 bytes 320 bytes I/O modules 1–14, 16 O each Slave 19: I/O modules 1–4, 16 O each Slave 19: I/O modules 5–14 16 O each Slave 20: I/O modules 1–14, 32 I each Slave 15: I/O modules 1–14, 32 I each Slave 16: I/O modules 1–14, 32 I each 1024 bytes 1024 bytes 1024 bytes I/O modules 1–14, 32 I each Slave 16: I/O modules 1–14, 32 I each Buffer 7 1024 bytes 1024 bytes 1000 modules 1–14, 16 O each Slave 20: I/O modules 1–14, 16 O each Slave 21: I/O modules 1–14, 16 O each Slave 22: I/O modules 1–14, 16 O each Slave 23: 1024 bytes 160 bytes + 3x 224 bytes I/O modules 1–14, 16 O each Slave 23: 160 each Slave 23: 160 bytes + 192 bytes			1024 bytes	Slave 17:	Buffer	4X 224 bytes
Slave 13: I/O modules 1–14, 32 I each Buffer 6 448 bytes 320 bytes I/O modules 1–14, 16 O each 64 bytes Slave 14: I/O modules 1–10, 32 I each 1024 bytes I/O modules 1–4, 16 O each 1024 bytes 100 modules 1–4, 16 O each 1024 bytes I/O modules 1–14, 32 I each 1024 bytes 128 bytes I/O modules 1–14, 16 O each 1024 bytes 160 bytes I/O modules 1–14, 32 I each Buffer 7 128 bytes I/O modules 1–14, 16 O each 160 bytes 160 bytes I/O modules 1–14, 32 I each Buffer 7 128 bytes I/O modules 1–14, 16 O each 15 160 bytes I/O modules 1–14, 32 I each Buffer 7 128 bytes I/O modules 1–14, 16 O each 15 148 bytes I/O modules 1–14, 16 O each Slave 23: I/O modules 1–14, 16 O each 15 140 bytes I/O modules 1–14, 16 O each Slave 23: I/O modules 1–14, 16 O each 15 192 bytes	I/O modules 7–14, 32 I each		256 bytes	I/O modules 1–14, 16 O each	14	+
I/O modules 1 -14, 32 I each I/O modules 1-14, 32 I each I/O modules 1-14, 32 I each I/O modules 1-14, 32 I each I/O modules 1-14, 32 I each I/O modules 1-14, 16 O each I/O modules 1-14, 32 I each I/O modules 1-14, 16 O each I/O modules 1-14, 32 I each I/O modules 1-14, 16 O each I/O modules 1-14, 32 I each I/O modules 1-14, 16 O each I/O modules 1-14, 32 I each I/O modules 1-14, 16 O each I/O modules 1-14, 16 O each I/O modules 1-14, 16 O each I/O modules 1-14, 16 O each I/O modules 1-14, 16 O each I/O modules 1-14, 16 O each I/O modules 1-14, 16 O each I/O modules 1-14, 16 O each I/O modules 1-14, 16 O each I/O modules 1-14, 16 O each I/O modules 1-14, 16 O each I/O modules 1-14, 16 O each I/O modules 1-14, 16 O each I/O modules 1-14, 16 O each I/O modules 1-14, 16 O each I/O modules 1-14, 16 O each I/O modules 1-14, 16 O each I/O modules 1-14, 16 O each I/O modules 1-12, 16 O each	Slave 13: I/O modules 1–14, 32 Leach	Buffer 6	448 bytes	Slave 18: I/O modules 1–14, 16 O each		64 bytes
I/O modules 1–10, 32 I each I/O modules 1–4, 16 O each I/O modules 1–4, 16 O each IO24 bytes I/O modules 11–14, 32 I each IO24 bytes I/O modules 5–14 16 O each IO24 bytes I/O modules 1–14, 32 I each IO24 bytes I/O modules 1–14, 16 O each IO24 bytes I/O modules 1–14, 32 I each IO24 bytes I/O modules 1–14, 16 O each IO24 bytes I/O modules 1–14, 32 I each IO24 bytes I/O modules 1–14, 16 O each IO24 bytes I/O modules 1–14, 16 O each IO modules 1–14, 16 O each IO modules 1–14, 16 O each IO modules 1–14, 16 O each I/O modules 1–14, 32 I each IO modules 1–14, 16 O each IO modules 1–14, 16 O each IO modules 1–14, 16 O each I/O modules 1–14, 16 O each I/O modules 1–14, 16 O each IO modules 1–14, 16 O each IO modules 1–14, 16 O each I/O modules 1–14, 16 O each I/O modules 1–14, 16 O each IO modules 1–14, 16 O each IO modules 1–14, 16 O each	Slave 14:	[320 bytes	Slave 19:		
I/O modules 11–14, 32 I each 1024 bytes I/O modules 5–14 16 O each 16 O each Slave 15: 128 bytes I/O modules 1–14, 16 O each I/O modules 1–14, 16 O each 160 bytes I/O modules 1–14, 32 I each 128 bytes I/O modules 1–14, 16 O each I/O modules 1–14, 16 O each 160 bytes I/O modules 1–14, 32 I each 128 bytes I/O modules 1–14, 16 O each I/O modules 1–14, 16 O each I/O bytes I/O modules 1–14, 32 I each 10: 7 further slaves I/O modules 1–14, 16 O each I/O each I/O each	I/O modules 1–10, 32 I each		020 09:00	I/O modules 1–4, 16 O each		1024 bytes
I/O modules 11–14, 32 I each Slave 15: 128 bytes I/O modules 1–14, 16 O each 100 bytes + 3x 224 I/O modules 1–14, 32 I each Buffer 7 128 bytes I/O modules 1–14, 16 O each Slave 21: I/O modules 1–14, 16 O each + 3x 224 bytes + 3x 224 bytes + 128 bytes 100 bytes + 10			1024 bytes	I/O modules 5–14 16 O each Slave 20:		160 bytes
I/O modules 1–14, 32 I each Buffer 7 448 bytes I/O modules 1–14, 16 O each Buffer 3x 224 bytes I/O modules 1–14, 32 I each 448 bytes I/O modules 1–14, 16 O each Buffer 3x 224 bytes I/O modules 1–14, 32 I each I/O modules 1–14, 16 O each Buffer 15 192 bytes through buffer 10: 7 further slaves I/O modules 1–12, 16 O each 192 bytes	I/O modules 11–14, 32 I each		128 bytes	I/O modules 1–14, 16 O each		+
Slave 16: I/O modules 1–14, 32 I each through buffer 10: 7 further slaves I/O modules 1–14, 16 O each Slave 22: I/O modules 1–14, 16 O each Slave 23: I/O modules 1–12, 16 O each	I/O modules 1–14, 32 I each	Buffer 7	448 bytes	Slave 21: I/O modules 1–14, 16 O each	Buffer	3x 224
I/O modules 1–14, 32 I each through buffer 10: 7 further slaves I/O modules 1–14, 16 O each I/O modules 1–12, 16 O each I/O modules 1–14, 16 O each	Slave 16:		448 bytes	Slave 22:	15	bytes
through buffer 10: 7 further slaves I/O modules 1–12, 16 O each	I/O modules 1–14, 32 I each		· ·	I/O modules 1–14, 16 O each		192 bytes
	, through buffer	10: 7 furthe	er slaves.	I/O modules 1–12, 16 O each		

1.3.3 Control Commands

The following control commands for DP slaves are **not** supported

Sync	Send outputs and hold
Unsync	Enable outputs
Freeze	Read inputs and hold
Unfreeze	Enable inputs
Clear	All outputs are set to "0"

Auto-Clear

This command specifies output behavior upon failure of a DP slave.

Auto–Clear = TRUE Is not supported	If failure occurs at one DP slave, the outputs of all other slaves are set to "0".
Auto–Clear = FALSE Is supported	If failure occurs at one DP slave, the outputs of all other slaves retain their settings.

1.3.4 CRP 811 Failure Behavior

The effect of the various failures upon state RAM and the lifesign register can be gathered from the following table.

					3xxxxx lifesign register		
Sources of failure	PROF DP sla outpu	TBUS ave ts	Quantum 1xxxxx sta- te RAM in- puts	Bit 14	Bit 15	Bit 16	
All configured DP slaves are error- less	Variab	le	Variable	Flas- hing	Flas- hing	Flas- hing	
A DP slave is no longer on the bus	Zero	1)	Zero	Flas- hing	0 or 1	Flas- hing	
A DP slave is powered-down	х		Zero	Flas- hing	0 or 1	Flas- hing	
A DP slave has failed	Zero	1)	Zero	Flas- hing	0 or 1	Flas- hing	
All DP slaves are powered-down	Х		Zero	0 or 1	0 or 1	Flas- hing	
DP slaves are no longer on the CRP 811 bus	Zero	1)	Zero	0 or 1	0 or 1	Flas- hing	
CRP 811 has lost connection to the back plane	Zero	1)	Remain set	0 or 1	0 or 1	0 or 1	
CRP 811 firmware update activated over RS–232C	Zero		Zero	0 or 1	0 or 1	0 or 1	
CRP 811 in reset via RS–232C after password entry	Zero	1)	Remain set	0 or 1	0 or 1	0 or 1	
Quantum went from PLC start to PLC stop	Zero		Remain set	0 or 1	0 or 1	0 or 1	
Quantum is powered-down	Zero	1)	Х	Х	Х	Х	
Quantum CPU has lost connection to the back plane	Zero	1)	X	х	х	X	
Quantum power supply CPS di- sconnected from back plane	Zero	1)	x	х	х	Х	

Table 3	Effect of	failure upon	the lifesign	register =>	3xxxxx register
---------	-----------	--------------	--------------	-------------	-----------------

1) Actioned by the DP slave. Values marked by X become undefined if "Watchdog Control" was configured.

1.3.5 Diagrams of Processing and Delay Times on the Bus

In the sequence of 3 diagrams presented in the following illustration, the last focuses on components influencing the I/O response time over PROFIBUS DP.

Depending upon the I/O family type and an assumed program scan time, a typical I/O response time between 5.6 and 11 ms results.

Figure 12 I/O response time overview (worst case)

1.3.6 I/O Performance Figures

Quantum PLC I/O response times for PROFIBUS DP **under Concept** with the Momentum, TIO, and Compact system families.

Momentum Slave Response Times

Typical I/O response times based upon connected I/O nodes can be gathered from the following table.

Table	4	MOMENTUM	performance	figures
-------	---	----------	-------------	---------

DP slave complement	Total inputs	Words output	PLC cycle time	Typical I/O re- sponse time
-1)	-	-	0.54 ms	-
1	16	4	1.7 ms	8.4 ms
2	32	8	1.8 ms	8.5 ms
3	48	12	2.0 ms	8.6 ms
4	64	16	2.2 ms	9.1 ms
5	80	20	2.3 ms	10 ms
6	96	24	2.5 ms	10.5 ms
7	112	28	2.7 ms	10.6 ms
8	128	32	2.8 ms	11 ms
1) No CRP 811 installed				

Boundary Conditions

The assumed constraints can be gathered from the figure.

Figure 13 MOMENTUM configuration

Note

Bus addresses are meaningless (sequence, gaps)

Classic TIO Response Times

Typical I/O response times based upon connected I/O nodes can be gathered from the following table.

Table 5	TIO 170 BDI	/ 344 00	performance	figures
---------	-------------	----------	-------------	---------

TIO DP slave complement	Total inputs	Words output	PLC cycle time	Typical I/O re- sponse time
-1)	-	-	0.54 ms	-
1	1	1	1.56 ms	5.6 ms
2	2	2	1.57 ms	5.7 ms
4	4	4	1.60 ms	5.8 ms
8	8	8	1.60 ms	6.8 ms
16	16	16	1.70 ms	8.0 ms
31	31	31	1.90 ms	11.0 ms
1) No CRP 811	installed			

Boundary Conditions

The assumed constraints can be gathered from the figure.

Figure 14 TIO configuration

Compact Slave Response Times

Typical I/O response times based upon connected I/O nodes can be gathered from the following table.

DP slave complement	Total inputs	Words output	PLC cycle time	Typical I/O re- sponse time
-1)			0.58 ms	-
1	18		1.71 ms	6.0 ms
2	18	18	1.76 ms	6.6 ms
3	36	18	1.89 ms	7.5 ms
4	36	36	1.97 ms	7.7 ms
5	54	36	2.08 ms	7.9 ms
6	54	54	2.16 ms	8.3 ms
7	72	54	2.27 ms	8.7 ms
8	72	72	2.36 ms	9.8 ms
1) No CRP 811	installed	·	•	•

Table 6 DEA 203 modular slave performance figures

Boundary Conditions

The assumed constraints can be gathered from the figure.

Figure 15 DEA 203 configuration

F

Note

Bus addresses are meaningless (sequence, gaps)

PROFIBUS DP Overview

39

The topics presented in this chapter are:

- Product Overview, Section 2.1
- TIO and Compact Slave State RAM Assignment Tables, Section 2.2

2.1 **Product Overview**

The topics presented in this section are:

- I/O Node Systems Overview, Section 2.1.1
- TSX Quantum PROFIBUS DP Components, Section 2.1.2.
- PROFIBUS DP Slave Component Assignments, Section 2.1.3.

2.1.1 I/O Node Systems Overview

This overview demonstrates the range of PROFIBUS DP capable I/O devices.

Supported I/O systems under Quantum with CONCEPT:

- Compact with the DEA 203 I/O coupler card for I/O module connection
- TIO with it's I/O modules
- Momentum with the DNT 110 00 I/O communications adapter for I/O module connection

2.1.2 TSX Quantum PROFIBUS DP Components

A tabular summary of the basic DP system component groupings follows:

- CPUs
- PROFIBUS DP master module and configuration limits
- Accessories and spares

And now the 3 individual tables:

Table 7 CPUs

Features	Туре
CPU 186 —> 8 k words logic memory	140 CPU 113 02
CPU 186 —> 16 k words logic memory	140 CPU 113 03
CPU 186 —> 32/48 k words logic memory	140 CPU 213 04
CPU 486 —> 64 k words logic memory	140 CPU 424 02
CPU 586 —> 64 k words logic memory	140 CPU 434 12
CPU 586 —> 64 k words logic memory	140 CPU 534 14
Quantum CPU "Hot Standby" with PROFIBUS	No

Table 8 Master module and configuration limits

Item	Type/limit
PROFIBUS DP option module	140 CRP 811 00
PROFIBUS DP configuration package (Windows 95/98/NT)	TLX L FBCM (Hilscher SyCon–PB/GS)
No. CRP 811 with the 140 CPU 113 02	max. 2
No. CRP 811 with the 140 CPU 113 03	Max. 2
No. CRP 811 with the 140 CPU 213 04	Max. 2
No. CRP 811 with the 140 CPU 424 02	Max. 6
No. CRP 811 with the 140 CPU 434 12	Max. 6
No. CRP 811 with the 140 CPU 534 14	Max. 6
CRP 811 back plane slot	(Freely selectable)
CRP 811 is back plane "hot swapable"	Yes

Table 9Accessories and spares

Item	Туре
PROFIBUS connector	140 NAD 911 03 /04 /05
PROFIBUS cable	KAB PROFIB
	Belden 3079A (up to 12 Mbps)
RS–232C cable for CRP 811	YDL52 / 990 NAA 263 x0
Capacitive by-pass clamp	GND001
CRP 811 bus tap	490 NAE 911 00
PCMCIA card for CRP 811	467 NHP 811 00

2.1.3 **PROFIBUS DP Slave Component Assignments**

The slave components are based upon the 3 system families TIO, Momentum, and Compact (A120).

Slave Family Overview

A global overview of the individual elements sorted in master, slave, and network components is presented below.

Master under CONCEPT 2.2	Slaves			Network compo- nents
Hard-/software	ΤΙΟ Ι/Ο	DEA 203 distri- buted I/O	Momentum I/O	
DP master h/w up to 12 Mbps:	Compact DP slaves up to 12 Mbps:	Modular DP sla- ves up to 12 Mbps:	Modular DP slaves with COM modules:	Bus connector up to 12 Mbps:
140 CRP 811 00	See page 83	See page 83	See page 85	490 NAD 911 03 490 NAD 911 04 490 NAD 911 05
				-KAB-PROFIB - GND001 -shield cable clamp, as per PUO (see page 72)
Software: -TLX L FBCM (Hil- scher SyCon-PB/ GS) (including DDB/ GSD files)	-DDB/GSD files for slaves	–DDB/GSD files for slaves	-DDB/GSD fi- les for slaves	

F

Note

DDB/GSD files are listed as user interface. DDB stands for device data base and forms the basis for standardized configuration.

TIO and Compact Slave State RAM Assignment Tables

This section presents the state RAM assignments for the modules:

- BDO 354 discrete output / 32–bit, 24 VDC, Section 2.2.1.
- BDI 354 discrete input / 32–bit, 24 VDC, Section 2.2.2.
- BDM 344 discrete inputs and outputs / 16–bit, 24 VDC, Section 2.2.3.
- DAP 204 discrete output / 4–bit, 24 VDC, Section 2.2.4.
- DAP 216 discrete output / 16–bit, 24 VDC, Section 2.2.5.
- DAP 220 discrete inputs and outputs / 8–bit, 24 VDC, Section 2.2.6.
- DEP 216 discrete input / 16–bit, 24 VDC, Section 2.2.7.

2.2.1 BDO 354 – Discrete Output / 32–Bit, 24 VDC

This section describes the relationship between the sequence of data in state RAM, and their assignment to the output terminals for the above named module. Each row of the table describes a single data type. For the BOOL data type, a distinction is made between the 0x and 4x references. Mappings are based upon the CRP 811 option board.

In/	State RAM	State RA	M data	Data	CRP 811	CRP	Module	
t	Addr.	1 8 17 24	9 16 25 32	type	i o data	state RAM	1 8 17 24	9 16 25 32
Out	000001 -16 000017 -32	10000100 10100110	11000010 11100001	Bool	21 43 65 87	1–32 (*)	10000100 10100110	11000010 11100001
Out	400001 400002	10000100 10100110	11000010 11100001	Bool	21 43 65 87	1–2 (*)	10000100 10100110	11000010 11100001
Out	400001 400002 400003 400004	00000000 00000000 00000000 00000000	10000100 11000010 10100110 11100001	Uint8	84 C2 A6 E1	1–4 (*)	00100001 01100101	01000011 10000111
Out	400001 400002 400003 400004	00000000 00000000 00000000 00000000	10000100 11000010 10100110 11100001	Int8	84 C2 A6 E1	1–4 (*)	00100001 01100101	01000011 10000111
Out	400001 400002	10000100 10000100	11000010 11100001	Uint1 6	84 C2 A6 E1	1–2 (*)	00100001 01100101	01000011 10000111
Out	400001 400002	10000100 10100110	11000010 11100001	Int16	84 C2 A6 E1	1–2 (*)	00100001 01100101	01000011 10000111
Out	400001 400002	10000100 10100110	11000010 11100001	Uint3 2	84 C2 A6 E1	1–2 (*)	00100001 01100101	01000011 10000111

2.2

In/ Ou	State RAM	State RA	M data LSB	Data type	CRP 811 I/O data	CRP 811	Module	
t	Addr.	1 8 17 24	9 16 25 32	51		state RAM	1 8 17 24	9 16 25 32
Out	400001 400002	10000100 10100110	11000010 11100001	Int32	84 C2 A6 E1	1–2 (*)	00100001 01100101	01000011 10000111
Out	400001 400002	10000100 10100110	11000010 11100001	Raw	C2 84 E1 A6	1–2 (*)	01000011 10000111	00100001 01100101
Out	400001 400002	10000100 10100110	11000010 11100001	String	84 C2 A6 E1	1–2 (*)	00100001 01100101	01000011 10000111
(*) TI	nese entrie	es correspon	d to the state	RAM a	ddresses in col	umn 2.		

Figure 16 170 BDO 354 00

2.2.2 BDI 354 – Discrete Input / 32–Bit, 24 VDC

This section describes the relationship between the sequence of data in state RAM, and their assignment to the input terminals for the above named module. Each row of the table describes a single data type. For the BOOL data type, a distinction is made between the 1x and 3x references. Mappings are based upon the CRP 811 option board.

In/	State	State RA	M data	Data	CRP 811	CRP	Module	
t	Addr.	1 8 17 24	9 16 25 32	type	I/O Uala	state RAM	1 8 17 24	9 16 25 32
In	100001 -16 100017 -32	10000100 10100110	11000010 11100001	Bool	21 43 65 87	1–32 (*)	10000100 10100110	11000010 11100001
In	300001 300002	10000100 10100110	11000010 11100001	Bool	21 43 65 87	1–2 (*)	10000100 10100110	11000010 11100001
In	300001 300002 300003 300004	00000000 00000000 00000000 00000000	00100001 01000011 01100101 10000111	Uint8	21 43 65 87	1–4 (*)	10000100 10100110	11000010 11100001
In	300001 300002 300003 300004	00000000 00000000 00000000 11111111	00100001 01000011 01100101 10000111	Int8	21 43 65 87	1–4 (*)	10000100 10100110	11000010 11100001
In	300001 300002 300003 300004	11111111 11111111 11111111 11111111 1111	10100001 11000011 11100101 10000111	Int8	A1 C3 E5 87	1–4 (*)	10000101 10100111	11000011 11100001
In	300001 300002	00100001 01100101	01000011 10000111	Uint1 6	21 43 65 87	1–2 (*)	10000100 10100110	11000010 11100001
In	300001 300002	00100001 01100101	01000011 10000111	Int16	21 43 65 87	1–2 (*)	10000100 10100110	11000010 11100001
In	300001 300002	00100001 01100101	01000011 10000111	Uint3 2	21 43 65 87	1–2 (*)	10000100 10100110	11000010 11100001
In	300001 300002	00100001 01100101	01000011 10000111	Int32	21 43 65 87	1–2 (*)	10000100 10100110	11000010 11100001
In	300001 300002	01000011 10000111	00100001 01100101	Raw	21 43 65 87	1–2 (*)	10000100 10100110	11000010 11100001
In	300001 300002	00100001 01100101	01000011 10000111	String	21 43 65 87	1–2 (*)	10000100 10100110	11000010 11100001
(*) T	nese entrie	es correspor	d to the state	RAMa	ddresses in col	umn 2.		

Figure 17 170 BDI 354 00

2.2.3 BDM 344 – Discrete Input and Output / 16–Bit, 24 VDC

This section describes the relationship between the sequence of data in state RAM, and their assignment to the input and output terminals for the above named module. Each row of the table describes a single data type. For the BOOL data type, a distinction is made between the 1x and 3x, resp. 0x and 4x references for inputs and outputs. Mappings are based upon the CRP 811 option board.

In/	State	State RA	M data	Data	CRP 811	CRP811	Module	
out	Addr.	1 8	9 16	type	1/O uata	RAM	1 8	9 16
Out	000001 16	10000100	11000010	Bool	21 43	1–16 (*)	10000100	11000010
In	100001 –16	10000100	11000010	Bool	21 43	1–16 (*)	10000100	11000010
Out	400001	10000100	11000010	Bool	21 43	1 (*)	10000100	11000010
In	300001	10000100	11000010	Bool	21 43	1 (*)	10000100	11000010
Out	400001 400002	00000000 00000000	10000100 11000010	Uint8	84 C2	1–2 (*)	00100001	01000011
In	300001 300002	00000000 00000000	00100001 01000011	Uint8	21 43	1–2 (*)	10000100	11000010
Out	400001 400002	00000000 00000000	10000100 11000010	Int8	84 C2	1–2 (*)	00100001	01000011
In	300001 300002	00000000 00000000	00100001 01000011	Int8	21 43	1–2 (*)	10000100	11000010
In	300001 300002	111111111 111111111	10100001 11000011	Int8	A1 C3	1–2 (*)	10000101	11000011
Out	400001	10000100	11000010	Uint16	84 C2	1 (*)	00100001	01000011
In	300001	00100001	01000011	Uint16	21 43	1 (*)	10000100	11000010
Out	400001	10000100	11000010	Int16	84 C2	1 (*)	00100001	01000011
In	300001	00100001	01000011	Int16	21 43	1 (*)	10000100	11000010
Out	400001 400002	10000100 00000000	11000010 00000000	Uint32	84 C2 00 00	1–2 (*)	00100001	01000011 (**)
In	300001 300002	00100001 00000000	01000011 00000000	Uint32	21 43 00 00	1–2 (*)	10000100	11000010 (**)
Out	400001 400002	10000100 00000000	11000010 00000000	Int32	84 C2 00 00	1–2 (*)	00100001	01000011 (**)
In	300001 300002	00100001 00000000	01000011 00000000	Int32	21 43 00 00	1–2 (*)	10000100	11000010 (**)
Out	400001	10000100	11000010	Raw	C2 84	1 (*)	01000011	00100001
In	300001	01000011	00100001	Raw	21 43	1 (*)	10000100	11000010
Out	400001	10000100	11000010	String	84 C2	1 (*)	00100001	01000011
In	300001	00100001	01000011	String	21 43	1 (*)	10000100	11000010
(*) Th	ese entrie	s correspon	d to the state	RAM ad	dresses in colu	mn 2.		

Figure 18 170 BDM 344 00

2.2.4 DAP 204 – Discrete Output / 4–Bit, 24 VDC

This section describes the relationship between the sequence of data in state RAM, and their assignment to the output terminals for the above named module. Each row of the table describes a single data type. For the BOOL data type, a distinction is made between the 0x and 4x references. Mappings are based upon the CRP 811 option board.

In/ Out	State RAM Addresses	State RA MSB 1 8	M data LSB 9 16	Data type	CRP 811 I/O data	CRP 811 state RAM	Module 1 4 Output
Out	000001 –16	10000100	00000000	Bool	21	1–4 (*)	1000
Out	400001	10000100	00000000	Bool	21	1 (*)	1000
Out	400001	00000000	11000010	Uint8	84	1 (*)	0010
Out	400001	00000000	11000010	Int8	84	1 (*)	0010
Out	400001	10000100	00000000	Uint1 6	84 00	1 (*)	0010 (**)
Out	400001	10000100	00000000	Int16	84 00	1 (*)	0010 (**)
Out	400001 400002	10000100 00000000	00000000 00000000	Uint3 2	84 00 00 00	1–2 (*)	0010 (**)
Out	400001 400002	10000100 00000000	00000000 00000000	Int32	84 00 00 00	1–2 (*)	0010 (**)
Out	400001	00000000	10000100	Raw	84	1 (*)	0010
Out	400001	10000100	00000000	String	84	1 (*)	0010
(*) These (**) Only	(*) These entries correspond to the state RAM addresses in column 2. (**) Only bits 1–8 valid in 1st register.						

Figure 19 170 DAP 204 00

DAP 216 - Discrete Output / 16-Bit, 24 VDC

This section describes the relationship between the sequence of data in state RAM, and their assignment to the output terminals for the above named module. Each row of the table describes a single data type. For the BOOL data type, a distinction is made between the 0x and 4x references. Mappings are based upon the CRP 811 option board.

In/ Ou	State RAM	State RA	M data	Data type	CRP 811 I/O data	CRP 811	Module	
t	Addr.	1 8	9 16	type	i o dulu	state RAM	1 8	9 16
Out	000001 -16	10000100	11000010	Bool	43 21	1–16 (*)	10000100	11000010
Out	400001	10000100	11000010	Bool	43 21	1 (*)	10000100	11000010
Out	400001 400002	00000000 00000000	10000100 11000010	Uint8	84 C2	1–2 (*)	01000011	00100001
Out	400001 400002	00000000 00000000	10000100 11000010	Int8	84 C2	1–2 (*)	01000011	00100001
Out	400001	10000100	11000010	Uint1 6	84 C2	1 (*)	01000011	00100001
Out	400001	10000100	11000010	Int16	84 C2	1 (*)	01000011	00100001
Out	400001 400002	10000100 00000000	11000010 00000000	Uint3 2	84 C2 00 00	1–2 (*)	01000011	00100001 (**)
Out	400001 400002	10000100 00000000	11000010 00000000	Int32	84 C2 00 00	1–2 (*)	01000011	00100001 (**)
Out	400001	10000100	11000010	Raw	C2 84	1 (*)	00100001	01000011
Out	400001	10000100	11000010	String	84 C2	1 (*)	01000011	00100001
(*) TI	nese entrie Prohibited.	es correspon 2nd register	d to the state is invalid.	e RAM a	ddresses in col	umn 2.		

2.2.5

Figure 20 170 DAP 216 00

DAP 220 - Discrete Input and Output / 8-Bit, 24 VDC 2.2.6

This section describes the relationship between the sequence of data in state RAM, and their assignment to the input and output terminals for the above named module. Each row of the table describes a single data type. For the BOOL data type, a distinction is made between the 1x and 3x, resp. 0x and 4x references for inputs and outputs. Mappings are based upon the CRP 811 option board.

In/ out	State RAM Addres-	State RA MSB	M data LSB	Data type	CRP 811 I/O data	CRP 811 state	Module	1 8				
	ses	1 8	9 16			RAM	output	input				
Out	000001 16	10000100	00000000	Bool	21	1–8 (*)	10000100					
In	100001 –16	10000100	00000000	Bool	21	1–8 (*)		10000100				
Out	400001	10000100	00000000	Bool	21	1 (*)	10000100					
In	300001	10000100	00000000	Bool	21	1 (*)		10000100				
Out	400001	00000000	10000100	Uint8	84	1 (*)	00100001					
In	300001	00000000	00100001	Uint8	21	1 (*)		10000100				
Out	400001	00000000	10000100	Int8	84	1 (*)	00100001					
In	300001	00000000	00100001	Int8	21	1 (*)		10000100				
In	300001	111111111	10100001	Int8	A1	1 (*)		10000101				
Out	400001	10000100	00000000	Uint1 6	84 00	1 (*)	00100001 (**)					
In	300001	00100001	00000000	Uint1 6	21 00	1 (*)		10000100 (**)				
Out	400001	10000100	00000000	Int16	84 00	1 (*)	00100001 (**)					
In	300001	00100001	00000000	Int16	21 00	1 (*)		10000100 (**)				
Out	400001 400002	10000100 00000000	00000000 00000000	Uint3 2	84 00 00 00	1–2 (*)	00100001 (**)					
In	300001 300002	00100001 00000000	00000000 00000000	Uint3 2	21 00 00 00	1–2 (*)		10000100 (**)				
Out	400001 400002	10000100 00000000	00000000 00000000	Int32	84 00 00 00	1–2 (*)	00100001 (**)					
In	300001 300002	00100001 00000000	00000000 00000000	Int32	21 00 00 00	1–2 (*)		10000100 (**)				
Out	400001	10000100	10000100	Raw	84	1 (*)	01000011					
In	300001	01000011	00100001	Raw	21	1 (*)		10000100				
Out	400001	10000100	00000000	String	84	1 (*)	00100001					
In	300001	00100001	00000000	String	21	1 (*)		10000100				
(*) Tł (**) C	nese entries Only bits 1–6	s correspond 8 valid in 1st	to the state register.	RAM ad	(*) Only bits 1–8 valid in 1st register.							

Figure 21 170 DAP 220 00

2.2.7 DEP 216 – Discrete Input / 16–Bit, 24 VDC

This section describes the relationship between the sequence of data in state RAM, and their assignment to the input terminals for the above named module. Each row of the table describes a single data type. For the BOOL data type, a distinction is made between the 1x and 3x references. Mappings are based upon the CRP 811 option board.

In/	State	State RA	M data	Data	CRP 811	CRP	Module	
t	Addr.	1 8	9 16	туре	i/O data	state RAM	1 8	9 16
In	100001 -16	10000100	11000010	Bool	43 21	1–16 (*)	10000100	11000010
In	300001	10000100	11000010	Bool	43 21	1 (*)	10000100	11000010
In	300001 300002	00000000 00000000	01000011 00100001	Uint8	43 21	1–2 (*)	10000100	11000010
In	300001 300002	00000000 00000000	01000011 00100001	Int8	43 21	1–2 (*)	10000100	11000010
In	300001 300002	11111111 11111111	11000011 10100001	Int8	C3 A1	1–2 (*)	10000101	11000011
In	300001	01000011	00100001	Uint1 6	43 21	1 (*)	10000100	11000010
In	300001	01000011	00100001	Int16	43 21	1 (*)	10000100	11000010
In	300001 300002	01000011 00000000	00100001 00000000	Uint3 2	43 21 00 00	1–2 (*)	10000100	11000010 (**)
In	300001 300002	01000011 00000000	00100001 00000000	Int32	43 21 00 00	1–2 (*)	10000100	11000010 (**)
In	300001	00100001	01000011	Raw	43 21	1 (*)	10000100	11000010
In	300001	01000011	00100001	String	43 21	1 (*)	10000100	11000010
(*) Tł (**) F	nese entrie Prohibited,	es correspon 2nd register	d to the state is invalid.	e RAM a	ddresses in col	umn 2.		

Figure 22 170 DEP 216 00

20

Hardware Installation

59

The purpose of this chapter is to serve as a standardized basis for all future controller or infrastructure installations. The most important EMC noise–immunity measures targeted to provide trouble free operation are also presented.

The basis of all presented specifications are taken from the PROFIBUS User Organization (PUO) Installation Guidelines. They can be procurred under the order no. 2111 from the PROFIBUS Nutzerorganisation e.V., Haid– und Neu–Strasse 7, D–76131 Karlsruhe, Germany.

The individual sections presented are:

- General Information Regarding PROFIBUS DP Installation, Section 3.1.
- Installation Guidelines, Section 3.2.
- Cable and Connector Specifications, Section 3.3.
- Schneider Automation Products for PROFIBUS DP Installation with Quantum, Section 3.4.

3.1 General Information Regarding PROFIBUS DP Installation

The topics presented in this section are:

- General Information, Section 3.1.1.
- Quantum–Specific PROFIBUS DP Specifications , Section 3.1.2.
- PROFIBUS DP Network Nodes , Section 3.1.3.
- Configuration Limits , Section 3.1.4.
- Segmentation Example of a PROFIBUS Installation with Repeaters , Section 3.1.5.
- PROFIBUS DP Cable and Bus Specifications, Section 3.1.6.

3.1.1 General Information

What is PROFIBUS DP?

PROFIBUS DP is a serial field bus. This bus represents an open network according to the EN 50170 standard, section 2. Only shielded, twisted pair cable may be used.

Note

The details of the following specification must be strictly upheld. This refers in particular to the installation and the use of field devices. The technical directives provided by the individual manufacturers and vendors are also to be observed.

Guidelines

The specifications as set forth in the PROFIBUS User Organization (PUO) Installation Guidelines (order no. 2111) are always valid.

3.1.2 Quantum–Specific PROFIBUS DP Specifications

A tabular summary of the configuration details follows:

Bus master complement:	Only 1 bus master is permitted within a PROFIBUS DP network.
Number of field devices per segment:	Max. of 32 stations, including at most 1 active programming device
Specified bus transmission rate:	>= 9.6 Kbps/up to 12 Mbps
Total line length per segment:	As per Table 10 on page 62, Transmission rates
Number of segments	Max. of 4, with up to 3 repeaters

3.1.3 **PROFIBUS DP Network Nodes**

Network configuration example with possible I/O node systems.

3.1.4 **Configuration Limits**

Refer to the module description, CRP 811 Technical Specifications , page NO TAG

Refer to CRP 811 – Master (Class 1) Functionality and Performance Data, Section 1.3 on page 24

3.1.5 Segmentation Example of a PROFIBUS Installation with Repeaters

The following diagram illustrates the utilization of all network configuration elements.

Repeaters at segment start or end must be terminated. For additional information refer to page 78, PROFIBUS DP Repeaters.

3.1.6 **PROFIBUS DP Cable and Bus Specifications**

Transmission Specifications

A tabular summary of cable lengths with permitted transmission rate follows.

Table 10 Transmission rates

Bus length per segment	Transmission rates for type A cable up to 12 Mbps
Max. of 1.2 km	9.6 Kbps
Max. of 1.2 km	19.2 Kbps
Max. of 1.2 km	93.75 Kbps
Max. of 1.0 km	187.5 Kbps
Max. of 0.4 km	500 Kbps
Max. of 0.2 km	1.5 Mbps
Max. of 0.1 km	3 Mbps
Max. of 0.1 km	6 Mbps
Max. of 0.1 km	12 Mbps
Line redundancy	No

Bus Connection Specifications

A tabular summary of the bus connection details follows:

Table 11 Bus connection specifications

Bus cable type (bulk)	Shielded, twisted pair, rigid PROFIBUS cable type "A" for up to 12 Mbps
Connection interface	As per EIA RS–485
Bus connector (with/without cable termination)	As per standard: 390 / 220 / 390 ohms refer to Section 3.3.2 on page 82 Connector Specification
Stub cabling	None (with the exception for diagnostic purposes: 1 x 3 m to bus monitor)

Bus Specifications

A tabular summary of the bus specification details follows:

Table 12 Bus specifications and data security

Station type	Master (class 1)
Bus-access method	Master/slave to DP slave
Transmission mode	Half-duplex
Message length	Max. 255 Bytes
Data field length	Max. 244 Bytes
Data security	Hamming distance HD = 4
Node addresses	1 126
FDL send/req. data services	For slave user data transmission, parameterization, configuration, and diagnostics

3.2 Installation Guidelines

The topics presented in this section are:

- Bus Segment Installation, Section 3.2.1.
- Indoor Cable Routing, Section 3.2.2.
- Outdoor Cable Routing, Section 3.2.3.
- Grounding and Shielding for Installations with Potential Equalization, Section 3.2.4.
- Grounding and Shielding for Installations without Potential Equalization, Section 3.2.5.
- PROFIBUS DP Repeaters, Section 3.2.6.
- Subrack Grounding Procedures, Section 3.2.7.

3.2.1 Bus Segment Installation

Basic Rules

- The bus cable may never be twisted, stretched, or squeezed during cable routing.
- Each bus segment must be terminated on both ends with a terminating resistance. Termination is however not effective, when for example, the last slave with a bus terminal connector is without power. Since the bus terminal connector receives its voltage from the station, termination remains ineffective.
- A bus connector may be removed from a node's bus port without interrupting bus data traffic, as long as adjacent bus cables are still through–connected.

Note

F

Special attention should be paid to ensure that those nodes on which a bus terminal connector is active are properly powered during normal operation and in the run–up phase.

3.2.2 Indoor Cable Routing

Within Cabinets

The following points should be taken into account:

- Cable arrangement within the cabinet plays an essential role for the system's noise immunity.
- Shielded data lines (for PROFIBUS DP, PG, etc.) must be routed separately from all cables carrying direct or alternating currents greater than 60 volts.
- In addition, all cables for direct or alternating currents in the range between 60 and 230 volts must be routed separately from cables carrying voltages above 230 volts. Separation criteria are fulfilled when the cables are laid in separate trunk groups or cable ducts.

- Signal lines must be routed a minimum of 20 centimeters from power cables. This
 is to be strictly observed, especially with regard to the voltage supply of electronic
 devices, such as PROFIBUS slaves, I/O modules, controllers, etc.
- The shield of the PROFIBUS DP data line must be connected with the cabinet's equipotential busbar.
- The shield must then be directed to the module, and installed there in accordance with the above regulations.

Caution

As a general principle, service cabinet illumination should always make use of starterless lamps, or such with EMC–compliant electronic starters.

Caution

Programming device screw fittings with integrated grounding are prohibited.

Caution

Stub cabling is not allowed for PROFIBUS network installations.

Outside Cabinets

The following points should be taken into account:

- Lines outside cabinets are generally laid out on metal cable carriers.
- Only cables below 60 volts, or 230 volts when shielded, may be routed together on the same cable carriers (lane, channel, trough, or conduit). Bulkhead dividers may be used for separation in metallic cable carriers. The 20 centimeter clearance must always be respected however.
- Cables carrying voltages above 230 volts must be laid in separate cable carriers. Bulkhead dividers may be used for separation in metallic cable carriers. The 20 centimeter clearance must always be respected however.
- PROFIBUS data lines must always be laid out on separate metal cable carriers. These cable carriers (lane, channel, trough, or conduit) may only carry communication lines.
- Cable channels or lanes carrying bus cabling must be linked together and grounded. This also applies to short, cable channel stubs.

Drag Line

The following points should be taken into account:

- The drag line must be inserted fully twist-free into the guide chain or carrier.
- The drag line may not snarl as it leaves the cable drum.
- The drag line must either be routed in the guide chain next to cables carrying only up to 60 volts, or otherwise make use of dividers if present.
- The drag line must be able to move freely in the guide chain.
- The drag line must be firmly affixed to the dog and fixation point over large surfaces, using appropriate cable clamps.
- The drag line should never be suspended in a garland fashion. The mimimum bending radius of 15 x cable diameter must be respected.

Note

Ensure that the drag line is unable to move within the fixation point and that cable conductors are not pinched.

3.2.3 Outdoor Cable Routing

Basic Rules

For outdoor routing the same general cable routing recommendations apply as for indoor routing. Cables should however also be routed through an appropriate plastic conduit.

Routing Tips & Procedures

The following points should also be taken into account:

- Outdoor bus cable routing requires the use of cables suitable for underground installation.
- Only suitable underground cables may be used for underground installation. Also take into account the temperatures to which the cable will be exposed.
- Outdoor to indoor transitions are always made through a specialized junction box. These junction boxes contain appropriate surge protection circuitry with overvoltage protection (lightning protection up to 500 Kbps).
- It is highly recommended that suitable fiber optic cable be used for any intra-building cabling at transmission rates above 500 Kbps.
- F

Note

Junction boxes are utilized to ensure a proper transition from underground to standard bus cable.
67

Surge Protection for Bus Cabling up to 12 Mbps

For the protection of communications equipment from any induced overvoltages (i.e. lightning), bus cabling must make use of appropriate surge protection devices, before exiting the building. The nominal discharge current should be at least 5 kiloamps.

Components and Supplier

Suitable devices are: the type MD/HF as surge diverter near the first node, and the type B as lightning arrestor directly after entering the building, from Dehn und Söhne GmbH & Co KG, Postfach, D–92306 Neumarkt 1, Germany. For additional information refer to "Building Lightning Protection Components with Blitzduktor CT".

Configuration

Before exit into the open, or after building re-entry, both surge protection elements must be installed for the PROFIBUS cabling.

Figure 24 Lightning arrestor configuration for PROFIBUS DP

Building Lightning Protection Components with Blitzductor CT

The following table contains the necessary components to traverse an outdoor area with PROFIBUS DP.

Quantity	Description	Туре	Article no.
2	Surge module B	B(110)	919 510
2	Surge module MD/HF	MD/HF(5)	919 570
4	Base	Lead-through terminal	919 506
1	EMC spring terminal	Package of 10	919 508
2	Gas arrestor	for indirect shield earthing	919 502
	35 mm top hat rail (EN 50022)		

F

Note

Information about mounting and connecting of the cables you will find in the respective installation instruction, which is delivered together with the Blitzductor.

Installation Rules

The following rules are to be observed during arrestor (Blitzduktor) installation:

- Install a functional ground (equipotential busbar).
- Mount the lightning arrestors (Blitzduktor) in close proximity to the functional ground, so that the surge current has the shortest possible path to the building ground.

Keep the conductor (minimum diameter 6 sq mm) leading to the functional ground as short as possible.

- A PROFIBUS cable pair may pass through a max. of 10 lightning arrestors (Blitzduktors) in series, i.e. a maximum of 4 outdoor cable segments.
- Be careful to not switch the arrestor's IN and OUT sides (IN = the outdoor side).

69

Grounding of Protection Device Shields

Shields on the protection devices can be grounded directly or indirectly. An indirect grounding will be carried out with a gas discharge tube (GDT).

In both cases the shield of the cable will be connected to EMC spring terminals (output and input side).

Type of grounding	Implementation	
Direct shield grounding	The shield of the incomming connection line is connected to ter- minal IN and the shield of the outgoing connection line is connec- ted to the terminal OUT. Now there is an electrical connection between the shields and the equipotential busbar.	
Indirect shield grounding via gas discharge tube (GDT)	Connection of the shields as described under direct shield groun- ding. The GDT is layed in the insert below the shield bonding terminal on input side.	

F

Note

Information about grounding and shield grounding you will find in the respective installation instruction, which is delivered together with the Blitzductor.

Rules for the Prevention of Destructive Discharges during Commissioning The following rules should be observed to prevent destructive discharges during bus cable connection in the service cabinet:

- Immediately after entry into the service cabinet the shield of every cable must be galvanically attached through a large conductive surface to the service cabinet's equipotential busbar.
- Very long bus cables, which have been routed but not connected, must be freed from any static charges as follows:

Step	Action
1	Choose the cable's bus connector closest to the service cabinet's equipotential busbar.
2	Touch the equipotential busbar with the metal surface of the bus connector housing to dissipate any prevailing static charge.
3	Attach the bus connector to the node's socket.
4	Continue to discharge the remaining bus connectors of this bus line as explained in steps 2 and 3.

F

Note

In order to achieve the shortest possible ground connection during cable confection between connector and socket, the cable shield is attached to the connector's metal guide. The resulting connection between bus cable and node thus provides a shortest–path connection to functional ground.

F

Note

The use of electronically regulated speed controllers (hand drills, etc.), requires that the manufacturer's EMC guidelines be fully respected. These guidelines contain information regarding the correct use of filters, chokes, and shielding.

3.2.4 Grounding and Shielding for Installations with Potential Equalization

Guidelines

Bus shields should form a continuous containment and ideally be connected to the metallic housings of the connected bus devices to provide optimal EMC properties. Since the bus cable shielding is grounded several times, a properly executed potential equalization is of utmost importance.

Grounding/potential equalization

An equalizing current may flow between both shield ends due to ground potential fluctuations. To prevent such fluctuations it is absolutely necessary that a potential equalization takes place between all connected installation components and devices. To this end, and to achieve maximum EMC, all installation components (machines, mounting cabinets, external consoles, devices, etc.) must be sufficiently grounded over large contact surfaces and connected through a cable diameter of at least 16 sq mm to the central mounting cabinet's equipotential busbar.

Shielding

The bus cable's braided and foil shields improve the achieved EMC. The braided shield and the underlying foil must be connected to ground over large, highly–conductive metal surfaces at both ends. When stripping away the plastic casing, take every precaution to not damage the braided shield in any way.

Note

The braided shield of the bus cable must be connected with the cabinet's equipotential busbar directly after entering the service cabinet.

Note

The equipotential busbar must be linked with the cabinet's ground over a large, highly–conductive surface (no painted surfaces).

Indoor facility example "with" potential equalization cable

The following figure presents a facility configuration consisting of 3 installation parts.

20

73

Additional grounding procedures for section 1 (Quantum):

- Quantum back plane (6 sq mm)
- Galvanized top hat rail from NAE 911 (*) (6 sq mm)
- Grounding clamp EPS 001 (6 sq mm)
- Attach bus cable shield to equipotential busbar with grounding clamp

Additional grounding procedures for section 2 (A120):

- Galvanized top hat rail(s) from A120 (*) (6 sq mm)
- Attach bus cable shield to equipotential busbar with grounding clamp
 (*) Grounding clamp EPS 000

Additional grounding procedures for section 3 (TIO):

- Galvanized top hat rail from TIO modules (6 sq mm)
- Attach bus cable shield to equipotential busbar with grounding clamp
- (*) Grounding clamp EPS 000

Additional grounding procedures between the equipotential busbars:

>= 16 sq mm copper cable between equipotential busbars.

3.2.5 Grounding and Shielding for Installations without Potential Equalization

Guidelines

In particular installation constellations (e.g., separate halls/buildings) not allowing potential equalization to a central grounding point in the central mounting cabinet, the following grounding and shielding procedures may be applied. However, this method is not nearly as effective as the measures described under Section 3.2.4 and should thus only be considered as a stopgap.

Figure 27 Distributed grounding procedures

Shielding

In this case the bus cable shielding is only grounded on one end, (over large contact surfaces to the central mounting cabinet's equipotential busbar) as depicted in Figure 27. The shield of bus cabling continues from there to the last bus device without making galvanic connection to any of the cabinet equipotential busbars. Capacitive grounding of the shielding to these remaining cabinets must be provided to by–pass high–frequency interference. See the following discharge procedures using the GND 001 capacitive by–pass clamp.

Proceed as follows to install the shield connection for the by-pass clamp connection:

Indoor facility example "without" potential equalization cable

The following figure presents a facility configuration consisting of 3 installation parts.

Additional grounding procedures for section 1 (Quantum):

- Quantum back plane (6 sq mm)
- Galvanized top hat rail from NAE 911 (*) (6 sq mm)
- Grounding clamp EPS 001 (6 sq mm)
- Attach bus cable shield to equipotential busbar with grounding clamp

Additional grounding procedures for section 2 (A120):

- Galvanized top hat rail(s) from A120 (*) (6 sq mm)
- Attach bus cable shield to by–pass clamp with copper shielding foil
 (*) Grounding clamp EPS 000

Additional grounding procedures for section 3 (TIO):

- Galvanized top hat rail from TIO modules (6 sq mm)
- Attach bus cable shield to by-pass clamp with copper shielding foil

(*) Grounding clamp EPS 000

Additional grounding procedures between the equipotential busbars:

■ >= 16 sq mm copper cable between equipotential busbars.

20

77

3.2.6 **PROFIBUS DP Repeaters**

When is a repeater necessary?

Repeaters may be used wherever the maximum line length of a network segment is exceeded, or where the number of nodes exceeds the maximum number allowed per segment. Using a repeater can extend the line length or raise the number of nodes in these cases.

F

Note

Bus termination is to be observed when repeaters are employed at the end of net segments.

Example

Installation example of terminating resistance locations:

Only RS–485 repeaters of the IP 20 safety classification are allowed for rack installation (e.g., Siemens, order no. 6ES7 972–0AA00–0XA0)

Adjustments of the above-mentioned repeater:

- Set the repeater to the desired bus transfer rate with the <Bitrate> rotary switch.
 - The repeater requires a 24 VDC supply, i.e. the jumper present between the repeater power supply terminals M and PE must be removed.
- There is no adjustment required for bus address. A max. of 32 nodes (master, slaves, and repeaters) may be connected per segment.

F

Note

Refer to the manufacturer's documentation for specifics.

3.2.7 Subrack Grounding Procedures

Quantum CPU

- Every subrack's grounding screws must be connected with protective earth (PE) through a conductor of at least 6 sq mm for interference suppression, and protection against accidental contact.
- In general (as delivered), the XPB 00 X subrack's internal 0 V reference potential is connected to the back plane through the Z screws. See the figure below.

Figure 31 Quantum back plane

DTA 200 Compact peripheral subrack

- Every galvanized top hat rail with mounted components must be connected with protective earth (PE) through a conductor of at least 6 sq mm for interference suppression, and protection against accidental contact.
- DTA 200 back planes may be installed either with or without a galvanic connection to electrical ground. Please verify prior to commissioning that the Z screw provided for this purpose is firmly screwed–in to the subrack, i.e. that the internal 0 V reference potential is connected to PE. See the figure below for the Z screw location.

Figure 32 Compact grounding and EMC measures, Z screw location

TIO components

- Every TIO component must be connected with protective earth (PE) through a conductor of at least 6 sq mm for interference suppression, and protection against accidental contact.
- Mounting of the TIO component upon the top hat rail automatically provides a connection between the component's PE and the top hat rail over a discharge spring.
- The component's internal 0 V reference potential is usually buffered internally from PE by appropriate RF capacitors.
- The Z1 connection is additionally required as a protective measure. Proper grounding is ensured through a 2.5 sq mm cable with Faston or screw connection, and a (EDS 000) grounding clamp.

Figure 33 Grounding the top hat rail and TIO components

3.3 Specifications

The topics presented in this section are:

- Cable Specification, Section 3.3.1
- Connector Specification, Section 3.3.2
- Cable Testing with 490 NAD 911 03/04/05 Bus Connectors, Section 3.3.3

3.3.1 Cable Specification

Twisted pair cable

Due to the maximum bps rate of 12 Mbps, only type "A" cable may be used, as defined by the PROFIBUS standard. As per EN 50 170, this is a shielded, twisted pair cable with shielding consisting of an inner foil and a braided outer layer. The cable parameters are as follows:

Cable characteristics

Parameter	Value	
Impedance level	135 165 ohm for 3 to 20 MHz	
Capacitance per unit length	< 30 pF/m	
Loop resistance	< 110 ohms/km	
Wire diameter	> 0.64 mm	
Wire cross section	> 0.34 sq mm	

Rigid routing

The following cable may be used as PROFIBUS cable for rigid routing in cable troughs or conduits:

FromSchneider Automation, order no. KAB PROF	FIB
The following wire color designations hold for	Line A: red
cable installation (example)	Line B: green

3.3.2 Connector Specification

Connector characteristics

Connectors are available with a switchable terminating resistance (up to 1.5 Mbps), as well as such in fabricated lengths (up to 12 Mbps), as "integrated bus termination", "bus node", and "bus node with service port".

Connector types

The following Schneider Automation connectors have been defined for various field devices:

DP master	Bus connector with service port (12 Mbps/IP 20) From Schneider Automation: order no. 490 NAD 911 05 (up to 12 Mbps)
DP slave	Bus connector with/without service port (12 Mbps/IP 20) From Schneider Automation: order no. 490 NAD 911 03 (termination for start or end) order no. 490 NAD 911 04 (node) – up to 12 Mbps order no. 490 NAD 911 05 (node with service port) – up to 12 Mbps

T S

Note

Assembly instructions for the NAD 911 03/04/05 bus connectors can be gathered from the respective component's installation guide.

NAD 911 connector pin assignments

The following table lists the pin assignments and signal descriptions for the Sub–D9 connectors.

Pin/housing	Signal	Description
Connector hou- sing	Shield	Functional ground
3	RxD/TxD–P	Pos. receive/send data
5	DGND	Data transmission reference potential (to 5 VDC)
6	VP	Terminating resistance supply voltage, (P5V)
8	RxD/TxD–N	Neg. receive/send data

3.3.3 Cable Testing with 490 NAD 911 03/04/05 Bus Connectors

Bus analyzer

Due to the absence of jumpers in the connectors with the identifiers 03/04/05, a bus analyzer must be utilized to validate bus cable correctness. Siemens markets a suitable analyzer under the name BT200.

3.4 Schneider Automation Products for PROFIBUS Installation with Quantum

TIO master and I/O modules

Available I/O modules and their functionality:

Table 13 Master and slave modules (TIO)

Quantum	As per catalog
140 CRP 811 00	PROFIBUS DP master for use with Quantum
BDI 344 01	PROFIBUS TIO 16 discrete inputs, 24 VDC
BDI 354 01	PROFIBUS TIO 32 discrete inputs, 24 VDC
BDM 344 01	PROFIBUS TIO 16 discrete inputs, 24 VDC & 16 discrete outputs 24 VDC/0.5 A
BDO 354 00	PROFIBUS TIO 32 discrete outputs 24 VDC/0.5 A

Compact I/O modules accessable through the DEA 203 PROFIBUS DP coupler Available I/O modules and their functionality:

Table 14 Compact I/O modules for the DEA 203 (Compact)	Table 14	Compact I/O modules for the DEA 203 (0	Compact)
--	----------	--	----------

Modules	Input/Output
AS BDEA 203	PROFIBUS DP slave connecting module for Compact PLC
DEP 208	8 bit input
DEP 209	8 bit input
DEP 210	8 bit input
DEP 211	8 bit input
DEP 214	16 bit input
DEP 215	16 bit input
DEP 216	16 bit input
DEP 217	16 bit input
DEP 218	16 bit input
DEP 220	16 bit input
DEP 296	16 bit input
DEP 297	16 bit input
DEO 216	16 bit input
DEX 216	16 bit input
DAP 204	4 bit output

Modules	Input/Output		
DAP 208	8 bit output		
DAP 209	8 bit output		
DAP 210	8 bit output		
DAP 216	16 bit output		
DAP 217	16 bit output		
DAP 218	16 bit output		
DAO 216	16 bit output		
DAX 216	16 bit output		
DAP 212	8 bit input/4 bit output		
DAP 220	8 bit input/8 bit output		
DAP 252	8 bit input/4 bit output		
DAP 253	8 bit input/4 bit output		
DAP 292	8 bit input/4 bit output		
DAU 202	2 word output		
DAU 208	8 word output		
ADU 204	5 word input		
ADU 205	5 word input		
ADU 206	5 word input/1 byte output		
ADU 210	5 word input/4 byte output		
ADU 214	9 word input/8 byte output		
ADU 216	5 word input/1 byte output		
ZAE 201	3 word input/11 word output		

Table 14 Compact I/O modules for the DEA 203 (Compact)

Momentum I/O modules for a communications adapter Available I/O modules and their functionality:

Table 15 Momentum modules

Modules	High/ Low	In/Out	Brief description
170 DNT 110 00			Communications adapter per I/O module
170 ADI 350 00	0/1	2/0	32 inputs 24 VDC
170 ADI 340 00	0/2	1/0	16 inputs 24 VDC
170 ADI 540 50			16 inputs 115 VAC
170 ADI 640 50	0/3	1/0	16 inputs 120 VAC
170 ADI 740 50	0/4	1/0	16 inputs 240 VAC
170 ADO 340 00	0/5	0/1	16 outputs 24 VDC, 0.5 A per output
170 ADO 350 00	0/6	0/2	32 outputs 24 VDC, 0.5 A per output in 2 separately powered groups
170 ADO 530 50			8 outputs 115 VAC, 2 A per output
170 ADO 540 50			16 outputs 115 VAC
170 ADO 730 50			8 outputs 230 VAC, 2 A per output
170 ADO 740 50			16 outputs 230 VAC
170 ADM 350 10 (170 ADM 350 11)	0/8	1/1	16 inputs 24 VDC 16 outputs 24 VDC, 0.5 A per output in 2 separately powered groups
170 ADM 370 10	0/11	1/1	16 inputs 24 VDC 8 outputs 24 VDC, 2 A per output in 2 isolated groups
170 ADM 390 10	0/12	3/1	16 inputs 24 VDC, monitored 12 outputs 24 VDC, 0.5 A per output in 2 separately powered groups
170 ADM 390 30	0/10	1/1	10 inputs 24 VDC 8 outputs 24 VDC, 1 relay per output in 2 isolated groups
170 ADM 690 50 170 ADM 690 51	0/9	1/1	10 inputs 120 VAC 8 outputs 120 VAC, 0.5 A per output in 2 separately powered groups
170 ADM 680 50			16 inputs/8 outputs 10 – 60 VDC
170 AAI 030 00	2/192	8/2	8 differential channels
170 AAI 140 00	4/193	16/4	16 individual channels
170 AAI 520 40	2/194	4/2	4 differential channels
170 AAO 120 00	1/195	0/5	4 output channels
170 AAO 921 00			4 output channels (+/- 10 VDC, 4 - 20 mA)
170 AMM 090 00	2/224	5/5	Analog: 4 inputs/2 outputs Discrete: 4 inputs/2 outputs 24 VDC, 1 A

Table 15Momentum modules

Modules	High/ Low ID	In/Out	Brief description
170 AEC 920 00	0/160	8/8	High–speed counter
170 AEC 910 90	0/128	8/8	Stepping motor controller

Configuration tool

Software and functionality:

Table 16 Required software

Concept 2.2	Concept configuration software	
TLX L FBCM (Hilscher SyCon PB/GS) incl. DDB (GSD) files	Configuration tool for parameterization of all devices on PROFIBUS DP, incl. DDB files for all Schneider Automation I/O modules	

Accessories

Available accessories and their functionality:

Table 17 PROFIBUS accessories

KAB PROFIB	PROFIBUS cable, type "A" (bulk), O2Y (ST) CY 2 x 0.64 sq mm
YDL 052 or 990 NAA 263 30	Cable, PC (9–pole) ↔ CRP (9–pole), 3 m long
490 NAD 911 03	PROFIBUS terminating connector (up to 12 Mbps)
490 NAD 911 04	PROFIBUS node connector (up to 12 Mbps)
490 NAD 911 05	PROFIBUS node connector with service port (up to 12 Mbps)

Installation accessories

Available accessories and their functionality:

Table 18 Installation Accessories

GND 001	Capacitive by-pass clamp (for installations without potential equaliza- tion)
HUT 3575	Galvanized top hat rail adhering to DIN_EN 50022 (bulk)
EDS 000	Grounding clamp

Software Configuration

4

87

Information about the following software configuration subjects is presented:

- PROFIBUS DP Information, Section 4.1.
- Incremental Configuration, Section 4.2.

4.1

PROFIBUS DP Information

The topics presented in this section are:

- General Information, Section 4.1.1.
- Configuration Limits, Section 4.1.2.
- Single Master Bus Line Example, Section 4.1.3
- Dual Master Bus Line Example , Section 4.1.4
- A Configuration Example with Slave Nodes , Section 4.1.5
- Exemplary Load and Commissioning Configuration, Section 4.1.6.
- Software Installation of the Bus Configuration Tool, Section 4.1.7.
- Configuration Sequence, Section 4.1.8.

4.1.1 General Information

The goal of this chapter is to generally describe PROFIBUS configuration steps. Since this is not possible without some knowledge of the surrounding network environment, these, and the interaction between the two software packages for Concept and bus configuration will be handled.

E

Note

The involved principles and PROFIBUS functional relationships (e.g. DIN 19245, Parts 1, 2, and 3) should be known to the reader of this documentation.

4.1.2 **Configuration Limits**

I/O types

In the simplest case the description is based upon a facility configuration consisting of a Quantum PLC, a DP bus master module, and various slave I/O modules from the –TIO,

- -Momentum, and
- -Compact (A120) series, and
- -third-party manufacturers.

Data exchange

These slave components are linked with the Quantum PLC over an appropriate bus cable and a CRP 811 interface module (with NAE 911). A purely data–orientented exchange takes place over this connection.

Definition of terms

This interface module, also known as an option board, is always referred to as the master during the course of configuration, and the connected I/O nodes as slaves.

CPU-specific master complement per Quantum

Depending upon the CPU type, up to 6 master modules can be configured in a Quantum. The assignments can be found in the following table:

CPU type	Max. number of CRP 811 modules supported
CPU 113 02/S/X	2
CPU 113 03/S/X	2
CPU 213 04/S/X	2
CPU 424 0x/X	6
CPU 434 12	6
CPU 534 14	6

Max. number of nodes (slaves) per bus

Up to 125 nodes (master + slave) are allowed on a single bus.

Number of masters per bus

Several masters are operable on each bus, in principle. As a rule, a differentiation is made between 2 variants.

- A practical scenario is, e.g. the configuration of 2 master modules to different Quantum controllers.
- Another application makes use of 2 master modules within a single Quantum controller.

Note

F

[₹]

In this configuration each slave on this bus can only be assigned to a single master.

Master complement per Quantum

Depending upon the CPU type, up to 6 master modules can be configured in a Quantum. The masters can alternatively be active on:

- a common bus, or on
- separate busses (the normal case).

Note

In these configurations each slave can only be assigned to a single master.

4.1.3 Single Master Bus Line Example

Plant configuration

Hereafter principal configuration options and configuration guidelines will be offered.

One bus line per master (within a single Quantum)

Depending upon the CPU type, up to 6 masters may be operated within a single Quantum, with up to 124 slaves.

F

Note

After roughly 30 slaves a repeater is required.

Figure 34 Recommended master addressing for several busses

F

Note

The configuration tool allows each bus to be configured alone in an individual configuration window.

4.1.4 Dual Master Bus Line Example

Plant configuration

Hereafter principal configuration options and configuration guidelines will be offered.

Several master modules on one bus line (within a single Quantum)

It is possible for instance, to operate 2 masters in a single Quantum on one bus line.

Several master modules in different stations with a common bus Up to 2 independent PLC stations may serve a bus line.

Note

A slave module can only be assigned to a single master (CRP 811).

Configuration of a bus line

The configuration tool can configure all the masters on a bus line together within a single configuration window.

Figure 35 Recommended master addressing

SyCon – PLC1_2BP_A		
PB	Master1 Station address	1
master	DP master	140 CRP 811 00
PB master	Master2 Station address DP master	2 140 CRP 811 00

F

Note

A slave module can only be assigned to a single PLC (master).

Note

The configuration tool can produce the necessary export files either by station, or master.

Note

When all masters are in the beginning address range, the TTR time (Total Token Rotation time – only in multi–master mode) is reduced to a minimum.

93

4.1.5 A Configuration Example with Slave Nodes

Figure 36 PROFIBUS DP project example

Why have DDB/GSD files?

Different manufacturers devices can be operated on PROFIBUS. A standardized entry for a device data base is available to allow the identification of the differing device types on the bus. For PROFIBUS DP this Device Data Base (DDB) is known in it's original german form as GSD. Such device data base entries are made available for every device type in the form of a specialized GSD file.

F

Note

The availability of these files is a prerequisite to beginning bus project configuration (with the Hilscher SyCon tool).

DDB files on the internet

The manufacturer's own device data base entries (GSD files) are included on the installation CD. These files can also be found:

 on the internet at: WWW.MODICON.COM. The path to follow is:Support/Training / File Fixes and Update / For all other File Fixes and Patches / Software for SA–Products / Communication Products / PROFIBUS.

F

T S

Note

The "loading" of the DDB (GSD files) is made through a Copy function within the SyCon tool: FILE/COPY GSD.

Note

I/O and diagnostic data assignment is performed under Concept. These data are also transferred to the PLC when the user program is loaded.

4.1.6 Exemplary Load and Commissioning Configuration

General information

Generally speaking, a differentiation is made between the one time preparations of the configuration–dependent components for PROFIBUS operation, such as:

- Loading the CPU with the proper Exec software
- Installing the PC hardware (SA85) when required
- Ready the proper CRP 811 firmware (or update if necessary)
- Establishing necessary connections with cable, accessories, and proper termination

and the loading and commissioning activities for transfer of the data to the PLC, using the planned configuration.

Note

The load configuration and sequence are in accord with those during normal user program load. The user program and CRP data are loaded simultaneously.

Updating the CRP 811 master module

Generally speaking, an update should only to be performed with the assistance of technical support. This holds in particular when an update to an older firmware version is to be undertaken. The files required for an update can be procurred over the internet through the Schneider homepage, WWW.MODICON.COM.

The path to follow is: Support/Training / File Fixes and Update / For all other File Fixes and Patches / Software for SA–Products / Communication Products / PROFIBUS.

Note

F

Updating older firmware versions is coupled with an update of the loader file.

Possible update situations

The cases to be handled are:

- Updating the CRP 811 firmware from V 4.10D to any future versions.
- Updating the CRP 811 firmware from V 3.00D to V 4.10D (including the replacement of the RS-232C loader through Exec loader V 1.0)

Updating from V 4.10D to any future versions

An update to future CRP 811 firmware versions is achieved with the help of the Exec loader included with Concept. The update procedure is depicted below for 2 possible configurations.

Figure 37 Updating a single device

F

Note

For a less extensive or individual installation, the CPU can also be loaded over the MB port (the SA85 module is then not required). A loading time longer by a factor of 7 to 8 should then be taken into account.

The load operation can alternatively be carried out through the bus (MB+) or serial port (MB). The corresponding settings are then to be performed under Concept.

F

Note

The loading procedure to be followed with the Exec loader can be gathered from the readme file, which is an integral part of the CRP 811 firmware updates.

Updating from V 3.00D to V 4.10D

An update to CRP 811 firmware version 4.10D is achieved with the help of the Exec loader included as part of the firmware update. Before the firmware can be loaded, the old RS–232C loader must be replaced by the new Exec loader through the RS–232C interface. The update procedure is depicted below.

F

The loading procedure to be followed with the Exec loader can be gathered from the readme file, which is an integral part of the CRP 811 firmware updates.

Caution

Once a CRP 811 module has been updated through the Exec loader, it may be no longer be returned to the V 3.00D level through a terminal program.

Loading the PROFIBUS DP configuration

Since the PROFIBUS DP configuration data are part of the Concept configuration, they are

- Loaded simultaneously in the CPU with the user program.
- The PROFIBUS DP data are then automatically transferred on to the bus master.
- The bus specific parameters are then automatically passed on to the CRP 811's PCMCIA card.
- After a connection has been successfully made to the NAE 911 adapter, the connected, error–free slaves are automatically supplied with the parameter data, and
- I/O communication is automatically started with those process outputs set to "0" signal.

Figure 40 Configuration for the loading of PROFIBUS DP

20

The I/O data exchange with live values takes place at PLC start.

F

Caution

Should the bus connection be interrupted during running I/O communication, e.g. broken at the NAE 911 adapter and restored thereafter, then the I/O communication is initiated again immediately with live values.

4.1.7 Software Installation of the Bus Configuration Tool

The information necessary for the activation and operation of the software can be gathered from the booklet accompanying the CD. The points to be observed are:

- System requirements
- Software installation (of the Hilscher SyCon–PB/GS tool)
- Explanation of the directory structure

T T

Note

Which of the CRP 811 00 master module firmware versions are authorized can be found within the Validity Reference at the beginning of the document.

99

4.1.8 Configuration Sequence

The global sequence of configuration steps is executed as follows:

Bus Configuration

Determination of the bus configuration with the TLX L FBCM bus configuration tool.

- Node selection and the allocation of names and addresses.
- Parameterization of the global bus parameters.
- Configuration of the I/O modules for modular slaves.
- Setting of user parameters.
- The resulting CNF file is created through an "Export" function.

Note Note

The manufacturer's own device data base entries (GSD files) necessary are installed during the bus configuration tool installation.

Note Note

Should several bus masters be configured, a **bus configuration** must be performed for each bus line.

PLC configuration

I/O and bus configuration processing with Concept.

- Master module determination in accord with the I/O mapping (type and slots).
- CNF file "import" and
- Assignment of the I/O and diagnostic data to state RAM references.

Load

Loading the PLC with the configuration data produced under Concept.

The following illustration depicts the configuration sequence and interactions:

Figure 41 PROFIBUS DP configuration sequence

The bus project is not bound to a particular PLC station. It can be imported into totally different Concept projects.

F

Note

The bus configuration descriptions are predominatly based upon the on–line help and manuals available on the Hilscher CD. This manual only handles those features essential to configuration. Make use of the on–line help for any additional questions.

4.2 Incremental Configuration

The topics presented in this section are:

- Example Guidelines, Section 4.2.1.
- Handling Peculiarities of the Bus Configuration Tool, Section 4.2.2.
- Bus Topology Configuration (1st Step), Section 4.2.3.
- Bus Assignment and I/O Mapping under Concept, Section 4.2.4.
- Assignment of the I/O and Diagnostic Signals, Section 4.2.5.
- Loading and Starting the PLC Station, Section 4.2.6.

4.2.1 Example Guidelines

A description of the main configuration steps follow. The example is based upon a provided bus layout.

The example concerns a plant configuration (PLANT1), in which a PLC station (PLC1) with a single PROFIBUS DP line (PLC1PB_A) is to be configured. The basis for the configuration can be gathered from Figure 42.

The steps are in detail:

- Bus topology configuration
- Import of the bus topology into Concept
- Assignment of the I/O and diagnostic signals
- Activation of the PLC station

4.2.2 Handling Peculiarities of the Bus Configuration Tool

- **Save / Export** The bus configuration result file is generated in two steps:
 - **1.** SAVE: Stored as a PB file.
 - 2. EXPORT—>ASCII: Then as a CNF file for import by Concept / Quantum.
- Multiple bus projects Several new files can be opened simultaneously for the configuration of bus projects. WINDOW / NEW WINDOW or chose the small window format with the corner–resident Minimize icon.
- Duplication of BPn Existing configured bus projects can be duplicated. WINDOW / NEW WINDOW.

Everything at a glance	The representation of all project nodes is made through a module table in tabular form. VIEW / DEVICE TABLE	
Master I/Os	The illustration of all I/O nodes belonging to a selectable master is shown in an address table. VIEW / ADDRESS TABLE and select MASTER. A sort can be performed by data or station address.	
GSD & proj. paths	The directory paths where GSD and project files are to be stored can be defined separately. SETTINGS / DIRECTORY is the menu sequence.	
Target Rotation Time	is automatically re-calculated when the set value is exceeded.	
ĨŦ	Note The bps rate must be invoked again should the TTR be reduced, e.g. through a reduction in the number of slave nodes.	
Delete node	The deletion of existing, configured nodes is accomplished through EDIT / DELETE or the Del key.	
Data addresses	Data addresses have no significance with the CRP 811 00, and are not evaluated.	
Watchdog	There is a single supervision time valid for all slave nodes. If a slave is not to be monitored for an interruption of its communications with the master, it can be excluded.	
	Caution If watchdog monitoring is disabled, outputs will remain at their last value before the failure.	
Auto addressing	The auto addressing setting for the initial node address allocation is fixed to enabled.	
Auto clear	This functionality is not supported by the CRP 811 00.	
Re-determining BPs	The actual B us P arameters can be determined by the system itself after configuration has been completed.	
4.2.3	Bus Topology Configuration (1st Step)	
	In this step the characteristics of the bus and connected nodes are defined and parameterized. Refer to the gray, highlighted portion of Figure 42.	
The TLX L FBCM configuration tool is used for bus topology configuration.

Prerequisites The necessary DDB/GSD files are available. Examine through TOOLS / GSD VIEWER.

Directory paths as presented here should be considered **exemplary**. Specific paths can be entered under SETTINGS / DIRECTORY.

Figure 42 Bus topology configuration example

Creating the bus project (BP):

Start the configuration tool. After the firm's logo has been displayed, an operator interface appropriate for further processing appears.

Allocating a BP name

- 1. Define the plant name by creating an appropriate directory (e.g. PLANT1 / PBDP_PRJ) with Explorer or another tool
- 2. Specify the project directory path name created (SETTINGS / DIRECTORY ...) to SyCon

Figure 43 Directory path menu

Directory		×
GSD Directory ——		
GSD File directory	D:\\PROFI_QM\\SyCon\\Fieldbus\\Profibus\\GSD	OK
Extension	GS*-file (*.gs*) All files ↓	Cancel
Project Directory		
Project File directory	d:\\PLANT1\\PBDP_PRJ	

- 3. Open a new file: FILE / NEW
- 4. Store under a name with at most 8 characters: FILE / SAVE AS / PLANT1 / PBDP_PRJ / PLC1PB_A

Note

F

This directory structure is not mandatory. It was chosen for reasons of clarity. The corresponding Concept project is setup under PLANT1 as well, and named PLC1_PRJ.

Define and parameterize the master module

 Enter the first master by: either INSERT / MASTER or a left-click on the "M"aster icon in the toolbar and

then a left-click at the desired cursor position within the configuration text block.

Reaction The following window opens with a list of diverse masters.

Figure 44 Master module entry

Insert Master			×
Available maste 140 CRP 811 TSX PBY 100	Add >> Add All >> Add All >> << Remove All	Selected masters	SOK Cancel
Vendor name Ident number GSD file name	Schneider Automation GmbH 0x5506 ASA_5506.GSD	Station address Description	1 Quant_Master1

2. Selection and acceptance of the Quantum CRP 811 PROFIBUS DP master: ADD button or double–click

F

Note

Should two or more masters be required on the bus, the desired number of masters can be assigned to the bus through multiple double–clicks. Ascending addressing takes place on the bus automatically. A change of addresses is possible at any time.

Station address

Master addresses normally range between 1 and 10 (due to the TTR time), with slaves beginning at 11.

Description

A text entry of up to 32 characters is possible here, e.g. Quant_Master1. Special characters and mutated vowels are not permitted.

Note

Ē

Be sure to select the TSX PBY 100 master module as PLC system when using the Premium product line.

3. Assign the selected master to the desired bus line with the OK button.

Reaction The following window with selection box opens.

Figure 45 Initial master entry

SyCon – PLC1_2BP_A	_	
	Selection box	
PB master	Quant_Master1 Station address 1 DP master 140 CRP 811 00	

Supplementary information: PDF file on CD, resp. the tool's on-line help

- **4.** If desired, the master's bus parameters (station address) can be changed/checked by:
 - SETTINGS / MASTER CONFIGURATION or a double–click on the marked selection box or a right–click and then the MASTER CONFIGURATION selection
- **Reaction** The following window opens for master configuration.

Master Configuration	
General	
Description Master1 replaced by Quant_Master1	OK
Station address 1	Cancel
Device 140 CRP 811 00	
DP Support	
DP Master Settings 🗸 Auto addressing	
FMS Support	
FMS Settings CRL	
OD	A stud Mostor
	Actual Master

Figure 46 Menu for master parameter settings

Auto addressing

Cannot be disabled.

Description

A text entry of up to 32 characters is possible. Special characters and mutated vowels are not permitted.

Station address

Master addresses normally range between 1 and 10 (due to the TTR time), with slaves beginning at 11.

Value range for master and slaves on a single bus: 1 – 125

Actual master

The activation of this button determines, e.g the active master for a download.

DP master settings

Setting/check of the watchdog time. This value determines how long the DP master waits for a slave response before setting all process outputs to "0" signal. The corresponding settings must have been performed under Concept. This menu command is also accessible under:

SETTINGS / MASTER SETTINGS or a right-click on the marked selection box and then the MASTER SETTINGS selection

Define and parameterize slave modules

- Enter a slave from a node list by: INSERT / SLAVE / left-click on the desired cursor position. or a left-click on the "S"lave icon in the toolbar and then a left-click at the desired cursor position within the configuration text block.
- **Reaction** The following window opens for slave configuration.

Figure 47 Slave module entry

Insert Slave			×
Slave type All	↓	Master 140 CRP 811 00	ОК
Available slaves		Selected slaves	¹⁾ Canc
170 BDI 344 00 / 01 170 BDI 354 00 / 01 170 BDM 344 00 / 01 170 BDO 354 00 170 DNT 110 00 : : : DEA 203	Add >> Add All >> << Remove All << Remove	170 BDI 344 00 / 01	<u> </u>
: Vendor name Schneider Ident number 0x1344	Automation GmbH	Station address	V, BG Type
GSD file name TIOX1344	.GSD		

Note

A list of the available slave nodes and interface modules is presented. Should two or more nodes be required on the bus, the desired number of nodes can be assigned to the bus through multiple double–clicks. Ascending addressing takes place on the bus automatically. A change of addresses is possible at any time.

Available slaves

Schneider modules for operation on a Quantum PLC are:

- TIOs (slaves)

 -170 BDI 344 00 / 01
 -170 BDI 354 00 / 01
 -170 BDM 344 00 / 01
 -170 BDO 354 00
- PROFIBUS DP interface module for Momentum TIOs
 -170 DNT 110 00 for individual I/O modules (single slave)
- PROFIBUS DP interface module for Compact (A120)
 –DEA 203 for up to 18 I/O modules (modular slaves)

F

Note

For all separate interface modules (Momentum and Compact) the attached I/O modules must be assigned in an additional step. Refer to the appendix for appropriate I/O nodes.

Master (assignment to slave)

The master which is to be assigned to a new slave can be selected here (refer to 1) in Figure 47). The sequence of configured masters presented in the drop–down list corresponds to the sequence in the configuration text block.

Station address (for the slave)

The slave's station address on the bus may require some manual intervention to be consistent (refer to 2) in Figure 47).

Address range for master and slaves: 1 - 125

Description (slave)

Entry of correctable texts up to 32 characters can be made here, e.g. "16DE_24V, BG_Type".

2. Assign the selected slave to the desired bus line with the OK button.

Reaction The following window opens for slave configuration.

Figure 48 Initial slave entr	у	
SyCon – PLC1_BP_A		_ 🗆 ×
PB Master	Quant_Master1 Station address 1 DP master 140 CRP 811 00	
	Selection box	
	PB slave16DE_24V, BG_TypeStation address2DP slave170 BDI 344 00/01	

3. Interface modules can alter settings and/or perform I/O module assignments with a:

double-click on the marked selection box or SETTINGS / SLAVE CONFIGURATION

The windows of the 3 possible slave types with their individual characteristics are presented below:

TIO	
11()	

Opening the window **registers** the associated I/O module.

Figure 49 TIO: Definition menu for bus-resident I/O nodes

Slave Configurat	tion								×
General —							7		
Device	170 BDI 344 00 /	01	St	ation add	Iress	11		OK	
Description	Description 16DE_24VDC_Slave11 Cancel								
Activate devi	ce in actual config	uration						Parameter Data *	*)
Enable watch	ndog control		GSD file	ASA	_7512.gs	d		DPV1 Parameters *	*)
Max. length of in-	-/output data 12	28 Byte	Length c	of in–/out	out data	4 Byte	_ A	ssigned master	
Max. length of inp	out data	64 Byte	Length o	of input da	ata	4 Byte	S	Station address 1	
Max. length of our	tput data	64 Byte	Length o	of output	data	0 Byte	<	Master Description>	
Max. number of n	nodules	1	Number	of modul	es	1		1 / 140 CRP 811 00	
Module (type list)		Inputs	Outputs	In/Out	Identifie	er	┢└┘		
170 BDI 344 00 /	01 16DE	2 Byte			0x00, 0	x11		ctual slave Station address 11	
							<	Slave Description>	
							•	11 / 170 BDI 344 00 / 01	
Slot Idx Module	(configured list)	Syn	nbol Type	I Addr. I	Len. Typ	e O Ado	IrO Len.	Append Module	
1 1 170 BD	I 344 00 / 01 16DE	E Mod	lul#1 IB	0 2	2			Remove Module	
								Insert Module	
								Predefined Modules *	*)
							-	Symbolic Names *	*)
								Symbolic Names *	*)

Explanation of the slave parameters

Station address / description

can be altered here.

Activate device in actual configuration

Enabled: In this configuration the module is recognized and processed continously. **Disabled:** The absence or failure of this module will not influence bus operations, i.e. the slave will neither be parameterized nor configured by the master.

Enable watchdog control

Enabled: Process outputs are not set to "0" signal, should the set supervision time be exceeded (refer to DP Master Settings).

Disabled: The states of the process outputs are not influenced, even if an interruption in the communication to the master has exceeded the set supervision time.

Momentum:

A single desired I/O module is to be entered after this window is opened.

Figure 50 Momentum interface modules: I/O node assignment menu

Explanation of the slave parameters (continued)

Append I/O module with:

a left–click on the desired module within the type list / APPEND MODULE or a double–click directly on the desired module. INSERT MODULE is not effective here, as only one module can be entered.

*) Buttons marked with this asterisk symbol are not to be utilized for Schneider modules. Any parameters offered are not to be changed.

4 x Max. length / length columns (1)

Module count and the figures for total data resources available, and as allocated through the configured I/O mapping are shown in both columns.

Compact:

Up to 18 I/O modules can be entered after this window is opened.

Figure 51 Compact interface modules: I/O node assignment menu

Slave Configuration					×
General					
Device DEA 203		Stati	ion address	17	
Description Slave17					Cancel
Activate device in actual con	figuration				Parameter Data *)
Enable watchdog control		GSD file	ASA_A203.	gsd	DPV1 Parameter *)
Max. length of in-/output data	392 Byte	Length of i	in–/output data	a 7 Byte	Assigned master
Max. length of input data	244 Byte	Length of i	input data	7 Byte	Station address 1
Max. length of output data	244 Byte	Length of	output data	0 Byte	<master description=""></master>
Max. number of modules	18	Number of	fmodules	7	1/140 CRP 811 00
Module (type list)	Inputs	Outputs I	n/Out Identi	fier 🕈	2)
SPACE		· · · ·	0x00		🛛 🕞 Actual slave ————————————————————————————————————
DEP 208	1 Byte 1 Byte		0x41, 0x41	0x00, 0x0F	Station address 17
DEP 210	1 Byte		0x41,	0x00, 0x10	<slave description=""></slave>
DEP 211 DEP 214	1 Byte 1 Word		0x41, 0x41	0x00, 0x11 0x40 0x14	17/DEA 203
DEP 215	1 Word		0x41,	0x40, 0x2E +	
Slot Idx Module (configured list	t) Symt	ool Type I	Addr. I Len. T	ype O AddrO	Len. Append Moo
1 1 DEP 208	Modu	le1 IB	0 1		Remove Module
3 1 DEP 208	Modu	lez IB le3 IW	2 1		Insert Module
4 1 DEP 211	Modu	le4 IB	3 1		Prodofined Modules *)
5 1 DEP 211 6 1 SPACE	Modu	leo IB	4 1		()
7 1 DEP 210	Modu	le7 IB	5 1		Symbolic Names *)

Explanation of the slave parameters (continued)

I/O module entry procedure:

Modules are entered in succession into the configured list by a: left–click on the desired module (in the type list) / APPEND MODULE or double–click the desired module directly.

Insert the **module** ahead of a chooseable position in the configured list by a left–click on the desired module (in the type list) / left–click on the next position in the project list / INSERT MODULE. The slot number is generated automatically.

Assigned master (2)

View: The master is shown which belongs to the currently displayed slave. **Change:** The current slave can be assigned to another master here.

Actual slave (3)

View: With the opening of this window the currently selected slave is shown with type identifier and address.

Change: Using the arrow–keys, all slaves assigned to the currently active master can be invoked for edit/check.

Parameter data (for slaves with file extension, e.g. GSG or GSF)

The parameters behind this button apply exclusively to those modules, whose DDB (GSD) files have a country–specific file extension (e.g. GSG for Germany or GSF for France). They permit the module and user–specific adaptation of the control process, such as the specification of limiting values for current and voltage ranges.

Note

F

For Schneider slaves (Classic TIO, Momentum, and Compact) the Parameter button is meaningless, (i.e. the DDB files have the GSD file extension).

Type list: List of the available I/O modules

This list contains all I/O modules suitable for the respective interface module. The required modules are to be taken from this list and then entered in the list below (with the help of the first 3 buttons next to the configured list).

Meaning of the type list columns

- Inputs: Indication of module input memory allocation; significance under CRP 811: Number of input data (byte or word) per slave (for compact slaves) resp. per module (for modular slaves).
- Outputs: Indication of module output memory allocation; significance under CRP 811:

Number of output data (byte or word) per slave (for compact slaves) resp. per module (for modular slaves).

 In/Out: Indication of module combined I/O memory allocation; significance under CRP 811:

Number of combined I/O data (byte or word) per slave (for compact slaves) resp. per module (for modular slaves).

Identifier: Display of the module identification as per PROFIBUS standard.

Note

F

Type list column widths are user-variable.

Configured list: List of the employed I/O modules

The I/O modules a slave requires for a bus project are entered in this list (with the help of the first 3 buttons next to this list).

Meaning of the configured list columns

- Slot: Slot indicator within the modular slave "subrack".
- Idx: Display of the running data index number within the module, only meaningful for modular or compact slaves (not currently implemented for Schneider slaves).
- Symbol: Display/change of the successive numbering for the selected modules as provided by the system. These names are used in connection with the window opened by the "Symbolic Names" button.
- Type: Indication of the data type employed; significance under CRP 811: –IB: Byte input data
 - -IW: Word input data
 - –QB: Byte output data
 - -QW: Word output data
- I Addr.: Relative input data byte address for the selected module of a slave. Meaningless for CRP 811.
- I Len.: Number of input data byte/words per module of a slave (type-specific).
- O Addr.: Relative output data byte address for the selected module of a slave. Meaningless for CRP 811.
- O Len.: Number of output data byte/words per module of a slave (type-specific).

F

Note

Configured list column widths are user-variable.

Determination/control of bus parameters

For bus parameters a distinction is made between bps rate dependent and independent parameters:

1. Bps rate selection: SETTINGS / BUS PARAMETER ...

Value range: 9.6 Kbps through 12 Mbps in fixed increments. Default value: 1,500 Kbps.

F

Note

A standard parameter setting is automatically offered for each bps rate.

The bps rate dependent parameters can be modified through an Edit button. The relationships prescribed in the PUO guidelines and PROFIBUS standard (DIN 19245, Parts 1/3, resp. EN 50170) are to be taken into account.

Note

F

The edit function can be enabled through the "User-defined" setting under the OPTIMIZATION menu command.

Figure 52	Bus parameter menu with standard settings
-----------	---

Edit Bus Parameter							×
Baud rate	1,50	00 kBi	ts/s	≜		[ОК
Slot Time		300	tBit	Target Rotation Time	5991	tBit	Cancel
Min. Station Delay of Responde	ers	11	tBit	Target Rotation Time	3.9940	ms	
Max. Station Delay of Responde	ers	150	tBit	GAP Actualization Facto	r 10		
Quiet Time		0	tBit	Max. Retry Limit	1		
Setup Time		1	tBit	Highest Station Address	10		
Tid1	68	tE	Bit	Poll Time-out	10	ms	
Tid2	150	tE	Bit	Data Control Time	1200	ms	
Auto clear modus OFF	-			Min. Slave Interval	2.000	ms	
				Watchdog Control	200	ms	
Auto clear modus ON							

Bps rate dependent bus parameters (standard)

The exemplary value combinations presented in Table 19 are valid as global relationships between the bps rate and bus parameters when using the **CRP 811** master module.

Caution

Note

The standard setting as offered is not applicable. Rather make use of the appropriate values as assigned in Table 19.

E

The settings shown by the SETTINGS / MASTER SETTINGS menu sequence have no significance for the CRP 811.

Handling for bus parameter refresh

An option is available to rescan bus parameter values after configuration has been completed. Multiple changes to the set of selected nodes leave the values shown in a non–optimal state, since the values displayed function according to the trailing pointer principle. This means that any maximum interim value reached is never reduced, leaving values at their "high water marks".

Recalculation

In order to achieve a more valid recalculation of the values involved, one reduces the Target Rotation Time to a value below the true value, accepting the data with "OK", "OK", then making a renewed opening of the BUS PARAMETER menu where the "Highest Station Address" is then altered to reflect the actual givens (i.e. max. master address).

Parameter	<=187.5 Kbps	500 Kbps	1.5 Mbps	3 Mbps	6 Mbps	12 Mbps
Slot time	100	200	400	400	600	1000
Min. St. Delay of Resp.	11	11	11	11	11	11
Max. St. Delay of Resp.	60	100	250	250	450	800
Quiet time	0	0	3	3	6	9
Setup time	1	1	4	4	8	16
TTR (multi–master) (tBit) (ms)	3640 19.4133	4862 9.7240	6107 4.0713	7459 2.4983	9789 1.6315	14493 1.0228
Gap actualization fac- tor	10	10	10	10	10	10
Max. retry limit	1	1	1	2	3	4
Highest station ad- dress	10 *)	10 *)	10 *)	10 *)	10 *)	10 *)
(Watchdog / TTR ra- tio)	1	1	1	1	1	1
Poll time-out (ms)	10	10	10	10	10	10
Data control time (ms)	1200	1200	1200	1200	1200	1200
Min. slave interval (ms)	0.100	0.100	0.100	0.100	0.100	0.100
Watchdog control (ms)	200	200	200	200	200	200

Table 19 Response times for a CRP 811 with 9 slaves (170 BDI 344 00)

Explanation of bus parameters

Slot time (T_SL)

Slot time supports bus protocol supervision in two ways. First of all, the sender of a request telegram expects a response telegram within the assigned time interval. Furthermore, a station must reply within the slot time with a request telegram of its own after receiving the token, or pass the token off. The declaration is made in bit times (1/bps rate).

Allowable value range: $1 \dots 2 \exp(16) - 1 (T_Bit)$

The allowed setting varies with the bus speed: refer to Table 19

Min. station delay of responders (min T_SDR)

Minimum station delay of responder, i.e. a responder may only send its response telegram after expiration of this period.

Allowable value range: 1 ... 2 exp(16) - 1 (T_Bit)

The allowed setting varies with the bus speed: refer to Table 19

Max. station delay of responders (max T_SDR)

Maximum station delay of responder, i.e. a responder must have begun to send its response telegram before expiration of this period.

Allowable value range: 1 ... 2 exp(16) - 1 (T_Bit)

The allowed setting varies with the bus speed: refer to Table 19

Caution

The master's maximum T_SDR parameter value is not less than the slave's maximum T_SDR parameter value.

Quiet time (T_QUI)

is the modulator decay time after end of message. It only comes into use when repeaters and modulators are utilized.

Allowable value range: 0 ... 255 (T_Bit)

The allowed setting varies with the bus speed: refer to Table 19

Setup time (T_SET)

Definition: Setup time is the reaction time required between the arrival of an interrupt request, and the execution of the necessary response.

Allowable value range: 1 ... 255 (T_Bit)

The allowed setting varies with the bus speed: refer to Table 19

119

TTR, total token rotation time (only in multi-master mode)

Period for the circulation of a token.

Token interchange to the next master up to the hold time expiration. Single masters pass off the token to themselves. This entry is meaningless for passive nodes.

Note

If the token comes back before TTR expiration, additional (prio1) messages can be sent in the remaining time. Thereafter the token is passed on to the next master.

Allowable value range: 1 ... 2 exp(24) (4294967294) – 1 (T_Bit)

Appropriate preset values: refer to Table 19

Gap actualization factor (G)

This factor determines after how many token passes a GAP telegram for the acceptance of a new station into the logical ring will be sent. This entry is meaningless for passive nodes.

Allowable value range: 1 ... 255

Appropriate preset values: refer to Table 19

Retry limit (max_retry_limit)

This factor specifies how often layer 2 must repeat a request telegram, when it fails to receive a response telegram from a known station within the assigned time frame.

Allowable value range: 1 ... 8

Appropriate preset values: refer to Table 19

Highest station address (HSA)

is the highest bus address to which a test for the presence of active bus masters is performed. The Gap factor determines how many token passes are carried out thereafter.

Note

The response time between the node rescans is shortest, when the highest station address (HSA) is lowest.

Allowable value range: 2 ... 125

Appropriate preset values: refer to Table 19

Bps rate independent bus parameters (standard)
Note This independence holds for data rates from 93.75 Kbps through 12 Mbps.
Poll time–out is the period, after which a DP master (class 1/2) is reset, when a fault has occurred.
Permitted value range/default: 0 65535 (ms): >>100 (ms) / 500 (ms)
T_DC, data control time is the time frame required for the checking of DP slave status, when auto clear mode is active.
Note Auto clear is not supported by the CRP 811 type master.
Caution Should changes be performed by the user, the dependency between bps rate and the slave watchdog time interval is to be respected.
Caution The T_DC value must be 6 times longer than the slave T_WD (T_DC = 6 x T_WD). Should different times exist when several slave are present, the largest value must be used.
Permitted value range/default: 1065535 (ms) / 1000 (ms)
Min. slave interval This parameter specifies the earliest period after which the master may poll the next slave, when the slave has not passed data. The next slave is polled immediately after completion of such a data transfer.
Permitted value range/default: 0.1 6553.5 (ms) / 2 (ms)
Note The value of this parameter is automatically adapted to that of the slave having the maximum value for "Min. Slave Interval".
Example: The values are 0.1 ms for TIOs, 2.0 ms for Compact.

Watchdog control (for Slave Watchdog Time, T_WD)

is the time frame during which the presence of every slave is monitored. This supervision can be disabled for individual slaves.

Permitted value range/default: 1 ... 65535 (ms) / 200 (ms)

Through the FILE / PRINT function all parameter settings (one page per node including bus parameters) can be output to printer.

4.2.4 Bus Assignment and I/O Mapping under Concept

For the further PROFIBUS processing the generated bus data are to be imported within the framework of the I/O configuration, and a corresponding I/O addressing to be made. The number of bus lines must however first be defined in the PLC configuration. The following points are to be handled:

- Define number of bus lines
- The bus project is assigned to the DP master in its slot
- The address offset is set
- Import of the bus project
- Modification of the I/O addressing as necessary
- Load data into the PLC station

Figure 53 Bus node configuration

20

Determine the number of bus masters

After calling up a new project, and the selection of the Quantum system and CPU, e.g. a 140 CPU 213 04, the following processing steps are to be implemented. The result can be seen in the following Figure 54. With a double–click in the gray, highlighted portion of the "Config Extensions" text box, the number of bus masters is released for further editing.

PLC Configuration				_ 🗆 🗙
		PLC	;	
Туре:	140 CPU 213 04		Available Logic Area:	47943
Exec Id:	871		Extended Memory:	
Memory Size:	48K			
Ranges				
Coils: Discrete Inputs: Input Registers: Holding Registers:	000001 - 001536 100001 - 101008 300001 - 302000 400001 - 401872	-	 This value range in particular is to be made consistent with: Lifesion address 	6
Battery Coil: Timer Register: Time of Day:			–Diagnostic address (as well as other settings)	
Config	Extensions			
Data Protection: Peer Cop: Hot Standby: Ethernet: PROFIBUS DP:	Dependi	ing up	oon the CPU type, up to 6 DP mas	ters are def

Choosing a bus master type

The fixation of the DP master type, it's slot, and addressing is performed through the following menus (beginning with Figure 55). Called through CONFIGURE / I/O MAP.

Figure 55 I/O mapping

l	/O Map								×
	Head S	Setup	Expansi	on Size:	1	44 •		+	
		Go To	Local/Re	mote (Hea	d Slot ?)	±			
	Inse	ert D	elete	Cut	C	ору	Paste		
ſ	Drop	Ту	/pe Hol	dup (x100	In bits	Out bits	Status	Edit	•
	1	Quantun	n I/O	3	0	0		Eqlit	
		Select th	nis row wh	en insertir	ng at end	of list			-)
								<u>r</u>	•
				ок с	ancel	Help			

Enter bus master type

After I/O mapping has been selected (Quantum I/O is chosen), left–click the "Edit..." button of the Quantum drop station. The following window is opened for further processing.

Local Qua	antum Drop							×
Drop Modules:	6 Bits In:	32 Bit Out:	64	— Module Bits II	e n:0 B	its Ou t: 0		
Status Ta	ble:	ASCII Port #:n	one 🛨	Cle	ar Pa	arams	١	
Delete	Prev	Next		Cu		2)	Paste	
Rack-Slo	Module	Detected	In Ref	In End	Out Ref	Out End	Des	Ð
1–1	CPS-211-00						DC PS 24	
1–2	CPU-x13-0x		/				CPU 1xM	
1–3	AVO-020-00				400001	400004	AN OUT 4	I H
1–4	DDI-353-10		200001	300002			24DC IN 1	ļ
1–5		/	/					
1–6								
1–7								
1–8								
1–9	/							
1–10	/							
1–11	/							
1–12	/							
1–13	/							
1-14 /								
1–15	CRP 811						ProfiBus	Ŧ
		ОК	Cance	l Help	Pol	I		

Accepting generated bus data (from the bus configuration tool)

After selecting the PROFIBUS master from the I/O module list with a left–click on the desired slot (see 1) in Figure 56), the next window is opened with the "Params" button (see 2) in the same figure).

Figure 57 Import window for acceptance of the configured data

CNF file acceptance

The import button opens a file select dialog box where the PROFIBUS configuration data file (CNF file) to be imported can be specified. After completing the file selection and the data import successfully, the configured modules are registered as per the following Figure 58.

CRP-811-	-00 (ProfiBus DP)								×
Master —					Sla	ve			
Bus Add	r: 1 • Import	Bac Preset 2)	k Plane S Para	Slot: 15 ns 1)		Clear Cut	Params	 Pa	aste
Bus Addr:	Slave Type		In		n Ref	In End	Out Type	Out Ref	Out E 🕈
11	170 BDI 344 00 / 01		UINT16	+					
12	170 BDM 344 00 / 01		UINT16	+			JINT16 🔻		
13	170 BDI 354 00 / 01		UINT32	÷					
14	170 BDI 344 00 7 01		UINT16	+					
15	170 BDM 344 00 / 01		UINT16	+			JINT16 👎		
16	170 DNT 110 00								
		1	UINT32	÷					
17	DEA 203								
		1	UINT8	+					
		2	INT32	+			INT32 🔻		
		3	INT16	+			INT8 🔻		
		4	INT16	+			INT16 🔸		
			-					·	+
•									+
		ОК	Car	icel	Help	0	Poll		

Figure 58 Entry window for the I/O and diagnostic data references

Data type selection (example)

The modules configured through the bus configuration tool are registered with their bus addresses. The BOOL data type is suggested by default. The data type as required by the project specifications is selected manually from a drop–down list, as exemplarily depicted in the figure above.

4.2.5 Assignment of the I/O and Diagnostic Signals

In the next steps the master parameters and the desired I/O and diagnostic data references are introduced into the Concept project.

Master parameters

The master bus address setting and the set bus transmission rate can be checked through the "Params..." button (see 1) in Figure 58).

Figure 59 DP master parameters

DP-Master-Params	
Bus Address 1 Baudrate 1.5 MBaud	
Max Diag Entries 100 Max Diag Length 32	2
Lifesign 3x: <u>1,500</u>	
OK Cancel Help	

- 1 The maximum values for Schneider modules can be gathered from Table 2 on page 25.
- 2 Special care should be paid to the relationship with the actually required data length (diag. data length) as stated in Figure 61.

Scope of the diagnostic data

It shouldn't be forgotten that the maximum number of diagnostic entries and the length of the data made available in the GSD file are for diagnosis purposes. The offered values are normally accepted.

[₹]

Note

The storage area for the lifesign is to be taken into account for the allocation as well. This entity occupies 1 word. Its evaluation must be programmed by the user. Bits 14 through 16 can be evaluated (refer to Table 3 on page 33)

I/O references

The allocation of memory references can be alternatively carried out manually or automatically (with a definable offset). Manually means an individual input for all references. Automatically means the continuous allocation of addresses in ascending order on the basis of a definable offset.

Setting I/O and diagnostic offsets

The offset menu is accessable through the "Preset..." button (see 2) in Figure 58).

Figure 60 Offset settings for I/O and diagnostic data references

Preset Setting	×
I/O mapping	
Input Refs	Output Refs
X 1x 1	X 0x 1
X 3x 1	X 4x 1
Diag Ref	
X 3x 1501	
OK Can	cel Hel

The exemplary I/O offset values are: 000001, 100001, 300001, 400001.

Note

The illustration of the assignment between I/O terminals and memory references in the above–named documentation is made in mode 984 (MSB right).

Supplementary documentation: Modicon TSX Momentum, PROFIBUS DP communications adapter: 870 USE 004 02.

Diagnostic reference

The offset for the diagnostic reference is 301501. After registration of the set values a self–initiated allocation of memory addresses takes place.

Note

The illustration of the assignment between I/O terminals and memory references in the above–named documentation is made in mode 984 (MSB right).

Supplementary documentation: Modicon TSX Momentum, PROFIBUS DP communications adapter: 870 USE 004 02

Automatic reference allocation

After acceptance of the default settings as perFigure 60 with OK, a window opens automatically with the registered reference as shown in Figure 61.

CRP-811	–00 (Profibus DP)									×
Master -					Sla	ve				
Bus Add	dr: 1	Bac	k Plane S	Slot:	15	Clear	Para	ams		
- Delet		Desert	Deres			0(-1-
Delet	ie Import	Preset	Para	ms		Cut	Co	эру	Pa	ste
Bus Addr	: Slave Type	Module	In Typ	e	In Ref	In End	Out Ty	pe	Out Ref 0	out Enc 🕈
11	170 BDI 344 00 / 01		BOOL	+	100001	100016				
12	170 BDM 344 00 / 01		BOOL	+	100017	100032	BOOL	+	00001	00001
13	170 BDI 354 00 / 01		BOOL	+	100033	100064				
14	170 BDI 344 00 7 01		BOOL	+	100065	100080				
15	170 BDM 344 00 / 01		BOOL	+	100081	100096	BOOL	•	000017	00003
16	170 DNT 110 00									
		1	BOOL	ŧ	100097	100128				
17	DEA 203									
		1	BOOL	+	100129	100136		_		
		2	BOOL	+	100145	100192	BOOL	+	000033	00020
		3	BOOL	+	100193	100272	BOOL	+	000209	00021
			BOOL		100273	100416	BOOL		000225	000288+
		4	BUUL	+	100275					
Diagnos	stic Address Wi	4 ndow	BUUL	•	100275					
Diagnos _[Master —	stic Address Wi	4 ndow	BOOL	•	Sla	ve —				
Diagnos Master –	stic Address Wi	4 ndow	BOOL	•		ve				
Diagnos Master – Bus Add	stic Address Wi	4 ndow Bac	k Plane S	Slot: '	15 Sla	Clear	Para	ams		
Diagnos Master – Bus Add	stic Address Wi	4 ndow Bac	k Plane S	Slot: 7	15	Clear	Para	ams		
Diagnos Master – Bus Add	stic Address Wi dr: 1 ie Import	4 ndow Bacl Preset	k Plane S	Slot: 7	15 Sla	Clear Cut	Para	ams	Pa	ste
Diagnos Master – Bus Add	stic Address Wi dr: 1 ie Import	4 ndow Bacl Preset	k Plane S	Slot: 7	15 Sla	Clear Cut	Para	ams	Pa	ste
Diagnos Master – Bus Add Delet Bus Addr	stic Address Wi dr: 1 le Import	4 ndow Bacl Preset	k Plane S	Slot: " ms	15 Sla	Clear Cut	Para Co d	ams opy Des	Pa	ste
Diagnos Master – Bus Add Delet Bus Addr 11	stic Address Wi dr: 1 ie Import [: Slave Type 170 BDI 344 00 / 01	4 ndow Bacl Preset Diag Tyr	k Plane S	Slot: 7 ms g Len 6	15 Sla	Clear Cut f Diag End 301506	Para Co d	ams opy Des	. Pa	ste
Master – Bus Add Delet Bus Addr 11 12	stic Address Wi dr: 1 : Import : Slave Type 170 BDI 344 00 / 01 170 BDM 344 00 / 01	4 ndow Bacl Preset Diag Typ UINT8 UINT8	k Plane S Parai	♦ Slot: ms g Len 6 6	15 Sla 15 Diag Re 301501 301507	Clear Cut f Diag End 301506 301512	Para Co d	ams opy Des	. Pa	ste
Master – Bus Add Delet Bus Addr 11 12 13	stic Address Wi dr: 1 te Import : Slave Type 170 BDI 344 00 / 01 170 BDM 344 00 / 01 170 BDI 354 00 / 01	4 ndow Bacl Preset Diag Typ UINT8 UINT8 UINT8 UINT8	k Plane S Parai	Slot: 7 ms g Len 6 6 6	102173 15 Diag Re 301501 301507 301513	Clear Cut f Diag End 301506 301512 301518	Para Co d	opy Des	. Pa	ste
Diagnos Master – Bus Add Delet Bus Addr 11 12 13 14	stic Address Wi dr: 1 te Import : Slave Type 170 BDI 344 00 / 01 170 BDM 344 00 / 01 170 BDI 354 00 / 01 170 BDI 354 00 / 01	4 ndow Bacl Preset UINT8 UINT8 UINT8 UINT8 UINT8 UINT8	k Plane S Parai	Slot: 7 ms g Len 6 6 6 6	Diag Re 301501 301507 301513 301513	Clear Cut f Diag End 301506 301512 301518 301524	Para Co d	ams opy Des	Pa	ste
Diagnos Master – Bus Add Delet Bus Addr 11 12 13 14 15	stic Address Wi dr: 1 te Import : Slave Type 170 BDI 344 00 / 01 170 BDI 354 00 / 01 170 BDI 354 00 / 01 170 BDI 344 00 / 01 170 BDI 344 00 / 01	4 ndow Bacl Preset UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8	k Plane S Paran De Diag	Slot:	Diag Re 301501 301507 301513 301513 301519 301525	Clear Cut G Diag End 301506 301512 301518 301524 301530	Para Co d	Des	. Pa	ste
Diagnos Master – Bus Add Delet Bus Addr 11 12 13 14 15 16	stic Address Wi dr: 1 te Import : Slave Type 170 BDI 344 00 / 01 170 BDI 354 00 / 01 170 BDI 354 00 / 01 170 BDI 344 00 / 01 170 BDI 344 00 / 01 170 BDI 344 00 / 01	4 ndow Bacl Preset UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8	k Plane S Paran De Diag	• Slot: - ms 9 Len 6 6 6 6 6 6 6 6 6 6 6	Diag Re 301501 301507 301513 301519 301525 301531	Clear Cut Gliag End 301506 301512 301518 301524 301530 301536	Para Co d	nms ppy Des	. Pa	ste
Diagnos Master – Bus Add Delet Bus Addr 11 12 13 14 15 16	stic Address Wi dr: 1 te Import : Slave Type 170 BDI 344 00 / 01 170 BDI 354 00 / 01 170 BDI 354 00 / 01 170 BDI 344 00 7 01 170 BDI 344 00 / 01 170 BDM 344 00 / 01	4 ndow Bacl Preset Diag Typ UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8	k Plane S Paran	• Slot: - ms g Len 6 6 6 6 6 6 6 6 6 6 6 6 6	Diag Re 301501 301501 301513 301519 301525 301531	Clear Cut Cut 301506 301512 301518 301524 301530 301536	Para Co d 1170	Des		ste
Diagnos Master – Bus Add Delet Bus Addr 11 12 13 14 15 16 17	stic Address Wi dr: 1 te Import : Slave Type 170 BDI 344 00 / 01 170 BDI 354 00 / 01 170 BDI 354 00 / 01 170 BDI 344 00 7 01 170 BDI 344 00 / 01 170 BDI 344 00 / 01 170 DNT 110 00 DEA 203	4 ndow Bacl Preset Diag Typ UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8	k Plane S Paran De Diag * * * *	• Slot: * ms 3 Len 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Diag Re 301501 301507 301513 301519 301525 301531 301537	Clear Cut Cut 301506 301512 301518 301524 301530 301536 301542	Para C d 1170	Des	Pa 	ste
Diagnos Master – Bus Add Delet Bus Addr 11 12 13 14 15 16 17	stic Address Wi dr: 1 te Import : Slave Type 170 BDI 344 00 / 01 170 BDM 344 00 / 01 170 DNT 110 00 DEA 203	4 ndow Bacl Preset Diag Typ UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8	k Plane S Parat	Slot:	Diag Re 301501 301501 301507 301513 301513 301525 301531 301537	Clear Cut Cut 301506 301512 301518 301524 301530 301536 301542	Para Co d 1170	Des ADI	. Pa	ste
Diagnos Master – Bus Add Delet Bus Addr 11 12 13 14 15 16 17	stic Address Wi dr: 1 te Import : Slave Type 170 BDI 344 00 / 01 170 DNT 110 00 DEA 203	4 ndow Bacl Preset UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8	k Plane S Parat	• Slot:	Diag Re 301501 301507 301513 301513 301525 301531 301537	Clear Cut Cut 301506 301512 301518 301524 301530 301530 301542	Para Cc d 1170 DEP ZAE	Des ADI 208 201	. Pa	ste
Diagnos Master – Bus Add Delet Bus Addr 11 12 13 14 15 16 17	stic Address Wi dr: 1 te Import : Slave Type 170 BDI 344 00 / 01 170 BDI 344 00 / 01 170 BDI 354 00 / 01 170 BDI 344 00 / 01 170 BDI 344 00 / 01 170 DNT 110 00 DEA 203	4 ndow Bacl Preset UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8	k Plane S Parat	Slot: *	Diag Re 301501 301507 301513 301513 301513 301525 301531 301537	Clear Cut Cut 301506 301512 301518 301524 301530 301536 301542	Para Cc d 1170 DEP ZAE ADU	ADI 208 201 216	. Pa	ste
Diagnos Master – Bus Addr Delet Bus Addr 11 12 13 14 15 16 17	stic Address Wi dr: 1 e Import : Slave Type 170 BDI 344 00 / 01 170 BDI 344 00 / 01 170 BDI 354 00 / 01 170 BDI 344 00 / 01 170 BDI 344 00 / 01 170 DNT 110 00 DEA 203	4 ndow Bacl Preset UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8	k Plane S Parat	Slot: * ms j Len 6 6 6 6 6 6 6 6 6 6 6 6	Diag Re 301501 301501 301513 301525 301531 301531	ve Clear Cut 301506 301512 301518 301524 301530 301536 301542	Para Cc d 1170 DEP ZAE ADU ADU	 Ams Dppy Des ADI 208 201 216 214 	. Pa	ste
Master Bus Addr Delet Bus Addr 11 12 13 14 15 16 17	stic Address Wi dr: 1 e Import : Slave Type 170 BDI 344 00 / 01 170 BDI 354 00 / 01 170 BDI 354 00 / 01 170 BDI 344 00 / 01 170 BDI 344 00 / 01 170 DNT 110 00 DEA 203	4 ndow Bacl Preset UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8	k Plane S Parat	•• Slot: ms 3 Len 6 6 6 6 6 6 6 6 6 6 6 6 6	Diag Re 301501 301501 301513 301525 301537	Ve	Para Cc d 1170 DEP ZAE ADU ADU	Des Des ADI 208 201 216 214	. Pa	ste
Diagnos Master → Bus Addr Delet Bus Addr 11 12 13 14 15 16 17	stic Address Wi dr: 1 : : : : : : : : : : : : : : : : : :	4 ndow Bacl Preset UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8	k Plane S Parat	• • • • • • • • • • • • • • • • • • •	Diag Re 301501 301507 301513 301525 301537	Ve	Para Cc d d 1170 DEP ZAE ADU ADU	Des ADI 208 201 216 214	. Pa	Ste

Figure 61 Automatic I/O assignment with offsets for I/O and diagnostic signals

Note to Figure 61

The diagnostic data entries in the figure above cannot be seen due to space restrictions. But even here the addresses are allocated continuously from the address 301501.

End of configuration

The actual configuration process is terminated with this action. After data registration is completed and the file saved, the user program along with the I/O configuration is to be loaded into the PLC with the steps known under Concept.

4.2.6 Loading and Starting the PLC Station

The configured data can alternatively be loaded through:

- RS–232C (MB) or
- MB+

This is illustrated in the following figures.

Transfer over RS-232C (MB)

The load operation requirements are:

- Successful installation of the CRP 811 and CPU xxx firmware
- Concept software V 2.2 or higher
- Connection cable: 990 NAA 263 30 / 50 or YDL 52
- PROFIBUS DP cable (bulk): KAB PROFIB
- PROFIBUS connectors:490 NAD 911 03 /04 /05

Figure 62 Single station commissioning configuration through MB

Transfer over MB+

The load operation requires a running communications connection. As well as:

- Concept software
- A SA85 communications module (head)
- MB+ drop cable: 990 NAD 211 10 resp. 30 (2.4 m resp. 6 m)
- MB+ tap: 990 NAD 230 00
- MB+ cable (bulk): 9841
- MBX driver configuration software for SA85 PC operation on MB+ -Node address setting (hardware)
 - -SA85 communications module, (hardware)
 - -Free PC memory address (e.g. 0D1000H, as available), (hardware)
 - -Free PC interrupt (as available), (hardware)
 - -Operation mode (polling recommended).
- Monitor for CRP 811 terminal operation (as needed)
- Monitor to CRP cable: 990 NAA 263 30 / 50 or YDL 52

Figure 63 Load through an existing system bus

Loading and starting the DP configuration (including the user program)

The load operation is performed through the standard

Concept handling procedures ON-LINE / CONNECT ... LOAD.

CRP 811 Diagnostic Facilities

135

The topics presented in this chapter are:

- Scope of the Diagnostic Support, Section 5.1.
- RS–232C Diagnostic Interface, Section 5.2.
- LED Diagnostics, Section 5.3.
- CDS Task Diagnostics, Section 5.4.
- CCMP Task Diagnostics, Section 5.5.
- Back Plane Handler Task Diagnostics, Section 5.6.
- PC Card Handler Task Diagnostics, Section 5.7.
- Terminal Menu Handler Screens , Section 5.8.

5.1 Scope of the Diagnostic Support

The diagnostic LEDs and RS–232C diagnostic interface provide an on–line diagnosis capability for all relevant option board software tasks and modules, as well as the configuration data and all data transferred between the PROFIBUS network and Quantum state RAM.

Figure 64 CRP 811 software tasks and modules

Acronyms

CDS: Configuration Data Server: A handler controlling the configuration process and distribution of configuration data for a communications adapter.

CCMP: Coordination Channel Communication Manager: Profile-specific module

CMI: Common Memory Interface

OS: Operating System

DDLM: Direct Data Link Mapper

FDL: Fieldbus Data Link

ASIC: Application Specific Integrated Circuit

PCMCIA: Personal Computer Memory Card International Association = PC Card

5.2 RS–232C Diagnostic Interface

The topics presented in this section are:

- Output to Printer, Section 5.2.1.
- Menu System, Section 5.2.2.

Use of the RS–232C diagnostic interface requires either a terminal, or a PC running a terminal emulation program (e.g. "PROCOMM") to be connected to the RS–232C (Sub–D9) port socket.

For diagnostic purposes the PC is to be connected to the RS–232C (Sub–D9) port socket.

This requires one of the following cable configurations: Modbus serial cable 990 NAA 263–x0 or YDL 052.

Figure 65 RS-232C port diagram

137

The CTS pin of the CRP 811 option board's diagnostic interface must receive a "high" signal over the cable connector from the terminal device before it can output data.

Default terminal connection settings:

- 19,200 bps
- 8 data bits
- 1 stop bit
- no parity

Remark

When a PC is employed as the terminal, a bps rate higher than the conventional 19,200 bps for a terminal may be used. This allows a much higher data rate to the PC and thus it's log file.

5.2.1 Output to Printer

The operator can toggle the RS–232C diagnostic interface between the menu system and normal print output mode from his terminal. The "output to printer" mode is activated at power–up and whenever the menu system is left with the <CTRL>–<C> double–stroke.

The normal output in the "output to printer" mode encompasses error report data as well as data output from the tasks according to their own task–specific debug mask. In expert mode these masks can be set/reset in the debug mask menu, the settings staying in effect until power–down.

5.2.2 Menu System

The menu system can be activated in the "output to printer" mode directly from the keyboard (by pressing either carriage return or space), bringing up the main menu for function selection. The menu system can be left for the "output to printer" mode with the <CTRL>–<C> double–stroke. The "ESCAPE" key (Esc) cancels a given input or menu.

Main menus

The RS–232C diagnostic interface makes a distinction between the normal main menu and the expert mode main menu.

The normal main menu (active after power–up) is depicted in Figure 69, on page 157. The expert mode main menu can be seen in Figure 70, on page 158. All listed menu items are activated by pressing the letters shown surrounded by parenthesis.

Error Report menu (e)

This submenu allows the user to view each task's error report ring buffers (refer to Figure 71, on page 158), even if the task's debug mask has disabled report output. If output is (once again) enabled by the debug mask, any error report output data will be automatically sent to the terminal handler task. If no terminal is connected to the RS–232C diagnostic interface, error report output data is not accepted into the task message queue. This data is still buffered in the reporting task's error report ring buffers, so that it can be displayed later (refer to Figure 72, on page 159).

DP Data menu (d)

The display of global CCMP information can be selected in this submenu. This information concerns every slave connected to this CCMP, and the data transferred to the PLC. Additional information can be found in Section 5.5 (page 150) and Figure 74 (page 160) ... Figure 82 (on page 164). The "s" submenu displaying slave data information shows I/O data as it appeared on the bus to/from the DP slaves. This format is not identical with the state RAM format!

Global Data menu (g)

This submenu presents the user with a host of information: CRP 811 firmware variant (in the screen's top line), PC Card (PCMCIA) firmware variant, global option board status, global heap base segment and size, print task ID and several print–related handles along with the max. number of error reports per task (refer to Figure 73, on page 159). A supplemental menu screen is available which provides detailed information for each task – refer to the "Task Information" menu (i)" in this chapter. **The configured PROFIBUS data rate is presented for the user in the bottom line of the global data menu.**

Firmware Update menu (u)

This submenu (refer to Figure 84, on page 165) lets the user load the board's flash Eprom with new firmware images. Pay attention to the fact, that the board will remain in the flash load state forever, should no image be loaded from the PC's flash loader. The only possibility of canceling a firmware update (flash load request) once issued, is to toggle the board's power (refer to Figure 85, on page 165)!

Terminal Setup menu (t)

This submenu (refer to Figure 86 and Figure 87, on page 166) allows the user to change the bps rate of the board's RS–232C diagnostic interface for a PC acting as a "logging device" in "output to printer" mode. Port speed can be raised from 2.400 up to 115.000 bps.

Expert Mode menu (x)

This submenu can switch the menu system into the expert mode (refer to Figure 88, on page 167) – a mode which permits access to the following additional, specialized submenus. The user must enter a valid password to enable the expert mode (refer to Figure 89). This password has a value of "ASADE 42" by default, but can be changed for the user's convenience to a value of between 6 to 31 characters (refer to Figure 91... Figure 93, on page 168). The menu system only displays the additional, specialized submenus (refer to Figure 90, on page 168) after the expert mode has been successfully activated. An overview of the normally accessible submenus follows:

Table	20	Menu	Overview
-------	----	------	----------

Selection letter	Menu
(d)	DP Data menu
(e)	Error Report menu
(g)	Global Data menu
(t)	Terminal Setup menu
(u)	Firmware Update menu
(x)	Expert Mode menu

The password is RAM-resident. Any new password entered by the user is only valid until the next board power-up. As an aid to the user, the Password menu displays a different message if a user-defined, or the original, default password is to be entered. The expert mode is to be used solely for debug purposes by skilled ASA technicans, or by the customer when directly requested by ASA, to assist in the fault diagnosis of the board. It is only expected that the customer be acquainted with the details of the board's normal main menu.

Board Reset menu (r)

This specialized submenu (refer to Figure 83, on page 164) is only accessable in expert mode, allowing the user to perform a board reset directly through the software. But be aware that this RESET only affects the connected option board and not the PLC host!

Memory Browser menu (b)

This specialized submenu (refer to Figure 94, on page 170) is only accessable in expert mode. The user is prompted for the start segment and offset values of the memory region to be displayed. The memory display starts at the given address; each line displaying the segment address and it's contents (16 bytes) in both HEX and ASCII. A new start address can be entered after one page (256 bytes) has been output.

Task Information menu (i)

This specialized submenu is only accessable in expert mode. The user is presented a menu of individual board tasks (handlers) for which information screens are available (refer to Figure 97, on page 171). Menu items can be chosen to obtain detailed information for specific tasks. A typical output screen can be seen in Figure 98 (on page 172). Some tasks are introduced by further submenus. The screen output is always task–specific, usually including internal states and dynamic values over several screens.

141

The DP submenus accessible here under (d), are the same as the submenus accessed via 'd' in the main menu (DP Data menu).

Additional submenus only exist for the following tasks:

 Table 21
 Additional submenus

Selection Letter	Menu
(b)	back plane interface handler
(c)	configuration data handler
(d)	DP communication handler (only for DP)
(n)	network interface handler

-Back Plane Interface Handler menu

This submenu displays global information of the back plane handler, e.g. hook counters and other internal information. Additional information can be found in Section 5.6 (page 155) and Figure 104 (page 175) ... Figure 106 (on page 176).

-Network Interface Handler menu

This submenu presents global information of the PC Card handler, e.g. send/receive counters and other internal information. Additional information can be found in Section 5.7 (page 156) and Figure 107 (page 176) ... Figure 108 (on page 177).

-Debug Mask menu (m)

This specialized submenu is only accessable in expert mode. It presents a further submenu to access the debug mask details of all board tasks. The user can also edit each task's debug mask (refer to Figure 95 and Figure 96, on page 170). These changes are only valid until the next board power–up, when the default debug mask values will be restored again.

5.3 LED Diagnostics

7 diagnostic LEDs are provided on the option board's front panel for on-line LED diagnosis.

Figure 68 CRP 811 option board status LEDs

Active	Ī
Ready Fault	
Back plane	
PROFIBUS	
DP S/R	
Load	
	J

- The Active, Ready, and Fault LEDs have the same standard meanings as for the Quantum I/O and option modules.
- The Active LED is used to indicate a firmware download in-progress from a PC to the option board.
- The Back plane, DP S/R, PROFIBUS, and Load LEDs all have two meanings: Either to show a transfer of PROFIBUS user and config data, or to indicate error/fault conditions from option board internal software moduls and tasks.

Meaning: Either to show a transfer of PROFIBUS user and config data, or to indicate error/fault conditions from option board internal software moduls and tasks.

The following basic blink frequencies and abbreviations have been defined to indicate the various LED block functions for the option boards:

- OFF: LED is off (dark)
- ON: LED is on
- SLOW flashing rate: 400 ms on/off
- MEDIUM flashing rate: 200 ms on/off
- FAST flashing rate: 100 ms on/off
- Fault code: A blink sequence ranging from 1 to 12 on/off states, followed by a pause. The blink sequence and pause are repeated every 6.4 sec.
- ODD blink: Repeated irregular blink sequence

LEDs	Color	Function
Active	green	ON: CPU is in operation and the back plane communication active Blinking: Flash ROM load operation is active
Ready	green	ON: Module in operating state
Fault	red	OFF: Error free operation ON: Other LEDs are flashing with a fault code
Back plane	green	OFF: Error free operation Flashing with a fault code: Back plane fault is set
PROFIBUS	green	OFF: Error free operation Flashing with a fault code: Erroneous configuration data or PROFI- BUS fault set
DP S/R	green	FAST flashing rate: Sending/receiving DP bus data MEDIUM flashing rate: Slave configuration SLOW flashing rate: Waiting for configuration data Flashing with a fault code: Erroneous configuration data set
Load	Yellow	Blinking: Configuration data load operation is active Flashing with a fault code: Load operation fault set

 Table 22
 LED state descriptions

Caution

To reset the (red) Fault LED the CRP 811 must itself be powered–up/down through a back plane hot swap, or the PLC powered–up/down.

5.4 CDS Task Diagnostics

The meanings of the fault representations are listed in the following tables.

- CDS server LED blink codes
- CDS error reports
- Fault codes for CDS error reports
- PC card handler
- DP communication handler

The "Load" LED is used exclusively by CDS to signal state and error conditions through the following blink codes:

Table	23	CDS	server	LED	blink	codes

LEDs	Meaning
Steady OFF	No task messages received / positive confirmation
Steady ON	Start-up. Still not registered with the system interface
SLOW flashing rate	CDS is initialized and waiting for messages
MEDIUM flashing rate	Loading configuration data from the PLC
FAST flashing rate	Loading task configuration data (CMI handler, CCMP, ICMP)
ODD blink	Error report incoming, when not signaled by blink codes 1 to 12
Blinking	Not used
Blink code 01	Error in PC Card configuration data
Blink code 02	Error in CCMP configuration data
Blink code 03	Error in ICMP configuration data
Blink code 04	Error in ICOM configuration data
Blink code 05	Fault in "CDS_Handler_Received_Sent_Data" function
Blink code 06	Fault receiving/sending a task message
Blink code 07	Fault while loading configuration data from PLC to CDS
Blink code 08	Fault while loading configuration data from CDS to tasks (PC card, CCMP, ICMP, resp. ICOM)
Blink code 09	Wrong board type configured
Blink code 10	Fault in "Handle_Service_Msg" function for the PC card, CCMP, ICMP, or ICOM subsystems
Blink code 11	Fault in "Handle_Service_Msg" function for the back plane handler sub- system
Blink code 12	Fault in "Handle_Service_Msg" function for the CDS subsystem

In the "Detail" element of the error report the CDS_State value is in the upper word and the sending subsystem in the lower. The line number of the error report call is in the "Screen Line" element. The cause of error (e.g. service_class, subsystem, ...) is usually found in the "Code" element. If the cause for an error report cannot be expressed by the blink codes 1 to 12, there will be an "ODD" blink.

Message ID	Member code	Message ID meaning
3	Slot ID wanted	No configuration data found for this slot ID
9	Timer model	Wrong timer model received
102	Service class / service	Requested memory resources unavailable
103	Fault code	Fault while receiving a task message for CDS
104	Fault code	Fault while sending a task message from CDS
105	Message type	An invalid message type was received
106	Service	Unrecognized service received
107	Service class	Unrecognized service class was received
108	Received PLC state	Unrecognized PLC state received
109	Received connection ty- pe	Unrecognized connection type received
110	CDS state	Unrecognized CDS state encountered
111	Configuration load sta- tus	Fault while loading configuration data
112	Service class / service	PDU rejected as invalid
113	Service class / service	Invalid subsystem received
114	Invoke ID	Received message has invalid invoke ID
115	Fault code	Fault while loading configuration data from the PLC
116	PDU type	Invalid PDU type received
117	Fault code	Fault while sending an unconfirmed START service
118	Service class / service	Subsystem/task does not exist
119	Board type	Invalid board type configured

Table 24 CDS error reports

Fault code	Meaning of the "Status" fault code in the table above
- 4101	No memory available or no response data attached
- 4103	No resources available / time-out at call of task message receive
- 4107	Time-out at call of task message receive
- 4109	Invalid PDU parameter
- 4112	Invalid timer message type
- 4118	Invalid message type received
- 4119	Invalid sending subsystem received
- 4300	Other initialization error while initializing CDS task
- 4303	Invalid service received and rejected
- 4307	Not supported
- 4401	Invalid PDU type received
- 4403	Invalid service received
- 4404	Invalid service class received
- 4406	Service rejected
- 5110	No entry in the extended configuration area for an option board
- 5801	Unrecognized CDS state
- 5802	Fault while loading configuration data for a task
- 5803	Invalid subsystem received
- 5804	New configuration request received from back plane handler
- 5805	Invalid board type configured
- 5806	Invalid invoke ID to a previous request received
- 5807	Fault while reading PLC data with hookout protocol

Table 25 Fault codes for CDS error reports

The CDS (configuration data handler) submenu is only accessible in expert mode from the Task Information menu. The following 5 submenus are presented:

Table 26 5 CDS submenus

Invoked by:	Menu item
(g)	Global data
(m)	Last sent message
(I)	Load information
(S)	Status notify events
(v)	Internal counters/values

The following values are displayed in the "global data" submenu:

- CDS internal task state
- Protocols supported by the option board (DP, FMS)
- Back plane slot ID where this CRP 811 is mounted
- Maximum number of bytes transferable in one request
- Type of the last hook from the PLC
- PLC status of the last hook from the PLC (global PLC state)
- Board status bitmap (also see screen 2 of the "global data" submenu)

If the PLC_MEM_INFO function should return a valid status, a further submenu becomes available displaying PLC internal data (e.g. PageF address, number of 4X registers, ...). This information is only relevant for the board software developer.

In the "last sent message" submenu the last message sent from the CDS is presented, including the data addresses and lengths to be read from the PLC, provided the message had a non–NULL data pointer.

The "load information" submenu lists the data volumes sent to the PC card handler, CCMP, ICMP, and the ICOM. Information concerning the error context of the loaded data is also available. This error context encompasses the following context code as well as an error return value from the configuration data loading function.

Hereafter follow overviews regarding the significance of context codes for each task:

Table 27 PC card handler

Bit	Meaning
No bits set	Everything OK
Bit 0 set	Error from PROFIBUS_init() or cmi_init() call
Bit 1 set	Error from DP_Master_INIT() function call
Bit 2 set	Error in bus parameters
Bit 3 set	Error while activating the bus parameter call
Bit 4 set	Error from CRL Download_Init call
Bit 5 set	Error from CRL Load_Conf_Data call
Bit 6 set	Error from CRL Download_Terminate call

Table 28 DP data handler

Value	Meaning
0	Everything OK
1	Error outside the configuration data
2	Error returned from PLC_mem_info()
3	Error in the global DP configuration
4	Error in the slave part of the DP configuration

In the "internal counters/values" submenu the following counters/values are displayed:

- Number of request PDUs to the back plane handler
- Number of request PDUs to the PC card handler
- Number of request PDUs to the DP data handler
- Number of positive response PDUs
- Number of negative response PDUs
- Error report counter
- Reconfiguration counter
- Number of power-up hooks since last reset

CCMP Task Diagnostics

- CCMP manager LED blink codes
- DP communication handler error reports

The "DP S/R" LED is used exclusively by CCMP to signal state and error conditions through the following blink codes:

Table 29 CCMP manager LED blink codes

LEDs	Meaning
Steady OFF	Reset (status: resetting). No task messages received (status: running).
Steady ON	Start-up. Still not registered with the system interface (status: initializing).
SLOW flashing rate	Waiting for configuration data (status: initializing, loading)
MEDIUM flashing rate	Downloading slave parameter sets (status: configuring slaves).
FAST flashing ra- te	Ready to run (status: stopped, synchronizing).
ODD blink	Not used
Blinking	Task message received (status: running).
Blink code 01	Unable to register error reporting service with OS
Blink code 02	Error during basic task initialization
Blink code 03	Memory allocation inactive while creating internal buffers and data management tables
Blink code 04	Global configuration data inconsistent
Blink code 05	Slave configuration data inconsistent (slave number: see error report)
Blink code 06	Slave parameter download service failed
Blink code 07	Time-out while waiting for slave parameter download confirmation
Blink code 08	Unable to set stack operating mode
Blink code 09	Unable to synchronize with back plane handler
Blink code 10	Unable to synchronize with PCMCIA handler
Blink code 11	Start command not allowed in current state
Blink code 12	Reserved for future use

The normal status blink feature can be turned on/off by setting/clearing the corresponding CCMP debug mask bits. Fault code blinking is not affected through debug mask settings. The same applies for the message flash feature in the running state.

5.5

The following table lists the message ID's for CCMP error reports. Every error report has a unique message ID. For each message ID there is an explanation of the cause of error and additional information accessable through the "Detail" element.

Message ID	Explanation and detail codes. The 32-bit detail code may hold multiple seg- ments of additional information, whose size is given in brackets.					
	Standard error messages					
0	No error. (Not used)					
1	Unknown error. (Not used)					
	Fatal initialization error messages					
2	Illegal state in task state machine. Detail = DP service (8), DP service primitive (8), handler task state (16)					
3	Did not get CDS task ID. Component not started? Detail = 0 (32)					
4	Did not get profile handler task ID. Component not started? Detail = 0 (32)					
5	Did not get back plane handler task ID. Component not started? Detail = 0 (32)					
6	Did not get profile handler event flag group handle. Detail = 0 (32)					
7	Did not get back plane handler event flag group handle. Detail = 0 (32)					
8	Did not get communication message buffer handle. Buffer not created? Detail = 0 (32)					
9	Did not get communication message buffer info. Buffer not created? Detail = 0 (32)					
10	Out of memory. Detail = handler task state (16), service_class (8), service (8)					
11	Out of memory while creating state RAM output data image buffer. Detail = max. back plane message size (16), image buffer number (16)					
12	Out of memory while creating state RAM input data image buffer. Detail = max. back plane message size (16), image buffer number (16)					
13	Out of memory while creating state RAM diagnostic data image buffer. Detail = max. back plane message size (16), image buffer number (16)					
14	Out of memory while creating slave output data image buffer. Detail = slave_number (32)					
15	Out of memory while creating slave input data image buffer. Detail = slave_number (32)					
16	Out of memory while creating slave diagnostic data image buffer. Detail = slave_number (32)					
17	Out of memory while creating slave output template buffer. Detail = slave_number (32)					
18	Out of memory while creating slave input template buffer. Detail = slave_number (32)					
19	Out of memory while creating slave diagnostic template buffer. Detail = slave_number (32)					
20	Out of memory while creating slave parameter set buffer. Detail = slave_number (32)					

Table 30 DP communication handler error reports

Message ID	Explanation and detail codes. The 32-bit detail code may hold multiple seg- ments of additional information, whose size is given in brackets.					
	Task communication error messages					
21	Did not get a task communication buffer. Detail = message buffer pool ID (32)					
22	Error while receiving task message. Detail = message_type (32)					
23	Error while sending task message. Detail = destination task ID (16), service_class (8), service (8)					
24	Error while setting flag in flag group. Detail = destination task ID (16), flag group ID (16)					
25	Invalid task message type Detail = message_type (32)					
26	Invalid system task message Detail = command code (32)					
27	Invalid service task message Detail = source subsystem/task ID (32)					
28	Invalid service class. Detail = source subsystem/task ID (16), service_class (16)					
29	Invalid service code. Detail = source subsystem/task ID (16), service_class (8), service (8)					
30	Invalid PDU type. Detail = source subsystem/task ID (16), PDU type (16)					
31	Unknown task message source entity. Detail = source subsystem/task ID (16), PDU type (16)					
32	Destination entity of received task message not CCMP. Detail = source subsystem/task ID (16), destination task ID (16)					
33	Service message rejected. Detail = destination task ID (16), service_class (8), service (8)					
34	Service message not accepted after multiple send retries. Detail = destination task_ID (16), service_class (8), service (8)					
	DP data and DP configuration error messages					
35	Invalid slave ID. Detail = slave number (16), slave node ID (8), master node ID (8)					
36	Invalid slave data DPM offset. Detail = slave number (16), offset (16)					
37	Invalid slave data template. Detail = slave ID (16), template entry number (16)					
38	CC data size too large for back plane transfer image. Detail = slave ID (16), template entry number (16)					
39	Invalid or no PLC memory/state RAM information. Detail = health table segment (16), register segment (16)					
	Task state and task configuration error messages					
40	Not reset to accept a CDS InitLoad request. Detail = handler task state (16), service_class (8), service (8)					
41	Require CDS InitLoad request at beginning of (re–)configuration. Detail = handler task state (16), service_class (8), service (8)					

 Table 30
 DP communication handler error reports

Message ID	Explanation and detail codes. The 32-bit detail code may hold multiple seg- ments of additional information, whose size is given in brackets.
42	Configuration data inconsistent Detail = handler task state (16), service_class (8), service (8)
43	Multiple configuration messages received from CDS. Detail = handler task state (16), service_class (8), service (8)
44	CDS TerminateLoad request received while not in loading state. Detail = handler task state (16), service_class (8), service (8)
45	CCMP not in configured/stopped state while receiving CDS Start request. Detail = handler task state (16), service_class (8), service (8)
	Global configuration data error messages
46	Not in range of configuration data buffer. Detail = 0 (32)
47	Invalid master network node ID. Detail = master node ID (32)
48	Invalid number of slave devices. Detail = number of slaves (32)
	DP slave configuration data error messages
49	Invalid slave output data DPM offset. Detail = slave number (16), DPM output data offset (16)
50	Invalid slave input data DPM offset. Detail = slave number (16), DPM input data offset (16)
51	Configured slave output data size too large (template). Detail = slave number (16), data size (16)
52	Configured slave input data size too large (template). Detail = slave number (16), data size (16)
53	Configured slave diagnostic data size too large (template). Detail = slave number (16), data size (16)
54	Configured slave output state RAM data size too large (template). Detail = slave number (16), data size (16)
55	Configured slave input state RAM data size too large (template). Detail = slave number (16), data size (16)
56	Configured slave diagnostic state RAM data size too large (template). Detail = slave number (16), data size (16)
57	Configured slave output bit offset too large. Detail = slave number (16), number of bits in 0xxxx area (16)
58	Configured slave input bit offset too large. Detail = slave number (16), number of bits in 1xxxx area (16)
59	Configured slave diagnostic bit offset too large. Detail = slave number (16), number of bits in 1xxxx area (16)
60	Configured slave output register offset too large. Detail = slave number (16), number of registers in 4xxxx area (16)
61	Configured slave input register offset too large. Detail = slave number (16), number of registers in 3xxxx area (16)
62	Configured slave diagnostic register offset too large. Detail = slave number (16), number of registers in 3xxxx area (16)
63	Configured slave parameter length too small. Detail = slave number (16), size of configured slave parameter set

 Table 30
 DP communication handler error reports

Message ID	Explanation and detail codes. The 32-bit detail code may hold multiple seg- ments of additional information, whose size is given in brackets.						
	Profile download and service error messages						
64	Invalid PDU size in PDU from profile. Detail = DP service (16), DP primitive (16)						
65	Invalid service code in PDU from profile. Detail = DP service (16), DP primitive (16)						
66	Invalid service primitive in PDU from profile. Detail = DP service (16), DP primitive (16)						
67	Unexpected service PDU from profile. Detail = DP service (16), DP primitive (16)						
68	Service request to profile failed. Detail = DP service (8), DP primitive/on download: slave number (8), response status code (16)						
69	Time–out while waiting for service confirmation from profile. Detail = handler task state (16), DP service (8), slave number/operating mode (8)						
70	No handling of unexpected profile messages in current state. Detail = DP service (8), DP primitive (8), handler task state (16)						
71	Invalid profile operating mode specified. Detail = DP profile operating mode (32)						
72	Unable to set required profile stack operating mode. Detail = profile response status (16), required operating mode (16)						
	Task synchronization error messages						
73	Unable to send synchronization messages to profile handler. Detail = 0 (32)						
74	Unable to send synchronization messages to back plane handler. Detail = 0 (32)						
75	Communication message buffers too small for DP parameter download. Detail = message buffer pool ID (32)						
76	Invalid PLC status in notification from back plane handler. Detail = PLC status code (32)						
77	Time–out while waiting for output scans. CPU failure? Detail = configured time–out value (32)						

Table 30 DP communication handler error reports

5.6 Back Plane Handler Task Diagnostics

This specialized submenu is only accessable in expert mode. The back plane submenu offers two menu items. The first item displays 2 screens of global data, the first as follows:

- Board module ID (e.g. 0x0400 for DP)
- Back plane handler state

Table	31	Back	plane	handler	status
-------	----	------	-------	---------	--------

Value	Meaning			
0	Back plane handler inactive			
1	Back plane handler waiting for configuration data			
2	Back plane handler configuring DP master			
3	Back plane handler error while configuring DP master			
4	Back plane handler is active			

- Time-out counter (reserved : 0 as default)
- Time-out on wait counter (reserved : 0 as default)
- Hook delay time (reserved : 0 as default)
- Maximum time for DP hook
- Last time for DP hook
- Maximum time for configuration hook
- Last time for configuration hook

Time values are in microseconds.

The second screen displays counters for the various hook types, divided into the hooks received while the PLC is in "stopped" state, and those from the "running" state. Only hooks which are used by the board have these separate counters. All others have a single, general counter.

The second menu item clears the back plane handler counters.

PC Card Handler Task Diagnostics

This specialized submenu is only accessable in expert mode. The first menu item in the PC card handler menu displays it's global data. If interrogation of the PC card returns a valid version, the version string will be shown. Otherwise only the following counters will be displayed:

Table 32 PC card handler counte

Counter type	Meaning			
Time-out counter	How many time-outs has the PC card detected?			
Diagnostics counter	How many diagnostics messages were received?			
DP data output counter	How many messages were sent to the PC card for DP output?			
DP data input counter	How many messages has the PC card received over the DP input?			
Sent messages counter	How many messages were sent to the PC card?			
Received messages co- unter	How many messages has the PC card received?			

The second menu item clears the PC card handler counters.

5.7

5.8 **Textboxes for Terminal Menu Handler**

Figure 69 Output normal Main Menu after power up

Quantum (CRP	811	V4_10D,		Schneider	Automation,	1999
				Main	Menu		
		Sel	ect one	e of the	following	options:	
			(d) (e) (g) (t) (u) (x)	DP Data Error R Global I Termina Firmwar Expert I	Menu eport Menu Data Menu 1 Setup Mer e Update Me Mode Menu	nu enu	
Press ·	<cr></cr>	to	accept,	<esc> 1</esc>	to cancel,	<ctrl-c> to</ctrl-c>	quit:

F

Note

The top line each textbox shows the current firmware version of CRP 811. This Main Menu is starting at Version 4.10D

Quantum CRP 811 V4_10D, Schneider Automation, 1999
Main Menu (Expert Mode)
Select one of the following options: (b) Memory Browser Menu (d) DP Data Menu (e) Error Report Menu (g) Global Data Menu (i) Task Information Menu (m) Debug Mask Menu (r) Board Reset Menu (t) Terminal Setup Menu (u) Firmware Update Menu (x) Expert Mode Menu
Press <cr> to accept, <esc> to cancel, <ctrl-c> to quit:</ctrl-c></esc></cr>

Figure 70 Output Main Menu for Expert Mode, selected with submenu (x) in Figure 69

Figure 71 Menu for viewing Error Reports from Task Circular Buffer, selected with submenu (e) in Figure 69 or Figure 70

Quantum CRP 811 V4_10D, Schneider Automation, 1999
Error Report Menu
The number of buffered report entries per task is given in brackets.
Select one of the following tasks:
 (b) backplane interface handler (00) (c) configuration data handler (00) (d) DP communication handler (00) (f) FMS communication handler (00) (m) terminal menu handler (00) (n) network interface handler (00) (o) system object handler (00) (s) system timer handler (00) (t) terminal interface handler (00)
Press <cr> to accept, <esc> to cancel, <ctrl-c> to quit:</ctrl-c></esc></cr>

Figure 72 Output of an Error Report Entry, selected with submenu (e) in Figure 69 or Figure 70

Quantum CRP 811 V4_10D, Schneider Automation, 1999									
Error Report Menu									
The DP communication handler (Ver.00.100a) was created at Marl8 1996 It was started at system startup + 00:00:00,00. Its error report buffer holds 1 reports.									
Error report number 1 from the DP communication handler: time of creation : 00:00:16,27 module name : CCMP.C source line : 348 error code : -4107 error detail : 0003E700h error message ID : 69 caller : 0792:07C5									
Press <cr> to continue, <esc> to cancel, <ctrl-c> to quit:</ctrl-c></esc></cr>									

Figure 73 Output of global data of the board, selected with submenu (e) in Figure 69 or Figure 70

Quantum CRP 811 V4_10D, Schneider	Automation, 1999
Global Data Menu	
build date	: Mar 18 1996
build time	: 14:13:47
PC Card firmware version	: 5.01
PC Card firmware build date	: 25.01.1996
global option board status	: 003Ch
global heap base segment	: 0845h
global heap size (bytes)	: 228272
largest free block on global heap	: 141936
print task ID	: F607h
print flag group handle	: 0502h
print buffer pool handle	: 0601h
task message buffer pool handle	: 0602h
maximum task message buffers	: 30
task message buffers used	: 1
max. error reports per task	: 16
Profibus data rate	12MBit/s
Press <cr> to continue, <esc> to cancel</esc></cr>	l, <ctrl-c> to quit:</ctrl-c>

Figure 74 Submenu for selection of DP data, selected with main menu (d) in Figure 69 or Figure 70

Quantum CRP 811 V4_10D, Schneider	Automation, 1999
DP Data Menu	
global state profile startup enabled profile stack operating mode output data transfer enabled output transfers since startup input transfers since startup configuration error code configuration error context code PROFIBUS master node ID PROFIBUS master PNO identifier number of slaves configured slave status bit table (1=active)	: 12 : 1 : COh : 0 : 3895 : 0 : 3895 : 0 : 1 : B204h : 25 , 0=inactive)
1111111111111111111111111110000000 000000	000000000 00000000000000000 00000000 000000
Press <cr> to continue, <esc> to cancel</esc></cr>	l, <ctrl-c> to quit:</ctrl-c>

Quantum CRP 811 V4_10D, Schneider	Aut	comation, 1999
Information for DP Slave 2: (RUN	NII	√G)
output discretes area	:	0xxxx-0xxxx
input discretes area	:	10065-10080
diagnostics discretes area	:	1xxxx-1xxxx
output registers area	:	4xxxx-4xxxx
input registers area	:	3xxxx-3xxxx
diagnostics registers area	:	30410-30422
DP parameter data size	:	14
PNO identifier	:	1344h
diagnostics data byte #1	:	0000000b
diagnostics data byte #2	:	00001100b
diagnostics data byte #3	:	0000000b
diagnostics data byte #4 (master)		: 1
diagnostics data byte #5/6 (vendor)	:	1344h
station not reachable count	:	0
station not ready count	:	0
invalid response count	:	0
input register for life sign	:	300013

Figure 76 Information for a configured slave, selected with submenu (s) in Figure 74

Quantum C	CRP 811 V4_10D,	Schneider A	utomation,	1999
		DP Data Menu		
	DP input data	of DP slave 2:		
00h 00h				
Dress	CRS to continue	$\sim < FSC > to cancel$	<ctrl-c> t</ctrl-c>	o mit:
TTCDD -				o dare.

Figure 78 Actual input values of a configured slave, selected with submenu (s) in Figure 74

Figure 79 DP slave diagnosis with manual update, selected with submenu (m) in Figure 74

Quantum CRP 811 V4_10D, Schneider Automation, 1999
DP Data Menu
Diacnostic for DP slave 2 (Slave is running):
Byte #1 Byte #2 Byte #3 Byte #4 (Master) Byte #5/6 (vendor) 00000000b 00001100b 00000000b 1 1354h
Diagnostic bytes #1 to #13 in Hexa Decimal
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 0 00 0C 00 01 13 54 07 00 00 00 00 00 00
Press <cr> to continue, <esc> to cancel, <ctrl-c> to quit:</ctrl-c></esc></cr>

Figure 80 DP slave diagnosis with automatic update after change of diagnosis data, selected with submenu (c) in Figure 74

Quantum CRP 811 V4_10D, Schneider Automation, 1999 DP Data Menu _------Diacnostic for DP slave 2 (Slave is running): Byte #1 Byte #2 Byte #3 Byte #4 (Master) Byte #5/6 (vendor) 00000000b 00001100b 0000000b 1 1354h Diagnostic bytes #1 to #13 in Hexa Decimal 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 0 -- 00 0C 00 01 13 54 07 00 00 00 00 00 Press <CR> to continue, <ESC> to cancel, <CTRL-C> to quit:

Figure 81 Overview DP slave diagnosis with manual update, selected with submenu (o) in Figure 74

Quantum CRP 811 V4_10D, Schneider Automation, 1999 DP Data Menu -------DP diagnostic overview R: Slave is running, ?: Slave is not running,C: No Diagnostic avail able P: Slave is passive addr\offs 00 01 02 03 04 05 06 07 08 09 0 R 10 R R R Press <CR> to continue, <ESC> to cancel, <CTRL-C> to quit:

Quantum CRP 811 V4_10D, Schneider Automation, 1999
DP Data Menu
DP diagnostic statistic
addr\offs 00 01 02 03 04 05 06 07 08 09 0 003
10 003 003 003
Press <cr> to continue, <esc> to cancel, <ctrl-c> to quit:</ctrl-c></esc></cr>

Figure 82 DP slave diagnosis statistic with manual update by keystroke, selected with submenu (t) in Figure 74

Figure 83 Software RESET of CRP boards, selected with main menu (r) in Figure 70

Quantum CRP 811 V4_10D,	Schneider Automation, 1999								
Board Reset Menu									
The board will be completely reset to power up state.									
All parameters that have been (e.g. baud rate settings, deb state.	changed using the diagnostics terminal ug masks) will be reset to default								
Choose one of th (a) abort action an (r) reset and re-in	e following options: d resume in normal mode itialize board								
Press <cr> to accept, <esc></esc></cr>	to cancel, <ctrl-c> to quit:</ctrl-c>								

Quantum CRP 811 V4_10D, Schneider Automation, 1999 Firmware Update Menu The board will be switched to firmware download mode. Having finished the download successfully, the new firmware will be started. The parameters of the serial interface will be reset to default. In case of a download failure or user abort it may be necessary to restart the board with a power down / power up to resume normal operation. Choose one of the following options: (a) abort action and resume in normal mode (e) enter firmware download mode Press <CR> to accept, <ESC> to cancel, <CTRL-C> to quit:

Figure 84 Activities of flashloader, selected with main menu (u) in Figure 69 or Figure 70

Figure 85 Message after activating the flashloader, selected with main menu (e) in Figure 84

Figure 86 Output of the terminal settings after Power Up, selected with main menu (t) in Figure 69 or Figure 70

Figure 87 Selection of a different baudrate, selcted with <CR> in Figure 86

Quantum CRP 811 V4_10D, Schneider Automation, 1999											
Terminal Setup Menu											
The parameters of the serial I/F will be set before return to the main menu.											
Choose one of the following options:											
(0) 19200 Baud, 8 data bits, 1 stop bit, no parity											
(1) 14400 Baud, 8 data bits, 1 stop bit, no parity											
(2) 9600 Baud, 8 data bits, 1 stop bit, no parity											
(3) 4800 Baud, 8 data bits, 1 stop bit, no parity											
(4) 2400 Baud, 8 data bits, 1 stop bit, no parity											
(5) 1200 Baud, 8 data bits, 1 stop bit, no parity											
(6) 9600 Baud, 7 data bits, 1 stop bit, even parity											
(7) 2400 Baud, 7 data bits, 1 stop bit, even parity											
(8) 38400 Baud, 8 data bits, 1 stop bit, no parity											
(9) 115200 Baud, 8 data bits, 1 stop bit, no parity											
Press <cr> to accept, <esc> to cancel, <ctrl-c> to quit:</ctrl-c></esc></cr>											

Figure 88 Menu for the Expert Mode available also in normal mode, selected with submenu (x) in Figure 69

Figure 89 Input of the password to enter "Expert Mode", selected with submenu (x) in Figure 88

20

Figure 90 Menu for Expert Mode in Expert Mode, selected with submenu (x) in Figure 70

Figure 92 Reenter new password once again, selected with submenu (s) in Figure 90

Quantum CRP 811 V4_10D, Memory						Schneider Automation, 1999 Browser Menu						
	addr\offs	00010203	04	05	06	07	08	29	0A	0B	OCODOEOF	0123456789ABCDEF
	FD00:0000 FD00:0010 FD00:0030 FD00:0040 FD00:0040 FD00:0060 FD00:0070 FD00:0080 FD00:0090 FD00:0080	FAFCEB5C 4153415F 4C4F4144 50524F54 5645522E 32302E31 B810008E 00F7E305 C3B103D3 0000B840 4D00432B	90 44 45 4F 31 D8 BE E0 00 C3	00 45 52 54 2E 8E 02 8B 8E B1	00 55 5F 30 31 D0 8B C8 C0 03	00 54 50 30 39 F8 E0 E3 BF D3	00 53 4F 45 30 39 88 88 13 00 E0	00 43 50 5F 30 35 14 4C B8 00 8B	00 48 39 5F 30 5F 00 00 48 F3 C8	00 4C 31 5F 30 5F 2D BB FE A5 E3	00000000 414E445F 315F5F5F 5F5F5F5F 2E30325F 5F5F5F5F 1000BB10 40004B2B 408ED8BE B88100BB 0A8EC3BF	ASA_DEUTSCHLAND_ LOADER_NOP911 PROTOTYPE_ VERT000000.02_ 20.11.1995 L.@.K+ H.@. M.C+.
	FD00:00B0 FD00:00C0 FD00:00D0 FD00:00E0 FD00:00F0	0000B800 01D3E88B 008EC0BF 8ED88ED0 05BE028B	00 C8 00 F8 E0	F3 E3 00 B8 E9 to	AB 11 F3 14 38 cor	B8 8C A5 00 00	1A C8 B8 2D F4	0C 8E 10 10 00 dum	BB D8 00 00 E8 np f	5A BE 8E BB C3	0B2BC3B1 5A0BB800 D8B81000 1000F7E3 09B0FFA2 a: FD00:01	Z.+ Z 8

Figure 0/	Memory Browser	Monu	soloctod with	submonu	(h) in	Figuro	70
rigule 94	Memory Browser	wenu,	selected with	Submenu	(D) III	rigure	10

Quantum CRP 811 V4_10D, Schneider	Automation, 1999
Debug Mask Menu	
The current debug mask value is giv	en in brackets.
Select one of the following	tasks:
 (b) backplane interface handler (c) configuration data handler (d) DP communication handler (f) FMS communication handler (m) terminal menu handler (n) network interface handler (o) system object handler (s) system timer handler (t) terminal interface handler 	(00000A01h) (00001201h) (00001A01h) (00000A01h) (00000A01h) (00000A01h) (00000201h) (00000201h) (00000201h)
Press <cr> to accept, <esc> to cancel,</esc></cr>	<ctrl-c> to quit:</ctrl-c>

Quantum CRP 811 V4_10D, Schneider Automation, 1999	
Debug Mask Menu	
Debug mask for the configuration data handler (select bit to char	nge)
XXXXXXXXh (xxxxxxxxxxAaflibphSsRrTtEe) 00001201h (00000000000000000000000000000000000	
 (a/A) additional debug support output (b) beep when displaying critical messages (e/E) display error reports in short/long format (f) enable LED flash mode during message/data transfers (h) display buffer headers when sending/receiving (i) display initialization status messages (l) enable LED task state blink codes (p) display task printouts (needed for the following) (r/R) display task messages in short/long format (s/S) display task messages in short/long format 	nd

Figure 96 Menu for setting/ resetting each bit in the debug mask of a given task, selected with <CR> in Figure 95

Figure 97 Menu for selecting the internal task for which display of internal data is requested, selected with submenu (i) in Figure 70

Quantum CRP 811 V4_10D, Schneider Automation, 1999
Task Information Menu
Select one of the following_tasks:
 (b) backplane interface handler (c) configuration data handler (d) DP communication handler (m) terminal menu handler (n) network interface handler (o) system object handler (s) system timer handler (t) terminal interface handler
Press <cr> to accept, <esc> to cancel, <ctrl-c> to quit:</ctrl-c></esc></cr>

20

Quantum CRP 811 V4_10D, Sch	neider Automation, 1999
Task Informati	on Menu
System task information of the ba	ckplane interface handler:
version	: 0.001a
date of creation	: Mar 18 1996
task ID	: FC02h
status	: 0
priority	: 50
debug mask	: 00000A01h
stack base	: 3476h
stack size	: 2048
stack used	: 382
local heap base	: 0000h
local heap size	: 0
local heap free	: 0
message queue size	: 32
message queue used	: 0
CPU usage hh:mm:ss,ddd	: 00:00:43,117
Press <cr> to continue, <esc> to</esc></cr>	cancel, <ctrl-c> to quit:</ctrl-c>

Figure 98 Submenu for the Backplane Interface Handler, selected with submenu (b) in Figure 97

Figure 99 Output for global Information of the CDS, selected with submenu (c) in Figure 97

Quantum CRP	811 V4_10D,	Schneider Automation	n, 1999
	Configuration Data	Handler Global Data	
	internal tas	sk state: 0	
	protocol(s) suppo backplane slot II max. DPM transfer last hook type global PLC state board status bit	orted : DP o : 10 c size : 2510 : 01h : 20h mask :	
	PLC memory inf	to is valid	
Press <cr< td=""><td>> to continue, <esc></esc></td><td>• to cancel, <ctrl-c></ctrl-c></td><td>• to quit:</td></cr<>	> to continue, <esc></esc>	• to cancel, <ctrl-c></ctrl-c>	• to quit:

Quantum CRP 811 V4_10D, Sch	nneider Automation, 1999
Configuration Data Handle:	er Last Sent Message
sending subsystem	n : 247
destination task	ID : FB05h
message type	: 5
send count	: 1
service class	: 2
service	: 5
PDU type	: 3
service specific	: 251
status	: 0
invoke ID	: 19
data length	: 0
Press <cr> to continue, <esc> to</esc></cr>	cancel, <ctrl-c> to quit:</ctrl-c>

Figure 100 Output of the last sent message from the CDS, selected with submenu (c) in Figure 97

Figure 101 Output of the state of the configuration data load, selected with submenu (c) in Figure 97

Quantum CRP 811 V4_10D,	Schneider Automation, 1999
Configuration Data Han	dler Load Information
PC Card data length	: 138
PC Card error detai	l : 0/0000h
DP handler data len	gth : 1894
DP handler error de	tail : 0/0000h
Press <cr> to continue, <esc></esc></cr>	to cancel, <ctrl-c> to quit:</ctrl-c>

Quantum CRP 811 V4_10D, Schneider Automation, 1999	
Configuration Data Handler Status Notify Events	
hook type : Reconfiguration (FF) controller state : reconfiguring (FF) time of request in msec : 0 ms	
hook type: Power Up(1)controller state: stopped(20)time of request in msec:0 ms	
Press <cr> to continue, <esc> to cancel, <ctrl-c> to quit:</ctrl-c></esc></cr>	

Figure 102 Output of ringbuffer for status notify requests, selected with submenu (c) in Figure 97

Figure 103 Output of the internal counters and variables of the CDS, selected with submenu (c) in Figure 97

Quantum CRP 811 V4_10D, Schneider	Automation,	1999
Configuration Data Handler Internal	Counters/Va	lues
request PDUs to backplane handler	:	9
request PDUs to PC Card handler	:	5
request PDUs to DP data handler	:	5
request PDUs to FMS data handler	:	0
		1.4
positive response PDUs	:	14
negative response PDUs	:	0
error report counter		0
reconfiguration counter		1
Dever UD books since last reset		1
POWEL OF HOOKS SINCE LAST LESET	•	T
Press <cr> to continue, <esc> to cance</esc></cr>	l, <ctrl-c></ctrl-c>	to quit:

Figure 104 Menu for Backplane Handler global data, selected with <CR> in Figure 98

Quantum CRP 811 V4_10D, S	Schneider Automation, 1999
Backplane Handler	Internal Data
module ID	: 0400h
handler state	: 4
timeout counter	: 0
timeout on wait	: 0
hook delay	: 0
_	
max. time for DP/FMS	hook : 4380
last time for DP/FMS	hook : 2860
	10011 2000
max time for config	hook : 36000
last time for config	hook : 36000
last time for config	1100K · 30000
Press <cr> to continue, <esc></esc></cr>	to cancel, <ctrl-c> to quit:</ctrl-c>

Quantum CRP 811 V4_10D, Schneider	Automatio	on, 199	9
Backplane Handler Internal	Data		
PLC in STOPPED state			
Powerup hook counter	:	1	
Exit Dim Awareness hook counter	:	1	
End of Scan hook counter	:	10930	
Dummy End of Scan hook counter	:	0	
Port 3 Preprocessing hook counter	:	0	
User Logic hook counter	:	0	
other hooks counter	:	10932	
PLC in RUNNING state			
Powerup hook counter	:	0	
Exit Dim Awareness hook counter	:	0	
End of Scan hook counter	:	0	
Dummy End of Scan hook counter	:	0	
Port 3 Preprocessing hook counter	:	0	
User Logic hook counter	:	0	
other books counter	:	0	
Press (CR) to continue (FSC) to cancel	<ctri-(< td=""><td>not cr</td><td>uit:</td></ctri-(<>	not cr	uit:
TIESS Service concernacy subcy concernance			410,

Quantum CRP 811 V4_10D,	Schneider Automation, 1999
PC Card H	andler Menu
This task performs all	PC Card data transfer.
Choose one of the (g) glob	following options: al data
(r) rese	t counters
Press <cr> to accept, <esc></esc></cr>	to cancel, <ctrl-c> to quit:</ctrl-c>

Quantum CRP 811 V4_10D, Schne	ider Automation, 1999
PC Card Handler	Menu
PC Card ident string: @(#1) PROFIcar	d PBFW_DP.SBN V5.01 25.01.1996
timeout counter	: 0
diagnostigs counter	. 22
diagnosties counter	• 55
DP data output counter	: 371616
DP data input counter	: 403960
sent messages counter	: 66
received messages counter	: 69
Press <cr> to continue, <esc> to c</esc></cr>	ancel, <ctrl-c> to quit:</ctrl-c>

Figure 108 Counter values for PC Card Handler, selected with submenu (g) in Figure 107

Module Description Appendices

179

The supplemental information included here is not absolutely necessary for document comprehension.

The following module descriptions are contained in this appendix:

-140 CRP 811 00 -AS-BDA-203 -Make use of the corresponding manuals for Momentum and TIO.

140 CRP 811 Communication Module PROFIBUS–DP

1

140 CRP 811 00 link TSX Quantum devices to the PROFIBUS–DP as per DIN 19 245 Parts 1 and 3 (EN 50170).

Module type	max. 32 PROFIBUS–DP Nodes per Bus
Supply	5 VDC, max. 1.2 A

182

1.1 Features and Function

The communication module serve ar the connecting linkage between the CPU and external PROFIBUS nodes.

Figure 1 Functional Block Diagram of the Quantum Module

Figure 2 Functional Block Diagram of the PCMCIA Card + the Transmission Access Point

To Figure 1 :

The architecture of the module is based upon an 80386EX microprocessor coupled with a Quantum parallel bus and PCMCIA interface card (PCMCIA PC Card Standard, Release 2.01).

The communications module sends and receives data from the Quantum bus through the dual port ram interface.

The firmware which manages the data exchange between the PCMCIA interface card and the CPU is resident within the flash rom.

To Figure 2 :

The PCMCIA card defines the complete interface with the PROFIBUS. The conversion into the RS–485 standard connection is made by the transceiver (Transmission Access Point).

The PCMCIA card is executed as a Type III and finds use in both communications modules, CRP 811 and NOP 911.

The PCMCIA card is based on the 80C165 microcontroller and PROFIBUS ASIC APSC2. The ASPC2 performs all the tasks related to Layer 2 of the PROFIBUS (corresponding to Layer 2 of the ISO–OSI reference model). The remaining layers are processed with the help of the 80C165 running the protocol software resident in flash rom.

1.1.1 Configuration

You must configure:

Mounting Slot in the Subrack

Install the module into any free I/O slot within the TSX Quantum primary subrack. The individual installation steps should proceed as shown in the accompanying user information.

PROFIBUS RS-485 Port

The PROFIBUS port utilizes varied Sub–D9 plug connectors 490 NAD 911 02. The individual connection steps should proceed as shown in the accompanying user manual.

Figure 3 PROFIBUS Port Diagram

Pin	Signal	Function
1	SHIELD	Shield, Protective Ground
3	RxD/TxD–P	Receive/Transmit–Data–P (+)
5	DGND	5 V Signal Ground
6	VP	Positive Supply (+5V)
8	RxD/TxD–N	Receive/Transmit–Data–N (–)

186

RS-232C Port

For diagnosis connect the PC to the RS–232C (Sub–D9) port socket. This requires one of the following cable configurations:

- Serial cable YDL 052 (cable exits up)
- Serial cable YDL 054 (cable exits down)

Figure 4 RS-232C Port Diagram

Socket	Signal	Function
2	D2 (RXD)	Received Data
3	D1 (TXD)	Transmitted Data
5	E2 (GND)	Signal Ground
7	S2 (RTS)	Request to Send
8	M2 (CTS)	Clear to Send

1.1.2 Diagnosis

The module contain the following LED status display:

Figure 5 Status LEDs of the CRP 811

LEDs	Color	Function
Active	Green	On: CPU is in "Run" mode and the backplane communication active Flashing: The flash rom load operation is active
Ready	Green	On: Module in operation
Fault	Red	Off: Error free operation On: Other LEDs are flashing with fault code
Backplane	Green	Off: Error free operation Flashing with fault code: on backplane fault
PROFIBUS	Green	Off: Error free operation Flashing with fault code: on erroneous configuration data or PROFIBUS fault
DP S/R	Green	Fast flashing frequency: Sending/Receiving DP bus data Medium flashing frequency: Configuration Slaves Slow flashing frequency: Waiting for configuration data Flashing with fault code: on erroneous configuration data
FMS S/R	Green	not used
Load	Yellow	Flashing: Configuration data load operation active Flashing with fault code: on load operation fault

Diagnosis through the RS–232C serial port Required serial port presets:

- Baud rate: 19.2 kBaud
- 8 Databits
- 1 Stopbit
- Parity: off

Table 33 Main menu functions callable over the RS-232C port:

Name	Function
(d) DP Data Menu	View PROFIBUS–DP data (CRP 811)
(e) Error Report Menu	View error output
(g) Global Data Menu	View global data / Status
(t) Terminal Setup Menu	RS-232C port settings
(u) Firmware Update Menu	Update CRP 811 firmware
(x) Expert Mode Menu	Extended and password protected expert mode menu

1.1.3 **Technical Specifications**

Communication Module CRP 811

Assignment	
Device	TSX Quantum at Concept Version 2.2 or higher
Module Area	I/O area of the primary subrack
Compatible CPU Modules	140 CPU 113 02 (8 K),140 CPU 113 03 (16 K) 140 CPU 213 04 (32 K), 140 CPU 424 02 (64 K), 140 CPU 434 12 (64 K), 140 CPU 534 14 (64 K)
Number CRP per Quantum	2 mit CPU 113, CPU 213 6 mit CPU 424, CPU 434, CPU 534 *) No Quantum Hot Stand By
Updating of time with 32 slaves (for every 16 bit inputs, 16 bit outputs)	4 ms with CPU 424 at 12 M Bit/s
Necessary Configuration Tools for Concept	TLX L FBC M (Eng./Germ.) PROFIBUS–DP configuration tool SyCon
PNO-Ident-No.	5506
Device Data Base (DDB)	ASA_5506.GSD
Supply Voltage	
over the Internal I/O Bus	5 VDC, max. 1.2 A
Data Interface	
PROFIBUS	Up to 12 Mbps off the transceiver RS-485 port
RS 232C	as per DIN 66 020, non-isolated
Baud rate	19.2 Kbps default
max. line length	3 m shielded cable
Backplane	Quantum parallel bus
Processor	
Microcontroller	25 MHZ Intel 80386EX in the Quantum module (Controller) Siemens 80C165 and Siemens ASIC ASPC2 in the PCMCIA card
Memory	
RAM	256 KB for program data + 8 KB DPR in the Quantum module 512 KB for program data + 16 KB DPR in the PCMCIA card
EEPROM	128 Byte in the PCMCIA–Card
Flash ROM	256 KB in the Quantum module 256 KB in the PCMCIA card

Mechanical Design		
Dimensions	Width = 40.34 mm (standard-size module)	
	Quantum module with PCMCIA Type III card mounted	
Weight	0.68 kg (gross)	
Environmental Conditions		
System Data	See the Quantum User Manual, Chap. 3.1	
Power Dissipation	max. 6.5 W	

PROFIBUS-DP with CRP 811

Transmission Specifications		
Bus Nodes	max. 32 (without repeater)	
Bus lengths, transmission rates (for 12 Mbps cable)	max. 1.2 km at 9.6 Kbps max. 1.2 km at 19.2 Kbps max. 1.2 km at 93.75 Kbps max. 1 km at 187.5 Kbps max. 0.5 km at 500 Kbps max. 0.2 km at 1,5 Mbps max. 0.1 km at 3 Mbps max. 0.1 km at 6 Mbps max. 0.1 km at 12 Mbps	
Transmission media (per meter)	shielded twisted pair KAB PROFIB, PROFIBUS cable up to 12 Mbps, rigid	
Connection Interface	EIA RS 485	
Bus Connector	490 NAD 911 01, 490 NAD 911 02	
(Cable Termination)	(as per Norm 390 / 220 / 390 W for 12 Mbps cable)	
Stub Cabling	none (except 1 x 3 m from the bus monitor)	
Bus Specifications		
Node Type	Master Class 1	
Bus–Access Procedure	Master/Slave to DP bus slaves	
Transmission Procedure	half-duplex	
Frame Length	max. 255 Bytes	
Data Unit Length	max. 246 Bytes	
Data Security	hamming distance, HD = 4	
Node Addresses	1 126	
FDL Send/Req. Data Services	for slave services: parameter assignment, configuration, diagnosis, data transfer	

Master Class 1 DP Bus Functionality				
Read Diagnostic Information from DP Bus Slave	on slave initialization, automatically, should new slave diagnostic data be available, data filed in state ram area (Input Reference 3x) $n \times INT8$ n = 0 no filing of diagnostic information n = 6 default value for standard diagnostic data			
Send Parameter Data to DP Bus Slave	only on slave initialization, Uses parameter data from the DP bus configuration tool and DP bus slave device master data			
Send Configuration Data to DP Bus Slave	only on slave initialization, Uses configuration data from the DP bus configuration tool and DP bus slave device master data			

Operation

Cyclically transfer in- & output data from the state ram			
Outputs	Output Reference 0x and 4x (Boolean, packed) Output Reference 4x (Integer 8 / 16 / 32 Unsigned 8 /		
	16 / 32, RAW / String, packed e.g. ASCII)		
Inputs	Input Reference 1x and 3x (Boolean, packed)		
	Input Reference 3x (Integer 8 / 16 / 32, Unsigned 8 /		
	16 / 32, RAW / String, packed e.g. ASCII)		

AS-BDEA 203 PROFIBUS-DP Coupler

The **AS–BDEA 203** is a PROFIBUS–DP coupling module adhering to DIN 19 245 Parts 1 and 3 with integrated (non–isolated) power supply. It is used to drive the remote I/O modules of the Modicon TSX Compact family.

Figure 1 AS–BDEA 203 Front View and Label Inlays

1 Features and Fnctions

1.1 General Information

The AS–BDEA 203 is a PROFIBUS–DP coupling module adhering to DIN 19 245 Parts 1 and 3 with integrated (non–isolated) power supply. It is used to drive the remote I/O modules of the Modicon TSX Compact family. It provides a 5 VDC supply at 1.6 A for the modules on the parallel I/O bus.

The AS–BDEA 203 can address a maximum of 18 I/O modules (288 I/Os) via the subracks DTA 200, DTA 201 or DTA 202. With the exception of intelligent modules, all analog and discrete Compact I/O modules can be employed. When analog modules are utilized, there is a particular total data volume which may not be exceeded.

The device master data file from the 381 SWA 000 00 discette must be utilized for AS–BDEA 203 configuration.

1.2 Features

The module shows the following features:

- Standardized, isolated PROFIBUS Port
- Transmission rates of up to 12 Mbps
- Automatic adaptation to master transmission rate setting
- Slave address adjustment per rotary switch.
- DIP switch adjustment of disconnection behavior

1.3 Functional Details

The AS–BDEA 203 serves as the coupling element between the PROFIBUS–DP and the internal I/O bus.

The set disconnection behavior is activated by watchdog when PROFIBUS communication is interrupted longer then the supervision time set by the master.

The AS–BDEA 203 collects messages from the associated modules and reports these further to the master as diagnostic information.

Figure 2 AS-BDEA 203 functional details

2 Configuration

The following configuration tasks must be performed:

2.1 Subrack Mounting Slot

Install the module in DTA 200 primary subrack slot 0. The individual installation steps are to be carried out in adherence with the accompanying user documentation.

2.2 **Power Supply Connection**

Figure 3 Connection example

Caution

The module's integrated power supply is non-isolated. Improper connection, e.g. absence of the M2 connection, can lead to module destruction.

Enter system relevant power supply information in the label inlay. Noise immunity can be improved when by–pass capacitors are installed at the power supply module U and M terminals. Details can be found in the User Manual ch. "A120 Grounding Procedures".

2.3 **PROFIBUS Connection**

The PROFIBUS port utilizes varied Sub-D9 plug connectors:

- 490 NAD 911 02 for transmission rates up to 12 Mbps or
- PBS1 for transmission rates up to 500 Kbps.

The individual installation steps are to be carried out in adherence with the accompanying user documentation.

Figure 4 PROFIBUS port pin assignments

Pin	Signal	Function
3	RxD/TxD–P	Receive/transmit data (+)
5	DGND	Signal ground
6	VP	+5 VDC supply
7	RxD/TxD–N	Receive/transmit data negated (-)

2.4 Settings (Slave Address, Disconnection Behavior) Slave Address (x10, x1)

The slave address (node address) is to be set on the front panel "x10, x1" rotary switches. Addresses from 1 ... 99 are allowed (0=as shipped).

2.5 Disconnection Behavior (S2, S3)

Figure 5 Module rear view

2.6 I/O Expansion Limitations

Arbitrary I/O combinations are only possible with discrete I/O modules. Use of analog I/O modules restricts total data volume to a particular level.

Total data volume is the sum of data from the PROFIBUS master to the AS–BDEA 203 (D out), and from the AS–BDEA 203 to the PROFIBUS master (D in).

The feasibility of a particular combination can be verified with the following tables. The first table lists data volume by respective module (D out / D in) in bytes.

In accordance with the (D in) data volume, this table permits the data volume calculation for PROFIBUS master to AS–BDEA 203 (D out).

With the second table the (D out) data volumes of all employed modules is to be checked against the max. permissable (D out) data volume.

Module	D in Data Volume (Bytes)	D out Data Volume (Bytes)	
DEP 208, DEP 210, DEP 211	1	0	
DAP 204, DAP 208, DAP 210	0	1	
DAP 212, DAP 220, DAP 292	1	1	
DEO 216, DEP 214, DEP 215, DEP 216, DEP 217, DEP 218, DEP 220, DEP 296, DEP 297, DEX 216	2	0	
DAO 216, DAP 216, DAP 217, DAP 218, DAX 216	0	2	
DAU 202	0	4	
DAU 208	0	16	
ADU 204, ADU 205	10	0	
ADU 206, ADU 216	10	1	
ADU 210	10	4	
ADU 214	18	8	

Table 1 Data volume by module

D in Data Volume Sums (Bytes)	Max. D out Data Volume Sums (Bytes)
241 244	144
233 240	152
225 232	160
217 224	168
209 216	176
201 208	184
193 200	192
185 192	200
175 184	208
169 176	216
161 168	224
153 160	232
145 152	240
0 144	244

Table 2 Max. permissable "D out" data volume in respect to "D in" data volume

Table 2 is based on following equation:

$$392 \ >= \left(\left\lceil \frac{\text{D in}}{8} \right\rceil + \left\lceil \frac{\text{D out}}{8} \right\rceil \right) \times 8$$

Upper limit = nearest higher integer

Example (Determination of Total Volume

Table 3 Determination of Data volume by module , according toTable 1

Module	D in-Datavolume (Bytes)	D out-Datavolume (Bytes)		
2 x AS-BDAP-220	2 x 1 = 2	2 x 1 = 2		
1 x AS-BADU-210	1 x 10 = 10	1 x 4 = 4		
11 x AS-BADU-214	11 x 18 = 198	11 x 8 = 88		
Sum	210	94		

According to Table 2 (row 5): D in = 209 ... 216 results in D out = 176 (max.).

So the I/O configuration is valid.

Diagnosis

The module front plate contains the following displays:

No.	Label Inlay Identifier	Color	Function	
18 (left)	U	Green	24 VDC supply present	
19 (left)	ready 5 V	Green Module ready for service, 5 VDC out voltage present		
3 (right)	ready	Green	Coupler ready	
4 (right)	ght) Pready Green Green (Green		Bus coupling faulty (bus failure), Probable cause: The AS–BDEA is not parameterized and initialized, the PROFIBUS–DP protocol is not run- ning	

4 Diagnosis Data

4.1 Structure of the diagnosis data telegram

Figure 8 Diagnosis Telegram

Byte 1		
	SPC3 ASIC reserved (6 Bytes)	Standard Diagnosis Information
	Module related Diagnosis-Header (1 Byte)	
	Firmware Version (8 Bytes)	
	Error byte (see Table 4)	Extended Diagnosis Information
	Wrong module in slot 1 8 (s. Table 6)	
	Wrong module in slot 9 16	
	Wrong module in slot 17, 18	
	Module error in slot 1 8 (s. Table 6)	
	Module error in slot 9 16	
Byte 22	Module error in slot 17, 18]]

Error Byte

Table \$	5 L	isting	"Error	Byte"
----------	-----	--------	--------	-------

Bit	Error Number	Meaning	Information			
0	1	AS–BDEA–203 total	This bit results from an OR operation on the errors for register driver, module error and wrong module. It is set if at least for one slot of the rack an error (register driver, module error or wrong module) is indicated.			
1	2	Wrong module	In one or multiple slots of the rack there is a wrong module.			
2	3	Module Error	Error on one or multiple modules in the rack.			
3	4	Register Driver	If an error occurs while operating modules using the regis- ter interface, the error bit for register driver is set. There is no decoding of the slot which causes the error. The fol- lowing modules use the register interface: AS– BADU–210/214, AS–BADU–208 and AS–BZAE–201. If an error occurs the last valid input value will continuous- ly be transmitted.			
4	reserved					
5	reserved					
6	reserved					
7	reserved					

Wrong module

A wrong module error will be indicated if for a slot in the rack no ident code (ident code =0) or an ident code other than defined in the configuration is read. This will happen if a module is removed during operation, swapped with a wrong module or at the complete failure of a module.

During configuration the module for each slot is detected. If the actual and the desired module type are equal the AS–BDEA–203 module transits to the "Data Exchange" mode. In this state there is a cyclical module type checking. Only slots which during configuration contained modules are checked, all others will be ignored.

In case a slot encounters a wrong module error the input data for that slot will be deleted (transmission of 00Hex to the master) and the output of data to this slot will be suppressed. This means for the user that data exchange with the affected slot is not possible.

Table 6 List of "Wrong Module", "Module Error"

Bit	7	6	5	4	3	2	1	0
Slot No.	8	7	6	5	4	3	2	1
Slot No.	16	15	14	13	12	11	10	9
Slot No.	res.	res.	res.	res.	res.	res.	18	17

Module error

The meaning of this error message is module specific. You can find detailed information on the meaning and how to handle it, in the according module description. The corresponding bit will be described as SMx.1.

This message has no influence on the data transmission of the AS–BDEA–203. That is, all data of the effected modules will be transmitted continuously.

Generally:

Module Type	Meaning of the Message
discrete input (DEx xxx)	(there will be no message)
discrete output (DAP 216N and DAP 220 only))	missing switch voltage, output overload
discrete output (all other: DAx xxx)	(there will be no message)
analog output (DAU xxx)	external 24V supply missing
analog input (ADU xxx)	external 24V supply missing, channel overflow

Systemreaction on Module Failure

You can think of the following possible faults:

- Impossible to read ident code (for example module is missing or defective, ident code = 0 is handled as wrong module error)
 For a slot with a wrong module error all input data will be deleted (transmission of 00 Hex to the master) and the slot will not be processed through AS-BDEA-203 as long as the error is present.
- Ident code can be read but the module has an internal error (the module has detected an internal error: Bit 7 in the ident code is set to 1, message module error)

This message has no effect on the data transmission and the processing through the AS–BDEA–203.

5 Technical Specifications

5.1 PROFIBUS DP Coupling AS-BDES-203

Assignment	
System	TSX Compact (A120, 984)
Module area	Slot 0 of DTA 200 primary backplane
Identcode	Hex A203, entry through the device master data file type 381 SWA 000 00
Power Supply	
External input voltage	UB = 24 VDC, max. 0.85 A
Primary fusing	1.25 A medium time-lag fuse
Power on current	20 A, time constant = 1 ms
Tolerances, limiting values	Refer to the TSX Compact User Manual, ch. "Technical Spe- cifications"
Reference potential M	M2
Protective earth	PE
Secondary voltage	5.15 VDC, max. 1.6 A, non-isolated
Buffering time	Typically 5 ms for 24 VDC
Overload protection	Through current limiting
Data Interface	
PROFIBUS-DP	Through a potential-free RS-485 interface up to 12 Mbps
Pin assignments	Refer to ch. PROFIBUS Connection NO TAG
Back plane	Parallel I/O bus, refer to TSX Compact User Manual, ch. "Technical Specifications"
Processor	
Processor type	Intel 80C152 / 12 MHz
Data memory	32 KB RAM
Firmware	64 KB EPROM
Mechanical Design	
Module	Standard double-size module
Format	3 HE, 16 T
Weight	Approx. 500 g
Connection Styles	
Power supply	5-pole screw/plug-in terminal block
PROFIBUS	Sub–D9 socket, matching to 490 NAD 911
Back plane	2 plug connectors 1/3 C30M, 1 socket connector 1/3 R30F

Environmental Characteristics	
Regulations	Meets VDE 0160, UL 508
System data	Refer to TSX Compact User Manual, ch. "Technical Specifica- tions"
Permissable ambient temperature	0 +60 degrees C.
Power dissipation	Typically 6 W

5.2

AS–BDEA 203 on the PROFIBUS DP

Transmission Specifications		
Nodes per bus	Max. 32	
Bus lengths, transmission rates	max. 1.2 km at 9.6 Kbps or at 19.2 Kbps or at 93.75 Kbps max. 1 km at 187.5 Kbps max. 0.5 km at 500 Kbps max. 0.2 km at 1.5 Mbps max. 0.1 km at 3 Mbps or at 6 Mbps or at 12 Mbps	
Bulk transmission media	Shielded twisted pair (S–UTP) KAP PROFIB, PROFIBUS cable up to 12 Mbps, rigid	
Connection interface	Adhering to EIA RS-485	
Cable termination	As per Norm 390 / 220 / 390 Ω	
Stub cabling	None	
Data security	Hamming distance, HD = 4	
Bus Specifications		
Node type	Slave	
Node addresses	1 99	
Operation		
Cyclically transfer in- & output data	from the state ram	
DP Bus Byte Output	Output Reference 0x (Boolean, packed) Output Reference 4x (Integer8, unpacked; Unsigned8, un- packed; RAW, packed e.g. ASCII)	
DP Bus Byte Input	Input Reference 1x (Boolean, packed) Input Reference 3x (Integer8, unpacked; Unsigned8, un- packed;	
	RAW, packed e.g. ASCII)	
Bus Word Output	RAW, packed e.g. ASCII) Output Reference 0x (Boolean) Output Reference 4x (Integer16 = Unsigned16 = RAW)	

140 CRP 811, PROFIBUS–DP, 181 140 CRP 811 00, PROFIBUS–DP, 190

С

Communication Module, 140 CRP 811, 181

D

DEA 203, 193, 194

Ρ

PROFIBUS-DP 140 CRP 811, 181 140 CRP 811 00, 190 PROFIBUS-DP Coupler, 193, 194

Т

Teminal assignment RS 232C, 187 Terminal assignment PROFIBUS, 186